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Abstract—In this paper, an ultra-dense mobile edge network is
studied, where base stations (BSs) are equipped with computation
resources to execute users’ offloaded tasks. Although an ultra-
dense BS deployment provides seamless coverage and reduced
computation latency of the offloaded tasks, the cost of network
power consumption is increased. We formulate an optimization
problem to jointly optimize active BSs set, uplink and downlink
beamforming vector selection, and computation resource allocation
in order to tackle the power consumption and latency trade-
off. To efficiently solve this problem, we propose a sequential
solution framework. Specifically, we first select the active BSs
based on communication and computation power-aware selection
rule. The computation resources and dual-link beamformers are
subsequently optimized for the satisfaction of task computation
deadline, network energy savings and improved coverage. Simula-
tion results show that the proposed joint optimization framework
significantly reduces the network power consumption.

Index Terms—Mobile edge computing; Base station sleep-mode;
Computation resource optimization

I. INTRODUCTION

Mobile traffic is anticipated to grow dramatically, due to the
continued proliferation of mobile devices. The fifth generation
(5G) wireless network is required to significantly increase net-
work capacity to accommodate the massively growing mobile
traffic [1]. One of the fundamental techniques for boosting
network capacity is network densification, where base stations
are deployed in an ultra-dense fashion. Also, incorporation of
cloud computing into radio access networks (RANs), facilitated
by Cloud-RAN, is geared towards meeting the requirement of
system capacity efficiently. Cloud-RAN is based on centraliza-
tion of base station baseband processing into a pool with data
traffic conveyed between the pool and densely deployed remote
radio heads (RRHs) over a fronthaul.

However, Cloud-RAN and network densification come with
some challenges, such as fronthaul constraints [2] and increase
in energy budget due to the constant operation of the network
devices [3]. To alleviate these constraints, mobile edge and fog-
computing based RANs are proposed to alleviate the Cloud-
RAN fronthaul challenge. These computing based RAN archi-
tectures move cloud services such as computing and storage
to the RRHs, closer to the user equipment (UEs). Depending
on the architecture and the functionalities, the computation
equipped RRHs have been termed enhanced RRHs (eRRHs) [4],
fog-computing Access Points (F-APs) [5], and edge-computing
Access Points (EC-APs) [6]. The term Access Points (APs) is
adopted in this paper to describe these base stations capable
of supporting radio and edge node computing services. That is,

the functionalities at the AP include the capabilities of the radio
frequency, the physical layer, and the upper layers procedures.

With edge and fog computing, the densely deployed APs
can provide radio resource to the UEs, and capability of
execution of computation tasks. However, such AP network
deployment exhibits significant traffic variations [3]. In a trace
study conducted in [3], the traffic profile significantly differs
between weekdays and weekends. Hourly fluctuation of traffic
is also observed in the same study. Consequently, some APs
are either idle or underutilized at low traffic. Higher fluctuating
traffic profile is expected in 5G wireless systems, where densely
deployed edge devices, such as APs, can be idle at every time
instant [7]. Therefore, it will be considerably energy-efficient
to put the optimal number of APs into operation to meet
the communication and computation demands of the UEs and
switch off other APs.

A. Contributions

The main contributions of this paper are summarized in the

following.

o We jointly optimize both uplink and downlink beamform-
ing vectors, the edge server CPU cycles and active AP
subset. To the best of our knowledge, this is the first work
that jointly considers the dual link beamforming vectors,
CPU cycles, and optimal AP selection.

o We select optimal APs based on holistic energy selection
rule. The power consumption rule encompasses computa-
tion processing power compared to the ubiquitous radio
resources only power consumption.

o We evaluate the performance of the proposed algorithm.
Simulation results show considerable power savings of our
proposed scheme as compared to the relevant benchmarks.

B. Related Work

Although energy efficient wireless communication networks
have been extensively studied [8]-[10], there exist only a few
works on energy efficient computation at the edge servers [11]—
[14]. The works like [13], [14] focus on optimizing resource
allocation for a reduction in AP power consumption. However,
optimal selection of AP is not considered in these works. While
[15] considers optimal AP mode that will yield efficient power
consumption, beamforming vectors are not included in the
optimization strategy. AP downlink energy transmit beamformer
is jointly optimized with CPU frequencies in [16], but the
sleep-mode strategy is not considered, thus making it inefficient
for the ultra-dense network if all APs are active at all times



regardless of traffic fluctuations.

In contrast to the above works, this paper jointly considers
reducing network system power dissipated by communication
and computation infrastructure and resources by selecting an
optimal number of active APs and minimizing the dual link
beamforming vectors, and optimally allocating computation
resource for offloaded tasks processing at the network edge.

II. SYSTEM MODEL

Without loss of generality, we consider a densely deployed
edge computing cellular network based on C-RAN architecture.
The network consists of I identical RRHs equipped with N
antennas each. Each RRH is endowed with a computation
server. Thus, the coupling of RRH-server is referred to as
AP as noted earlier. The APs set in the region is indexed
by Z = {1,2,..,I}. Let £L C Z denote the set of active
APs and Z denote the set of APs in sleep mode, such that
LU Z = T. Each UE is equipped with a single antenna. The
UEs set in the region is indexed by K = {1,2,..., K'}. Due to
limited computational capacity, each UE processes a fraction
of its computation task locally and offload the remaining to its
associated AP for processing.

A. Communication Model

We consider the uplink and downlink transmission in the
model. Let the vector consisting of the channels from all the APs
to the k-th UE be h!! = [thk, cee h?k] Channel reciprocity
is assumed in the uplink and downlink channels such that with
time-division duplex (TDD), the channel vector in the uplink is
merely the transpose of that in the downlink [17].

For the k-th UE uploading its computation task to the AP, we
denote the uplink transmission normalized symbol as sg e C,

such that E [|s;€\2} = 1. All UEs are assumed to transmit with
an identical power pU . Thus, the transmit signal from the UE
k is

Y =\/pUs!, VkeK. (1)

Therefore, the received uplink signal at all APs from the k-th

UE is
Yie = Y hu/pUsy + 0, )
ke

where Y € C is the receiver noise vector at all APs
consisting of circularly symmetric complex Gaussian random
variables each distributed as CN (0, 02).

Let m{ denote the receiver beamforming vector used to
decode s{ from the kth UE. The signal-to-interference-plus-
noise ratio (SINR) of the k-th UE uplink transmission after
applying mg is given by

T 2
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’Yk = T 2 U 5 ) (3)
ZkelC,j#kpU‘(mkU) hj’ + ||m{/||; o2

T

T T
where mY{ = [(mlUk) v (m%)7 | . Also, mf, € CV
represents the beamforming vector for the k-th UE received
at the i-th AP, where the array of RRH antennas acts as the

receiver for the K independent streams of data transmitted from

the UEs. The uplink achievable rate for k-th UE is expressed
as

RY = Wlog,(1 +~Y). (4)

Let w5} € C denotes the downlink transmission beamform-
ing vector from AP ¢ to UE k and the downlink transmitted
normalized symbol denoted by s”. The transmitted signal is
given as

xf =Y wisp, Viel (5)
keK
The aggregated beamforming vectors from all APs to the k-
T
th UE is therefore denoted as w = [(wﬁ)T ey (wﬂ)T}
Thus, we can write the received signal y2 € C by the k-th
UE as
K
v =hiwysy + Y hiwPs? (©)
i#k
where nP ~ CN (0,02) is the additive white Gaussian noise

at the k-th UE . The downlink signal-to-interference-plus-noise
ratio (SINR) for the UE k can be expressed as

hHwP|?
D — | ’“WH’“ |D S 7
Sherjzk PpWP | 4 02
The downlink achievable rate of the k-th UE is therefore
RP = Wlog,(1+TP). (8)

B. Computation Model

We consider a computational model where the UE executes
a fraction of its computation locally and offload the remaining
[18]. Each UE offloaded portion of its task to its associated
AP is described by tuple (Dy,U,Ty). D) denotes the size
of the input data (in bits) of the computation task from the
k-the UE to the i-th AP, which may include program codes
and input parameters. Uy represents the total number of AP
server CPU cycles required to complete the task, and 7} denotes
the task completion deadline (in seconds). Each task is atomic
and cannot be partitioned into subtasks; hence a task cannot be
offloaded to more than one AP.

We can compute the transmission time of k-th UE for
offloading the task size Dj to the i-th AP as

Dy,
7y, - Dk,

(€))

1) AP Server Computing Cost
The total energy consumption at the i-th AP due to CPU

computation execution, denoted by E;°"" is given as [7]

comp __ 2
Ei = E KJkai,k?
ke

(10)

where £ is a hardware architecture related constant. f; ;. is the
computation capacity in cycles per second of the AP server
allocated to k-th UE’s task. The computation at each server
is limited by >, fix < F/™**, which implies that the
maximum computation capacity in cycles per second of ¢ -th AP
server is denoted by F;"**. The overhead in terms of time for



executing the k-th UE’s task by the i-th AP server is expressed
as

(11)

2) Computation latency

Similar to [19] we ignore the latency for computation result
delivery from AP server to the UEs because, in many applica-
tions, the computation outcome is much smaller than the input
task size [20]. The total remote computation latency for the
offloaded k-th UE’s task at the i-th AP is therefore
Tt%t — T 0 + eace.

7

(12)

C. Power Consumption Model
1) Communication Power Consumption Model

Here, we consider the power consumption of a conventional
BS (excluding the computation server). To make a distinction
between the power consumed by the conventional BS compo-
nents and the added server, we term the power consumed by the
former as communication power, and the power consumption of
the latter as computation power.

We represent the operation power (excluding transmission
power) of the i-th AP and its wired fronthaul link while on the
active mode as P2°*¢. The power consumed by the i-th AP
and its fronthaul link on the sleep-mode is denoted by P:'““?.
Therefore, the total communication power consumption can be
expressed as

Peoomm = 7771 ZPtr + Zpiactive + ZPL‘SleEP"

i€L €L 1€EZ

13)

. _ sleep sleep
Since L zU Z = 1Z, then ), - P, = iz b -
>ier PP Also, substituting Y. . P = 3. PRetive —
Yier PSleep , and P/" = ||w||2, the communication power
can be rewritten as

- Z ||Wzk||2 + Z Pd + Z Pslee;y’

€L €L i€

(14)

comm =

where 1 is the RF power efficiency, which depends on the
number of transmitter antenna [21].

2) Computation Power Consumption Model

Using (10) and (11), we can compute the total computation
power at AP server ¢ as

Y S,

premr (15)
kex T3k keK
Thus, the network computation power is
Peomp (£) =D > wfl. (16)

€L kel

It can be seen that in AP sleep-mode P °"*" is 0, as only AP

i € L is involved in workload computation. Thus we propose
putting the server into the sleep-mode with the RRH for optimal
power savings.

3) Total Network Power

The total network power consumption can now be aggregated
as Ptot = Pcomm (E, W) + Pcomp (f), eXpliCitly as

Ptot:Z nflz||wik||§+ﬂd+2'€ zsk

icL kel kel

a7

Since the last term ), PSleep of (14) is a constant involving

all APs, it is trivial to optlmal active AP selection problem, and
it is therefore omitted in (17).

IIT. PROBLEM FORMULATION

In times of low traffic, an optimal number of active APs
can be sought. The remaining APs are put into the sleep-mode,
while their associated UEs are transferred to the active APs
for communication and remote computation support. This is
illustrated in Fig. 1.

()
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Fig. 1. Communication and computation UEs support with active AP set
selection. a) All APs are active. b) Some APs are put into the sleep-mode, and
their UEs transferred to the active APs for communication and computation
task processing.
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The optimization problem can be formulated as

: i P,
z Lmin - Prot
s.t. CL: ) |[wally < P, Vie L
k
C2: Z |wils =0, VieZ
C3: RU > Ry ins Yk EK (18)
CA:RP >Rp .., VkeK
C5: >  fin <F™*, Viel
ke
C6:> fir=0, VieZ
ke
CT: T < Tee
where f = [ff, ..., fT] fo = [firs- frx] and w =
[wh wh - WIk] . C1 gives the upper limit of the AP trans-

mit power. C2 enforces w;; = 0 for any k-th UE not associated
with any ¢-th AP . The uplink and downlink minimum data rates
are given in C3 and C4, respectively. C5 gives the upper limit
of CPU cycles to be allocated to the computation tasks by the
AP, and C6 ensures the computation power of an AP having
no offloaded tasks is 0. The total allowable deadline for each
offloaded task is given in C7.



The uplink and downlink data rates constraints of problem
& are non-convex. First, we rewrite the downlink data rate
constraint into second-order cone equivalent [22].

C3a: |rP||2< \/1 + 1/ i/ — 1) Re{upi}, Vk, (19)

where 7P = [ug1, ugg, ..., Uk, O] Unj = >iee hlilw;.

For the uplink transmission rate constraint, we transform the
uplink channel into a virtual downlink channel using uplink
and downlink duality. The duality implies that same minimum
transmit power is required to meet the downlink SINR target
as in the uplink target, where the uplink channel is actualized
by downlink’s input and output reversal [23]. After application
of uplink and downlink duality, uplink beamformrng vectors

mY can be rewritten as v = {(vlk) s oo (VIE) } , where

v, € CTN Thus, the second-order cone form is

Cda: |[r¥]2< \/1 +1/(2 By in /W DRe{dkr}, Yk, (20)
where 7V = [dy1, dya, ..., dyi, ok]
drj = icr hHv,;. The optimization problem becomes
Z1.1: min Py
@n

S.t. C1,C2,C3a,C4a,C5 — C1.
IV. PROBLEM ANALYSIS

Despite the transformation to yield second-order cone (SOC)
form in C3 and C4, the problem Z?1.1 is still not convex due
to the latency constraint, C7. Using (9), (11) and (12), C7 can

be rewritten as
Dk U

+ Tﬂ’)(lT (22)
fz k
Therefore C7 is reformulated as
D
CTa: R,g > 7kU (23)
Tmaz _ k
i,k fik

Yet, (23) is not tractable because it is embedded with two
decision (optimization) variables v in RY, and fi.x. Thus, we
start out by fixing f; . and optimizing other variables. One way
to fix f; . is to allocate it based on its U}, relative to all others
at the AP. Let each Uy of Dj data arrived at AP i be denoted
by Uik, the number CPU cycles allocated by AP ¢ for task k is

Uik

fik = me, VEeK,Yie L. (24
2kex Us
Similar to (20), C7a can be transformed to so SOC form
CTb: 1 < /1 + 1/(2%/W — D)Re{dii}, Yk, (29)

where 0, = Tm? b With fixed ﬁ &, the problem is restated
ik
as Fox
1.2 min Ptot
L,w,v (26)

s.t. C1,C2,C3a,C4a,C5,C6,CTb.

To solve problem Z?1.2, we consider a case of a given active
APs set L. Hence, the AP transmission power constraint C1 can
be rewritten as

Z HszwzchQ < Pma:r’ Vi € ﬁ, (27)

where L;, € CENXEN g a block diagonal matrix having i-th

main diagonal identity matrix Iy and zeros elsewhere. With a
given active AP set £, the problem can be restated as

ZL3(L)min Y 07 Y [Lawall3 + P+ D7 wf
Y er kek kex
s.t. Cla,C2,C3a,C4a,C5,C6,CT7b.
(28)
It is possible to solve problem Z?1.3(L) by the interior
method, and subsequently search over all AP sets that will
minimize network power consumption, but this approach will
be computationally expensive [24]. Instead, we will apply AP
selection algorithm similar to the greedy algorithm to select
optimal active AP set.

A. Active AP selection

The selection rule is akin to the minimum-increase rule in
the successive thinning algorithm in [25] for sparse filter design
applied for backward selection in [24]. In contrast to our holistic
power computation rule, the selection in [24] is limited to the
communication resource. Hence, it is inapplicable to delay-
sensitive networks. With the set of inactive APs initially set
to null, the problem 1.3 is iteratively solved and the AP
that yields maximum total power consumption reduction, when
switched off, in each iteration is removed from the active set
and added to the inactive set until the optimal active set is
achieved. At each iteration, while the problem is feasible, w,
v, and f are re-optimized for the remaining set of APs. We
assume the feasible region of £21.3 (LU]) is nonempty. As
shown in Algorithm 1, y[j] denotes the AP at iteration j,
obtained as yl/) = arg min2?1.3 (L) that yields minimum

i L]
power consumption WllfeLn its AP is switched off and thereafter
added to the inactive set ZV*. The removal in the procedure
is without replacement. The optimal active AP set is denoted
by L£*, and we depict the optimal w, and v of this procedure
as w*, and v*, respectively.

Algorithm 1: Active AP Set Selection Algorithm

1 Initialize j = 0, £I% = {1, .., I} and ZI% = 0.
2 With f = f, solve problem £1.3 (£U7), and obtain
213 (L)
3 if feasible then
4 Solve yl/l = arg min21.3 (EU]). Update
2] — 2010 b, and £+ — 20 Sy,
j <4 j—+1, and go to step 3.
end
else
| Go to Step 9
end
Output optimal AP active set £*l) if j = 0 or £*[j — 1] if
j > 1, and the optimal w*, and v*.

e L NN W»n

B. Joint Optimization Algorithm

To achieve efficient network power consumption, joint op-
timization of the AP active set, the uplink and downlink



beamforming vectors, and the AP allocated CPU cycles per
task is thereafter implemented. With optimal number of APs
realized from Algorithm 1, £*, w*, and v* are obtained using
P1.3(L). The CPU cycles are then unfixed, and the optimal
number of cycles is obtained by solving Z1.1 (L*, w*, v*).
The overall approach is given in Algorithm 2.

Algorithm 2: Overall Algorithm for the Joint Optimization
problem

1 Transform constraints C3, C4 and C7 using (19), (20) and
(25), respectively

2 Fix f = f using (24).

3 Solve #1.3 (L) using Algorithm 1 and obtain £*, w*,
and v*.

4 Unfix f. Solve problem Z1.1 (L*,w™*,v*) and obtain f*.

5 Output: £*, w*, v* and f*.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
joint optimization algorithms with numerical simulation. We
consider 5 - 25 APs randomly deployed with inter-site dis-
tance (ISD) of 200 meters, within which UEs are uniformly
distributed. Each AP is equipped with 4 transmit antennas, and
each UE is endowed with one antenna. A pathloss model of
140 + 36.710og10(d) is assumed for the link distance d between
APs and UEs. The utilized noise power o2 is -94dBm. A total
network bandwidth of 20 MHZ is used. Similar to [24], we set
Prer — AW, P = 5.6W, PP = 5.05W, and 1 = 0.36.
The required minimum uplink and downlink data rate is 5 Mbps
and 10 Mbps, respectively.

For the computation tasks offloaded to the APs, we use Dy, ~
Unif ([0, 2dq04]), Where dayg = 1kbits [11]. 330 cycles/byte,
typical for Gzip, is adopted for U, [13]. F/"*" is 10 Mega-
cycles/second, and T7;}** is 1 second.

Since radio and computation resources are jointly optimized,
we consider benchmarks incorporating scenarios involving var-
ious selection methods for APs and the number of CPU cycles,
including CPU cycles allocation using (24). The f; j, allocation
as in (24) is termed Disjoint Resource Allocation [26]. For
clarity of simulation results, the benchmarks and our proposed
joint optimization algorithms are defined below.

o All-AP active and Disjoint Resource Allocation (ADRA):
All APs are in operation. Also, each task’s f;  at the AP is
assigned using (24), i.e the allocated number of CPU cycles
is set proportional to the amount of the computational load
of each UE.

o Optimal-AP number and Disjoint Resource Allocation
(ODRA): Optimal number of APs are selected for UEs’
communication and computation support, while others are
put into the sleep-mode. Disjoint Resource Allocation is
applied to each task’s f; .

e Proposed Algorithm: Joint optimization of the active AP
number, the beamforming vectors, and the computation
resource allocation.

In Fig. 2, we show the performance of the joint optimization
algorithm relative to the other discussed benchmarks as the
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Fig. 2. Total power consumption versus number of UEs

traffic grows. The ODRA consumes much less power than the
ADRA evidently due to the fewer number of operating APs.
Considerable power is saved from the switched off RRHs. Due
to the efficient transmission power by the optimization of the
precoding vectors, the proposed joint optimization saves even
more power than the ODRA.

In order to evaluate the energy efficiency performance of
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Fig. 3. Total power consumption versus number of APs

our proposed scheme with network densification, we fix the
number of UEs at 25 and increase the number of APs. The result
is presented in Fig. 3. The ODRA and the joint optimization
algorithm yield significant energy savings even with increased
AP densification. The impact of optimizing the computational
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Fig. 4. Total computation power consumption versus number of UEs
resource is isolated for illustration in Fig. 4. Here, we compare
the AP CPU cycles allocation by Disjoint Resource Allocation
with the proposed joint optimization. As expected, the ADRA
dissipates more computation power than the ODRA despite both
schemes use the same CPU cycles allocation method. This is as
a result of having a smaller number of APs in the active mode
in the ODRA scheme. The computation power of the proposed
joint optimization shows more power is conserved in processing
offloaded tasks than in the ODRA even though the same number
of APs are engaged.

We extend the evaluation to the impact of increasing the
CPU cycles at the APs on the computation power and the
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Fig. 5. Impact of maximum AP CPU cycles on computation power consumption
and task processing latency

average latency of the computation tasks. This is performed
using the proposed joint optimization scheme, and shown in
Fig. 5. The number of offloaded tasks and APs are fixed,
each at 15. With increased available CPU cycles for tasks
processing, the computation completion latency drops. How-
ever, with more computation resources used, more power is
consumed. Interestingly, the computation power increase and
the corresponding decrease in task processing latency are within
the specified constraints limits due to joint optimization of the
communication and computation resources. For instance, each
task latency is within the 1 second deadline regardless of the
available AP maximum CPU cycles.

VI. CONCLUSION

In this paper, we have proposed a joint optimization strat-
egy for achieving energy efficient network in which UEs’
computation-intensive tasks are processed at the network edge
while satisfying the computation latency requirement. The op-
timization method entails the selection of active APs. The
downlink and uplink beamforming vectors, and CPU capacity
allocation are optimized for efficient transmission and low
computation latency, respectively. The simulation results show
significant power savings by active AP selection and the joint
optimization of CPU cycles and the dual link beamforming
vectors.
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