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MSE Analysis of a Multi-Loop LMS
Pseudo-Random Noise Canceler for

Mixed-Signal Circuit Calibration
Derui Kong and Ian Galton

Abstract— This paper applies new analytical techniques to
evaluate the stability and mean-square error (MSE) convergence
of a multi-loop LMS pseudo-random noise canceller which
applies to a variety of known mixed-signal circuit calibration
techniques. To the authors’ knowledge, it is the first published
MSE analysis of any multi-loop LMS system, and, unlike most
published MSE analyses of single-loop LMS systems, it does not
make any simplifying assumptions. The analysis proves that the
noise canceler can be made unconditionally stable by design, and
provides guidance on how to choose design parameters to achieve
a desired level of noise cancellation.

Index Terms— LMS, adaptive filters.

I. INTRODUCTION

STATISTICAL calibration techniques are widely used in
mixed-signal circuit blocks, including ADCs, DACs, and

PLLs, to suppress error that would otherwise be caused by
non-ideal analog circuit behavior such as component mis-
matches, gain errors, and nonlinearity. Typically, they use
pseudo-random calibration sequences or pseudo-random com-
ponent scrambling to cause the targeted types of non-ideal
analog circuit behavior to contribute noise that they correlate
against and cancel in the digital domain.

The signal processing performed by several known statisti-
cal calibration techniques can be modeled as special cases of
the multi-loop least mean square (LMS) noise canceler shown
in Fig. 1. The system’s objective is to adaptively cancel a noise
sequence, re[n], from its input, rideal [n] + re[n], such that its
output, r [n], well approximates rideal [n]. The noise sequence
has the form

re(t) =
L∑

k=1

bk[n] ∗ Sk[n − P], (1)

where P is a non-negative design-dependent integer, bk[n] for
each k is the impulse response of a stable linear time-invariant
(LTI) system, and Sk [n− P] for each k is a zero-mean random
sequence. The signs of Sk [n − P] for all n and k are zero-
mean independent random variables. The magnitudes of
Sk[n − P] for all n and k are 0 or 1 and independent of
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Fig. 1. a) Multi-loop LMS noise canceler, b) details of the kth adaptive filter.

rideal [n] – E{rideal [n]} although they may be a function of
E{rideal [n]}, where E{rideal [n]} denotes the expected value
of rideal [n]. The Sk [n] sequences are known to the system
a priori, but the bk[n] impulse responses are not known to
the system a priori, and in some cases neither is the transfer
function, Hc(z), of the shared portion of the LMS feedback
loops. The purpose of the kth adaptive filter’s feedback loop
is to cancel the kth term in (1).

The system of Fig. 1 reduces to the classical single-loop
LMS noise canceler when L = 1 and Hc(z) = z−1 [1]–[3].
Unfortunately, the system is much harder to analyze when
L > 1 or Hc(z) is other than a unit delay. The interactions
and potential correlations among the multiple feedback loops
greatly complicate the analysis when L > 1, and the stability
of the system is much harder to analyze when Hc(z) introduces
multiple delays.

To the knowledge of the authors, [4] presents the only
previously published mathematical analysis of any multi-loop
LMS noise canceler. It proves that that the expected value of
each ak,m [n] coefficient in Fig. 1 converges to its ideal value
for sufficiently small positive values of K , but neither it nor
any other prior publication has analyzed the mean square error
(MSE) of these coefficients. This is a significant limitation
because the accuracy of the noise cancellation is directly
related to these MSEs. Moreover, the analysis in [4] does not
exclude the possibility that the MSEs are unbounded, so it
leaves open the possibility that the system is not even stable
in some cases.

Without analytical results, computer simulations are the
only way to evaluate the stability and MSE of mixed-signal cir-
cuit calibration techniques that implement the noise canceler.
Unfortunately, complicated mixed-signal circuits such as cal-
ibrated ADCs and DACs are notoriously time-consuming to
simulate, so simulation only allows spot-check predictions of
noise canceler stability and MSE performance for specific use
cases. This is undesirable in practice, because it adds uncer-
tainty to design-phase predictions of performance and yield.
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Fig. 2. Example applications a) continuous-time DAC, b) pipelined ADC,
and c) nonlinearity coefficient calculator for a VCO-based ADC.

This paper addresses this issue. It applies a new analysis
methodology to derive tight upper bounds on the ak,m [n]
coefficient MSEs, and estimates the corresponding data con-
verter signal-to-noise ratio (SNR) limit from residual post can-
cellation noise for an example application. The results prove
that the noise canceler can be made unconditionally stable
by design, and provide guidance on how to choose design
parameters to achieve a desired level of noise cancellation.
Unlike most prior adaptive filter analyses, the analysis in the
paper is completely rigorous and does not rely on simplifying
assumptions.

II. EXAMPLE APPLICATIONS

Fig. 2 shows high-level details of three example systems
enabled by calibration techniques that implement the noise
canceler shown in Fig. 1. They are the subjects of several prior
publications, so only the details necessary to demonstrate their
relevance to the results of this paper are repeated below.

Fig. 2a shows the high-level structure of a 14-bit main DAC
with a mismatch noise cancellation (MNC) feedback path that
measures and cancels the main DAC’s static and dynamic
error from component mismatches over its first Nyquist band
[4], [5]. Unlike other published DAC calibration techniques
that address both static and dynamic error from component
mismatches such as [6]–[9], it can be used for background
calibration in addition to foreground calibration.

The MNC feedback path implements the L feedback paths
in the noise canceler of Fig. 1a: the digital error estimator
implements the L adaptive filters, and the transfer function
between the correction DAC input and decimation filter output
is −Hc(z). The decimation filter output can be written as
r [n] = rideal [n] + re[n] + rc[n], where rideal [n] is the
decimation filter output sequence that would have occurred
in the absence of both the MNC feedback loop and the main
DAC’s component mismatches, re[n] is pseudo-random noise
caused by the main DAC’s component mismatches, and rc[n]
is the MNC feedback path’s noise cancellation sequence.

The main DAC’s dynamic element matching (DEM)
encoder causes re[n] to have the form of (1). The Sk [n]
sequences, which are known because they are explicitly gen-
erated within the DEM encoder, have the properties described
in the Introduction and, additionally, are restricted to values
of −1, 0 and 1. The bk[n] impulse responses are not known
a priori because they depend on the component mismatches.

The Hc(z) transfer function is not known precisely because it
depends on analog circuitry, but it can be determined approx-
imately from transistor-level simulations performed during
design. The integer Q in the z−Q delay in Fig. 1b is the
value of n that maximizes |hc[n]|, where hc[n] is the inverse
z-transform of Hc(z).

In the IC presented in [5], K = 6 · 10−7, L = 35, N = 9,
P = 3, and Q = 21. As shown in [5], the system is insensitive
to error from both the 9-bit correction DAC and the oversam-
pling ADC, so its behavior well-approximates that of the noise
canceler of Fig. 1 with these values of K , L, N , P , and Q.

Fig. 2b shows a simplified diagram of a pipelined ADC with
a calibration technique called DAC noise cancellation (DNC)
applied to the first stage [10]–[12]. The 9-level first-stage is
shown explicitly, and the subsequent stages, which together act
as a moderate-resolution ADC in their own right, are lumped
together in the figure. In such pipelined ADCs, the 9-level
DAC’s component mismatches typically limit overall ADC
accuracy to less than about 10 bits unless the error is canceled.

The DNC logic performs such cancellation. It can be
implemented in the form of the noise canceler of Fig. 1. The
mismatch noise introduced by the 9-level DAC as seen by
the DNC logic, i.e., re[n], has the form of (1) with L = 7
and Sk [n] sequences like those in the example system of
Fig 2a. Most pipelined ADCs are based on switched-capacitor
circuitry in which case bk[n] is non-zero for only one value of
n, so each of the adaptive filters in Fig. 1 only needs one tap,
i.e., N = 1. As the DNC logic is entirely digital, it is possible
to implement it with a single loop delay, i.e., with Hc(z) =
z−1. However, in practice it is often convenient to use Hc(z) =
z−Q with Q > 1 to relax digital circuit timing constraints.

Fig. 2c shows a portion of the nonlinearity calibration
technique used in the VCO-based ADC presented in [13].
The calibration technique measures the ADC’s gain error
and its second-order and third-order nonlinearity coefficients
by applying a calibration sequence, c[n] = t1[n] + t2[n] +
t3[n], to the ADC’s input, and correlating successive sums
of 256 ADC output values against S1[n] = t1[n], S2[n] =
t1[n]t2[n], and S3[n] = t1[n]t2[n]t3[n], where t1[n], t2[n],
and t3[n] are two-level pseudo-random sequences that are
well-modeled as sequences of independent, zero-mean random
variables.

The nonlinearity correlator within Fig. 2c can be imple-
mented as the noise canceler of Fig. 1 with L = 3. The ADC
presented in [13] is such that re[n] has the form of (1) with
L = 3 and each bk[n] is non-zero for only one value of n,
so N = 1. As with the DNC technique, the noise canceler is
entirely digital, and Hc(z) = z−Q with Q > 1 can be used to
relax digital timing constraints. Instead of using r [n] directly,
the calibration technique uses the accumulator outputs, a1,0[n],
a2,0[n], and a3,0[n], to calculate coefficients with which it
subsequently inverts the ADC’s nonlinearity.

In addition to the three example systems shown in Fig. 2,
the results of this paper are applicable to the widely
used gain error correction (GEC) calibration technique for
pipelined ADCs [11]. With minor modifications they can
also be applied to other applications such as those described
in [14] and [15].

III. MEAN-SQUARE CONVERGENCE ANALYSIS

This section and the appendices apply a new analysis
methodology to evaluate the simultaneous MSE convergence
of all L × N adaptive filter coefficients in the noise canceler
of Fig. 1. The analysis bounds the maximum combined MSE
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among all L adaptive filters at each time n. The underlying
difference equations are too complicated to write explicitly,
particularly when Hc(z) is not a simple delay, so to make
the analysis tractable only those of their properties that are
necessary to prove the final results are derived. The difference
equations are time-varying and contain a huge number of
correlated terms, many of which oppose convergence. The
analysis decomposes them into infinite sums of homogeneous
difference equations, each with one of the correlated terms
as an initial condition, and applies several induction-based
techniques to bound their contribution to the overall system’s
MSE evolution considering their correlations.

The convergence error of each accumulator in Fig. 1b is

zk,m [n] = ak,m[n] − a′k,m , (2)

where a′k,m is the expected value of ak,m [n] in the limit as
n → ∞ [4]. It is convenient for the following analysis to
group the zk,m [n] sequences into L N-dimensional vectors
given by

zk[n]=
[

zk,0[n] zk,1[n + 1] · · · zk,N−1[n+N−1] ]T
,

(3)

for k = 1, 2, . . . , L, and for any real random vector x =
[x1x2 · · · xN ]T to define the corresponding RMS vector as

σ (x) =
[√

E
{

x2
1

} √
E
{
x2

2

} · · ·
√

E
{

x2
N

} ]T
, (4)

where E{x2
i } is the expected value of x2

i . The objective
of the analysis is to evaluate the steady-state behavior of
||σ (zk[n])||2, i.e., the behavior of ||σ (zk[n])||2 for large
enough n that E{zk[n]} has converged to zero, where

‖σ (zk[n])‖ =
√√√√N−1∑

m=0

E
{

z2
k,m [n + m]

}
(5)

is the L2 norm of σ (zk[n]). The different time shifts of the ele-
ments of zk[n] are present only because they simplify the
subsequent analysis. They do not affect the results of the
analysis because the objective is to analyze the steady-state
behavior of the system.

The analysis uses the matrix spectral norm, which for any
real N×N matrix A, is denoted as ||A||2 and is defined as the
square root of the maximum Eigenvalue of AAH, where AH

is the conjugate transpose of A [16]. The definition implies
that

‖A‖2 = max‖v‖�=0

{‖Av‖/‖v‖} , (6)

where the maximum is taken over all deterministic non-zero
real N × 1 vectors, v [16].

Without loss of generality, the Sk[n] sequences in (1) are
taken to satisfy

Sk[n] = 0 for n < −N. (7)

As can be verified from Fig. 1, (7) implies that rc[n] = 0 and
the accumulators in Fig. 1 remain unchanged for all n < −N .
Hence, the condition can be viewed as “turning on” the noise
canceler at time n = −N . Otherwise, no assumptions are made
regarding the initial conditions of the system.

It follows from Fig. 1 and (1) that

ak,m[n] = ak,m[n − 1] + K uk,m[n] (8)

for each k = 1, 2, . . . , L, each m = 0, 1, . . . , N−1, and every
n ≥ 0, where

uk,m [n]

= Sk [n − m − Q]

(
rideal [n]+

L∑
l=1

∞∑
i=−∞

bl [i ]Sl [n−P−i]

−
L∑

l=1

∞∑
i=−∞

N−1∑
j=0

hc[i ]al, j [n−i ]Sl [n − i − j]

⎞
⎠ , (9)

and hc[n] is the inverse z-transform of Hc(z). The system is
causal and the feedback loops must be delay-free, so hc[n] = 0
and bk[n] = 0, for all n ≤ 0.

As described above, the noise canceler is “turned on” at time
n = −N with otherwise arbitrary initial conditions. Therefore,
the N ·L difference equations given by (8) together with initial
conditions{

al,m [p]; l = 1, 2, . . . , L, m = 0, 1,

. . . , N − 1, −N ≤ p ≤ −1} (10)

completely describe the N · L ak,m [n] sequences for n ≥ 0.
Combining (2), (3), (8), and (9) gives

zk[n] = zk[n − 1] + K ek,n

− K
∞∑

i=−∞

L∑
l=1

Sk [n−Q] Sl [n−i] Hc_i zl[n−i ], (11)

for each k = 1, 2, . . . , L and all n ≥ 0, where

ek,n = Sk [n − Q] r[n]

+
∞∑

i=−∞

L∑
l=1

Sk [n−Q] Sl [n−i] (bl_i−Hc_i a′l), (12)

bl_i =
[

bl[i−P] bl[i−P+1] · · · bl [i−P+N − 1] ]T
,

(13)

r[n] = [
rideal [n] rideal [n+1] · · · rideal [n+N−1]]T

,

(14)

a′l =
[

a′l,0 a′l,1 · · · a′l,N−1
]T

, (15)

and

Hc_i=

⎡
⎢⎢⎣

hc[i ] hc[i−1] · · · hc[i−N+1]
hc[i+1] hc[i ] · · · hc[i−N+2]

...
...

. . .
...

hc[i+N−1] hc[i+N−2] · · · hc[i ]

⎤
⎥⎥⎦ .

(16)

Equation (2) implies that the elements of a′l are the lth adaptive
filter’s optimal coefficients in the sense that they are the values
of al,m [n] for which zl [n] = 0. As shown in [4], a′l satisfies

bl_Q −Hc_Qa′l = 0 (17)

because, as implied by (12), this causes E{el,n}= 0.
Each term in (11) that contains zl [n − i ] has a factor of Sl

[n − i ], and (7) implies that Sl [n − i ] = 0 when n–i <
−N , so (11) has no dependence on zl [p] for any p < −N .
Therefore, without loss of generality, zl [p] can be defined as 0
for all p < −N . It follows that zk[n] for each k = 1, 2, . . . , L
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is specified for all n ≥ 0 by the vector difference equation (11)
with initial conditions

zl[p]=
{

zl,p, for−N≤ p≤−1
0, for p < −N

l = 1, 2, . . . , L . (18)

Definitions (2) and (3) imply that each zl,p equals −a′l plus
a vector, each element of which is either one of the initial
conditions given by (10) or one of the values given by{

al,m [p]; l = 1, 2, . . . , L, m = 0, 1,

. . . , N − 1, 0 ≤ p ≤ m − 1} . (19)

Each element of (19) can be obtained by starting from the
initial conditions in (10) and recursively applying (8) to itself
a finite number of times, so all the zl,p vectors are finite.

The difference equation (11) provides an expression for
zk[n] that contains terms proportional to zl [p] where p =
n − i , but p ≥ n for some of these terms. This complicates
the solution of (11). In principle, (11) can be substituted
recursively into itself to obtain a modified difference equation
that only contains terms proportional to zl [p] with p < n, but
the modified difference equation is intractably complicated.
Instead, the following lemma, which is proven in Appendix A,
provides the pertinent features of the modified difference
equation without requiring its full derivation.

Lemma 1: If |bk[n]| for k = 1, 2, . . . , L and |hc[n]| are
each bounded by a sequence that decays exponentially to zero
as n → ∞, then for each k = 1, 2, . . . , L, any given set of
initial conditions (18), and all n ≥ 0, (11) can be written as

zk [n] = zk [n − 1]−
N∑

r=1

K r Hr,k
(

zl [p]|p≤n−1,1≤l≤L
)

+ K ek,n + K 2vk,n (20)

and (12) can be written as

ek,n

= Sk [n − Q]

(
r[n]+

L∑
l=1

N−2∑
i=−n−N

Sl [n+i ] (bl_−i−Hc_−i a′l
))

,

(21)

where
(i) Hr,k(zl[p]|p≤n−1,1≤l≤L) for n ≥ 0 can be written as

Mr∑
u=1

L∑
l=1

n+N∑
i=1

sr,k,u,l,i [n]Dr,u,i zl [n − i ], (22)

where Mr is an integer, sr,k,u,l,i [n] is a product of
Sl′ [n − m] sequences, each with l ′ ∈ {1, 2, . . . , L} and
m ∈ {−(N − 2),−(N − 3), . . . , i + Q − 1} including
Sk[n − Q], and each Dr,u,i is an N × N deterministic
matrix with a spectral norm which is bounded by a
sequence that decays to zero exponentially as i →∞,

(ii) for the special case of r = 1

H1,k
(

zl [p]|p≤n−1,1≤l≤L

)
= Sk [n − Q]

L∑
l=1

⎛
⎝n+N∑

j=1

Sl [n − j ]Hc_ j zl [n − j]

+
N−2∑
j=0

Sl [n + j ]Hc_− j zl [n − 1]

⎞
⎠ (23)

for n ≥ 0, and

(iii) vk,n for each k and n is an N × 1 real vector that is
independent of Sl [n + J ] for all l and all J ≥ N − 1,
and there exists a constant B such that ||σ (vk,n)|| < B
for all k and n.

Lemma 1 implies that for each k = 1, 2, . . . , L, and
all n ≥ 0, zk[n] is uniquely determined by the difference
equation (20) and initial conditions (18). The lemma only
specifies Hr,k(zl[p]|p≤n−1,1≤l≤L) for n ≥ 0, but for notational
convenience in the remainder of the paper and without loss of
generality, the definition is made that

Hr,k
(

zl [p]|p≤n−1,1≤l≤L

) = 0 for all n < 0. (24)

The following two theorems provide the key results of the
paper. Both refer to hK , which is defined as

hK = min
0<α≤K

{(
1− ∥∥I − αHc_Q

∥∥
2

)
/α
}
, (25)

where Hc_Q is given by (16) with i = Q.
Theorem 1: If |bk[n]| for k = 1, 2, . . . , L and |hc[n]| are

each bounded by a sequence that decays exponentially to zero
as n → ∞, if there exists a positive value, K ′, such that
hK > 0 when K = K ′, and if there exists a non-zero positive
constant c and integer M such that E{S2

k [n]} > c for every k
occurs at least once every consecutive M samples, then, for
any positive ε, there exists a positive δ such that

lim sup
n→∞

‖σ (zk[n])‖ < ε (26)

for all 0 < K < δ and each k = 1, 2, . . . , L.
Proof: Given that Hr,k , as defined in Lemma 1, is a linear

function, (18), (20), and (24) imply that

zk[n] =
n∑

q=−N

yk,q [n], (27)

where yk,q [n] for k = 1, 2, . . . , L are the solution of the L
difference equations given by

xk [n] = xk [n − 1]−
N∑

r=1

K r Hr,k
(

xl [p]|p≤n−1,1≤l≤L

)
(28)

when n > q and

xk[n] =
{

xk,q , if n = q,

0, if n < q,
(29)

when n ≤ q , with xk[n] replaced by yk,q [n] and

xk,q =
{

zk[q] − zk[q − 1], if q < 0,

K ek,q + K 2vk,q , otherwise.
(30)

Equations (27) and the linearity of difference equations (28)
with (29) imply that

zk[n] =
−1∑

q=−N

yk,q [n] +
n∑

q=0

(
K 2ak,q [n] + K bk,q [n]

)
, (31)

where ak,q [n] and bk,q [n] for k = 1, 2, . . . , L are the solution
of (28) with xk[n] replaced by ak,q [n] and bk,q [n], respec-
tively, and (29) for xk,q = vk,q and xk,q = ek,q , respectively.

Given that a′k satisfies (17) for each k, and bk,q [q] = ek,q
as implied by the definition of bk,q [n], it follows from (21)
that

bk,q [q] = Sk [q − Q] vq
+ + Sk [q − Q] vq

−, (32)
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where

vq
+ = r[q] +

L∑
l=1

N−2∑
i=−Q+1

Sl [q + i ]cq,l,i , (33)

vq
− =

L∑
l=1

−Q−1∑
i=−q−N

Sl [q + i ]cq,l,i , (34)

and

cq,l,i =
{

bl_−i −Hc_−i a′l , if i ≥ −q − N,

0, otherwise.
(35)

Therefore, the linearity of difference equations (28) with (29)
implies that bk,q [n] can be further decomposed as bk,q [n] =
bk,q

+[n] + bk,q
−[n], where

bk,q
+[n] =

L∑
r=1

Sr [q − Q]bk,q,r
+[n], (36)

bk,q
−[n] is given by (36) with each + replaced by −,

bk,q,r
+[n] and bk,q,r

−[n] for k = 1, 2, . . . , L are the solutions
of (28) with xk[n] replaced by bk,q,r

+[n] and bk,q,r
−[n],

respectively, and (29) for xk,q = δk,r vq
+ and xk,q = δk,r vq

−,
respectively, in which δk,r is the Kronecker delta function (δk,r
is one for k = p and zero otherwise).

Equations (28) with xk[n] replaced by bk,q,r
+[n] contains

an Hr,k(bk,q,r
+[p]|p≤n−1,1≤l≤L) term, which has the form of

(22) with zk,q [n − i ] replaced by bk,q,r
+[n − i ]. Lemma 1

implies that each sr,k,u,l,i [n] factor in (22) is independent of
Sl′ [n − J ] for J ≥ i + Q and all l ′, and (29) with xk[n]
replaced by bk,q,r

+[n] implies bk,q,r
+[n − i ] = 0 for all

i > n − q . This shows that the sr,k,u,l,i [n] factor in each non-
zero term of Hr,k(bk,q,r

+[p]|p≤n−1,1≤l≤L) is independent of
Sl′ [n − J ] for all J ≥ n − q + Q and all l ′, or, equivalently,
independent of Sl′ [q − J ] for all J ≥ Q and all l ′. Given that
bk,q,r

+[q] = δk,r vq
+ and both r[q] and cq,l,i are independent

of Sl′ [p] for all l ′ and p, (33) implies that bk,q,r
+[q] also

is independent of Sl [q − J ] for all J ≥ Q and all l.
Hence, (28) with (29) imply that bk,q,r

+[n] is independent
of Sl [q − J ] for all J ≥ Q and all n ≥ q . It follows
that, for any n ≥ q2 > q1, both bk,q1,r

+[n] and bk,q2,r
+[n]

are independent of Sl [q1 − Q]. Definition (36) implies that
(bk,q1

+[n])Tbk,q2
+[n] is a sum of terms, each of the form

Sr [q1−Q]Sr ′ [q2−Q](bk,q1,r
+[n])Tbk,q2,r ′+[n] where 1 ≤ r ,

r ′ ≤ L. Given that Sr [q1 − Q] is zero-mean and independent
of both Sr ′ [q2 − Q] and (bk,q1,r

+[n])Tbk,q2,r ′+[n], it follows
that E{(bk,q1

+[n])Tbk,q2
+[n]} = 0.

To prove the corresponding result for bk,q
−[n], it is nec-

essary to invoke the linearity of (28) with (29), (34), and the
definition of bk,q,r

−[n] to further decompose bk,q,r
−[n] as

bk,q,r
−[n] =

L∑
l=1

−Q−1∑
i=−q−N

Sl [q + i ]bk,q,r,l,i [n], (37)

where bk,q,r,l,i [n] for k = 1, 2, . . . , L are the solution of (28)
with xk[n] replaced by bk,q,r,l,i [n] and (29) for xk,q =
δk,r cq,l,i . Given that xk,q and the sr,k,u,l,i [n] factor in each non-
zero term of Hr,k(bk,q,r,l,i [p]|p≤n−1,1≤l≤L) are independent
of Sl′ [q − J ] for all J ≥ Q and all l ′, (28) implies that
bk,q,r,l,i [n] is also independent of Sl′ [q − J ] for all J ≥ Q
and all l ′. Substituting (37) into (36) with each + replaced
by − shows that (bk,q1

−[n])T bk,q2
−[n] for any q1 and q2

is a sum of terms, each of the form Sr [q1 − Q]Sr ′ [q2 −
Q]Sl [q1 + i ]Sl′ [q2 + i ′](bk,q1,r,l,i [n])T bk,q2,r ′,l′,i ′ [n], with 1
≤ r, r ′, l, l ′ ≤ L, and i , i ′ ≤ −Q−1. Suppose q2 > q1. Then
(bk,q1,r,l,i [n])Tbk,q2,r ′,l′,i ′ [n] is independent of Sl′′ [q1− J ] for
all J ≥ Q and all l ′′, and the range of i and i ′ further implies
that q1+ i < q1− Q < q2− Q. Therefore, if q1+ i = q2+ i ′,
then Sr [q1−Q] is independent of each of Sl [q1+i ], Sl′ [q2+i ′],
Sr ′ [q2 − Q] and (bk,q1,r,l,i [n])T bk,q2,r ′,l′,i ′ [n]. If q1 + i <
q2 + i ′, then Sl [q1 + i ] is independent of each of Sl′ [q2 + i ′],
Sr [q1−Q], Sr ′ [q2−Q], (bk,q1,r,l,i [n])Tbk,q2,r ′,l′,i ′ [n]. If q2+i ′
< q1+ i , then Sl′ [q2+ i ′] is independent of each of Sl [q1+ i ],
Sr [q1 − Q], Sr ′ [q2 − Q], and (bk,q1,r,l,i [n])Tbk,q2,r ′,l′,i ′ [n].
Thus, in each of the above cases, the product of the terms
is zero mean, so E{(bk,q1

−[n])Tbk,q2
−[n]}= 0.

Consequently, applying Lemma C1 in Appendix C to (31)
with bk,q [n] = bk,q

+[n] + bk,q
−[n] yields

‖σ (zk[n])‖ ≤ K 2
n∑

q=0

(∥∥σ (
ak,q [n]

)∥∥)+ −1∑
q=−N

∥∥σ (
yk,q [n]

)∥∥

+ K

√√√√ n∑
q=0

∥∥σ (
bk,q

+[n])∥∥2

+ K

√√√√ n∑
q=0

∥∥σ (
bk,q

−[n])∥∥2
. (38)

Given that ak,q [q] = vk,q , it follows from Lemma 1, Part (iii)
that Lemma B1 in Appendix B is applicable to ||σ (ak,q [n])||.
Definition (36) and bk,q,r

+[q] = δk,r vq
+ imply

bk,q
+[q] = Sk [q − Q] vq

+. (39)

Similarly, the definition of bk,q
−[n] and bk,q,r

−[q] = δk,r vq
−

imply

bk,q
−[q] = Sk [q − Q] vq

−. (40)

Equations (33)-(35), (39), and (40) imply that bk,q
+[q] and

bk,q
−[q] are independent of Sl [q + J ] for all l and all J ≥

N − 1, so Lemma B1 is also applicable to ||σ (bk,q
+[n])||

and ||σ (bk,q
−[n])||. Therefore, to apply Lemma B1 to (38)

it remains to show that it is applicable to ||σ (yk,q [n])|| for
q = −N , −N + 1, . . . ,−1.

Definitions (2), (3), and (15) imply that zk[q] can be written
as zk[q] = ak,0[q]i(0)+ak,1[q+1]i(1)+ . . .+ak,N−1[q+ N −
1]i(N)− a′k , where i(m) for each m = 0, 1, . . . , N − 1 is an
N×1 vector whose elements are zero except for the (m+1)th
element which is 1. Initial conditions (10) are deterministic,
so ak,m[q+m]i(m) for each −N ≤ q+m ≤ −1 is deterministic
as is a′k . For 0 ≤ q+m ≤ N−2, ak,m [q+m] can be calculated
by repeatedly applying (8) with (9)-(10) and n replaced by
n + m for n = −m,−m + 1, . . . , q . The lower limit of the
summations over i in (9) can be changed to i = 1, because
hc[i ] and bk[i ] are zero for all n ≤ 0. Therefore, (9) implies
that uk,m [n + m] is independent of Sl [n + J ] for all l and
all J ≥ m for each n = −m, −m + 1, …, q . Given that 0
≤ m ≤ N − 1, this with (8) implies that ak,m [q + m]i(m) is
independent of Sl [q + J ] for all l and all J ≥ N − 1.

It follows that ak,m[q + m]i(m) for both −N ≤ q + m ≤
−1 and 0 ≤ q + m ≤ N−2 are independent of Sl [q + J ]
for all l and all J ≥ N − 1. Hence, zk[q] for q = −N ,
−N + 1, …, −1 are independent of Sl [q + J ] for all l and
all J ≥ N − 1. The same is true of zk[q − 1] because (18)
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implies zk[−N−1] = 0. Given that yk,q [q] = zk[q]−zk[q−1],
it follows that Lemma B1 is applicable to each ||σ (yk,q [n])||
term in (38).

When applicable, Lemma B1 implies that for all sufficiently
small K > 0 there exist positive constants A and b such that∥∥σ (

wk,q [n]
)∥∥≤ A (1−bhK K )�(n−q)/M� max

1≤l≤L

∥∥σ (
wl,q [q]

)∥∥ ,

(41)

where wk,q [n] for k = 1, 2, . . . , L are the solution of (28)
and (29) with xk[n] replaced by wk,q [n] for any particular
value of q ≥ −N . The definition of hK , i.e., (25), implies
that hK does not decrease as K decreases, so (41) and the
geometric series formula imply that there must exist positive
constants A′ and A′′ such that for all sufficiently small
K > 0 and all integers n ≥ 0,

n∑
q=0

∥∥σ (
wk,q [n]

)∥∥ ≤ A′

K
max

0≤q≤n

{
max

1≤l≤L

∥∥σ (
wl,q [q]

)∥∥} , (42)

and√√√√ n∑
q=0

∥∥σ (
wk,q [n]

)∥∥2 ≤ A′′√
K

max
0≤q≤n

{
max

1≤l≤L

∥∥σ (
wl,q [q]

)∥∥} .

(43)

As shown above, Lemma B1 is applicable to all the terms
in (38), so it follows from (38), (41) with wk,q [n] replaced by
yk,q [n], (42) with wk,q [n] replaced by ak,q [n], and (43) with
wk,q [n] replaced by bk,q

+[n] and bk,q
−[n] that the left side

of (26) is upper bounded by a constant times K plus another
constant times

√
K . Hence, δ can be made sufficiently small

that (26) holds for all 0 < K < δ and each k = 1, 2, . . . , L.
�

Theorem 2: If |bk[n]| for k = 1, 2, . . . , L and |hc[n]| are
each bounded by a sequence that decays exponentially to zero
as n → ∞, if there exists a positive value, K ′, such that
hK > 0 when K = K ′, and if there exists a non-zero positive
constant c such that E{S2

k [n]} > c for all n and k, then for
any positive ε there exists a positive δ such that

lim sup
n→∞

‖σ (zk[n])‖

≤ lim sup
n→∞

(√
K · fk

(
b+[n])+ εK

+
√

K · fk
(
b−[n])+ εK +√εK

)
(44)

for all 0 < K < δ and each k = 1, 2, . . . , L, where

b+[n] = ‖σ (r[n])‖2+
N−2∑

i=−Q+1

L∑
l=1

∥∥bl_−i−Hc_−i a′l
∥∥2

, (45)

b−[n] =
−Q−1∑
i=−∞

L∑
l=1

∥∥bl_−i−Hc_−i a′l
∥∥2

, (46)

fk
(
b±[n])= K

n∑
q=0

E{S2
k [q − Q]}b±[q]

n∏
m=q ′

Rk [m], (47)

q ′ = q + Q + N − 1, Rk[n] = 1− 2K hK E{S2
k [n − Q]}, and

the ± superscript notation is used to indicate that (47) holds
when both ± symbols are replaced by either + or −. In the
special case where the first and second-order statistics of r[n]

and Sk[n] for each k do not change over time and E{S2
k [n]} �=

0 for all k, then b±[n] is independent of n and (47) reduces to

fk
(
b±[n]) ≤ b±[n]/(2hK )+ ε′K (48)

for a constant ε′.
Proof: The hypothesis of Theorem 2 is a special case of

that of Theorem 1, so results from the proof of Theorem 1 hold
under the hypothesis of Theorem 2. In particular, the limit
superior of ||σ (zk[n])|| as n → ∞ is upper bounded by
the sum of those of the terms on the right side of (38).
This with the same reasoning that concluded the proof of
Theorem 1 implies there exists a positive constant B ′ such that

lim sup
n→∞

‖σ (zk[n])‖

≤ K B ′ + K lim sup
n→∞

√√√√ n∑
q=0

∥∥σ (
bk,q

+[n])∥∥2

+ K lim sup
n→∞

√√√√ n∑
q=0

∥∥σ (
bk,q

−[n])∥∥2
. (49)

Given that E{S2
k [n]} > 0 for all k, (33), (34), (39), and (40)

imply that ||σ (b1,q
+[q])||, ||σ (b2,q

+[q])||, …, ||σ (bL ,q
+[q])||

are either all non-zero or all zero, and the same is true of
||σ (b1,q

−[q])||, ||σ (b2,q
−[q])||, …, ||σ (bL ,q

−[q])||. There-
fore, Lemma B2 in Appendix B is applicable to the last two
terms on the right side of (49). The lemma implies that for all
sufficiently small K > 0,∥∥∥σ (

b±k,q [n]
)∥∥∥2

≤ (1+ AK )

⎛
⎝ n∏

m=q ′
Rk[m] + βk,n−q ′

⎞
⎠∥∥∥σ (

b±k,q [q]
)∥∥∥2

,

(50)
where A is a positive constant, and βk,m is as defined in
the lemma statement. Applying Lemma C1 to (33)-(35), (39),
and (40) yields ||σ (b±k,q [q])||2 ≤ E{S2

k [q − Q]}b±[q], where
b+[q] and b−[q] are given by (45) and (46), respectively,
with n replaced by q . Substituting this, (45)-(46) into (50),
summing both sides of the result for q = 0, 1, . . . , n, and
applying the properties of βk,m described in the statement of
Lemma B2 yields

n∑
q=0

∥∥∥σ (
b±k,q [n]

)∥∥∥2

≤ 1+ AK

K

⎧⎨
⎩ fk

(
b±[n])+ β A′max

n≥0

(
b±[n])

2(1− β)hK cmin

⎫⎬
⎭ , (51)

where fk(b±[n]) is given by (47) and cmin > 0 as defined in
the statement of Lemma B2. Since 0 < Rk[n] < 1 and 0 <
E{S2

k [n]} ≤ 1 for all k and n, and b±[n] is bounded for all n,
this and the properties of geometric series imply that fk(b±[n])
is less than some constant for sufficiently small positive values
of K . Hence, (51) implies that there exists a constant ε that

n∑
q=0

∥∥∥σ (
b±k,q [n]

)∥∥∥2 ≤ (
fk
(
b±[n])+ ε

)
/K (52)

where ε is a function of K and β and can be made arbitrarily
close to 0 by reducing β and K . Lemma B2 holds for any
0 < β < 1 if K is sufficiently small, so ε can be made
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arbitrarily close to 0 by reducing K . Therefore, (49) and (52)
imply that the left side of (49) can be upper bounded by the
limit superior of√

K fk
(
b+[n])+ K ε +

√
K fk

(
b−[n])+ εK + K B ′ (53)

for all k and all 0 < K < δ. If K B ′ >
√

K ε, then δ can
be further reduced but kept positive such that K B ′ ≤ √K ε
for all 0 < K < δ. Substituting (45)-(46) into (53) yields the
right side of (44). The derivation of (48) in the special case
of Theorem 2 directly follows from (47) and the properties of
geometric series. �

IV. IMPLICATIONS

The limit superior of ||σ (zk[n])|| bounds the steady-
state MSE of the kth adaptive filter’s coefficients. Theo-
rem 1 implies that it can be made arbitrarily small by reducing
K toward 0. This proves that the system in Fig. 1 can be made
unconditionally stable for sufficiently small K . Like all stable
LMS systems, reducing K reduces the convergence rate of
the adaptive filter coefficients in addition to improving MSE
performance, so the choice of K represents a tradeoff between
convergence rate and accuracy. This tradeoff is quantified for
the system of Fig. 1 by the results of this paper together with
those of [4].

Theorem 2 provides further insight into the relationship
between ||σ (zk[n])|| and various system parameters. It follows
from (44)-(48) that ||σ (zk[n])|| can be decreased by increasing
hK . For example, in the case of the MNC technique of Fig. 2a,
this provides guidance regarding the design of the ADC and
decimation filter. If hc[n] were such that hc[n] = 0 for all
n �= Q and hc[Q] > 0, then (16) and (25) would imply that
hK = hc[Q]. Equations (16) and (25) further imply that for
a given value of hc[Q], hK tends to be less than hc[Q] if
hc[n] �= 0 for any n �= Q. Therefore, to minimize ||σ (zk[n])||,
Q should be chosen such that hc[Q] is the peak value of
hc[n], and the ADC and decimation filter should be designed
such that their combined passband is as flat as possible over
the DAC’s first Nyquist band to ensure that hc[n] ∼= 0 for
all n �= Q.

Theorem 2 also provides a means with which to evaluate the
effect of MNC convergence error on output SNR as demon-
strated in the remainder of this section for an example in which
MNC is run in foreground calibration mode [4]. If foreground
calibration is run for a large enough number of clock periods
under conditions that satisfy the hypothesis of Theorem 2,
the theorem implies that ||σ (zk[n])|| is approximately upper
bounded by the right side of (44) (wherein ||σ (r[n])|| is
that which occurred during foreground calibration). In fore-
ground mode the main DAC’s input sequence is approximately
constant, so ||σ (r[n])|| is approximately constant, and each
E{S2

k [n]} is constant and greater than 0. Hence, (44)-(46)
and (48) can be used to derive the steady-state mean-square
error. It follows from (14) and the RMS vector definition that
||σ (r[n])|| = √Nσ (rideal [n]), where σ (rideal [n]) is the RMS
value of rideal [n]. Furthermore, the terms in (44) that depend
on bl_−i−Hc_−i a′l are typically much smaller than the term
that depends on r[n], because bl_−i−Hc_−i a′l is a function
of the mismatch noise whereas r[n] is a function of the main
DAC’s input sequence during foreground calibration and noise
introduced by the ADC. For sufficiently small K , ε in (44) can
be neglected, so (44)-(46) and (48) imply

lim sup
n→∞

‖σ (zk[n])‖ ≤ σ (rideal [n])
√

N K/(2hK ). (54)

Once foreground calibration mode completes, the system
enters normal DAC operation wherein the adaptive filter coef-
ficients measured during foreground calibration are frozen so
that each adaptive filter becomes a fixed FIR filter. It follows
from Figures 1 and 2a that the error at the input of the
correction DAC during normal DAC operation resulting from
imperfect foreground calibration convergence is

e[n] =
L∑

k=1

N−1∑
m=0

Sk [n − m]zk,m , (55)

where zk,m is the deviation of the final foreground calibration
mode value of the mth accumulator in kth adaptive filter from
its ideal value of a′k,m .

The correction DAC converts e[n] to an output error wave-
form given by e(t) = αc(t)e[nt ], where αc(t) is the correction
DAC’s Ts-periodic pulse shaping waveform, and, nt is the
largest integer less than or equal to t/Ts [4]. Laboratory spec-
trum analyzers estimate time-average power spectra, the two-
sided version of which for e(t) can be written as

See(ω) = lim
M→∞

1

MTs
|EM ( jω)|2 , (56)

where EM ( jω) is the continuous-time Fourier transform of
e(t) restricted to the time interval 0 ≤ t ≤ MTs [17].
Its definition implies that EM ( jω) can be expressed as the
continuous-time Fourier transform of eM (t) = αc(t)eM [nt ],
where

eM [n] =
{

e[n], if 0 ≤ n ≤ M,

0, otherwise.
(57)

Hence, EM ( jω) = Ac( jω)EM(e jωT s), where Ac( jω) is the
continuous-time Fourier transform of ac(t) restricted to the
interval 0 ≤ t ≤ Ts , and EM (e jωT s) is the discrete-time
Fourier transform of eM [n] [4]. This with (56) implies the
time-average MSE from e(t) over the first Nyquist band is

pe = 1

2π

∫ π fs

−π fs

lim
M→∞

1

MTs

∣∣∣Ac( jω)EM(e jωTs )
∣∣∣2 dω. (58)

The pulse-shaping waveform of a Nyquist-rate DAC generally
is such that |Ac( jω)| ≤ |Ac(0)| for all ω (e.g., Ac( jω)
typically approximates a sinc function). Given that Ac(0) can
be written as Ts āc, where,

āc = 1

Ts

∫ Ts

0
ac(t)dt, (59)

it follows from (58) that

pe ≤ Tsā2
c

2π
lim

M→∞
1

M

∫ π fs

−π fs

∣∣∣EM (e jωTs )
∣∣∣2 dω. (60)

This with Parseval’s theorem implies

pe ≤ ā2
c lim

M→∞
1

M

∞∑
n=−∞

e2
M [n]. (61)

Given that Sj [q] and Sk [r ] are uncorrelated if j �= k or q �=
r , (55) and (57) imply that

lim
M→∞

1

M

∞∑
n=−∞

e2
M [n] =

L∑
k=1

〈
S2

k

〉 N−1∑
m=0

z2
k,m , (62)
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where 〈S2
k 〉 is the time average of S2

k [n] during normal DAC
operation. Given that each 〈S2

k 〉 is independent of each zk,m ,
the RMS vector and L2 norm definitions with (61) and (62)
imply that the expected value of pe satisfies

E {pe} ≤ ā2
c

L∑
k=1

E
{〈

S2
k

〉}
‖σ (zk)‖2 . (63)

This and (54) imply that the ratio of the output signal power to
the expected power of the Nyquist-band noise resulting from
MNC convergence error is approximately lower bounded by

SN Rc > 10 log

⎛
⎜⎜⎜⎝ 2hK psignal

K ā2
c Nσ 2 (rideal)

L∑
k=1

E
{〈

S2
k

〉}
⎞
⎟⎟⎟⎠ , (64)

where σ (rideal) is that which occurred during foreground
calibration, and psignal is the mean square value of the DAC
output signal during normal DAC operation in the absence of
non-ideal DAC behavior.

V. SIMULATION RESULTS

This section describes behavioral computer simulations per-
formed to compare against the MSE values predicted by (44)
for the MNC and DNC techniques, and the SNRc values
predicted by (64) for the MNC technique. The simulated
||σ (zk[n])|| values were obtained via (5) except with each
expected value replaced by the average of several hundred
values of the sequence, z2

k,m [iJ+n0], for i = 0, 1, 2, . . .,
obtained via simulation, with J equal to 1/K rounded to the
nearest integer and n0 large enough that the means of zk,m [n]
for n ≥ n0 were negligible.

The MNC simulations model the 14-bit DAC IC with
foreground mode MNC presented in [5], the high-level view
of which is shown in Fig. 2a. In that IC, and, hence, in the
simulations described below, foreground mode MNC was run
for enough clock periods that the means of the adaptive filter
coefficient errors, zk,m [n], were negligible, and then the coef-
ficients were frozen and subsequently used for normal DAC
operation. The ADC and decimation filter were designed in
line with the guidelines described in Section IV. The resulting
impulse response, hc[n], was extracted from transistor-level
simulations and used to compute hK in (25), which was found
to be 0.6 and nearly independent of K over the range of K
values that were simulated. The simulations model non-ideal
circuit behavior, including component mismatches, that are in
line with transistor-level simulations of and measured results
from the IC presented in [5].

Fig. 3a shows the simulated ||σ (zk[n])|| values as well as the
corresponding calculated upper bounds predicted by (54) with
K = 2 × 10−5 and three different values of σ (rideal [n]) for
each of the L = 35 adaptive filters, all with N = 9 coefficients.
The three sets of curves from top to bottom correspond to
σ (rideal [n]) = 47, 26, and 17, respectively, in units equal
to the minimum step size of the main DAC. Fig. 3b shows
corresponding results with σ (rideal [n]) = 17 and 3 different
values of K . The three sets of curves from top to bottom
correspond to K = 2 × 10−5, 0.5 × 10−5, and 1.25× 10−6,
respectively. The simulated and calculated results are in close
agreement and suggest that the analytically predicted bound is
quite tight. Although not indicated in the figure, the simulation
results are consistent with the expected tradeoff between con-
vergence rate and accuracy as a function of K . For example,

Fig. 3. Simulated MNC adaptive filter MSEs and their theoretical bounds
for different values of a) σ(rideal [n]), and b) K .

Fig. 4. Simulated MNC DAC SNRc values and their theoretical bounds for
different values of a) σ(rideal [n]), b) K , and c) N .

the simulated convergence rate for K = 2 × 10−5is 16 times
that for K = 1.25× 10−6.

Fig. 4 shows simulated values of SNRc along with the
corresponding analytical bound values predicted by (64) for
the MNC example during normal DAC operation with a full-
scale, 179.4 MHz sinusoidal main DAC input sequence. The
value of āc in (64) was found via circuit simulation to be
0.8. The values of the adaptive filter coefficients obtained
during foreground mode vary slightly across simulation runs
as expected, because ||σ (zk[n])|| �= 0. The variations caused
SNRc to vary within approximately a ±1 dB range about its
average. Each SNRc value shown in Fig. 4 is the average
SNRc over 10 simulation runs. Fig. 4a) shows simulated and
calculated SNRc results for K = 2 × 10−5 and N = 9
versus σ (rideal [n]), where σ (rideal [n]) was varied by changing
the quantization step size of the ADC and is expressed in
units of the main DAC’s minimum step-size. Fig. 4b) shows
corresponding results for σ (rideal [n]) = 17 and N = 9 as
a function of K . Fig. 4c) shows corresponding results for
K = 2× 10−5 and σ (rideal [n]) = 17 as a function of N . The
simulation results are in line with the theoretical bound values
given by (64) as expected. The bound values are not as tight
as those shown in Fig. 3 because the inequality |Ac( jω)| ≤
|Ac(0)| used to derive (60) from (58) is pessimistic.

Fig. 5 shows simulated and calculated MSE results for a
14-bit pipelined ADC of the form shown in Fig. 2b with DNC.
The unit element DAC mismatches in the 9-level DEM DAC
were chosen as samples of a Gaussian random variable with a
standard deviation of 1%. The noise canceler was implemented
with L = 7, N = 1, P = 0, bk[n] = 	kδ[n− 1], and hc[n] =
δ[n − Q], where Q = 4. Hence, (16) and (25) imply that
hK = 1, and (17) implies that the terms of (44) which depend
on bl_−i−Hc_−i a′l are 0.

The simulated ||σ (zk[n])|| values for each of the L = 7
LMS feedback loops are shown in Fig. 5 along with the
corresponding values predicted by (44) with ε = 0. Fig. 5a
shows results for K = 5 × 10−3 and three different values
of σ (rideal [n]). The three sets of curves from top to bottom
correspond to σ (rideal [n]) = 1, 2, and 4, respectively, where
rideal [n] is normalized to the minimum step-size of the overall
14-b pipelined ADC. Fig. 5b shows results for σ (rideal [n]) = 2
and three different values of K . The three sets of curves from
top to bottom correspond to K = 10−2, 5×10−3, and 2×10−3,
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Fig. 5. Simulated DNC adaptive filter MSEs and their theoretical bound for
different values of a) σ(rideal [n]), and b) K .

respectively. As indicated in the figure, a few of the simulated
values of ||σ (zk[n])|| slightly exceed the upper bound of (44).
This happened because the bounds were calculated with ε = 0.
As implied by Theorem 2, the actual value of ε decreases with
K but is non-zero in practice. Nevertheless, the theoretical
results closely match the corresponding simulated results as
expected.

APPENDIX A

Definition A1: In this paper, a deterministic N × N real
matrix A is called a sub-j matrix if its elements satisfy

(A)m,n = 0 if m − n ≤ j, (65)

for 1 ≤ n, m ≤ N and −N +1 ≤ j ≤ N −2, i.e., all elements
that lie on and above the j th subdiagonal, the main diagonal,
or the | j |th superdiagonal of A are zero if j > 0, j = 0,
or j < 0, respectively.

Lemma A1: If A is an N × N sub- j matrix and B is an
N × N sub-i matrix, then AB is a sub-(i + j + 1) matrix
if −N ≤ i + j ≤ N−3 and AB = 0 if i + j ≥ N–2.

Proof: By the definition of matrix multiplication, the ele-
ment on the mth row and nth column of AB is

(AB)m,n =
N∑

r=1

(A)m,r (B)r,n . (66)

Given that A and B are sub- j and sub-i matrices, respectively,
(A)m,r = 0 if m − r ≤ j and (B)r,n = 0 if r − n ≤ i , for
each r = 1, 2, . . . , N . Hence, (AB)m,n = 0 if either inequality
holds, or, equivalently, if either r ≥ m− j or r ≤ n+ i . Given
that r is integer-valued, either r ≤ n + i or r ≥ n + i + 1
must hold. Suppose m − n ≤ i + j + 1. Then, r ≥ n + i + 1
implies r ≥ m − j , so (AB)m,n = 0 if either r ≥ n + i + 1 or
r ≤ n + i , one of which must hold. It follows that

(AB)m,n = 0 if m − n ≤ i + j + 1, (67)

so AB fits the definition of a sub-(i+ j+1) matrix if −N+1 ≤
i + j + 1 ≤ N − 2, or, equivalently, if −N ≤ i + j ≤ N−3.
If i + j ≥ N−2, then (67) implies that (AB)m,n = 0 for
m−n ≤ N −1, but given that 1≤ m, n ≤ N , this implies that
AB = 0.

�
Proof of Lemma 1: Given that hc[n] = 0 for n ≤ 0, bl [n] = 0

for n ≤ 0 and P ≥ 0, (16) and (13) imply that Hc_− j = 0
when j ≥ N − 1 and bl_− j = 0 when j ≥ N − 1. This and
the definition of Sl [n] = 0 when n < −N imply that (11) can
be written as

zk[n] = zk[n − 1] + K ek,n − K fk[n], (68)

where ek,n is given by (21) and

fk[n] =
L∑

l=1

N−2∑
j=−n−N

Sk,l, j [n]Hc_− j zl [n + j ], (69)

with

Sk,l, j [n] = Sk [n − Q] Sl [n + j] . (70)

In the case of N = 1, (69) is equivalent to
H1,k(zl[p]|p≤n−1,1≤l≤L) of (23) which also has the form of
(22), thus the result of Lemma 1 holds for N = 1 with vk,n =
0. The remainder of the analysis proves the case for N ≥ 2.

It is shown below by mathematical induction that

zk [n] = zk [n − 1]+ K ek,n

+
r∑

q=1

K q [K uq,k−Hq,k
(

zl [p]|p≤n−1,1≤l≤L
)]+ K r+1fr,k (71)

for all n ≥ 0 and each r = 1, 2, . . . , N , where uq,k has the
same form and properties as vk,n in the lemma statement,
Hq,k(zl [p]|p≤n−1,1≤l≤L) is as described in the lemma state-
ment, fr,k for 1 ≤ r ≤ N − 1 is either 0 or a finite sum of
terms each of which is equal to fl [n + m] scaled by a sub-
(m + r − 1) matrix and a variable SQ for some

0 ≤ m ≤ N − 1− r, (72)

and 1 ≤ l ≤ L and fN,k = 0, where SQ represents any product
of Sp[n− J ] sequences for p ∈ {1, 2, . . . , L} and J ∈ {−(N−
2),−(N − 3), . . . , Q} as well as Sk[n − Q].

Recursively substituting (68) into itself results in

zk[n+m+ j ]=zk[n−1]+K
m+ j∑
i=0

(
ek,n+i−fk[n+i ]) (73)

for m + j ≥ 0. Equation (69) with n replaced by n + m, for
any non-negative integer m can be written as

fk[n + m]

=
L∑

l=1

N−2∑
j=−m

Sk,l, j [n + m]Hc_− j zl [n + m + j ]

+
L∑

l=1

−m−1∑
j=−n−m−N

Sk,l, j [n + m]Hc_− j zl [n + m + j ]. (74)

Substituting (73) with k = l into the first double sum of (74)
gives

fk[n + m]

=
L∑

l=1

−m−1∑
j=−n−m−N

Sk,l, j [n + m]Hc_− j zl [n + m + j ]

+
L∑

l=1

N−2∑
j=−m

Sk,l, j [n + m]Hc_− j zl [n − 1]

+ K
L∑

l=1

N−2∑
j=−m

Sk,l, j [n+m]Hc_− j

m+ j∑
i=0

(
el,n+i−f l [n+i ]). (75)

Substituting (75) with m = 0 into (68) gives

zk [n] = zk [n − 1]+ K ek,n

+ K 2u1,k − K H1,k
(

zl [p]|p≤n−1,1≤l≤L

)+ K 2f1,k, (76)
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where H1,k(zl[p]|p≤n−1,1≤l≤L) is given by (23),

u1,k = −
L∑

l=1

N−2∑
j=0

Sk,l, j [n]Hc_− j

j∑
i=0

el,n+i , (77)

f1,k =
L∑

l=1

N−2∑
j=0

Sk,l, j [n]Hc_− j

j∑
i=0

fl [n + i ]. (78)

Given that hc[n] = 0 for n ≤ 0, (16) implies that Hc_− j
is a sub- j matrix when −N + 1 ≤ j ≤ N−2. By definition,
a sub- j matrix is also a sub-i matrix if i ≤ j , so each term in
the finite sum given by (78) is proportional to a sub-i matrix
times fl[n + i ], where 0 ≤ i ≤ N−2. Furthermore, (23) has
the form of (22) given that each of its terms is proportional
to Hc_ j zl [n − i ] with i ≥ 1, and each element in Hc_ j is
bounded by a curve that decays exponentially to zero as j →
∞, so the spectral norm of Hc_ j is bounded by a curve that
decays exponentially to zero as j →∞.

Substituting (21) into (77) and (70) into the result, and
applying Lemma A1 and bl[n] = 0 for n ≤ 0, reveals that
u1,k is a finite sum of N × 1 real vectors each of which is
independent of Sl [n + J ] for all l and all J ≥ N − 1. Fur-
thermore, as ||bl_ j || and ||Hc_ j ||2 both are bounded by curves
that decay exponentially to zero as j → ∞, so ||σ (u1,k)|| is
less than some constant for all n. Hence, u1,k has the same
form and properties as vk,n in the lemma statement.

Therefore, (76) is equivalent to (71) for the special case of
r = 1, which proves the induction base case.

To prove the induction step case, suppose (71) holds for one
of r = 1, 2, . . . , N − 1. Substituting (75) with k replaced by l
in place of each fl [n + m] in fr,k results in an expression for
fr,k of the form

fr,k = ar,k + K br,k + K cr,k, (79)

where ar,k is the first two double sums in (75) scaled by
a sub-(m + r − 1) matrix and SQ , br,k is the sum of all
terms proportional to Hc_− j el,n+i in the third double sum
in (75) scaled by a sub-(m + r − 1) matrix and sQ , and
cr,k is the sum of all terms proportional to Hc_− j fl [n +
i ] in the third double sum in (75) scaled by a sub-
(m + r − 1) matrix and SQ . Therefore, each term of ar,k ,
br,k , cr,k is proportional to a sub-(m + r − 1) matrix times
Hc_− j , where the range of j is given by (75). If N − 2−m <
j ≤ N−2, it follows that Hc_− j is a sub- j matrix and
(m+r−1)+ j ≥ N−1+r−1 ≥ N−1, thus Lemma A1 implies
that the product of any sub-( m + r − 1) matrix and Hc_− j is
0 for N − 2−m < j ≤ N−2. Therefore, each Hc_− j in the
nonzero terms of ar,k , br,k , cr,k has the upper index range of
j further limited to N − 3−m.

By definition, each nonzero term of ar,k is equal to a
factor that satisfies the definition of sr,k,u,l,i [n] in (22) times a
bounded sub-(m+r−1) matrix times Hc_− j zl [n−i ] with i ≥ 1
and (− j) ≥ −(N−2). Given that the spectral norm Hc_ j
is bounded by a sequence that decays exponentially to zero
as j → ∞, the product of bounded matrices times Hc_ j is
also bounded by a sequence that decays exponentially to zero
as j → ∞. Therefore, ar,k satisfies the lemma statement’s
requirements for Hr+1,k(zl[p]|p≤n−1,1≤l≤L). Essentially the
same argument presented above to prove that u1,k has the
same form and properties as vk,n also shows br,k has the
same form and properties as vk,n . Hence, br,k satisfies the
definition of ur+1,k . The above analysis and (75) imply that

each Hc_− j fl[n + i ] in the nonzero terms of cr,k is restricted
to the index range of

−m ≤ j ≤ N − 3− m, and 0 ≤ i ≤ m + j. (80)

Within the above index range, the product of SQ and the scal-
ing factor Sk,l, j [n + m] in the triple sum of (75) has the
form of SQ . Therefore, by definition, each nonzero term of
cr,k is equal to Hc_− j fl[n + i ] scaled by a sub-(m + r − 1)
matrix and SQ . Given that Hc_− j is a sub- j matrix, this with
Lemma A1 implies that each term in cr,k is equal to fl [n+ i ]
scaled by a sub-(m + r + j) matrix and SQ for

−N ≤ (m + r − 1)+ j ≤ N − 3, (81)

and cr,k = 0, otherwise. Specifically, cr,k = 0 if r = N − 1.
Hence, cr,k satisfies the definition of fr+1,k for r = N − 1.
For r ≤ N − 2, it follows from (80) and (81) that 0 ≤ i ≤
N − 1−(r + 1), which is the range given by (72) with m
replaced by i and r replaced by r + 1. Given that i ≤ m + j ,
the sub-(m+ r + j) matrix is, by definition, also a sub-(i + r)
matrix. Hence, each term in cr,k is equal to fl[n + i ] scaled
by a sub-(i + (r + 1)−1) matrix and SQ . Hence, cr,k satisfies
the definition of fr+1,k for r ≤ N−2.

The above analysis implies that (71) holds with r replaced
by r + 1. It follows from mathematical induction that (71)
holds for r = 1, 2, . . . , N . Equation (71) with r = N and fN,k
= 0 directly yields (20) with

vk,n =
N∑

q=1

K q−1uq,k, (82)

which has the form and properties of vk,n described in the
lemma statement because each uq,k term has that form. �

APPENDIX B

All Appendix B results relate to the L difference equations
given by (28) for n > q and q ≥ −N , and (29) for n ≤ q .
The results are restricted to cases where xk[q], or, equivalently,
xk,q is independent of Sl [q + J ] for all l and all J ≥ N − 1.

The lemmas make use of the following definitions:
xmax[n] = max

1≤k≤L
‖σ (xk[n])‖ , (83)

ck[n] = E
{

S2
k [n]

}
, (84)

Kk[n] = 2hK K ck[n − Q], (85)

Kmin[n] = min
1≤k≤L

(Kk[n]) . (86)

Lemma B1: The hypothesis of Theorem 1 implies that
there exists a positive δ less than or equal to both K ′ and
1/(4||Hc_Q||2), and positive constants b and B such that

‖σ (xk[n])‖ ≤ γ [n]xmax[q] (87)

for all k = 1, 2, . . . , L, 0 < K < δ and n > q , where

γ [n] = (1+ B K ) (1− bhK K )�(n−q ′)/M� , (88)

and q ′ = q + Q + N − 1.
Proof: Suppose β satisfies 0 < β < 1, and δ is no

larger than that described in Lemma B3. Recursively substi-
tuting (104) of Lemma B3 into itself for n ≥ q ′ yields

x2
max[n] ≤ x2

max[q ′ − 1]
n∏

j=q ′
(1− (1− β) Kmin[n]) (89)
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for all 0 < K < δ. Definitions (84), (85), and (86) imply

Kmin[n] = min
1≤k≤L

(
2hK K E

{
S2

k [n − Q]
})

, (90)

so the hypothesis of Theorem 1 ensures that there exists a
positive constant b such that (1−β)Kmin[n] > bhK K at least
once every M consecutive values of n. Hence, (89) implies

x2
max[n] ≤ x2

max[q ′ − 1] (1− bhK K )�(n−q ′)/M� . (91)

By definition, ||σ (xk[n])|| ≤ xmax[n], so substituting (104) of
Lemma B3 with n = q ′ − 1 into (91) gives (87). �

Lemma B2: If the hypothesis of Theorem 2 holds, and if
||σ (x1,q)||, ||σ (x2,q)||, …, ||σ (xL ,q)|| are either all non-zero or
all zero, then for each β in the range 0 < β < 1, there exists
a positive δ less than or equal to both K ′ and 1/(4||Hc_Q||2)
such that

‖σ (xk[n])‖2≤ (1+AK )

⎛
⎝ n∏

m=q ′
Rk[m]+βk,n−q ′

⎞
⎠ ‖σ (xk[q])‖2

(92)

for all 0 < K < δ and n > q , where Rk[n] = 1 −
2 K hK E{S2

k [n − Q]}, q ′ = q + Q + N − 1, βk,m = 0 for
m < 0, βk,m ≥ 0 for m ≥ 0,

∞∑
m=0

βk,m ≤ β A′/ (2 (1− β) K hK cmin) , (93)

and A and A′ are positive constants, where cmin is the
minimum value of E{S2

k [n]} over k = 1, 2, . . . , L and all n.
Proof: The hypothesis of Theorem 2 implies that E{S2

k [n]}
is non-zero for all n for all k. Therefore, (90) implies Kmin[n]
≥ 2hK Kcmin. Choose δ to be no larger than those described
in Lemmas B1 and B3 and small enough that 0 < Kk[n] < 1
for all n and all 0 < K < δ. Suppose K is within this range,
so 0 < Rk[n] < 1, 0 < R < 1 and 0 < U < 1, where
R = 1− 2 K hK cmin and U = 1− 2(1− β)K hK cmin.

Given that ||σ (x1,q)||, ||σ (x2,q)||, …, ||σ (xL ,q)|| are either
all non-zero or all zero, it follows that there exists a positive
constant C ≥ 1 such that C||σ (xk[q])||2 ≥ x2

max[q] for all k,
thus (105) of Lemma B3 with n = q ′ − 1 implies

‖σ (xk[n])‖2 ≤ (1+AK ) ‖σ (xk[q])‖2 for q≤n≤q ′−1, (94)

where A = BC ≥ B .
Given that Kk[n] = 1 − Rk[n], inequality (105) of

Lemma B3 for n ≥ q ′ implies

‖σ (xk[n])‖2≤ Rk[n] ‖σ (xk[n−1])‖2+β (1−Rk[n]) x2
max[n−1]

(95)

for all n ≥ q ′. Recursively substituting (95) into itself and
applying the triangle inequality and 0 < Rk[n] ≤ R < 1 gives

‖σ (xk[n])‖2≤
n∏

m=q ′
Rk[m]

∥∥σ (
xk[q ′−1])∥∥2+vk[n], (96)

for n ≥ q ′, where

vk[n] = β

n−1∑
i=q ′−1

Rn−1−i xmax[i ]. (97)

Substituting (94) with n = q ′ − 1 into (96) implies

‖σ (xk[n])‖2≤ (1+AK )

n∏
m=q ′

Rk[m] ‖σ (xk[q])‖2+vk[n] (98)

for all n ≥ q ′. Substituting (104) of Lemma B3 with n = q ′−1
into (89) with Kmin[n] ≥ 2hK Kcmin yields

x2
max[n] ≤ (1+ AK )Un−q ′+1x2

max[q] (99)

for n ≥ q ′ − 1, because A ≥ B . Given that C||σ (xk[q])||2 ≥
x2

max[q], substituting (99) into (97) yields

vk[n] ≤ β (1+ AK ) C ‖σ (xk[q])‖2 Rn−q ′
n−q ′∑
i=0

(
U

R

)i

(100)

for n ≥ q ′. The summation on the right side of (100) is upper
bounded by (1−(U /R)n−q ′+1)/(1−U /R), so (98) and (100)
imply

‖σ (xk[n])‖2≤ (1+AK )

⎛
⎝ n∏

m=q ′
Rk[m]+βk,n−q ′

⎞
⎠ ‖σ (xk[q])‖2

(101)

for n ≥ q ′, where

βk,m = βCU
(
Rm+1 − Um+1

)
R −U

, (102)

when m ≥ 0. It follows from (94) and 0 < Rk[m] < 1
that (101) also holds for q ≤ n ≤ q ′ − 1 with βk,m = 0
for m < 0, and it follows from xk[n] = 0 for n < q that (101)
also holds for n < q .

Inequality (101) is equivalent to (92), so it remains to show
that βk,m satisfies (93). The sum of am+1 for m = 0, 1, 2, . . .
is upper bounded by a/(1−a) < 1/(1−a) if 0 < a < 1, and,
by definition, 0 < R < U < 1, so βk,m ≥ 0 for m ≥ 0 and

∞∑
m=0

βk,m ≤ βCU

(1−U)(1− R)
, (103)

which implies (93) with A′ ≥ CU/(1−R). �
Lemma B3: The hypothesis of Theorem 1 implies that for

each β in the range 0 < β < 1, there exists a positive constant
B , and a positive constant δ less than K ′ and 1/(4||Hc_Q||2)
such that

x2
max[n]
≤

{
(1−(1− β) Kmin[n]) x2

max[n−1], if n ≥ q ′,
(1+ B K )x2

max[q], if q ≤ n ≤ q ′ − 1,

(104)

and

‖σ (xk[n])‖2

≤
⎧⎨
⎩

(1− Kk[n]) ‖σ (xk[n − 1])‖2

+ βKk[n]x2
max[n − 1], if n ≥ q ′,

‖σ (xk[q])‖2 + B K x2
max[q], if q ≤ n ≤ q ′ − 1,

(105)

for all k = 1, 2, . . . , L and all 0 < K < δ, where q ′ =
q + Q + N − 1.

Proof: Lemma 1 implies that Hr,k(xl[p]|p≤n−1,1≤l≤L) for
each n is a finite sum of terms, and each term has the form
sr,k,u,l,i [n]Dr,u,i xl [n − i ], where |sr,k,u,l,i [n]| ≤ 1 and Dr,u,i
is a bounded matrix. If xmax[q] = 0, then the probability of
xk[q] being non-zero for any k is zero, so (28) and (29) imply
that the probability of xk[q + 1] being non-zero for any k is
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zero and, hence, xmax[q + 1] = 0. Continuing this argument
inductively for all n = q , q + 1, q + 2, …, q ′ − 1 implies that
if xmax[q] = 0, then xmax[n] = 0. If xmax[q] �= 0, (28), (29),
and (83) imply that there exist constants δ and B ′ such that
for all 0 < K < δ, |xmax[n] − xmax[n − 1]| < K B ′xmax[q]
for n = q + 1, q + 2, …, q ′ − 1. Since |xmax[n] −xmax[q]| is
less than or equal to the sum of |xmax[p] − xmax[p − 1]| for
p = q+1, q+2, …, n, it follows that |xmax[n] − xmax[q]| <
K (Q + N−2)B ′xmax[q] for all n = q + 1, q + 2, …, q ′ − 1,
which also means that |xmax[n] −xmax[q]| < B ′′Kxmax[q] for
B ′′ = (Q+ N−2)B ′. It follows that for any xk[q], there exist
positive constants B and δ < 1/B such that

(1− B K ) x2
max[q] ≤ x2

max[n] ≤ (1+ B K ) x2
max[q] (106)

for all q ≤ n ≤ q ′ − 1 and 0 < K < δ. The right inequality
of (106) implies (104) for q ≤ n ≤ q ′ − 1.

Given that xmax[n] = 0 for q ≤ n ≤ q ′ − 1 if xmax[q]
= 0, as explained above, and ||σ (xk[n])|| ≤ xmax[n], it can
be verified by inspection that (105) holds for q ≤ n ≤ q ′ − 1
when xmax[q] = 0. The properties of Hr,k(xl[p]|p≤n−1, 1≤l≤L)
mentioned above imply that ||σ (Hr,k(xl[p]|p≤n−1, 1≤l≤L))|| is
finite for all q ≤ n ≤ q ′ − 1, all k, and all r . Therefore,
if xmax[q] �= 0, applying Lemma C1 to (28) implies that
||σ (xk[n])|| ≤ ||σ (xk[n − 1])||+ KCxmax[q] for all q < n ≤
q ′−1, where C is a positive constant. Recursively substituting
this inequality into itself a finite number of times results in
||σ (xk[n])|| ≤ ||σ (xk[q])|| + K C ′xmax[q] for all q ≤ n ≤
q ′−1, where C ′ is a positive constant. Squaring this inequality
yields ||σ (xk[n])||2 ≤ ||σ (xk[q])||2+ KC ′′x2

max[q] for all q ≤
n ≤ q ′−1, where C ′′ is a positive constant. If B in (106) is less
than C ′′, it can be enlarged to equal C ′′ (in which case (106)
will still hold for all q ≤ n ≤ q ′−1, all 0 < K < δ, and some
δ < 1/B). This proves that (105) holds for q ≤ n ≤ q ′ − 1
when xmax[q] �= 0.

Equation (29) implies that xmax[p] = 0 for all p < q .
This and (106) imply that (107) of Lemma B4 holds for all
p < q ′ for some constant B ′ when K is sufficiently small.
Hence, Lemma B4 implies that (104), (105), and (107) hold
for p = q ′. Mathematical induction with this as the base case
and Lemma B4 as step case implies that (104) and (105) hold
for all n ≥ q ′. �

Lemma B4: The hypothesis of Theorem 1 implies that
for any positive constant B ′ ≥ 4||Hc_Q ||2 and each β in the
range 0 < β < 1, there exists a positive δ less than 1/B ′ and
K ′ such that if

x2
max[p] ≥

(
1− B ′K

)
x2

max[p − 1] (107)

holds for some K in the range 0 < K < δ and all p < n,
where n ≥ q ′ and q ′ = q + Q + N − 1, then (107) also holds
for p = n and (104)-(105) hold for the chosen value of n.

Proof: Choose any n ≥ q ′. Writing xk[n− 1]−xk[n − Q]
as a telescopic sum gives

xk[n−1]−xk[n−Q]=
Q−1∑
i=1

xk[n−i ]−xk[n−i−1]. (108)

Given that n ≥ q ′ and q ′ = q + Q + N − 1, it follows that
n − i > q for all 1 ≤ i ≤ Q − 1. Substituting (28) with n
replaced by n − i into the right side of (108) yields

xk[n−1]=xk[n−Q]−
Q−1∑
i=1

N∑
r=1

K r Hr,k
(
xl [p]|p≤n−i−1,1≤l≤L

)
.

(109)

Respectively subtracting and adding Kck[n − Q]Hc_Q times
the left and right sides of (109) to and from the right side
of (28) yields

xk[n] =
(
I − K ck[n − Q]Hc_Q

)
xk[n − 1]
− Kαk[n] − K 2βk[n], (110)

where

αk[n]=H1,k
(

xl [p]|p≤n−1,1≤l≤L

)−ck[n−Q]Hc_Qxk[n−Q],
(111)

and

βk[n] =
N∑

r=2

K r−2Hr,k
(

xl [p]|p≤n−1,1≤l≤L
)

(112)

+ ck[n − Q]Hc_Q

Q−1∑
i=1

N∑
r=1

K r−1Hr,k
(

xl [p]|p≤n−i−1,1≤l≤L

)
.

The RMS vector definition, i.e., (4), and the L2 norm
definition imply that ||σ (v)||2 = E{vTv} for any real vector v.
Therefore, substituting (110) into E{xT

k [n]xk[n]} and applying
the triangle inequality gives

‖σ (xk[n])‖2≤a0+2
(

a1K+a2K 2+a4K 3
)
+a3K 2+a5K 4

(113)

and

‖σ (xk[n])‖2≥a0−2
(

a1K+a2 K 2+a4K 3
)
−a3K 2−a5K 4,

(114)

where

a0=
∥∥σ ((

I − K ck[n − Q]Hc_Q
)

xk[n − 1])∥∥2
, (115)

a1=
∣∣∣E {

αT
k [n]

(
I− K ck[n − Q]Hc_Q

)
xk[n − 1]

}∣∣∣ , (116)

a2=
∣∣∣E {

βT
k [n]

(
I − K ck[n − Q]Hc_Q

)
xk[n − 1]

}∣∣∣ , (117)

a3=E
{
αT

k [n]αk[n]
}

, (118)

a4=
∣∣∣E {

βT
k [n]αk[n]

}∣∣∣ , and a5=E
{
βT

k [n]βk[n]
}

. (119)

Applying Lemma C1 to (115) gives
√

a0 ≥ ‖σ (xk[n−1])‖−∥∥σ (
K ck[n−Q]Hc_Qxk[n−1])∥∥ .

(120)

Lemma C2 and the homogeneity property of matrix norms
imply that the second term on the right side of (120) can
be replaced by Kck[n − Q]||Hc_Q||2||σ (xk[n − 1])|| without
violating the inequality, so

a0 ≥
(
1− K ck[n − Q] ∥∥Hc_Q

∥∥
2

)2 ‖σ (xk[n − 1])‖2 . (121)

By the hypothesis of Theorem 1, there exists a positive
K ′ such that hK > 0 when K = K ′. The definition of hK ,
i.e., (25), implies that hK does not decrease as K decreases,
so hK > 0 for all 0 < K < K ′. The definition of hK further
implies that

αhK ≤ 1− ∥∥I − αHc_Q
∥∥

2 (122)
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for any α in the range 0 < α ≤ K , and it can be verified
by inspection that (122) also holds when α = 0. Applying
Lemma C2 to (115) gives

a0 ≤
∥∥I − K ck[n − Q]Hc_Q

∥∥2
2 ‖σ (xk[n − 1])‖2 , (123)

so (122) with α = K ck[n − Q] implies

a0 ≤ (1− K ck[n − Q]hK )2 ‖σ (xk[n − 1])‖2 (124)

for all 0 < K < δ and any δ that satisfies δ < K ′.
It follows from (111), (112), and the properties of

Hr,k(xl[p]|p≤n−1,1≤l≤L) stated in Lemma 1 that αk[n] and
βk[n] each have the form

M∑
u=1

L∑
l=1

∑
i≥1

ak,u,l,i [n]Fu,i,nxl[n − i ], (125)

where M is an integer, each Fu,i,n is an N × N deterministic
matrix with a spectral norm that is bounded by a sequence that
decays to zero exponentially as i →∞, and each ak,u,l,i [n] is
a product of one or more of Sr [n− J ], (S2

r [n− J ]−cr [n− J ])/2,
and cr [n − J ] for any J and r , and one factor of the product
is Sk [n− Q], (S2

k [n− Q]−ck[n− Q])/2, or ck[n− Q]. Hence,
(118), (119), and the triangle inequality imply that a3, a4,
and a5 are bounded by sums of terms wherein each term
has the form |E{vT

k,u,l,i [n]wk,u′,l′,i ′ [n]}|, where vk,u,l,i [n] and
wk,u′,l′,i ′ [n] each have the form of one of the terms in (125),
i.e., vk,u,l,i [n] = ak,u,l,i [n]Fu,i,nxl [n − i ] and wk,u′,l′,i ′ [n] =
a′k,u′,l′,i ′ [n]F′u′,i ′,nxl′ [n − i ′], where a′k,u′,l′,i ′ [n] and F′u′,i ′,n
have the respective properties of ak,u,l,i [n] and Fu,i,n
described above. It follows that ak,u,l,i [n]a′k,u′,l′,i ′ [n] has the
properties of ak[n] stated in the hypothesis of Lemma B5,
so |E{vT

k,u,l,i [n]wk,u′,l′,i ′ [n]}| has the properties of
|E{ak[n](Axl[n − i ])TBxl′ [n − j ]}| stated in the hypothesis
of Lemma B5. Thus, Lemma B5 implies that each
term in the sums that bound a3, a4, and a5 is less than
or equal to

ck[n − Q] (1+ B ′′K
) ∥∥Fu,i,n

∥∥
2

∥∥F′u′,i,′n
∥∥

2 x2
max[n − 1]

(1− B ′K )
i+i′−2

2

(126)

for 0 < K < δ, where δ, B ′ and B ′′ are positive con-
stants. Given that ||Fu,i,n ||2 and ||F′u′,i ′,n||2 are bounded by
sequences that decay exponentially to zero as i , i ′ → ∞ and
the rate of decay of the denominator of (126) decreases with
K , there must exist a positive δ that is less than 1/B ′ such that
if 0 < K < δ, the sums of these terms are finite and satisfy

ai ≤ Ai ck[n − Q]x2
max[n − 1] (127)

for i = 3, 4, and 5, where Ai is a positive constant.
Similarly, (117) implies that a2 is bounded by a sum whose

terms each have the form |E{(ak,u,l,i [n]Fu,i,nxl [n − i ])TBxk
[n− 1])|, where B = I−Kck[n− Q]u D[n]Hc_Q . Hence, (127)
holds for i = 2 when 0 < K < δ for some positive δ < 1/B ′
by the same argument presented above to prove that it holds
for i = 3, 4, and 5.

Equations (23), and (111) imply that αk[n] is a sum of
terms each of which has a factor of ak,u,l, j [n] = Sk [n −
Q]Sl [n − j ] when l �= k or j �= Q, or ak,u,l, j [n] =
(S2

k [n− Q]−ck[n− Q])/2 otherwise. Therefore, (116) implies
that a1 is bounded by a sum whose terms each have the
form |E{(ak,u,l, j [n]Fu,i,nxl[n − i ])TBxk[n − 1])|, where B =
I−Kck[n−Q]Hc_Q . Applying Lemma B5 and using the same
argument presented above for a2, a3, a4, and a5, but this time

with ρ = 0, leads to the conclusion that there exists a positive
δ that is less than 1/B ′ such that

a1 ≤ K A1ck[n − Q]x2
max[n − 1] (128)

if 0 < K < δ, where A1 is a positive constant.
Substituting (121), (124), (127) for i = 2, 3, 4, and 5,

and (128) into (113) and (114), combining all terms propor-
tional to K j for j ≥ 2, and applying (85), (83), and 0 < hK
< 1 gives

‖σ (xk[n])‖2 ≤ (1− Kk[n]) ‖σ (xk[n − 1])‖2

+ C K

hK
Kk[n]x2

max[n − 1] (129)

and

‖σ (xk[n])‖2≥(1−2K ck[n−Q] ∥∥Hc_Q
∥∥

2

) ‖σ (xk[n−1])‖2

− 2C K 2ck[n − Q]x2
max[n − 1] (130)

for 0 < K < δ and some positive δ, where C is a positive
constant. As (129) and (130) hold for all k and (83) implies
||σ (xk[n])|| ≤ xmax[n] for each k, ||σ (xl[n])|| = xmax[n] for
some l, and ||σ (xl′ [n − 1])|| = xmax[n − 1] for some l ′, (129)
with k replaced by l implies

x2
max[n] ≤

(
1−

(
1− C K

hK

)
Kl [n]

)
x2

max[n − 1], (131)

and (130) with k replaced by l ′ implies

x2
max[n]≥

(
1−2K cl′ [n − Q] (∥∥Hc_Q

∥∥
2+C K

))
x2

max[n−1].
(132)

If 0 < K < ||Hc_Q ||2/C , (132) implies (107) with B ′ ≥
4||Hc_Q ||2. Hence, there exists a positive δ such that (107)
with p = n holds for all 0 < K < δ. Replacing C
in (129) and (131) with a larger constant does not violate
either inequality, and given that hK does not decrease as K
decreases, CK/hK can be made arbitrarily small by reducing
K toward 0. Consequently, for any β in the range 0 < β < 1,
there exists a positive δ such that both (129) and (131) with
CK/hK replaced by β hold for all 0 < K < δ. Moreover,
the definitions of Kmin[n] imply that (131) holds with Kl [n]
replaced by Kmin[n]. Given that n ≥ q ′, thus, (104) is implied
by (131) and (105) is implied by (129) for the chosen value
of n. �

Lemma B5: Suppose n ≥ q ′, where q ′ = q + Q +
N − 1, and there exist positive constants B ′ ≥ 4||Hc_Q ||2
and δ < 1/B ′ such that xk[n] satisfies (107) for all 0 <
K < δ, all k, and all p < n, A and B are any N × N
deterministic matrixes, and ak[n] is a product of one or more
of Sr [n − J ], (S2

r [n − J ]−cr [n − J ])/2, and cr [n − J ] for
any J and r , where one factor of the product is Sk [n − Q],
(S2

k [n − Q]−ck[n − Q])/2, or ck[n − Q]. Then there exist a
positive constant δ′ < 1/B ′ and a positive constant B ′′ such
that for any K in the range 0 < K < δ′, any l, any l ′, and
any i , j ≥ 1,∣∣∣E{

ak[n](Axl [n − i ])TBxl′ [n − j ]
}∣∣∣

≤ ck[n − Q] (ρ + B ′′K
) ‖A‖2 ‖B‖2 x2

max[n − 1]
(1− B ′K )

i+ j−2
2

(133)

holds with ρ = 1. It also holds with ρ = 0 if ak[n] = (S2
k [n−

Q] − ck[n− Q])/2 or ak[n] = Sk[n− Q]Sl [n− j ] with l �= k
or j �= Q.

Proof: Lemma 1 implies that Hr,k(xl[p]|p≤n−1, 1≤l≤L)
is a sum of terms each of which has the form
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sr,k,u,l,i [n]Dr,u,i xl [n − i ], where sr,k,u,l,i [n]Dr,u,i is indepen-
dent of Sl [n + J ] for J ≥ N − 1 and all l. Therefore,
recursively applying (28) with (29) and the stipulation that
xk,q is independent of Sl [q + J ] for all J ≥ N − 1, all l
and all k shows that xk[n] is independent of Sl [n + J ] for all
J ≥ N − 1, all l and all k, or, equivalently, that xk[n − i ] for
any i is independent of Sl [m] for all m ≥ n − i + N − 1, all
l, and all k. In particular, this implies that if i ≥ Q + N − 1,
then xk[n − i ] is independent of Sl [n − Q] for all l and k.
By definition, ak[n] can be written as ak[n] = a′k[n]a′′k [n],
where a′k[n] is the product of all Sl [n − Q], 0.5(S2

l [n −
Q]−cl [n − Q]), and cl[n − Q] factors for any l in ak[n], and
a′′k [n] comprises the remaining factors in ak[n]. It follows that
a′k[n] is statistically independent of a′′k [n], and it is statistically
independent of xk[n − i ] for all i ≥ Q + N − 1, all l,
and all k.

Choose any n ≥ q ′ and any i , j ≥ Q + N − 1, any l, any
l ′ and any k. The above definitions and their independence
properties imply∣∣∣E {

ak[n] (Axl [n − i ])T Bxl′ [n − j ]
}∣∣∣

= ∣∣E {
a′k[n]

}∣∣ ∣∣∣E{
a′′k [n] (Axl [n−i ])T Bxl′ [n− j ]

}∣∣∣ . (134)

By definition, |a′′[n]| ≤ 1, so applying Lemma C3 to (134)
yields∣∣∣E{

ak[n](Axl [n − i ])TBxl′ [n − j ]
}∣∣∣

≤ ∣∣E {
a′k[n]

}∣∣ ‖σ (Axl [n − i ])‖ ‖σ (Bxl′ [n − j ])‖ . (135)

If ak[n] = Sk[n − Q]Sl [n − j ] with l �= k or j �= Q, then
E{a′k[n]} = 0 because Sk[n−Q] and Sl [n− j ] are independent
and E{Sk[n− Q]} = 0. If ak[n] = (S2

k [n− Q]−ck[n− Q])/2,
then E{a′k[n]} = 0, because ck[n − Q] = E{S2

k [n − Q]}. For
every other case, a′k[n] can be written as a′′′k [n]Sk[n − Q],
a′′′k [n](S2

k [n − Q]−ck[n − Q])/2, or a′′′k [n]ck[n − Q], where
|a′′′k [n]| ≤ 1, so 0 ≤ |E{a′k[n]}| ≤ ck[n − Q] because
ck[n − Q] = E{S2

k [n − Q]}. Therefore, |E{a′k[n]}| ≤
ρck[n − Q] where ρ is as defined in the lemma state-
ment. Substituting this into (135) and applying Lemma C2
yields∣∣∣E{

ak[n](Axl [n − i ])TBxl′ [n − j ]
}∣∣∣

≤ ρck[n−Q] ‖A‖2 ‖σ (xl [n−i ])‖ ‖B‖2 ‖σ (xl′ [n− j ])‖ .

(136)

For any m ≥ 2, recursively substituting (107), which
holds by the lemma’s hypothesis, into itself for p = n − 1,
n − 2, …, n − m + 1 yields

xmax[n − m] ≤ xmax[n − 1] (1− B ′K
)−(m−1)/2

. (137)

By inspection, (137) also holds for m = 1. By definition,
||σ (xk[r ])|| ≤ xmax[r ] for all k and r , so ||σ (xl[n − i ])||
and ||σ (xl′ [n − j ])|| in (136) can be replaced by xmax[n − i ]
and xmax[n − j ], respectively. Making these substitutions and
substituting (137) into the result gives (133) for the special
case of B ′′ = 0. This proves that the lemma is true for all i ,
j ≥ Q + N − 1, all l, and all k.

It is next shown by mathematical induction that the lemma
also is true for all 1≤ i , j < Q + N − 1. The induction base
case is that the lemma is true for i , j = Q+ N − 1, all l, and
all k, as proven above.

The induction step hypothesis is that the lemma is true for
i ≥ i ′ and j ≥ j ′ for some i ′ and j ′ in the range 2 ≤ i ′,
j ′ ≤ Q+ N − 1. Given that n ≥ q ′ and q ′ = q + Q + N − 1,
it follows that n−( j ′−1) > q . Therefore, (28) with n replaced
by n − ( j ′ − 1) holds, i.e.,

xl′
[
n − (

j ′ − 1
)]

= xl′
[
n − j ′

]− K
N∑

r=1

K r−1Hr,l′
(

xl [p]|p≤n− j ′,1≤l≤L

)
(138)

for l ′ = 1, 2, . . . , L. As Hr,k (zl[p]|p≤n−1, 1≤l≤L) has the form
of (22), the summation term in (138) has the form

a[n] =
N∑

r=1

Mr∑
u=1

L∑
l=1

n− j ′+1+N∑
i=1

K r−1sr,l′,u,l,i [n − j ′ + 1]

×Dr,u,i xl
[
n − j ′ + 1− i

]
. (139)

Therefore, (138) and the triangle inequality imply∣∣∣E{
ak[n]

(
Axl

[
n − i ′

])T Bxl′
[
n − (

j ′ − 1
)]}∣∣∣

≤
∣∣∣E{

ak[n]
(
Axl

[
n − i ′

])T Bxl′
[
n − j ′

]}∣∣∣
+

∣∣∣E {
K ak[n]

(
Axl

[
n − i ′

])T Ba[n]
}∣∣∣ . (140)

It follows from (139) and the triangle inequality that the right-
most expectation on the right side of (140) is upper bounded in
magnitude by a sum of terms each of which is given by K r for
r ≥ 1 times the left side of (133) with ak[n]sr,l′,u,l,i [n− j ′+1]
in place of ak[n], BDr,u,i in place of B, i ′ in place of i , and
j ′ − 1+i in place of j . By definition ak[n]sr,l′,u,l,i [n− j ′ + 1]
has the general form of ak[n] given in the lemma statement,
and j ′−1+i ≥ j ′, so the induction step hypothesis implies that
each term is upper bounded by a power of K times the right
side of (133) with the substitutions described above. Given that
||BDr,u,i ||2 ≤ ||B||2||Dr,u,i ||2 and ||Dr,u,i ||2 is upper bounded
by a sequence that decays to zero exponentially as i →∞, this
and (107) imply that provided K is a sufficiently small positive
value there must exist a positive constant, A, such that the
right-most expectation in (140) is upper bounded in magnitude
by A·K times the right side of (133) with i and j replaced by
i ′ and j ′ − 1, respectively. The induction step hypothesis also
implies that the first expectation on the right side of (140) is
upper bounded in magnitude by the right side of (133) with i
and j replaced by i ′ and j ′, respectively. Hence, (140) implies
that B ′′ can be enlarged by a finite amount such that (133)
holds with i and j replaced by i ′ and j ′ − 1, respectively.

Thus, the lemma is true for i = i ′ and j = j ′−1, and nearly
the same argument shows that it is also true for i = i ′ −1 and
j = j ′. This proves the induction step case, so mathematical
induction implies that the lemma is true for all 1 ≤ i , j <
Q + N − 1. �

APPENDIX C

Lemma C1: If v and w are any N-dimensional real
random vectors, then

‖σ (v)‖ − ‖σ (w)‖ ≤ ‖σ (v + w)‖ ≤ ‖σ (v)‖ + ‖σ (w)‖ ,

(141)

and if E{vT w} = 0, then

‖σ (v + w)‖2 = ‖σ (v)‖2 + ‖σ (w)‖2 . (142)
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Proof:It follows from the RMS vector definition, (4), and
the L2 norm definition that

‖σ (v+w)‖2=
N∑

j=1

E
{
v2

j

}
+E

{
w2

j

}
+2E

{
v jw j

}
, (143)

where v j and w j are the j th elements of v and w, respectively.
The Cauchy-Schwarz inequality implies that the |E{v jw j }|2 ≤
E{v2

j }E{w2
j }, so (143) implies

‖σ (v + w)‖2

≤
N∑

j=1

E
{
v2

j

}
+ E

{
w2

j

}
+ 2

√
E
{
v2

j

}
E
{
w2

j

}

=
N∑

j=1

(√
E
{
v2

j

}
+
√

E
{
w2

j

})2

= ‖σ (v)+ σ (w)‖2 .

(144)

Taking the square root of (144) and applying the triangle
inequality of norms gives the right-most inequality of (141).
Replacing w with −w and then v with v+w in this inequality
yields the left-most inequality of (141). Equation (142) follows
directly from (143) when E{vT w} = 0, because E{vT w} is
the sum of E{v jw j } over j = 1, 2, . . . , N .

�
Lemma C2: If v is any N × 1 real random vector and D

is any N × N deterministic real matrix, then

‖σ (Dv)‖ ≤ ‖D‖2 ‖σ (v)‖ . (145)

Proof: For any possible value that the random vector v
can take on, it follows from the properties of L2 norm that
||Dv|| ≤ ||D||2||v||, where ||v|| is L2 norm of v. Since D is
deterministic, it follows that

E
{
‖Dv‖2

}
≤ E

{
‖D‖2

2 ‖v‖2
}
= ‖D‖2

2 E
{
‖v‖2

}
. (146)

Taking square root on both sides of (146) yields (145). �
Lemma C3: For any real scalar a that satisfies |a| ≤ 1 and

any N × 1 real random vectors v and w,∣∣∣E{
avTw

}∣∣∣ ≤ ‖σ (v)‖ · ‖σ (w)‖ . (147)

Proof: The triangle and Cauchy–Schwarz inequalities
imply

∣∣∣E{avTw}
∣∣∣ ≤ N∑

j=1

∣∣E {
av jw j

}∣∣ ≤ N∑
j=1

√
E
{

a2v2
j

}√
E
{
w2

j

}
.

(148)

Given that |a| ≤ 1, this implies

∣∣∣E{avTw}
∣∣∣ ≤ N∑

j=1

√
E
{
v2

j

}√
E
{
w2

j

}
. (149)

The right side of (149) is the dot product of σ (v) and σ (w),
which the Cauchy–Schwarz inequality implies is less than or
equal to ||σ (v)|| · ||σ (w)||. �
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