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Abstract—As vibrotactile feedback systems become increas-
ingly commonplace, their application scenarios are becoming
more complex. We present a method of vibrotactor control
that accommodates emerging design requirements, namely large
vibrotactor arrays that are capable of displaying complex wave-
forms. Our approach is based on control through digital audio
interfaces. We describe a new open-source software and hardware
package, Syntacts, that lowers the technical barrier to rendering
vibrations with audio. We also present a tutorial on common
control schemes with a discussion of their advantages and
shortcomings. OQur software is purpose-built to control arrays
of vibrotactors with extremely low latency. In addition, Syntacts
includes means to synthesize and sequence cues, and spatialize
them on tactile arrays. The Syntacts Amplifier integrates with
the audio hardware to provide high-quality analog signals to
the tactors without adding excess noise to the system. Finally,
we present results from a benchmarking study with Syntacts
compared to commercially available systems.

Index Terms—yvibrotactor, audio, control, open-source

1. BACKGROUND

One of the most important and ubiquitous modes of haptic
feedback is vibration. Haptic vibrations are commonly deliv-
ered to users through small actuators known as vibrotactors,
or simply tactors. Vibrotactors come in many forms, such
as eccentric rotating mass (ERM) actuators, linear resonant
actuators (LRA), voice coil actuators, and Piezo actuators.
For several decades, vibrotactile feedback has been used
extensively across a wide variety of applications, most notably
mobile and wearable devices [1].

The modern era of vibrotactile research is faced with a
number of new needs and requirements. For instance, the
field has recently begun moving away from providing users
with simple alert type cues to delivering salient cues rich in
information. Many researchers are now designing devices with
larger numbers of tactors integrated into single interfaces such
as bracelets, armbands, and sleeves [2]-[4], full body suits and
clothing [5], [6], and chairs [7]. Unfortunately, driving many
vibrotactors simultaneously has traditionally been a difficult
task for engineers and non-engineers alike due to the technical
skills required, interfacing difficulty, or cost of equipment.
Further, high-density arrays require more sophisticated render-
ing algorithms. Spatialization, or the manipulation of several
actuators in an array-based on the placement of a virtual target
location, has been explored to some extent [7].
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In addition to increasing actuator counts, some vibrotactile
research has recently focused on delivering complex vibration
waveforms, beyond simple buzzes, to convey more meaningful
information to users [8], or to more accurately simulate real-
world phenomena [9]. The synthesis of such cues, however,
is not a trivial task, with some researchers resorting to pre-
recorded libraries [10] or high-level creation tools [11], [12].
Finally, while the advent of mainstream virtual reality (VR)
systems has introduced new opportunities for vibrotactile
feedback, it has also imposed additional constraints on control
including low latency [13] and the need to alter cues on the
fly in response to virtual events.

This paper aims to highlight a method of vibrotactor con-
trol that accommodates many of the these requirements and
deserves detailed attention: control through digital audio in-
terfaces. We present a new open-source software and hardware
package, Syntacts, that lowers the technical barrier to synthe-
sizing and rendering vibrations with audio. In Section II, we
discuss common vibrotactor control schemes along with their
advantages and shortcomings. Section III provides an overview
of the hardware requirements for audio-based control, under-
scoring some of the lesser known details that can have a
high impact on control, and introduces the Syntacts Amplifier
board. In Section IV, we discuss software for audio-based
control and then present the Syntacts software library. Finally,
in Section V, we provide comparisons between Syntacts-
based audio control and other methods. Conclusions and areas
for future work follow in Section VI. Syntacts software and
hardware designs are freely available at: www.syntacts.org.

II. INTRODUCTION TO VIBROTACTOR CONTROL

Because vibrotactors have been a staple of haptics for a
long time, there exist many scenarios and approaches for
their control. A typical research-oriented scenario requires
controlling vibrotactors from a PC that may also coordinate
an experiment, record data, and/or render visuals. Within this
context, we summarize a few possible control strategies.

A. Function Generators

The simplest control implementation uses a standalone
function generator connected directly to the tactor. This is
easy because generators are purpose-built to output oscillating
signals and envelopes, and can often meet the tactor’s power
requirements. However, function generators are limited in cue
design, output channel count, and may be challenging to
integrate with custom software. For these reasons, they are
a poor choice for complex control.
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B. Integrated Circuits

To serve the mobile device market, specialized integrated
circuits (IC) have been developed for vibrotactor control.
These ICs often handle both signal generation and power
amplification, making them an all-in-one package. A common
chip, the DRV2605L from Texas Instruments (TI), features a
built-in library of effects that can be triggered and sequenced
through 12C commands. Some ICs are capable of closed-
loop control which automatically detects the tactor’s resonant
frequency and can provide faster response times. The utility of
ICs for laboratory research, however, is restricted by the need
to design and fabricate custom PCBs, since their small package
sizes make it difficult to prototype on breadboards (though
preassembled PCBs and breakouts can be found in various
online shops). Controlling many tactors becomes complicated
and usually requires additional components such as multiplex-
ers. Finally, PCs generally do not provide an I?C interface, so
a USB adapter or microcontroller (e.g., an Arduino) must be
introduced to broker communication between the PC and ICs.

C. Dedicated Controllers

Unlike other actuators such as DC motors, there exist very
few off-the-shelf, plug-and-play controllers for vibrotactors.
One product marketed as such is the Universal Controller from
Engineering Acoustics, Inc (EAI). It is designed to drive their
ubiquitous C2 and C3 voice coil actuators, but can drive other
tactors with similar load impedance. The controller interfaces
to a PC via USB and can output up to eight individual
channels, though the datasheet and our own testing (Section
V) indicates that only four can be driven simultaneously. EAI
provides a GUI and C API with adequate cue synthesization
features, so integrating the controller with custom software
is straightforward. The major downside of this controller is
a very high upfront cost (approximately $2,250) that not all
researchers are willing or able to afford.

Texas Instruments also sells the DRV2605SLEVM-MD, an
evaluation module for the DRV2605L mentioned above, that
could be considered a controller unit. The board integrates
eight DRV2605L ICs, an I2C multiplexer, and a USB interface.
Unlike the EAI controller, no high-level communication API
is available, so either low-level serial programming or 12C
brokerage is still required to integrate it with a PC. Finally, a
recent startup, Actronika. aims to sell a haptic processing unit,
the Tactronik; however, details are currently sparse.

D. Audio Output Devices

Another approach to driving tactors, and main focal point
of this paper, is through digital audio output devices. This
approach hinges on the understanding that some vibrotactors,
particularly LRA and voice coil variants, operate very similarly
to headphones or loudspeakers. Like speakers, these tactors
consist of an electrical coil within a magnetic field. Energizing
the coil induces a magnetic force that, in the case of speakers,
drives a cone to generate sound pressure, or, in the case of
vibrotactors, drives a mass to generate vibrations. As such,
the same hardware that drives loudspeakers can also drive
vibrotactors with a few adjustments and considerations.

The technique of using audio to drive haptic actuators is
simple yet relatively underutilized within the field. Outside of
a few workshops [14], [15], the process has received limited
documentation or comparison with existing control solutions.
The remainder of this paper will discuss the implementation
of audio-based control while introducing a new open-source
hardware and software solution, Syntacts. We will show that
using this approach can provide a number of benefits including
relatively low implementation cost, support for large channel
counts, and ultra-low latency.

III. HARDWARE FOR AUDIO-BASED CONTROL
A. Sound Cards / Digital-to-Analog Converters

The most important piece of hardware for audio-based
control is the digital-to-analog converter (DAC) device. The
DAC is responsible for converting digitally represented wave-
forms, like music files, to analog signals to be played though
headphones or speakers. Virtually all PCs have a DAC in-
tegrated into the motherboard that outputs two analog signals
through a headphone or line out jack (typically a 3.5mm phone
jack) for left and right audio channels. If no more than two
vibrotactors are needed, use of the built-in headphone jack
may be sufficient for some users.

Driving more than two channels generally requires a ded-
icated DAC, or sound card. The least expensive options are
consumer grade surround sound cards, which can be had in
typical PCI-e or USB interfaces. Up to six tactors can be driven
with 5.1 surround sound cards, while up to eight can be driven
with 7.1 surround sound cards. We have found this to be a
viable solution if consideration is given to differences between
channel types (e.g., subwoofer channels are usually tuned
for lower impedance loads than speaker channels). Offerings
from Creative Soundblaster and Asus are among the most
readily available choices. There also exist professional grade
audio interfaces with more than eight outputs, such as the
MOTU UltraLite-mk4 and 16A with 12 and 16 channels,
respectively. For even higher channel counts, the purely analog
output MOTU 24Ao0 is a popular choice [16], [17]. A single
unit provides 24 output channels, and up to five units can
be connected using Audio Video Bridging (AVB) to drive
120 vibrotactors if desired. It should be noted that some
professional devices may feature other I/O channels (e.g.,
MIDI, S/PDIF, etc.) that are of little use for driving tactors.

An extremely important consideration in sound card selec-
tion is the device’s driver API support. An API describes a
digital audio transmission protocol, and most drivers support
many different APIs. Windows standardizes at least four first-
party APIs: WDM-KS, WASAPI, MME, and DirectSound. As
shown in Fig. 1, not all APIs are created equally. Because
MME, which exhibits highly perceptible latency, is usually
the default API, it could be easy to conclude that audio
is insufficient for realtime haptics. Steinberg’s third-party
ASIO driver is widely considered to be the most performant
option, but it is often only implemented by professional grade
equipment. Regardless, API selection is a rather opaque setting
under Windows, and appropriate software is usually required
to select the preferred driver API (see Section IV). Driver
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Figure 1: Mean Windows audio driver API latencies with standard deviation.
Data collection methods are described in Sec. V. For reference, the dashed
line indicates the perceptional threshold of visual-haptic simultaneity [13].

20

MOTU...24Ao...(ASIp)

Latency...[ms]
S

0 T T T T
16 32 64 128 256
Buffer...Size...[samples]

Figure 2: The effect on latency due to changing audio buffer sizes.

API selection is less of an issue on macOS, with CoreAudio
being the universally recommended option. Another important
consideration is audio buffer-size, or the number of audio
samples sent on every transmission to the device. If the host
PC has sufficient processing speed, smaller buffer sizes should
be preferred for low latency (Fig. 2).

B. Amplifiers

Audio DACs typically output a low-power signal at what is
called “line-level” because they expect that the output device
will amplify the signal before it is actually played. Vibrotactors
are similar to typical 8 to 16 {2 speakers, and therefore require
amplification. Amplifiers are divided into different classes
based on how they operate. Digital Class D amplifiers are
the most common. They expect an analog input signal and
output an amplified version of the signal with pulse-width
modulation (PWM). This type of amplification tends to be very
power efficient, but high-frequency PWM switching can add
large amounts of electrical noise to a system. This is especially
true when designing for arrays of vibrotactors, where multiple
naively implemented Class D amplifiers can create enough
noise to be physically felt. Class A, B, and AB amplifiers are
linear amplifiers. These amplifiers tend to have much lower
efficiency than the Class D, which can lead to heat problems
if their thermal design is overlooked. However, because they
do not constantly switch at high frequencies, they introduce
considerably less noise into the overall system. Finally, a stable
power supply is critical to the amplifier’s ability to condition
the signal. Batteries or linear power supplies provide much
more stable power than typical switch-mode power supplies
and allow amplifiers to operate with less noise.

Noisy power amplification can have detrimental effects
on the performance of haptic devices that integrate sensors.

For example, the first iteration of Tasbi’s [3] tactor control
hardware featured three commercial stereo Class D amplifiers
powered by a generic switch-mode power supply. The high-
frequency content emitted by these components resulted in
errant motor encoder readings and noisy analog force sensor
measurements beyond usability. As another example, we have
noticed considerable noise emission from the C2 tactors and
EAI Universal Controller (which also uses switching ampli-
fiers) in MISSIVE [18] during EEG measurements.

C. Syntacts Amplifier

Based on these difficulties and limited commercial options
for high-density output, we designed the purpose-built, eight
channel Syntacts Amplifier board (Fig. 3). It is based on the
TI TPA6211A1-Q1 3.1W audio power amplifier IC, featuring a
Class AB architecture and fully differential inputs and outputs
that together eliminate all noise issues we have experienced
with commercial options. The Syntacts amplifier can drive
small to medium sized vibrotactors with load impedances
above 3 2 from a 5V power supply at typical vibrotactile
frequencies, making it suitable for many applications (Fig.
4). We have successfully tested it with various LRAs, EAI’s
C2 and C3 voice coil actuators, and Nanoport’s TacHammer
actuators. The amplifier is not intended for use with ERM
actuators, which are trivially powered with DC voltage, nor
Piezo actuators, which require higher voltages or custom
controllers altogether. The Syntacts amplifier has thermal and
short circuit protection and operates at voltage levels generally
considered safe. However, potential users should understand
that it has not undergone the testing required of commercial
devices, and should take this into their safety considerations.

Outputs (8)
(to tactors)

Outputs (8)
(to tactors)

3.5 mm TRS
Inputs (4)
(from DAC)

DB25 Input
(from DAC)

Figure 3: The Syntacts amplifier is an open-source fully differential, linear
amplifier capable of driving eight vibrotactors with minimal noise. Two
variants are available: one with a single AES-59 DB2S5 input for connecting to
high-end audio devices such as the MOTU 24Ao0, and one with four standard
3.5 mm TRS headphone inputs for connecting to general audio outputs or
surround sound cards. Both require a 5V power supply, and output amplified
signals through a universal 0.1 pitch header.

Figure 4: The Syntacts amplifier can be used in a variety of applications,
ranging from dense tactile arrays (a) to wearable devices such as Tasbi (b).
Designs for the tactile array are available online as a reference implementation.
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Open-source designs for two variants of the amplifier, one
with four 3.5 mm phone inputs and one with a standardized
AES-59 DB25 connector, are available online along with
manuals and data sheets. We provide packaged CAD files and
BOMs for direct submission to turn-key PCB manufactures,
where the boards can be built for roughly $50-100 USD
depending on the quantity ordered and requested fabrication
time. Alternatively, the PCB and components can be ordered
separately and soldered by hand or in a reflow oven.

IV. SOFTWARE FOR AUDIO-BASED CONTROL

Software is necessary both to interface audio devices and
to synthesize and render waveforms. Many commercial GUI
applications provide these features for the creation of music
and sound effects. While some researchers have leveraged such
software (particularly MAX MSP [15]) for vibrotactor control,
they tend to be overly complex, lack features useful for haptic
design, and are difficult to integrate with other applications
programmatically. Though a number of haptic effect software
GUIs and frameworks have been developed for commercial
[19] or one-off, custom hardware [20], only a few examples of
general purpose, audio-based vibrotactor software exist. One
example is Macaron [11], a WebAudio-based online editor
where users create haptic effects by manipulating amplitude
and frequency curves. The software, however, is primarily
focused on ease of design, and provides little in the way of
device interfacing or integration with other code.

To this fill this void, we developed Syntacts, a complete
software framework for audio-based haptics. Driven by the
needs of both Tasbi [3] and MISSIVE [18], we have integrated
a number of useful features, including:

o a user-friendly API that integrates with existing code

o direct access to external sound card devices and drivers
« flexible and extensive waveform synthesis mechanisms
« the ability to generate and modify cues in realtime

« spatialization of multi-channel tactor arrays

« saving and loading cues from a user library

« compatibility with existing file formats and synthesizers
« a responsive GUI for cue design and playback

Each point is further detailed in the following sections. Syn-
tacts is completely open-source, with code and binaries for
Windows and macOS freely available at: www.syntacts.org.

A. Syntacts API

Syntacts’ primary goal is to provide a flexible, code-
oriented interface that can be easily integrated with existing
software and applications. The library is written in C and
C++ to facilitate accessing low-level drivers and maximizing
performance. Additionally, bindings are currently provided
for C# and Python. The former is particularly useful for
integrating Syntacts with Unity Engine for creating 3D virtual
environments, while the latter allows for high-level scripting
and interactivity (e.g., with Jupyter notebooks). Integration
with other languages is possible via C shared library (i.e.,
DLL) loading, and additional languages may be officially
supported in the future (e.g., a MATLAB interface would be

useful to many academics). Code presented in this section is
taken from the Python binding, but the native C++ API and
C# binding are similar in their syntax and usage.

1) Interfacing Devices: Syntacts will interface with virtu-
ally any audio card on the commercial market. The API allows
users to enumerate and select devices based on specific drivers,
a feature typically reserved to professional commercial soft-
ware. While Syntacts can open devices under any audio API,
users should be mindful of the considerations discussed in
Section 1, favoring low latency options such as ASIO. Library
usage begins with creating an audio context, or Session. A
Session opens communication with a requested audio device
and starts an output stream to it in a separate processing thread.

# Ccreate an audil

1 1itext
Session ()

O con

session =
# enumerate connected hardware
for

dev in session.available_devices:
print (dev.index) # 6
print (dev.name) #
print (dev.max_channels) #

( i

# e.qg.

print (dev.api_name)

# open

2t 48 kHz

device 6 with 24 channels
session.open (6,24

Listing 1: Querying hardware information and opening devices

2) Creating Effects with Signals: Vibration waveforms are
represented abstractly by one or more Signals. Signal classes
define a temporal sampling behavior and length, which may
be finite or infinite. A variety of built-in Signals are available
in Syntacts. For example, the classes Sine, Square, Saw,
and Triangle implement typical oscillators with normalized
amplitude and infinite duration, while Envelope and ASR
(Attack, Sustain, Release) define amplitude modifiers with
finite duration. Signals can be mixed using basic arithmetic.
The act of multiplying and adding Signals can be thought of as
an element-wise operation between two vectors. Multiplying
two Signals yields a new Signal of duration equal to the
shortest operand, while adding two Signals yields a new Signal
of duration equal to the longest operand. Gain and bias can
be applied to Signals with scalar operands as well.

In Listing 2 and Fig. 5, the Signals sgr and sin are
implicitly of infinite length, while asr has a length of 0.3
s. Multiplying sqr by sin yields another infinite Signal with
a 100 Hz square carrier wave, amplitude modulated with a
10 Hz sine wave (sigl). This Signal can further be given
shape and duration by multiplication with asr to yield the
finite Signal sig2. The Signal sig3 represents another form
of modulation through summation instead of multiplication.
While the examples here only demonstrate passing scalar
arguments to Signal constructors, some Signals can accept
other Signals as their input arguments. For instance, it is
possible to pass sin as the frequency argument to sqr’s
constructor, yielding a form of frequency modulation. The
modularity of the API allows users to create a wide variety
of effects with minimal code. Syntacts can also be easily
extended with custom user-defined Signals simply by creating
classes which define the functions sample and length.
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sgqr = Square (100) # 100 Hz square
sin = Sine (10) # 10 Hz triangle
asr = ASR(0.1,0.1,0.1) # attack, sustain, release

# basic examples mixing the Signals above

sigl = sgr * sin

sig2 = sigl % asr

sig3 = 0.5 % (sqgr + sin) % asr

# play Signals on channel 0 and 1
session.play (0, sigl) # plays until stopped
session.play(l, sig2) # plays for 0.3 seconds
session.stop (0) # stop sigl

Listing 2: Creating, mixing, and playing Signals

sqr sin asr

v
v

sig1 sig2 sig3

v

Figure 5: Signals created in Listing 2

3) Sequencing Signals: Multiple Signals can be concate-
nated or sequenced temporally to create patterns of effects us-
ing the insertion, or left-shift, operator. Consider the examples
in Listing 3 and Fig. 6. First, two finite Signals sigAa (0.3 s)
and sigB (0.4 s) are created. Signal sig4 demonstrates their
direct concatenation, resulting in a 0.7 second long vibration
where sigB is rendered immediately after sigA. Delay and
pause can be achieved through the insertion of positive scalar
operands, as shown in sig5. Inserting negative scalars moves
the insertion point backward in time, allowing users to overlay
or fade Signals into each other as in sig6. Sequences of
Signals can also be sequenced as in sig7.

sigA = Sine(100) + ASR(0.1,0.1,0.1) # 0.3 s
sigB = Sine(50) = ADSR(0.1,0.1,0.1,0.1) # 0.4
sig4 = sigA << sigB # 0.7 s
sigh = 0.1 << sigA << 0.2 << sigB # 1.0 s
sigb = sigA << -0.1 << sigB # 0.6 s
sig7 = sigd4 << sigb << sig6 # 2.3 s
session.play(2,sig7)
Listing 3: Sequencing Signals in time
sig4 sigh sig6
I i Il
‘ b lin H T
e e T
il ) If{f{f{mo r " (AL
M | (1

Figure 6: Sequenced Signals created in Listing 3

4) Spatialization and Realtime Modifications: In addition
to playing Signals on discrete channels, multiple channels
can be mapped to a normalized continuous 1D or 2D spatial
representation with the Spatializer class. Similar to the Mango
editor from Schneider et al. [7], users can configure a virtual
grid to match the physical layout of a tactor array, and then
set a virtual target coordinate and radius to seamlessly play
and blend multiple tactors at once. Channel positions can be
set individually or as uniformly spaced grids. Only channels
within a farget radius are played, and their volume is scaled
according to a specified drop-off law (e.g., linear, logarithmic,
etc.) based on their proximity to the target location. By
moving the target location, for example, in a while loop or
in response to changes in device orientation, developers can
create sweeping motions and the illusion of continuous space
with their tactile arrays (Listing 4, Fig. 7).

Other parameters, such as master volume and pitch, can be
modified in realtime for Spatializers or individual channels.
This offers developers the ability to move beyond playing
discrete, pre-designed cues, to instead modifying continuous
cues in response to conditions within the application. For
example, consider the VR application in Fig. 10. In addition to
pre-designed haptic effects that are triggered for specific events
(such as button clicks), a continuous haptic effect is rendered
when the player’s hand is inside the fan air stream. Volume,
the spatializer target, and pitch are changed based on hand
proximity, wrist orientation, and the fan speed, respectively.

spatial = Spatializer (session) # 2D Spatializer
spatial.create_grid (4, 6) # 4 rows X 6 cols
spatial.set_position (18, (0.1,0.8)) # move channel 18
spatial.radius = 0.3 # effect radius
spatial.target = (0.2, 0.1) #
spatial.roll_off = 'linear' #
spatial.play(sigl) #

# modification in a loop

while condition:
spatial.target =
spatial.volume = v

spatial.pitch = p

spatial.stop ()

Listing 4: Spatializing tactor arrays and modifying parameters in realtime

© 0 ®
®

200000
000000

Figure 7: The Spatializer created in Listing 4
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5) Saving and Loading Signals: User-created Signals can
be saved to disk and reloaded at a later time using the functions
saveSignal and loadSignal. The default file format is a
binary representation of the serialized Signal. That is, instead
of saving all individual audio samples, only the parameters
needed to reconstruct the Signal at runtime are saved. This
results in considerably smaller files which can be loaded more
quickly on the fly than typical audio file formats. Nonetheless,
Syntacts can still export and import WAV, AIFF, and CSV file
formats for interoperability with existing haptic libraries.

B. Syntacts GUI

In addition to the raw APIs, Syntacts ships with a feature-
rich GUI (Fig. 8). The GUI includes a drag-and-drop interface
for designing Signals from built-in configurable primitives.
The resulting Signal is immediately visualized to facilitate
the design process. A track-based sequencer and spatialization
editor are also included. Signals can be tested on a selected
device’s output channels, and then saved to the user’s library
for later use. Leveraging library features, users employ the
GUI to rapidly tune haptic effects being loaded and played
from Syntacts code in an separate application (e.g., iteratively
tuning the effects for the buttons and knobs of the fan in
Fig. 10). The GUI application is available as a precompiled
executable or in source code format.

V. COMPARISON

In this Section, we evaluate Syntacts against two of the
commercially available control options discussed in Section
II: the EAI Universal Controller, and the TI DRV2605LEVM-
MD evaluation board. Each controller was implemented with
the manufacturer-recommended configuration so as to best
compare them with the Syntacts framework.

A. Latency Benchmarking

Latency is a critical measure of a system’s ability to render
cues, especially for time sensitive applications like VR. For
high-density tactile arrays, latency can increase with the num-
ber of channels simultaneously played since each subsequent
channel adds more processing or transmission time. If multiple
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Figure 9: Syntacts In Use - This figure demonstrates a real-world implementa-
tion of the Syntacts amplifier, where it has been used to drive two Tasbi haptic
bracelets [3]. A professional grade audio device (MOTU 24Ao) is connected
to two Syntacts amplifier boards that have been integrated into separate Tasbi
control units. Amplifier output is transmitted to each Tasbi over a multi-
conductor cable. Each Tasbi bracelet incorporates six Mplus 1040W LRA
tactors radially spaced around the wrist, for a total of twelve utilized audio
channels. The audio device interfaces with a host PC (not shown) through a
USB connection.
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Figure 10: Syntacts In Use - Here, the C# binding of the Syntacts API is used
in Unity Engine to provide haptic effects for a virtual fan interaction designed
for the Tasbi setup shown in Fig. 9. Two usage paradigms are in effect.
The first leverages pre-designed, finite Signals for knob detents (designed in
the Syntacts GUI and loaded at runtime) and button contact events (created
programmatically on-the-fly, parameterized by hand approach velocity). The
second paradigm uses an infinitely long Signal for the fan air stream. The
volume and pitch of this Signal are modified in realtime based on the user’s
hand location and the fan speed, respectively. One-dimensional spatialization
is used to target only the tactors which are oriented toward the fan in a
continuous fashion.
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Figure 8: Syntacts GUI - The left-hand side demonstrates cue design. Users drag, drop, and configure Signals from the design Palette to the Designer
workspace. The Signal is visualized and can be played on individual channels of the opened device. The right-hand side shows the GUI’s track-based
sequencer (background) and spatializer (foreground) interfaces. Once designs are complete, they can be saved and later loaded from the programming APIs.



IEEE TRANSACTIONS ON HAPTICS, VOL. XX, NO. X, MONTH 2020

ABS Block

Accelerometer

Foam Layer

Figure 11: The testing apparatus used for all latency benchmarking. An Mplus
ML1040W LRA was epoxied to a 100 g ABS block, and an accelerometer
measured LRA induced vibrations along the y-axis. Latency was defined as
the time from calling the software APIs to command vibration to the time at
which 0.015 g of acceleration was measured.

channels are played at once, the last actuated channel may lag
the first actuated channel by several milliseconds depending
on the overall implementation. For this reason, we chose to
benchmark latency as a function of the number of channels
played at once.

We defined latency as the time from calling the functions to
create and play a cue on n = [1, 8] tactors until an appreciable
acceleration (0.015 g) was measured on the last actuated tactor.
To perform the test, we constructed an apparatus (Fig. 11)
based on the factory testing rig for the Mplus ML1040W LRA
vibrotactors that were used. An accelerometer (TE Connec-
tivity 4000A-005) was attached perpendicular to gravity on a
100g block of acrylonitrile butadiene styrene (ABS). The block
rested on a layer of polyurethane foam to mitigate external
vibrations. A C++ testing application, also available online,
controlled the experiments and ran 100 trials for each device.
Data was collected with a Quanser QPID digital acquisition
device polled at 50 kHz. All systems rendered a 178 Hz sine
wave between 5V with a duration of 1,000 ms.

Syntacts software was configured to control a MOTU 24Ao0
under the ASIO driver API and a buffer size of 16, with
power amplification being performed by the Syntacts amplifier
board. Syntacts and EAI systems were controlled through their
respective APIs, called directly from the testing application.
As the datasheet for the EAI Universal Controller notes, it
can only play four tactors at full amplitude simultaneously
and its API imposes this limit, so its testing concluded there.
Due to the nature of the TI chip, I2C brokerage was required
to interface with the testing application. We used an Arduino
Uno for this purpose, under the assumption that it represented
the most likely use case. The EAI and TI drivers were
programmed to use manufacturer recommended methods to
minimize cue latency.

Accelerometer data were reduced to find the mean and
standard deviation of the latency for each system and number
of channels played (Fig. 12). The Texas Instruments system
has the highest latency for a single tactor, but does not increase
latency through four tactors. After the fourth tactor, the average
latency and standard deviation increase, possibly due to 12C

multiplexer components, but again stays constant after five
tactors. The Arduino likely contributes most to this latency,
but since it represents a very plausible implementation, we
consider it a fair comparison. The EAI system has lower
latency than the TI system for one and two tactors, but the
latency linearly increases with number of channels played to
greater than the TI system, and as noted cannot play more than
four channels. The Syntacts system has significantly lower
latency than either of the commercially available systems
tested and does not seem to be a function of channels played,
so the system could expand to larger tactor arrays without
delays. Though not shown, we measured similar latency values
for the MOTU 24Ao0 with 24 channels played simultaneously.

B. Overall Comparison

Whole-system comparisons of the vibrotactile control meth-
ods tested are summarized in Table I. The different pro-
gramming APIs show the extent to which hardware can be
integrated within software. The GUI column lists the different
functionality of the included graphical user interfaces. Synthe-
sizers are able to create cues, Sequencers have the ability to
organize cues in time on one or more channels, and Spatializ-
ers allow users to specify the center of vibration for an array
of tactors. The audio hardware listed only represents a small
subset of the possible options, but as can been seen Syntacts
allows users to select audio devices based on output needs
and cost. For around $125 USD, researchers can interface
a 7.1 surround sound card with Syntacts and the Syntacts
amplifier to achieve a complete 8 channel setup comparable
in performance to the $2,250 USD EAI Universal Controller.
Though rendering more that 8§ channels with audio comes at
a cost, it can still be done for much less that the cost of
multiple EAI controllers and is considerably more managable
than implementing an integrated circuit based design.

VI. CONCLUSIONS AND FUTURE WORK

We have presented Syntacts, an open-source suite of vibro-
tactile software and hardware based on audio principles. The
framework is purpose-built to control arrays of vibrotactors
with extremely low latency. In addition, Syntacts includes a
graphical user interface designed to synthesize and sequence
cues, and spatialize them on tactile arrays. The Syntacts

Syntacts...+...MOTU...24A0...(ASIO)
--{-- EAI...Control...Unit
4 - TI...DRV2605LEVM-MD

Latency...[ms]

1 2 3 4 5 6 7 8
Simultaneously...Played...Channels
Figure 12: Latency as a function of channels rendered, measured as the time

from software triggering to the detection of tactor acceleration. Only four
channels are shown for the EAI control unit since this is its max.
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Table I: Comparison of Tactor Control Methods Tested

Open API / Max. Avg. Approx.
Method Interface Source Language GUI Hardware Channels Latency (ms) Cost (USD)
Synthesizer
Audio Syntacts Yes ¢ g++’ CH#, Sequencer Headphone Jack 2 8.88 $751
ython F
Spatialization
SB Audigy RX7.1 (PCI-e) 8 422 $125t
MOTU mk4 (USB) 12 5.20 $7501
MOTU 24A0 (USB) 24 2.97 $1,225F
Controller |  EAI No ¢ Ssymhes‘zer EAI Universal Controller gt 5.35 $2,250
equencer
IC 1’C Yes N/A Synthesizer DRV2605LEVM-MD 8 6.65 $150

TIncludes the cost of the number of Syntacts amplifiers (at $75 USD ea.) to accommodate the maximum available channels of the audio interface.
fWhile the EAI Universal Controller supports eight channels, only four can be played simultaneously.

Amplifier easily integrates with the audio hardware to provide
high-quality analog signals to the tactors without adding ex-
cess noise to the system. Importantly, neither Syntacts software
nor the Syntacts amplifier are required by each other; users can
choose to mix Syntacts software with their own amplifiers, or
use the Syntacts amplifier with their own software. Finally,
we benchmarked the Syntacts system against commercially
available systems which showed that audio plus Syntacts is
as, if not more, effective and flexible.

Syntacts is not without its limitations, and may not be the
perfect tool for all researchers. For one, Syntacts requires a
host PC and tethering hardware to audio interfaces. Therefore,
Syntacts is not well suited for mobile or wireless haptic de-
vices. Second, the Syntacts amplifier, while being compatible
with large portion of commercial tactors, is not designed
to power ERM or Piezo-actuators, and may have difficultly
driving large and/or higher power actuators.

Future work for Syntacts involves both improvements on
the usability of the software as well as understanding the use
space more fully. In particular, immediate work will focus
on extending realtime Signal modification features for VR
applications. We aim to integrate more hapticly oriented tools
as well, perhaps eventually favoring tactile perceptual models
over audio centric concepts such as volume and pitch. Iteration
on the API and GUI from user feedback would further increase
the usability of the program. In closing, given the open-source
nature of Syntacts, we welcome and hope that the haptics
community will also contribute to its continued development.
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