Aperture: Fast Visualizations Over Spatiotemporal Datasets

Kevin Bruhwiler
Department of Computer Science
Colorado State University
Fort Collins, USA
Kevin.Bruhwiler @rams.colostate.edu

ABSTRACT

One of the most powerful way to explore data is to visual-
ize it. Visualizations underpin data wrangling, feature space
explorations, and understanding the dynamics of phenomena.
Here, we explore interactive visualizations of voluminous,
spatiotemporal datasets. Our system, Aperture, makes novel
use of data sketches to reconcile I/O overheads, in particular
the speed differential across the memory hierarchy, and data
volumes. Queries underpin several aspects of our method-
ology. This includes support for a diversity of queries that
are aligned with the construction of visual artifacts, facili-
tating their effective evaluation over the server (distributed)
backend, and generating speculative queries based on a user’s
exploration trajectory. Aperture includes support for different
visual artifacts, animations, and multilinked views via scal-
able brushing-and-linking. Finally, we also explore issues in
effective containerization to support visualization workloads.
Our empirical benchmarks profile several aspects of visual-
ization performance and demonstrate the suitability of our
methodology.

Author Keywords

Spatiotemporal Data; Visualization; Sketching Algorithms;
Containerization

CCS Concepts

eInformation systems — Spatiotemporal Data; *Human-
centered computing — Visualization; *Theory of compu-
tation — Skerching Algorithms; *Software and its engineer-
ing — Containerization;

1 Introduction

Spatiotemporal datasets proliferate in several domains. A large
fraction of all datasets that are being generated are spatiotem-
poral. Domains that these datasets are available in include
ecology, epidemiology, atmospheric sciences, geosciences,
and commerce.

One of the most powerful ways to explore data is to visualize
it. Visualizations are often a precursor to data wrangling, pre-

REosessingrandisubssquent analysis: Howevethe.2rowih i

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN .

DOI:

Shrideep Pallickara
Department of Computer Science
Colorado State University
Fort Collins, USA
Shrideep.Pallickara@colostate.edu

cumulative data volumes alongside access latencies and low
throughputs of the I/O subsystem pose formidable challenges
during visualization. Visualizations also involve computa-
tional overheads relating to calculation of projections, tessel-
lated polygons, and visual artifacts that need to be rendered.

The datasets we consider comprise a large number of observa-
tions and have several unique characteristics. Each observation
is multidimensional and represented as a vector encapsulating
features (e.g., temperature, humidity, etc.) of interest. All
observations are geotagged. These geotags may either be a
<latitude, longitude> coordinates or may represent a spatial
extent. Observations also have a timestamps associated with
them that reflect when the measurements were recorded. The
data are encoded in a plethora of encoding formats such as
netCDF, XML, etc. As data volumes have grown, it is infeasi-
ble to host the dataset on a single machine.

Visualizations entail network 1/O, disk I/O, and computational
overheads. As data volumes increase the strains placed on
each of these phases also amplifies. The crux of this study
is to enable near real-time visualizations of voluminous spa-
tiotemporal datasets.

1.1 Challenges

There are several challenges in effective visualizations of vo-
luminous, spatiotemporal datasets.

e Growth in data volumes represent an increase in the number
of observations. This represents a corresponding increase
in the number of observations that must be sifted through,

processed, and rendered.
o Characteristics of the memory hierarchy. Datasets are resi-

dent on disk and portions thereof must be memory-resident
for visualization. However, access latencies, capacities, and
data transfer throughputs are steep across the memory hi-
erarchy. For example, memory accesses are 5-6 orders of

magnitude faster than those to disk. o
o Fast response times: For explorations to be effective visual-

izations must be interactive.
e Network I/0O: Data must be transferred over the network

from the server-side for visualization.
Data volumes exacerbate these challenges.

1.2 Research Questions

The broader goal of this study is interactive visualization of vo-
luminous spatiotemporal datasets. Specific research questions
that we explore as part of this study include:

RQ-1: How can we cope with data volumes and the speed
differential of the memory hierarchy?

RQ-2: How can we effectively orchestrate workloads associ-
ated with visualization?

RQ-3: How can we effectively facilitate multi-linked views?

RQ-4: How can we preserve interactivity during visualiza-
tion?

RQ-5: How can we leverage containers in support of effective
visualizations in private/public clouds?

1.3 Approach Summary

Our methodology leverages a novel mix of sketching, construc-
tion of queries, visual artifacts, orchestration of workloads,
management of workloads, and caching, all of which work in
concert with each other to support effective visualizations.

To cope with data volume, we first construct sketches of the
data using the Synopsis sketching algorithm. The Synopsis[4]
sketch is a space-efficient representation of the data space.
These sketches are an effective surrogate for the data and
reconcile diverse data encoding formats. In fact, the sketch is
a compact, encoding-agnostic representation of the data space.
The sketch is distributed and a 1000-fold more compact than
the data. The compactness of the sketch allows us to pin the
entire sketch (or large portions thereof) in memory allowing
us to reduce the amount of disk I/O that need to be performed.
Once constructed it is the sketch, not the on-disk data, that is
consulted during visualization.

Visualization represents a sifting of the observational space
to render items of interest. We leverage specially calibration
queries to accomplish this. Our queries are aligned with the
needs of the visual artifacts that need to be constructed and
rendered. Support for queries and retrieval of information
from the sketches.

Workloads for visualization includes a mix of client-side and
server-side workloads that must be effectively orchestrated.

Caching is utilized on both the client and the server to increase
responsiveness and enable interactivity. The server maintains
a large LRU (least recently used) cache of data and image
rasters, which it uses to increase the interactivity of certain
query types and allow users to quickly return to previously
queried data. The client maintains a much smaller LRU cache
of query outputs that it predicts the user will want to view in
the near future.

The Synopsis sketch is parsed into data pairs consisting of
a geohash and the corresponding feature data. The geohash
is then decoded into a latitude/longitude point and passed
through a Mercator projection so that it conforms to the tile-
map we use as a background. The points are projected a
second time to centre them within the queried bounds.

The Delaunay triangulation[8] of these points is computed
and used to generate a Voronoi diagram consisting of a set of
tessellated polygons, each centered on one of the projected
latitude/longitude pairs. This set of polygons defines the re-
gions of our choropleth map. The choropleth map is rendered
by filling in the regions with colors based on the feature data
corresponding to the point at the center of the polygon.

To support multilinked views we leverage brushing-and-
linking. In multilinked views, selection of data items within

one view (say a Choropleth) triggers a selection and rendering
in another view (say a histogram). To support brushing-and-
linking we decompose this into two distinct, but related queries
that are used to simultaneously generate statistical summaries,
and perform sifting operations to identify the subset of obser-
vations that must be rendered.

We also leverage a user’s navigational trajectory to ensure
interactivity during visualization operations. In particular, we
speculate a user’s likely exploration trajectory (in the imme-
diate spatial or temporal vicinity of the current visualization)
to launch speculative tasks that precompute visual artifacts.
Some of these speculative tasks may not materialize; however,
our methodology frugally launches speculative tasks so that
the number of materialized visualization artifacts that must be
discarded our kept at a minimum.

Our benchmarks demonstrate the suitability of our method-
ology. The experiments were performed with well-known
voluminous, multidimensional datasets.

1.4 Paper Contributions

In this study, we present a methodology for interactive visual-
ization of voluminous spatiotemporal datasets. Our methodol-
ogy combines several innovations to accomplish this goal. In
particular, this includes:

1. Effective distributed orchestration of workloads (CPU, disk
1/0, and network I/0).

2. A novel scheme to visualize datasets by leveraging sketches.
To our knowledge, this is the first attempt to leverage spa-
tiotemporal sketches in support of real time visualizations.

3. Support for interactive, multilinked views over volumi-
nous spatiotemporal datasets. In particular, we leverage
the sketch to support cross-referenced rendering and visual-
ization at scale.

4. We can support animations of voluminous spatiotemporal
phenomena at two frames/second.

5. We have designed a scheme to effectively containerize
sketches. These distributed containerized-sketches are in
the critical path of an interactive visualization application
with stringent latency requirements.

2 Related Work

2.1 Visualization Tools

There are many existing tools for data visualization designed
to function with a variety of different data and storage sys-
tems. Data Cubes[21] are a classic tool for visualizing multi-
dimensional data in relational databases and owe their popu-
larity to both the prevalence of relational databases and their
ability to handle any data type. However, unlike Aperture, they
don’t perform any data aggregation, making them prohibitively
expensive to compute and store for voluminous datasets. Data
Cubes are also confined to the relational database ecosystem,
making them unsuitable for certain datasets.

Tableau[22] is a powerful data visualization tool specializing
in business intelligence. It’s usefulness derives from its ability
to handle data from many different sources and from its ease
of use, being accessible to non-programmers. Like Aperture,

it contains tools for spatiotemporal aggregations and visual-
izations. However, Tableau was not designed with interactive
queries in mind and the time required to query, format, and dis-
play large amounts of data makes animations and interactivity
over arbitrarily large datasets infeasible.

GeoLens[14] is a distributed geospatial data visualization tool
designed to allow interactive visualizations of aggregated spa-
tiotemporal data and consequently shares many similarities
with Aperture. Both query data stored on a cluster of machines,
both implement brushing and linking, and both aggregate spa-
tiotemporal data using geohashes. However, GeoLens utilizes
a sophisticated distributed query scheme to rapidly aggregate
data on each machine into tiles, combining the tiles to produce
a fast, low-resolution visualization. Aperture, alternatively,
performs individual queries on a single machine, allowing it
to produce much higher-resolution visualizations at a slower
pace. Aperture compensates for the speed difference with
speculative queries and a server-client caching scheme.

2.2 Data Sketching

Data sketching defines a set of techniques which build a prob-
abilistic approximation of a dataset, dramatically reducing
the dataset’s size at the cost of some precision. Such algo-
rithms can dramatically reduce storage requirements and query
time (essential for interactive visualizations) and can even be
used for machine learning algorithms[13]. Aperture makes
use of a distributed sketching algorithm called Synopsis[4]
(see section 3.1) which is designed for geospatial data, how-
ever a number of alternatives exist including algorithms which
focus on processing multiple input streams[10], anomaly de-
tection[12], and threshold monitoring tasks[9].

2.3 Geospatial Data Storage

Aperture relies on Synopsis to store geospatial data and pro-
cess spatiotemporal queries, however there are a number of
other systems that provide similar functionality. These sys-
tems could conceivably replace Synopsis as a geospatial data
store for Aperture. However, since Synopsis is a primarily in-
memory storage system, it’s also sensible to view alternatives
as stable storage systems which Synopsis itself could query
data from to create a sketch for Aperture.

MongoDBJ6] is a very popular database with geospatial stor-
age capabilities. It supports querying ranges of latitude and
longitude, as well as queries that calculate geometries on an
earth-like sphere. <latitude, longitude> coordinate data can be
easily converted into a sketch by Synopsis, making MongoDB
a natural choice for an underlying database.

Galileo[16] is a distributed data storage system designed with
geospatial data in mind. It is organized as a distributed hash
table (DHT) using a geohash-based hashing scheme. It also im-
plements zero-hop indexing, ensuring that retrieving data for a
specific region is very fast. Converting data stored by Galileo
into a Synopsis sketch is trivial, making Galileo another good
choice for an underlying database.

Stash[19] is a system which operates on on-disk data and
supports selective caching and memory-evictions during ex-
plorations. In particular, freshness scores are used to inform
cache evictions. The system relies on re-replications and mi-

grations to cope with hotspots introduced by disk accesses.
Unlike Stash, we support multilinked views, leverage sketches,
and perform speculative queries in support of interactive visu-
alizations.

2.4 In-Memory Data Storage

Aperture owes much of its speed to the in-memory nature of
Synopsis. There are, however, a number of other in-memory
data storage systems that could potentially replace Synopsis
in Aperture.

Redis[5] is an in-memory distributed data store which supports
most data types, many programming languages, and a number
of typical database properties, including replication and atomic
operations. It also supports indexes and even allows querying
by geohash. However, Redis does not aggregate geospatial
data. This would force Aperture to do the aggregation itself
and significantly reduce the amount of data that could be stored
in-memory and quickly visualized.

Apache Ignite[2], an in-memory distributed data store , shares
many features with Redis. It comes with a geospatial library
which allows for sophisticated queries on points, lines, and
polygons. Unfortunately, Ignite also does not natively support
spatial data aggregation and consequently shares Redis’ limita-
tions. The lack of spatial data aggregation in Redis and Apache
Ignite could conceivably be addressed by pre-sketching the
data before loading it into the data store, however this would
require the development of a new system which can aggregate
spatiotemporal data in a manner easily understood by Ignite
or Redis.

Nanocubes[15] are a modification to the Data Cube system
which dramatically reduce the amount of data that needs to
be visualized using aggregation. This allows Nanocubes to
be memory-resident, enabling them to evaluate queries at
exceptional speeds. However, unlike Synopsis, Nanocubes
cannot be distributed across multiple machines, limiting the
amount of data they can be used to construct visualizations to
a single machine’s memory. This issue could be dealt with by
maintaining many separate Nanocubes on different machines,
similar to what we do with Synopsis and Docker[18] in section
3.6.

3 Methodology

3.1 Leveraging Sketches for Visualization [RQ-1]

Visualization of spatiotemporal datasets is I/O bound. As data
volumes increase the I/O overheads preclude interactivity. To
address these data and I/O challenges, we leverage the Synop-
sis algorithm to sketch voluminous geospatial data. Synopsis
makes a single pass through all records within a dataset (either
streaming or on-disk) to produce a distributed, space-efficient
representation of the spatiotemporal data. Once the sketch is
constructed, it is the sketch rather than the data that is con-
sulted. Synopsis makes use of the geohash algorithm (figure
1) to partition and agglomerate spatiotemporal observations.

The Synopsis sketch is organized as a forest of trees, which
maintains summary information and distributional characteris-
tics that are updated in an online fashion. Synopsis maintains
its underlying representation as a distributed, memory-resident
tree, scaling it across machines as necessary. The organiza-

tional structure of the sketch allows for rapid geospatial queries
and aggregation. Synopsis is crucial to Aperture’s interactive
nature as it allows the user to perform aggregate queries with
sub-second latencies and dramatically reduces the scale of the
data the client must load and store.

The geohash algorithm (figure 1) encodes geospatial coordi-
nates into a bit array, which is then represented as a string. A
geohash string represents a spatial bounding box encompass-
ing a unique geographical extent - all coordinates within that
extent share the same geohash. The geohash string has the
configurable precision property: reducing the length of the
string increases the spatial area of the region identified, analo-
gous to "zooming-out". Conversely, increasing the number of
characters in the string can be thought of as "zooming-in" to
an increasingly precise location.

Table 1 shows the geographical extent of different geohash
precisions for locations near the equator, as well as a heuristic
for the region that the extent covers

H Geohash Precision ~ Geographical Extent Scale H

1 5,009.4km x 4,992.6km Continent
2 1,252.3km x 624.1km State

3 156.5km x 156km County
4 39.1km x 19.5km City

5 4.9km x 4.9km Block

Table 1: Geographical extent of different geohash precisions, measured in
number of characters, located near the equator.

Visualization is underpinned by queries over the observational
space, and the efficiency of these evaluation is vital. We con-
ducted microbenchmarks to assess the effectiveness of Aper-
ture with and without Synopsis at the backend. We profiled
the performance of Aperture’s data queries while sidestepping
Synopsis and reading data directly from the hard drive. The
comparative performance is depicted in figure 2. The ren-
dering precision used was five characters. As can be seen,
direct queries to disk require more than 14 seconds to com-
plete compared to sub-second latencies that are made possible
by leveraging the Synopsis sketch. Furthermore, disk-based

oy
DN

DJ

DJ8 DJ9 ’ DJD DJE DJs DJT DJW DJX

A |
il

DJM DJQ DJ

TTTT

Figure 1: The geohash algorithm. Adding characters to the right side of the
string reduces the area covered by the geohash and represents a more precise
location.

Sketch Query Time Comparison

=
~
L

=
N
L

=
o
L

=]
s

—— Without Sketches
With Sketches

Query Time (s5)

0 1 2 3 4 5
Geohash Query Area (characters)

Figure 2: A comparison of the time Aperture takes to complete a query with
and without Synopsis. Performing queries on sketches is more than 14 times
faster than queries on un-sketched data.

queries generated nearly 3.5 gigabytes of network traffic that
must occur on shared clusters and will degrade performance
for other, colocated applications. A comparison of render-
ing precisions was impossible because the amount of data
returned by the direct-to-disk queries invariably crashed
the Aperture client.

Also, not captured in figure 2 is the fact that only a single
query is being performed on the disk. Aperture’s speed and in-
teractivity depend critically on being able to run many queries
simultaneously in order to both pre-load data that may be
viewed in the future and load statistics and masks for the data
currently being viewed. Attempting to run multiple simultane-
ous queries on disk would produce an enormous amount of I/O
contention, cause throughputs to plummet, and likely force
the queries to be performed serially. This would dramatically
reduce the responsiveness of Aperture and make interactivity
impossible.

3.2 Rendering Spatiotemporal Phenomena [RQ-2]

Users interact with Aperture via a web page which displays
the data over a pannable and zoomable choropleth map of the
world (figure 3). Users are able to specify their queries in
terms of spatiotemporal regions and can filter the results based
on the type and the minimum/maximum values of the data
features they wish to view. The precision at which the data
is rendered is also configurable. Once generated, the query is
handled by the server.

Aperture allows users to automatically advance their visualiza-
tions through time at a specified number of frames per second.
These visual artifacts form an animation which can be used
to explore data over a temporal range. Animations are also
zoomable and pannable while being played. Consequently,
Aperture allows for exploration and analysis of both spatial
regions and temporal regions simultaneously.

Aperture also includes two visualizations of the query’s aggre-
gated statistics (figure 4): a correlation matrix illustrating the
correlation of each feature with each other and a histogram
showing the distribution of values for each feature. These
visualizations are linked to both each other and the choropleth
map through a system of brushing and linking; zooming and

Venezuela

Colombia

Ecuad
[« » | » | satmar142015 00000 © 10ms
Leatlet| Map data © Oper

CC-BY-SA, Imagery © Mapbox

Figure 3: Aperture’s choropleth map. The map consists of many tessellated
polygons, each colored to represent measurements within their area. Here
temperature (red-green), humidity (white), and precipitable water (purple) are
shown.

panning across the choropleth map will update the aggregated
statistics with the data being viewed while interacting with
either of the statistical displays will update the other statistical
display and highlight the appropriate part of the choropleth
map.

Aperture leverages two key libraries to render spatiotemporal
phenomena - Leaflet and D3. Leaflet[7] is an open-source
JavaScript library that provides utilities for displaying spa-
tiotemporal data. It supports functionality for tile-layers and
SVG layers, is mobile-friendly, and contains many utilities
that make it easily modifiable and extendable.

D3[3] is a JavaScript library that allows for efficient manipu-
lation of data and Document Object Model (DOM) elements
on a web page. It is frequently used for scientific data vi-
sualizations and gives an enormous amount of flexibility to
developers to create dynamic displays.

Aperture utilizes Leaflet for two purposes. Firstly, it is used in
conjunction with MapBox[17] to display a zoomable tilemap
of the Earth, giving users information about where the dis-
played data is in relation to cities and coastlines. Secondly,
Leaflet’s layer functionality is used to display a rendered choro-
pleth map generated by Aperture. Leaflet provides tools to
zoom into and pan across the rendered image as well as util-
ities to calculate the location of the user’s pointer and the
area of the image currently viewed. These tools allow Aper-
ture to have a higher level of interactivity than if the data
were rendered statically. Aperture also makes use of Leaflet
Time Dimension layers[20], developed by the Balearic Island
Coastal Observing and Forecasting System (SOCIB), to assist
in displaying animations over temporal ranges.

Aperture uses D3 to create and modify the statistical displays
on the client. Fast modification of all the statistical displays
during user interactions (brushing and linking) is critical, as
even short delays in response time can cause frustration and
break a chain of thought[1]. This makes D3 an integral aspect
of Aperture’s functionality.

3.4 Scalable Brushing and Linking [RQ-3]

A key feature supported by Aperture is multi-linked views
at scale. Multilinked views are a method of visual explo-

Temperature (K) Humidy (%)

| iﬂliii

Figure 4: Aperture’s statistical views. The matrix shows the correlation
score between every pair of features. The bar charts show the distribution of
measurements for each feature.

ration in which several corresponding aspects of the data are
visualized simultaneously. Brushing and linking describes
a system in which modifications to one view of the data
(panning/zooming/mousing-over/clicking/etc.) trigger equiva-
lent modifications in every other view. For example, narrowing
the geographical scope of one view will cause the other views
to narrow their scope accordingly.

In Aperture, brushing and linking is accomplished by visualiz-
ing the results of two different types of queries: mask queries
and statistical queries. Both of these queries are described in
detail in sections 3.5.2 and 3.5.3, however in brief: statistical
queries retrieve metadata about a particular geospatial region
of the data while mask queries retrieve geospatial regions
matching given the particular metadata constraints.

Interacting with either of the statistical visualizations will
prompt a mask query, which is used to highlight all of the
geospatial regions which meet the requirements of the selected
statistic. For example, if the correlation between temperature
and humidity is selected then the mask query will return all the
geospatial regions for which the correlation is equivalent or
greater. Alternatively, if a temperature range is selected then
the mask query will return all the geospatial regions where the
temperature falls within that range. The result of the query will
be used to highlight the appropriate regions on the choropleth
map and update the other statistical displays.

Conversely, interacting with the choropleth map prompts a sta-
tistical query, which is used to retrieve statistical information
about a single geospatial region. Interactions include anything
that changes the data overlaid on the map, primarily zooming
and panning. This ensures that the statistical displays will
always show an aggregation of the data currently visible on
the choropleth map.

3.4.2 Speculative Queries [RQ-1, RQ-4]

To ensure interactivity during visualizations our methodology
includes support for launching speculative tasks. These specu-
lative tasks initiate actions based on forecasts of a user’s likely
trajectory for explorations. By performing such tasks in the
background we reduce the amount of work that needs to be
performed in the critical path of explorations.

Based on a client’s exploration paths we dynamically gener-
ate speculative queries at the client-side. These speculative
queries are generated in two cases:

1. While an animation is being played

2. During a pan crossing more than two geospatial regions

In the first case, Aperture proactively sends query requests to
the server for times that may become part of the animation
in the future. Data for times that will be viewed soon can be
cached on the server and buffered on the client, ensuring that
the animation proceeds smoothly.

In the second case, Aperture keeps track of the user’s panning
trajectory. Sequential requests to adjacent locations will trig-
ger the web page to query locations further along the user’s
current trajectory. The results of these queries are stored in
the server cache and in a client-side buffer, reducing loading
times when visualizing many adjacent geospatial areas.

3.5 Server-side Orchestration of Visualization Workloads

The server is responsible for handling all queries, a process
which includes querying the distributed memory-resident Syn-
opsis sketch, rastering the output of the queries, and caching
the results for future use. The queries take three forms: data
queries, mask queries, and statistical queries. All queries are
handled by a server utilizing a dynamic thread pool. This
allows the server’s operations to be extended to a machine
with many cores or a cluster of machines commensurate with
the needs of the system.

3.5.1 Data Queries [RQ-1, RQ-2]

Data queries are the core of enabling Aperture functionality.
They are performed whenever the user changes either the
features being viewed, the spatiotemporal scope being queried,
or the precision at which the data is rendered. Data queries
consist of four distinct phases: query, decoding, computation,
and rendering, all of which are described below.

Query Phase: In the query phase the server converts the query
created by the web page into a query that can be understood
by Synopsis. The output from Synopsis is a serialized version
of the portions of the sketch which satisfy the query.

Decoding Phase: In the decoding phase the sketch is deseri-
alized. The geohash corresponding to each data point in the
sketch is decoded into its latitude and longitude values and
stored along with the feature data.

Computation Phase: In the computation phase a Mercator
projection is applied to the decoded latitudes and longitudes
which are then used to compute a Voronoi diagram. This
Voronoi diagram consists of a set of tessellated polygons, each
one corresponding to a single geohash.

Rendering Phase: The polygons created in the computation
phase are rendered as a choropleth map, the colors of their
regions corresponding to the feature values for each geohash.
The map is then converted into a raster which is sent to the
client.

After all these phases are complete the server caches the data
created during the decoding phase, the geohash-polygon rela-
tionships created during the computation phase, and the raster
created during the rendering phase.

3.5.2 Mask Queries [RQ-2, RQ-3]

When a portion of one of the statistical displays is selected, the
Aperture client-side library iterates over the queried data to
determine which geohashes meet the statistical requirements.

These geohashes are sent to the server, which uses the cached
geohash-polygon relationship to render an image which the
choropleth map will use as a mask. If many data queries have
been run in between a mask query and its associated data query
then the polygons may have been dropped from the cache and
the Voronoi diagram will need to be recomputed. The rastered
image is then returned to the web server, which combines it
pixel-by-pixel with any other active masks to create the new
choropleth map to be rendered by Leaflet.

It is also the responsibility of the server to compute the up-
dated statistics for the masked region. It should be noted that
these statistical calculations cannot depend solely on Synopsis
queries, as Synopsis only aggregates metadata across spatial
regions, not statistical ones.

3.5.3 Statistical Queries [RQ-3, RQ-4]

Aperture leverages the spatial characteristics of the underlying
sketch to perform rapid statistical spatiotemporal queries. Both
the correlation and the distribution of features displayed over
the map are shown as a matrix and bar chart visualization
respectively. These statistics are retrieved by metadata queries,
which rapidly aggregate the data contained within a provided
geohash. The correlations and distributions are recomputed
for every map pan and zoom to reflect the portion of the data
that is currently being viewed.

We determine the exact region to query by calculating the
geohash of the upper left corner and lower right corner of the
visible region to a precision of 12 characters. Afterwards, the
smallest geohash that contains both corners is computed and
used as an estimate of the currently viewed area.

Since information about distributional characteristics are main-
tained in the sketch the overheads associated with statistical
query evaluations tend to be low. This allows the statistical
views to be responsive (interactive) to both drill-down/roll-up
and panning operations. The statistical displays are constantly
changing to reflect the spatiotemporal scope of the data be-
ing viewed on the choropleth map, allowing users to rapidly
identify and quantify areas of particular interest.

3.6 Leveraging Containers to Orchestrate Server-side
Workloads [RQ-5]

We explored how to leverage core cloud constructs to orches-
trate visualization workloads. In particular, we viewed contain-
ers as a promising avenue. Containers facilitate lightweight
packaging of a program together with its necessary dependen-
cies and data. Furthermore, containers allow an application to
be easily moved from one computing environment to another
or replicated across a cluster of machines. This makes contain-
ers a natural fit for distributed server-side applications as the
amount of resources the application consumes can be quickly
scaled in or out to match user demand.

However, there are some difficulties in implementing a
container-based server for applications that require access
to voluminous data. Packaging large amounts of data into
containers makes them unwieldy, increasing the time and re-
source cost of scaling services. Additionally, re-reading large
chunks of data every time a container is moved or a service
is replicated is slow and will significantly escalate disk I/O

contention in busy data centers. In this study, we leveraged
Docker[18] to quickly create and deploy applications in con-
tainers. We also investigate the benefits of utilizing sketched
data in containerized applications.

Aperture’s Docker-based server works in the same manner as
its basic server with the same query types, caching scheme,
and data query phases. We create a separate Docker image
for data from each day in the dataset to allow the container-
orchestration system to dynamically replicate containers con-
taining days which are receiving a disproportionate number of
queries.

Upon start-up, all containers contact a central server with the
container’s location and the date of the data it contains. When
the client wishes to query a specific date, it first contacts the
central server to get the location of a relevant container before
sending the query directly to the container. This allows the
container-orchestration system to place containers wherever it
chooses without worrying about the client.

A challenge that we encountered is that the data for a sin-
gle day in our dataset totals more than 13.45 GB. Creating a
sketch from that data requires 4 minutes and 10 seconds. This
wait-time to scale up a service is untenable, especially in an
interactive environment where consistent slowdowns prove
extremely frustrating for users, and these measures fail to con-
sider the time required by the container-orchestration system
to load/move the huge image to a specific machine.

To tackle this, we pre-sketch the data and package a serialized
version of the sketch into the container. As a result, images
containing sketched data are an order of magnitude smaller and
faster to start-up than their un-sketched counterparts, allowing
Aperture’s Docker-based server to scale more dynamically
and consume far fewer resources than it otherwise would. It
should also be noted that we did not compress the sketched
data. The size of the serialized sketch could be further reduced
in a resource constrained environment using any typical com-
pression algorithm at the cost of increased start-up time due to
decompression.

4 Performance Evaluation

To evaluate the effectiveness of our methodology we profile
the performance of each individual query and of the system as
a whole.

The queries are profiled based on two metrics: time and net-
work traffic. Fast response times are essential for an interac-
tive system as long wait times quickly frustrate users or break
their train of thought. Network traffic is less critical, however
systems that require high bandwidth will suffer serious per-
formance issues in resource constrained environments. It is
also a useful measure of the degree to which Aperture reduces
voluminous data to a manageable level.

Query metrics are compared across two controlled variables.
The first is the query area, measured in the number of charac-
ters in the geohash. The query area is a measure of the size of
the area being queried. The second is render precision, again
measured by the number of characters in the geohash. The
render precision is a measure of the precision of the returned
data; a query with higher precision will return a choropleth
map with more regions.

4.1 Data Query Profile [RQ-1, RQ-2]

Data queries are the core of Aperture, and as such their perfor-
mance is paramount. In figure 5 we report the time required
for each phase based on the area being queried. From figure 5,
it is clear that the decoding phase takes up the bulk of the time
for queries over large areas (more than every other phase com-
bined). The time required to send the results over the network
is also significant. It is also worth noting that Synopsis’ query
time remains relatively constant regardless of the size of the
query area.

In figure 6 it can be seen that the rendering precision has a
negligible effect on query time at low precisions. It’s only
at higher rendering precisions that the Computation and Ren-
dering phases begin to take up a significant amount of query
time. However, due to the fact that increasing the rendering
precision by one character can result in the generation of 4-8
times as many polygons, it is likely that the Rendering and
Computation phases will dominate the query time at higher
precisions.

Each data query generates a minimum of SMB of network
traffic with a small query area and a maximum of 20 MB with
a query area of zero characters. This traffic consists almost
entirely of the response to the client, which contains a rendered
image and a substantial amount of metadata.

4.2 Mask Query Profile [RQ-3, RQ-4]

Mask queries are highly dependent on data queries, making
them difficult to profile. Mask queries utilize the set of poly-
gons generated by the data query, and consequently if the
polygons have not been cached or have been evicted from the
cache in the time since the corresponding data query has been
executed, the data query must be re-executed.

The performance of mask queries is also dependent not only
on the area being queried and the resolution at which the data
is displayed but also the area of the map that must be masked.
When quantifying the area covered by the mask, a query area
of zero characters and a render precision of five characters is
used as a standard. Consequently, the profile given here can be

Phase Times for Query Area

Hl Query Phase

51 Decoding Phase
mmm Computation Phase
Hll Rendering Phase
B Network 10 Time

4] 1 2 3 4 5
Query Area (geohash characters)

Figure 5: A comparison of data query times, separated by query phase, over
different query areas. Network and query phase time are relatively constant,
while the decoding, computation, and rendering phases dominate query time
for large areas.

Phase Times for Rendering Precisions

Query Phase
Decoding Phase
Computation Phase
Rendering Phase
Network |0 Time

il I I I I
24

Q= — — —— — —_—

0 1 2 3 4 5
Rendering Precision (geohash characters)

Figure 6: A comparison of data query times, separated by query phase, for
different rendering precisions. At low values the precision is largely irrelevant,
but it significantly increases the rendering and computation phase times at
high values.

viewed as the performance of mask queries under the highest
possible stress.

Under these conditions mask queries generate between 4 and
4.5 MB of network traffic, increasing with the amount of the
current view being covered. Mask queries without caching
enabled require the associated data query to be re-executed,
which dominates the mask query time. In this case, the mask
query and its data query require six seconds to execute regard-
less of the area covered.

Performance with caching is considerably improved (figure
7). Mask queries take approximately one-and-a-half seconds
to complete, increasingly only slightly with the area being
covered.

Responsiveness is essential for mask queries, as they are re-
sponsible for interactively linking the choropleth map with the
statistical information. This profile illustrates how essential
the server cache is to ensuring an interactive system.

Mask Query Time w/ Caching

H Query Time
Network |0 Time
2.0
—~ 1.54
v
E
g
iz 1.0
0.5
0.0 -

20 40 60 80 100
Covered Area (%)

Figure 7: The query and network time required to perform a mask query
based on the area of the current view the mask covers with server caching
enabled. The covered area increases the query time slightly, with about a
half-second increase from 0% to 100% coverage.

4.3 Statistical Query Profile [RQ-3, RQ-4]

Statistical queries are easier to profile. The network traffic
they generate is invariant and never more than 2 KB per query.
Statistical queries are also agnostic to the rendering precision
as they simply display an aggregate of all the data within the
queried bounds regardless of the number of regions in the
choropleth map.

The time required for statistical queries is independent of the
area being queried, requiring less than 1/5% of a second of a
second. Statistical queries generate the same amount of net-
work traffic and require roughly the same amount of time to
complete regardless of the scope and precision of the given
query. This is due to the ease with which Synopsis aggre-
gates data across spatial regions and is responsible for one
of Aperture’s greatest strengths: the interactivity of statistical
information during drill-down, roll-up and panning operations.

4.5 Total Performance Profile [RQ-1, RQ-2]

Finally, the performance of Aperture is profiled across two
real-world tasks. The first is an animation through time in

Frames per Second for Query Area

3.54

3.0 1

2.54

2.04

1.5

Frames per Second

1.0

0.5
—— without Speculative Queries

0.0 With Speculative Queries

00 05 10 15 20 25 30 35 40
Geohash Query Area (characters)

Figure 8: The number of frames in an animation that Aperture can display
each second depending on the query area. Speculative queries have a ma-
jor impact when the query area is relatively large, more than doubling the
animation speed. Each frame consists of 3gb of unsketched data.

Frames per Second for Render Precision

4.0 — without Speculative Queries

354 With Speculative Queries

3.04
2.54
2.04

1.5

Frames per Second

1.01

0.5 4

0.0 4

00 05 10 15 20 25 30 35 40
Geohash Render Precision (characters)

Figure 9: The number of frames in an animation that Aperture can display
each second depending on the render precision. Rendering precision has a
relatively small effect on animation speed, except at a precision of zero, in
which Aperture is rendering a single polygon.

Panning Sequential Query Time

—I— Without Speculative Queries
2000 {— With Speculative Queries
1500
i)
E
g
£ 1000 4
fy
a
3
500
ol L

T T T T T T T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Geohash Query Area (characters)

Figure 10: The speed with which Aperture can load queried geohashes during
a panning operation, with and without speculative queries. The speculative
queries provide a clear benefit, often cutting the query time by more than half.

which the user starts viewing data at a given point in time,
then repeatedly advances the time by a fixed amount. Here,
Aperture’s performance is measured in the number of different
times that can be viewed per second. This translates directly
to the smoothness of the animation and the amount of data that
can be displayed in a given time. Aperture’s animation speed,
with and without speculative queries, is shown in figure 8 and
figure 9.

The second task used to measure Aperture is a panning task,
in which a user begins at a randomly chosen <latitude, longi-
tude> and pans across the map to another randomly chosen
<latitude, longitude> pair. The direction of the pan follows the
shortest path between the two points at a constant speed and
may diagonally cut across several geohashes, not necessarily
following a single row or column.

In figure 10 it can be seen that speculative queries provide a
consistent performance boost, except at a very small query
area. This is due to the speed of queries with small areas rather
than a defect in the speculative queries.

Phase Times for Query Area w/ Docker

Hl Query Phase
Decoding Phase
Computation Phase
Rendering Phase
Network 10 Time

10

Time (s)
o

ol - B wm B

0 1 2 3 a4 5
Query Area (geohash characters)

Figure 11: Aperture’s phase times when run from a Docker container in a
Kubernetes cluster. The time for each phase is approximately doubled, with
the exception of the query phase.

Frames per Second for Query Area w/ Docker

0.8
o
5 0.6
o
o}
0
.
g
» 0.4
L}
£
[l
Pt
0.2 4
—— without Speculative Queries
0.0 With Speculative Queries

00 05 10 15 20 25 30 35 40
Geohash Query Area (characters)

Figure 12: The number of frames in an animation that Aperture can dis-
play each second when run in a Docker container in a Kubernetes cluster.
Animations load at 40% the speed they do without Docker.

4.6 Docker Performance Profile

We ran our Docker containers in a Kubernetes[11] cluster with
horizontal auto-scaling enabled, exposed via a NodePort ser-
vice. Kubernetes initially places containers on the machines
it measures as least busy while auto-scaling allows it to repli-
cate highly-utilized containers to keep resource consumption
across the cluster near a target value. In theory, Kubernetes
provides high availability and reduces latency by efficiently
apportioning the workload.

In figure 11 it can be seen that running Aperture requires
approximately twice as much time to perform queries under
these conditions, likely due to the network and CPU overheads
involved in running a container and communicating through
a service. This difference is insignificant for query areas
of more than a single character, but for large query areas it
becomes quite substantial. In figure 12 the total performance
dropped by more than 50%. This is likely due to the fact that
when containers are killed or moved periodically they lose
their cache, which is critical for increasing animation speed.
The performance of statistical queries through Docker was
unchanged.

Despite the loss in performance, Docker still provides tangible
advantages, especially when dealing with hotspots. Hotspots
occur when a specific temporal location recieves an enor-
mously disproportionate number of queries, such as when
tracking localized weather phenomena e.g. a hurricane. In
such cases containers would be invaluable for transparently
scaling the most critical spatiotemporal scopes, allowing faster,
predictable response times during visualizations under high
loads.

5. Conclusions and Future Work

In this paper, we have described our methodology for effective
visualization of spatiotemporal phenomena. Our methodology
makes novel use of sketches to accomplish this goal.

RQ-1: To cope with data volumes and the speed differential
of the memory hierarchy we leverage sketches. Sketches
extract information from the data, are data-format agnostic,
and are three orders of magnitude more compact than the raw
data. We leverage compactness of the sketches by pinning

them in memory, where access to them is not subject to the
high latencies and low throughputs of the disk I/O subsystem.
Leveraging sketches also significantly reduces the amount of
data that needs to transferred from the server-side.

RQ-2: Visualization involves several processing tasks, im-
plicit and explicit, that must be orchestrated in concert to
ensure effective visualization. Accomplishing this involves
apportioning of these loads at the client and server-side. Mini-
mizing the amount of network I/O triggered by visualization
tasks, especially those in the critical path, are key to ensur-
ing responsiveness. Effective sifting of observations through
query construction based on the view-port is also necessary to
reduce workloads and I/O.

RQ-3: To support effective multi-linked views with brushing-
and-linking, we leverage the structural properties of the sketch.
Since the sketch is organized as a tree, we traverse the sketch to
perform aggregations that are needed in some views. Connect-
ing Choropleth views with other views involves identifying the
selected polygons, dynamically constructing metadata queries
over the sketch, and then performing aggregation operations.

RQ-4: Interactivity during visualization is preserved by effec-
tively apportioning workloads between the client and server-
side. Furthermore, since data access patterns often exhibit
temporal locality, they benefit from our caching at the server-
side and also the buffering that we perform at the server side.
Our use of sketches facilitates attenuated disk and network I/O.
Because our sketches are distributed, server-side processing is
distributed as well. This facilitates fast completion times.

RQ-5: As part of future work, we will explore inter-operation
with the two of the dominant spatial analyses ecosystems:
ESRI’s ArcGIS and Google Earth Engine. Our efforts will
focus on incorporating support for the sketch as a data type
within these APIs and leveraging visual analytics capabilities
provided within these ecosystems.

Acknowledgements

This research was supported by funding from the US National
Science Foundation [OAC-1931363] and the US Department
of Homeland Security [D15PC00279].

References
[1] John A Hoxmeier and Chris Dicesare. 2000. System Response
Time and User Satisfaction: An Experimental Study of
Browser-based Applications. Proceedings of the Association of
Information Systems Americas Conference (01 2000).

2

—

Shamim Bhuiyan, Michael Zheludkov, and Timur Isachenko.
2017. High Performance In-memory Computing with Apache
Ignite. Lulu.com.

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011.
D3 Data-Driven Documents. IEEE Transactions on
Visualization and Computer Graphics 17, 12 (Dec. 2011),
2301-2309. DOI:
http://dx.doi.org/10.1109/TVCG.2011.185

T. Buddhika, M. Malensek, S. L. Pallickara, and S. Pallickara.
2017. Synopsis: A Distributed Sketch over Voluminous
Spatiotemporal Observational Streams. IEEE Transactions on
Knowledge and Data Engineering 29, 11 (Nov 2017),
2552-2566.DOI:
http://dx.doi.org/10.1109/TKDE.2017.2734661

3

—

[4

—_

10

[5] Josiah L. Carlson. 2013. Redis in Action. Manning Publications
Co., Greenwich, CT, USA.

Kristina Chodorow. 2013. MongoDB: The Definitive Guide.
O’Reilly Media, Inc.

Paul Crickard. 2014. Leaflet.Js Essentials. Packt Publishing.

B. Delaunay. 1934. Sur la sphere vide. A la memoire de
Georges Voronoi. In Bulletin de I’Academie des Sciences de
I’URSS. Classe des sciences mathematiques et na. 793—-800.

Minos Garofalakis, Daniel Keren, and Vasilis Samoladas. 2013.
Sketch-based Geometric Monitoring of Distributed Stream
Queries. Proc. VLDB Endow. 6, 10 (Aug. 2013), 937-948. DOI :
http://dx.doi.org/10.14778/2536206.2536220

Marios Hadjieleftheriou, John W. Byers, and George Kollios.
2005. Robust sketching and aggregation of distributed data
streams. Technical Report.

Kelsey Hightower, Brendan Burns, and Joe Beda. 2017.
Kubernetes: Up and Running Dive into the Future of
Infrastructure (1st ed.). O’Reilly Media, Inc.

Q. Huang and P. P. C. Lee. 2014. LD-Sketch: A distributed
sketching design for accurate and scalable anomaly detection in
network data streams. In IEEE INFOCOM 2014 - IEEE
Conference on Computer Communications. 1420-1428. DOI:
http://dx.doi.org/10.1109/INFOCOM.2014.6848076

Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui. 2018.
SketchML: Accelerating Distributed Machine Learning with
Data Sketches. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). ACM,
New York, NY, USA, 1269-1284. DOI:
http://dx.doi.org/10.1145/3183713.3196894

J. Koontz, M. Malensek, and S. Pallickara. 2014. GeoLens:
Enabling Interactive Visual Analytics over Large-Scale,
Multidimensional Geospatial Datasets. In 2014 IEEE/ACM
International Symposium on Big Data Computing. 35-44. DOI:
http://dx.doi.org/10.1109/BDC.2014.12

L. Lins, J. T. Klosowski, and C. Scheidegger. 2013. Nanocubes
for Real-Time Exploration of Spatiotemporal Datasets. IEEE
Transactions on Visualization and Computer Graphics 19, 12
(Dec 2013), 2456-2465. D01 :
http://dx.doi.org/10.1109/TVCG.2013.179

M. Malensek, S. L. Pallickara, and S. Pallickara. 2011. Galileo:
A Framework for Distributed Storage of High-Throughput Data
Streams. In 2011 Fourth IEEE International Conference on
Utility and Cloud Computing. 17-24. D0OT1:
http://dx.doi.org/10.1109/UCC.2011.13

MapBox 2019. MapBox. https://www.mapbox.com/. (2019).

Dirk Merkel. 2014. Docker: Lightweight Linux Containers for
Consistent Development and Deployment. Linux J. 2014, 239,
Article 2 (March 2014).
http://dl.acm.org/citation.cfm?id=2600239.2600241

Saptashwa Mitra, Paahuni Khandelwal, Shrideep Pallickara,
and Sangmi Lee Pallickara. 2019. STASH: Fast Hierarchical
Aggregation Queries for Effective Visual Spatiotemporal
Explorations. In (7o appear) IEEE International Conference on
Cluster Computing (CLUSTER). Albuquerque, NM, USA.

Balearic Island Coastal Observing and Forecasting System.
2019. Leaflet. TimeDimension. (Aug. 2019).
https://github.com/socib/Leaflet.TimeDimension

C. Stolte, D. Tang, and P. Hanrahan. 2003. Multiscale
visualization using data cubes. IEEE Transactions on
Visualization and Computer Graphics 9, 2 (April 2003),
176-187. DOI:
http://dx.doi.org/10.1109/TVCG.2003.1196005

[22] Tableau 2019. https://www.tableau.com/. (2019).

[6

—_

[7
[8

—

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]
(18]

(19]

(20]

(21]

http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TKDE.2017.2734661
http://dx.doi.org/10.14778/2536206.2536220
http://dx.doi.org/10.1109/INFOCOM.2014.6848076
http://dx.doi.org/10.1145/3183713.3196894
http://dx.doi.org/10.1109/BDC.2014.12
http://dx.doi.org/10.1109/TVCG.2013.179
http://dx.doi.org/10.1109/UCC.2011.13
https://www.mapbox.com/
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://github.com/socib/Leaflet.TimeDimension
http://dx.doi.org/10.1109/TVCG.2003.1196005
https://www.tableau.com/

	1 Introduction
	1.1 Challenges
	1.2 Research Questions
	1.3 Approach Summary
	1.4 Paper Contributions

	2 Related Work
	2.1 Visualization Tools
	2.2 Data Sketching
	2.3 Geospatial Data Storage
	2.4 In-Memory Data Storage
	3 Methodology
	3.1 Leveraging Sketches for Visualization [RQ-1]
	3.2 Rendering Spatiotemporal Phenomena [RQ-2]
	3.4 Scalable Brushing and Linking [RQ-3]
	3.4.2 Speculative Queries [RQ-1, RQ-4]

	3.5 Server-side Orchestration of Visualization Workloads
	3.5.1 Data Queries [RQ-1, RQ-2]
	3.5.2 Mask Queries [RQ-2, RQ-3]
	3.5.3 Statistical Queries [RQ-3, RQ-4]
	3.6 Leveraging Containers to Orchestrate Server-side Workloads [RQ-5]
	4 Performance Evaluation
	4.1 Data Query Profile [RQ-1, RQ-2]
	4.2 Mask Query Profile [RQ-3, RQ-4]
	4.3 Statistical Query Profile [RQ-3, RQ-4]
	4.5 Total Performance Profile [RQ-1, RQ-2]
	4.6 Docker Performance Profile

	5. Conclusions and Future Work
	Acknowledgements
	References

