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Abstract—In this paper, an ultra-dense mobile edge network is
studied, where base stations (BSs) are equipped with computation
resources to execute users’ offloaded tasks. Although an ultra-
dense BS deployment provides seamless coverage and reduced
computation latency of the offloaded tasks, the cost of network
power consumption is increased. We formulate an optimization
problem to jointly optimize active BSs set, uplink and downlink
beamforming vector selection, and computation resource allocation
in order to tackle the power consumption and latency trade-
off. To efficiently solve this problem, we propose a sequential
solution framework. Specifically, we first select the active BSs
based on communication and computation power-aware selection
rule. The computation resources and dual-link beamformers are
subsequently optimized for the satisfaction of task computation
deadline, network energy savings and improved coverage. Simula-
tion results show that the proposed joint optimization framework
significantly reduces the network power consumption.

Index Terms—Mobile edge computing; Base station sleep-mode;
Computation resource optimization

I. INTRODUCTION

Mobile traffic is anticipated to grow dramatically, due to the

continued proliferation of mobile devices. The fifth generation

(5G) wireless network is required to significantly increase net-

work capacity to accommodate the massively growing mobile

traffic [1]. One of the fundamental techniques for boosting

network capacity is network densification, where base stations

are deployed in an ultra-dense fashion. Also, incorporation of

cloud computing into radio access networks (RANs), facilitated

by Cloud-RAN, is geared towards meeting the requirement of

system capacity efficiently. Cloud-RAN is based on centraliza-

tion of base station baseband processing into a pool with data

traffic conveyed between the pool and densely deployed remote

radio heads (RRHs) over a fronthaul.

However, Cloud-RAN and network densification come with

some challenges, such as fronthaul constraints [2] and increase

in energy budget due to the constant operation of the network

devices [3]. To alleviate these constraints, mobile edge and fog-

computing based RANs are proposed to alleviate the Cloud-

RAN fronthaul challenge. These computing based RAN archi-

tectures move cloud services such as computing and storage

to the RRHs, closer to the user equipment (UEs). Depending

on the architecture and the functionalities, the computation

equipped RRHs have been termed enhanced RRHs (eRRHs) [4],

fog-computing Access Points (F-APs) [5], and edge-computing

Access Points (EC-APs) [6]. The term Access Points (APs) is

adopted in this paper to describe these base stations capable

of supporting radio and edge node computing services. That is,

the functionalities at the AP include the capabilities of the radio

frequency, the physical layer, and the upper layers procedures.

With edge and fog computing, the densely deployed APs

can provide radio resource to the UEs, and capability of

execution of computation tasks. However, such AP network

deployment exhibits significant traffic variations [3]. In a trace

study conducted in [3], the traffic profile significantly differs

between weekdays and weekends. Hourly fluctuation of traffic

is also observed in the same study. Consequently, some APs

are either idle or underutilized at low traffic. Higher fluctuating

traffic profile is expected in 5G wireless systems, where densely

deployed edge devices, such as APs, can be idle at every time

instant [7]. Therefore, it will be considerably energy-efficient

to put the optimal number of APs into operation to meet

the communication and computation demands of the UEs and

switch off other APs.

A. Contributions

The main contributions of this paper are summarized in the

following.

• We jointly optimize both uplink and downlink beamform-

ing vectors, the edge server CPU cycles and active AP

subset. To the best of our knowledge, this is the first work

that jointly considers the dual link beamforming vectors,

CPU cycles, and optimal AP selection.

• We select optimal APs based on holistic energy selection

rule. The power consumption rule encompasses computa-

tion processing power compared to the ubiquitous radio

resources only power consumption.

• We evaluate the performance of the proposed algorithm.

Simulation results show considerable power savings of our

proposed scheme as compared to the relevant benchmarks.

B. Related Work

Although energy efficient wireless communication networks

have been extensively studied [8]–[10], there exist only a few

works on energy efficient computation at the edge servers [11]–

[14]. The works like [13], [14] focus on optimizing resource

allocation for a reduction in AP power consumption. However,

optimal selection of AP is not considered in these works. While

[15] considers optimal AP mode that will yield efficient power

consumption, beamforming vectors are not included in the

optimization strategy. AP downlink energy transmit beamformer

is jointly optimized with CPU frequencies in [16], but the

sleep-mode strategy is not considered, thus making it inefficient

for the ultra-dense network if all APs are active at all times



regardless of traffic fluctuations.

In contrast to the above works, this paper jointly considers

reducing network system power dissipated by communication

and computation infrastructure and resources by selecting an

optimal number of active APs and minimizing the dual link

beamforming vectors, and optimally allocating computation

resource for offloaded tasks processing at the network edge.

II. SYSTEM MODEL

Without loss of generality, we consider a densely deployed

edge computing cellular network based on C-RAN architecture.

The network consists of I identical RRHs equipped with N
antennas each. Each RRH is endowed with a computation

server. Thus, the coupling of RRH-server is referred to as

AP as noted earlier. The APs set in the region is indexed

by I = {1, 2, ..., I}. Let L ⊆ I denote the set of active

APs and Z denote the set of APs in sleep mode, such that

L ∪ Z = I. Each UE is equipped with a single antenna. The

UEs set in the region is indexed by K = {1, 2, ...,K}. Due to

limited computational capacity, each UE processes a fraction

of its computation task locally and offload the remaining to its

associated AP for processing.

A. Communication Model

We consider the uplink and downlink transmission in the

model. Let the vector consisting of the channels from all the APs

to the k-th UE be hH

k =
[
hH

1k, · · · ,h
H

Ik

]
. Channel reciprocity

is assumed in the uplink and downlink channels such that with

time-division duplex (TDD), the channel vector in the uplink is

merely the transpose of that in the downlink [17].

For the k-th UE uploading its computation task to the AP, we

denote the uplink transmission normalized symbol as sUk ∈ C,

such that E
[
|sk|

2
]
= 1. All UEs are assumed to transmit with

an identical power pU . Thus, the transmit signal from the UE

k is

xU
k =

√
pUsUk , ∀k ∈ K. (1)

Therefore, the received uplink signal at all APs from the k-th

UE is

yk =
∑
k∈K

hik

√
pUsUk + η

U
k , (2)

where η
U
k ∈ C

N is the receiver noise vector at all APs

consisting of circularly symmetric complex Gaussian random

variables each distributed as CN
(
0, σ2

)
.

Let mU
k denote the receiver beamforming vector used to

decode sUk from the kth UE. The signal-to-interference-plus-

noise ratio (SINR) of the k-th UE uplink transmission after

applying mU
k is given by

γU
k =

pU
∣∣∣(mU

k

)T
hk

∣∣∣2∑
k∈K,j �=k p

U
∣∣∣(mU

k

)T
hj

∣∣∣2 + ∥∥mU
k

∥∥2
2
σ2

, (3)

where mU
k =

[(
mU

1k

)T
, ...,

(
mU

Ik

)T ]T
. Also, mU

ik ∈ C
N

represents the beamforming vector for the k-th UE received

at the i-th AP, where the array of RRH antennas acts as the

receiver for the K independent streams of data transmitted from

the UEs. The uplink achievable rate for k-th UE is expressed

as

RU
k = W log2(1 + γU

k ). (4)

Let wD
ik ∈ C

N denotes the downlink transmission beamform-

ing vector from AP i to UE k and the downlink transmitted

normalized symbol denoted by sD. The transmitted signal is

given as

xD
i =

∑
k∈K

wD
iks

D
k , ∀i ∈ I. (5)

The aggregated beamforming vectors from all APs to the k-

th UE is therefore denoted as wD
k =

[(
wD

1k

)T
, ...,

(
wD

Ik

)T ]T
.

Thus, we can write the received signal yDk ∈ C
N by the k-th

UE as

yDk = hH

kw
D
k sDk +

K∑
j �=k

hH

kw
D
j sDj + ηDk , (6)

where ηDk ∼ CN
(
0, σ2

)
is the additive white Gaussian noise

at the k-th UE . The downlink signal-to-interference-plus-noise

ratio (SINR) for the UE k can be expressed as

ΥD
k =

∣∣hH

kw
D
k

∣∣2∑
k∈K,j �=k

∣∣hH

kw
D
j

∣∣2 + σ2
. (7)

The downlink achievable rate of the k-th UE is therefore

RD
k = W log2(1 + ΥD

k ). (8)

B. Computation Model

We consider a computational model where the UE executes

a fraction of its computation locally and offload the remaining

[18]. Each UE offloaded portion of its task to its associated

AP is described by tuple 〈Dk, Uk, Tk〉. Dk denotes the size

of the input data (in bits) of the computation task from the

k-the UE to the i-th AP, which may include program codes

and input parameters. Uk represents the total number of AP

server CPU cycles required to complete the task, and Tk denotes

the task completion deadline (in seconds). Each task is atomic

and cannot be partitioned into subtasks; hence a task cannot be

offloaded to more than one AP.

We can compute the transmission time of k-th UE for

offloading the task size Dk to the i-th AP as

TU
i,k =

Dk

RU
k

. (9)

1) AP Server Computing Cost

The total energy consumption at the i-th AP due to CPU

computation execution, denoted by Ecomp
i is given as [7]

Ecomp
i =

∑
k∈K

κUkf
2
i,k, (10)

where κ is a hardware architecture related constant. fi,k is the

computation capacity in cycles per second of the AP server

allocated to k-th UE’s task. The computation at each server

is limited by
∑

k∈K fi,k ≤ Fmax
i , which implies that the

maximum computation capacity in cycles per second of i -th AP

server is denoted by Fmax
i . The overhead in terms of time for



executing the k-th UE’s task by the i-th AP server is expressed

as

T exe
i,k =

Uk

fi,k
. (11)

2) Computation latency

Similar to [19] we ignore the latency for computation result

delivery from AP server to the UEs because, in many applica-

tions, the computation outcome is much smaller than the input

task size [20]. The total remote computation latency for the

offloaded k-th UE’s task at the i-th AP is therefore

T tot
i,k = TU

i,k + T exe
i,k . (12)

C. Power Consumption Model

1) Communication Power Consumption Model

Here, we consider the power consumption of a conventional

BS (excluding the computation server). To make a distinction

between the power consumed by the conventional BS compo-

nents and the added server, we term the power consumed by the

former as communication power, and the power consumption of

the latter as computation power.

We represent the operation power (excluding transmission

power) of the i-th AP and its wired fronthaul link while on the

active mode as P active
i . The power consumed by the i-th AP

and its fronthaul link on the sleep-mode is denoted by P sleep
i .

Therefore, the total communication power consumption can be

expressed as

Pcomm = η−1
∑
i∈L

Ptr +
∑
i∈L

P active
i +

∑
i∈Z

P sleep
i .. (13)

Since L ∪ Z = I, then
∑

i∈Z P sleep
i =

∑
i∈I P sleep

i −∑
i∈L P sleep

i . Also, substituting
∑

i∈L P d
i =

∑
i∈L P active

i −∑
i∈L P sleep

i , and P tr
i = ‖wik‖

2
2, the communication power

can be rewritten as

Pcomm = η−1
∑
i∈L

‖wik‖
2
2 +

∑
i∈L

P d
i +

∑
i∈I

P sleep
i , (14)

where η is the RF power efficiency, which depends on the

number of transmitter antenna [21].

2) Computation Power Consumption Model

Using (10) and (11), we can compute the total computation

power at AP server i as

P comp
i =

∑
k∈K

κUkf
2
i,k

T exe
i,k

=
∑
k∈K

κf3
i,k. (15)

Thus, the network computation power is

Pcomp (f) =
∑
i∈L

∑
k∈K

κf3
i,k. (16)

It can be seen that in AP sleep-mode P comp
i is 0, as only AP

i ∈ L is involved in workload computation. Thus we propose

putting the server into the sleep-mode with the RRH for optimal

power savings.

3) Total Network Power

The total network power consumption can now be aggregated

as Ptot = Pcomm (L,w) + Pcomp (f), explicitly as

Ptot =
∑
i∈L

[
η−1

∑
k∈K

‖wik‖
2
2 + P d

i +
∑
k∈K

κf3
ik

]
. (17)

Since the last term
∑

i∈I P sleep
i of (14) is a constant involving

all APs, it is trivial to optimal active AP selection problem, and

it is therefore omitted in (17).

III. PROBLEM FORMULATION

In times of low traffic, an optimal number of active APs

can be sought. The remaining APs are put into the sleep-mode,

while their associated UEs are transferred to the active APs

for communication and remote computation support. This is

illustrated in Fig. 1.

Active AP

  Inactive AP

a) b)

UE-AP association

Computation Offloading

Fig. 1. Communication and computation UEs support with active AP set
selection. a) All APs are active. b) Some APs are put into the sleep-mode, and
their UEs transferred to the active APs for communication and computation
task processing.

The optimization problem can be formulated as

P : min
L,w,m,f

Ptot

s.t. C1 :
∑
k

‖wik‖
2
2 ≤ Pmax

i , ∀i ∈ L

C2 :
∑
k

‖wik‖
2
2 = 0, ∀i ∈ Z

C3 : RU
k ≥ RU

k,min, ∀k ∈ K

C4 : RD
k ≥ RD

k,min, ∀k ∈ K

C5 :
∑
k∈K

fik ≤ Fmax
i , ∀i ∈ L

C6 :
∑
k∈K

fik = 0, ∀i ∈ Z

C7 : T tot
i,k ≤ Tmax

i,k

. (18)

where f =
[
fT1 , ..., fTK

]T
, fk = [f1,k, ..., fI,k] and w =[

wH

1k,w
H

2k, · · · ,w
H

Ik

]H
. C1 gives the upper limit of the AP trans-

mit power. C2 enforces wik = 0 for any k-th UE not associated

with any i-th AP . The uplink and downlink minimum data rates

are given in C3 and C4, respectively. C5 gives the upper limit

of CPU cycles to be allocated to the computation tasks by the

AP, and C6 ensures the computation power of an AP having

no offloaded tasks is 0. The total allowable deadline for each

offloaded task is given in C7.



The uplink and downlink data rates constraints of problem

P are non-convex. First, we rewrite the downlink data rate

constraint into second-order cone equivalent [22].

C3a: ‖rDk ‖2≤

√
1 + 1/(2R

D
k,min/W − 1)Re{ukk}, ∀k, (19)

where rDk = [uk1, uk2, ..., ukk, σk]
T
ukj =

∑
i∈L hH

kwj .

For the uplink transmission rate constraint, we transform the

uplink channel into a virtual downlink channel using uplink

and downlink duality. The duality implies that same minimum

transmit power is required to meet the downlink SINR target

as in the uplink target, where the uplink channel is actualized

by downlink’s input and output reversal [23]. After application

of uplink and downlink duality, uplink beamforming vectors

mU
k can be rewritten as v =

[
(v1k)

T
, ..., (vIk)

T
]T

, where

vik ∈ C
IN . Thus, the second-order cone form is

C4a: ‖rUk ‖2≤

√
1 + 1/(2R

U
k,min/W − 1)Re{dkk}, ∀k, (20)

where rUk = [dk1, dk2, ..., dkk, σk]
T

,

dkj =
∑

i∈L hH

kvj . The optimization problem becomes

P1.1 : min
L,w,v,f

Ptot

s.t. C1, C2, C3a, C4a, C5− C7.
(21)

IV. PROBLEM ANALYSIS

Despite the transformation to yield second-order cone (SOC)

form in C3 and C4, the problem P1.1 is still not convex due

to the latency constraint, C7. Using (9), (11) and (12), C7 can

be rewritten as
Dk

RU
k

+
Uk

fi,k
≤ Tmax

i,k . (22)

Therefore C7 is reformulated as

C7a: RU
k ≥

Dk

Tmax
i,k − Uk

fi,k

. (23)

Yet, (23) is not tractable because it is embedded with two

decision (optimization) variables v in RU
k , and fi,k. Thus, we

start out by fixing fi,k and optimizing other variables. One way

to fix fi,k is to allocate it based on its Uk relative to all others

at the AP. Let each Uk of Dk data arrived at AP i be denoted

by Uik, the number CPU cycles allocated by AP i for task k is

f̃i,k =
Uik∑

k∈K Uik
Fmax
i , ∀k ∈ K, ∀i ∈ L. (24)

Similar to (20), C7a can be transformed to so SOC form

C7b: ‖rUk ‖2≤
√
1 + 1/(2δk/W − 1)Re{dkk}, ∀k, (25)

where δk = Dk

Tmax
ik

−
Uk

f̃i,k

. With fixed f̃i,k, the problem is restated

as
P1.2 : min

L,w,v
Ptot

s.t. C1, C2, C3a, C4a, C5, C6, C7b.
(26)

To solve problem P1.2, we consider a case of a given active

APs set L. Hence, the AP transmission power constraint C1 can

be rewritten as

C1a :
∑
k

‖Likwik‖
2
2 ≤ Pmax

i , ∀i ∈ L, (27)

where Lik ∈ C
LN×LN is a block diagonal matrix having i-th

main diagonal identity matrix IN and zeros elsewhere. With a

given active AP set L, the problem can be restated as

P1.3 (L) :min
w,v

∑
i∈L

[
η−1

∑
k∈K

‖Likwik‖
2
2 + P d

i +
∑
k∈K

κf̃3
i,k

]
s.t. C1a, C2, C3a, C4a, C5, C6, C7b.

(28)

It is possible to solve problem P1.3 (L) by the interior

method, and subsequently search over all AP sets that will

minimize network power consumption, but this approach will

be computationally expensive [24]. Instead, we will apply AP

selection algorithm similar to the greedy algorithm to select

optimal active AP set.

A. Active AP selection

The selection rule is akin to the minimum-increase rule in

the successive thinning algorithm in [25] for sparse filter design

applied for backward selection in [24]. In contrast to our holistic

power computation rule, the selection in [24] is limited to the

communication resource. Hence, it is inapplicable to delay-

sensitive networks. With the set of inactive APs initially set

to null, the problem P1.3 is iteratively solved and the AP

that yields maximum total power consumption reduction, when

switched off, in each iteration is removed from the active set

and added to the inactive set until the optimal active set is

achieved. At each iteration, while the problem is feasible, w,

v, and f are re-optimized for the remaining set of APs. We

assume the feasible region of P1.3
(
L[j]

)
is nonempty. As

shown in Algorithm 1, y[j] denotes the AP at iteration j,

obtained as y[j] = arg min
i∈L[j]

P1.3
(
L[j]

)
that yields minimum

power consumption when its AP is switched off and thereafter

added to the inactive set Z [j+1]. The removal in the procedure

is without replacement. The optimal active AP set is denoted

by L∗, and we depict the optimal w, and v of this procedure

as w∗, and v∗, respectively.

Algorithm 1: Active AP Set Selection Algorithm

1 Initialize j = 0, L[0] = {1, ..., I} and Z [0] = ∅.

2 With f = f̃ , solve problem P1.3
(
L[j]

)
, and obtain

P∗1.3
(
L[j]

)
3 if feasible then

4 Solve y[j] = arg min
i∈L[j]

P1.3
(
L[j]

)
. Update

Z [j+1] = Z [j] ∪ y[j], and L[j+1] = L[j]/y[j],
j ← j + 1, and go to step 3.

5 end

6 else

7 Go to Step 9

8 end

9 Output optimal AP active set L∗[j] if j = 0 or L∗[j − 1] if

j ≥ 1, and the optimal w∗, and v∗.

B. Joint Optimization Algorithm

To achieve efficient network power consumption, joint op-

timization of the AP active set, the uplink and downlink



beamforming vectors, and the AP allocated CPU cycles per

task is thereafter implemented. With optimal number of APs

realized from Algorithm 1, L∗, w∗, and v∗ are obtained using

P1.3 (L). The CPU cycles are then unfixed, and the optimal

number of cycles is obtained by solving P1.1 (L∗,w∗,v∗).
The overall approach is given in Algorithm 2.

Algorithm 2: Overall Algorithm for the Joint Optimization

problem

1 Transform constraints C3, C4 and C7 using (19), (20) and

(25), respectively

2 Fix f = f̃ using (24).

3 Solve P1.3 (L) using Algorithm 1 and obtain L∗, w∗,

and v∗.

4 Unfix f . Solve problem P1.1 (L∗,w∗,v∗) and obtain f∗.

5 Output: L∗, w∗, v∗ and f∗.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

joint optimization algorithms with numerical simulation. We

consider 5 - 25 APs randomly deployed with inter-site dis-

tance (ISD) of 200 meters, within which UEs are uniformly

distributed. Each AP is equipped with 4 transmit antennas, and

each UE is endowed with one antenna. A pathloss model of

140 + 36.7log10(d) is assumed for the link distance d between

APs and UEs. The utilized noise power σ2 is -94dBm. A total

network bandwidth of 20 MHZ is used. Similar to [24], we set

Pmax
i = 4W , P d

i = 5.6W , P sleep
i = 5.05W , and η = 0.36.

The required minimum uplink and downlink data rate is 5 Mbps

and 10 Mbps, respectively.

For the computation tasks offloaded to the APs, we use Dk ∼
Unif ([0, 2davg]), where davg = 1kbits [11]. 330 cycles/byte,

typical for Gzip, is adopted for Uk [13]. Fmax
i is 10 Mega-

cycles/second, and Tmax
ik is 1 second.

Since radio and computation resources are jointly optimized,

we consider benchmarks incorporating scenarios involving var-

ious selection methods for APs and the number of CPU cycles,

including CPU cycles allocation using (24). The fi,k allocation

as in (24) is termed Disjoint Resource Allocation [26]. For

clarity of simulation results, the benchmarks and our proposed

joint optimization algorithms are defined below.

• All-AP active and Disjoint Resource Allocation (ADRA):

All APs are in operation. Also, each task’s fi,k at the AP is

assigned using (24), i.e the allocated number of CPU cycles

is set proportional to the amount of the computational load

of each UE.

• Optimal-AP number and Disjoint Resource Allocation

(ODRA): Optimal number of APs are selected for UEs’

communication and computation support, while others are

put into the sleep-mode. Disjoint Resource Allocation is

applied to each task’s fi,k.

• Proposed Algorithm: Joint optimization of the active AP

number, the beamforming vectors, and the computation

resource allocation.

In Fig. 2, we show the performance of the joint optimization

algorithm relative to the other discussed benchmarks as the
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Fig. 2. Total power consumption versus number of UEs

traffic grows. The ODRA consumes much less power than the

ADRA evidently due to the fewer number of operating APs.

Considerable power is saved from the switched off RRHs. Due

to the efficient transmission power by the optimization of the

precoding vectors, the proposed joint optimization saves even

more power than the ODRA.

In order to evaluate the energy efficiency performance of
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Fig. 3. Total power consumption versus number of APs

our proposed scheme with network densification, we fix the

number of UEs at 25 and increase the number of APs. The result

is presented in Fig. 3. The ODRA and the joint optimization

algorithm yield significant energy savings even with increased

AP densification. The impact of optimizing the computational
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Fig. 4. Total computation power consumption versus number of UEs

resource is isolated for illustration in Fig. 4. Here, we compare

the AP CPU cycles allocation by Disjoint Resource Allocation

with the proposed joint optimization. As expected, the ADRA

dissipates more computation power than the ODRA despite both

schemes use the same CPU cycles allocation method. This is as

a result of having a smaller number of APs in the active mode

in the ODRA scheme. The computation power of the proposed

joint optimization shows more power is conserved in processing

offloaded tasks than in the ODRA even though the same number

of APs are engaged.

We extend the evaluation to the impact of increasing the

CPU cycles at the APs on the computation power and the
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Fig. 5. Impact of maximum AP CPU cycles on computation power consumption
and task processing latency

average latency of the computation tasks. This is performed

using the proposed joint optimization scheme, and shown in

Fig. 5. The number of offloaded tasks and APs are fixed,

each at 15. With increased available CPU cycles for tasks

processing, the computation completion latency drops. How-

ever, with more computation resources used, more power is

consumed. Interestingly, the computation power increase and

the corresponding decrease in task processing latency are within

the specified constraints limits due to joint optimization of the

communication and computation resources. For instance, each

task latency is within the 1 second deadline regardless of the

available AP maximum CPU cycles.

VI. CONCLUSION

In this paper, we have proposed a joint optimization strat-

egy for achieving energy efficient network in which UEs’

computation-intensive tasks are processed at the network edge

while satisfying the computation latency requirement. The op-

timization method entails the selection of active APs. The

downlink and uplink beamforming vectors, and CPU capacity

allocation are optimized for efficient transmission and low

computation latency, respectively. The simulation results show

significant power savings by active AP selection and the joint

optimization of CPU cycles and the dual link beamforming

vectors.
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