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ABSTRACT

Network slicing and edge computing are key technologies to
enable compute-intensive applications for vertical industries
in 5G. We define cellular networks with edge computing capa-
bilities as cellular edge computing. In this paper, we study the
cross-domain resource orchestration solution for dynamic
network slicing in cellular edge computing. The fundamental
research challenge is from the difficulty in modeling the rela-
tionship between the slice performance and resources from
multiple technical domains across the network with many
base stations and distributed edge servers. To address this
challenge, we develop a distributed cross-domain resource
orchestration (DIRECT) protocol which optimizes the cross-
domain resource orchestration while providing the perfor-
mance and functional isolations among network slices. The
main component of DIRECT is a distributed cross-domain
resource orchestration algorithm which is designed by in-
tegrating the ADMM method and a new learning-assisted
optimization approach. The proposed resource orchestration
algorithm efficiently orchestrates multi-domain resources
without requiring the performance model of the network
slices. We develop and implement the DIRECT protocol in a
small-scale prototype of cellular edge computing which is
designed based on OpenAirInterface LTE and CUDA GPU
computing platforms. The performance of DIRECT is vali-
dated through both experiments and network simulations.

CCS CONCEPTS

« Computing methodologies — Distributed algorithms;
+ Networks — Network management; Mobile networks;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Mobihoc °19, July 2-5, 2019, Catania, Italy

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6764-6/19/07...$15.00
https://doi.org/10.1145/3323679.3326516

181

Tao Han
The University of North Carolina at Charlotte
Charlotte, NC, United States
Tao.Han@uncc.edu

KEYWORDS
Edge Computing, Radio Access Networks, Network Slicing

ACM Reference Format:

Qiang Liu and Tao Han. 2019. DIRECT: Distributed Cross-Domain
Resource Orchestration in Cellular Edge Computing. In The Twenti-
eth ACM International Symposium on Mobile Ad Hoc Networking and
Computing (Mobihoc °19), July 2-5, 2019, Catania, Italy. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3323679.3326516

1 INTRODUCTION

As the emergence of Internet of Things (IoT) and artificial
intelligence (AI), 5G needs to support a multitude of new
use cases and services that will place different requirements
on the network in terms of functionality, performance, and
cost [16, 23]. To serve the new demands, cellular networks
have to offer flexible data transmissions as well as computing
capabilities. We name cellular networks with edge computing
capabilities as cellular edge computing [12, 13]. The main
challenge of designing cellular edge computing is how to
efficiently meet the diverse requirements imposed by new
use cases and services [27].

Network slicing, which enables mobile network opera-
tors to create multiple logical networks on top of a common
physical network infrastructure, is a promising technology
for addressing this challenge [9]. The logical networks can
be customized to meet a wide variety of network require-
ments on performance and functionality. For example, a
logical network can be customized to support IoT services
that have a large number of devices with low data rates. At
the same time, another logical network can be tailored to
latency-critical services such as vehicle-to-vehicle communi-
cations and smart grid controls. The goal of network slicing
is to efficiently utilize the physical network and computing
resources to meet the diverse requirements of applications
while ensuring functional and performance isolations among
network slices. Here, the functional isolation ensures that
each network slice can fully control the slice operation; the
performance isolation makes sure that the performance of a
network slice is independent of other network slices which
share the same physical infrastructure.

As a critical technology of 5G, network slicing attracts
many research efforts from both academia and industry.
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Figure 1: Network slicing in cellular edge computing.

However, most of the existing works present conceptual net-
work slicing frameworks and lack the in-depth discussion
of resource orchestration algorithms and realizable system
designs [9, 13, 16, 23, 27]. Only a few technical papers dis-
cuss resource orchestration solutions [4, 14, 15] and system
designs [6, 7] for radio access network slicing and virtual-
ization. These papers provide insights and lay foundations
on network slicing in radio access networks. However, these
papers only focus on radio resource virtualization in radio
access networks and did not investigate how to orchestrate
resources from multiple technical domains such as commu-
nication and computing resources. In addition, none of these
papers discuss how to optimize the utilization of the physical
infrastructure under the scenarios of multiple base stations
and edge servers with the constraint of performance and
functional isolations. In this paper, we propose a distributed
cross-domain resource orchestration (DIRECT) protocol to
bridge this research gap.

Fig. 1 illustrates the network slicing in cellular edge com-
puting. The service providers or vertical industries make
the service requests to create network slices and manage
the network slices once they are created. The mobile net-
work operator manages the physical network infrastructure
and is responsible to create network slices to support di-
verse requirements from its customers. Since a network slice
in cellular edge computing consists of multiple radio cells
and edge servers, the resources allocated to a network slice
should be properly distributed among base stations and edge
servers to ensure the performance of a network slice and
support seamless mobility.

The fundamental research challenge of the cross-domain
source orchestration is from the difficulty in modeling the
relationship between the slice performance and the multi-
domain resource allocations. On the one hand, the perfor-
mance of a network slice depends on resources from multiple
technical domains and the characteristics of the applications
supported in the slice. For example, mobile augmented reality
(MAR) not only needs communication resources to upload
sensed information and download corresponding digital aug-
ments but also requires computing resources on the edge
server to execute compute-intensive machine learning al-
gorithms to process the sensed information. Since network
slices host applications with diverse requirements on differ-
ent resources, it is impossible to have a slice performance

182

Qiang Liu and Tao Han

model that correctly reflects the relationship between the
slice performance and the resource allocations for all slices.
On the other hand, with the functional isolation, each net-
work slice can fully customize the slice operations such as
the user scheduling and traffic load balancing. The slice cus-
tomized control strategies may change the resource demands
of a network slice on base stations and edge servers. Hence,
the functional isolation makes it impossible for the mobile
network operator to model the slice performance without
knowing the customized slice control strategies and user
profiles of the network slices.

To address this challenge, we design the DIRECT proto-
col based on the alternating direction method of multipliers
(ADMM) method and a new learning-assisted optimization
(LAO) approach. We introduce the edge node which is a
logic network unit consisting of a physical base station and a
certain amount of computing resources, e.g., an edge server.
Then, cellular edge computing can be recognized as a col-
lection of interconnected edge nodes. We apply ADMM to
decompose the cross-domain resource orchestration into two
subproblems. The first subproblem handles the resource or-
chestrations within an edge node while the second subprob-
lem coordinates the resource allocation among edge nodes.
Since the slice performance model is not available, we repre-
sent the performance of a slice using a black-box function.
Therefore, the first subproblem becomes a black-box opti-
mization problem. We solve this problem by designing a new
learning-assisted optimization algorithm that constructs a
probabilistic model for the black-box function and iteratively
learn the gradients of the function with the observed data
for the optimization. The second subproblem is a standard
quadratic programming problem, and we solve it based on
convex optimization. We implemented the DIRECT protocol
in a small-scale system prototype of cellular edge comput-
ing that is developed with the OpenAirInterface (OAI) LTE
platform [20] and CUDA GPU programming platform [10].

The contributions of this paper are summarized as follows:

e We develop the DIRECT protocol for network slicing in
cellular edge computing. DIRECT is a realizable cross-
domain resource orchestration protocol that optimizes
the performance of network slices while maintaining
the functional and performance isolations.

e We design a distributed algorithm based on ADMM
and LAO to optimize the network-wide cross-domain
resource orchestration in a distributed fashion. By in-
tegrating ADMM and LAO, this algorithm efficiently
addresses the challenge of the unknown performance
model of network slices in the resource orchestration.

e We implement and validate the DIRECT protocol in a
small-scale system prototype developed based on the
OpenAirInterface (OAI) LTE platform [20] and CUDA
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GPU programming platform [10]. We also evaluate the
performance of the protocol in network simulations.

2 SYSTEM MODEL

In cellular edge computing, the performance of a network
slice depends on resources from multiple technical domains.
In this paper, we mainly consider the radio resources and
computing resources from a radio access network and edge
servers, respectively. On modeling the system, we introduce
a logic network unit, edge node, which is composed of a
cellular base station and a certain amount of computing
resources. Then, cellular edge computing is composed of a
collection of edge nodes. To provide seamless mobility and
continuous services, network slices need resources from all
edge nodes.

Let 7, J and K be the set of network slices, edge nodes
and resources, respectively. Denote x; j x as the amount of
the kth resource allocated to the ith network slice on the jth
edge node, and let X = {x; ; x[Vi€ I,j € J,k € K} be the
set of the resource allocations. Denote x; ; = {x; j r|Vk € K}
as the set of resources allocated to the ith network slice
on the jth edge node. We define the utility function, i.e.,
performance, of the ith network slice on the jth edge node as
fi.j(xi,j)- Denote Rjt."’kt as the total amount of the kth resource
on the jth edge node. The service provider pays the mobile
network operator for running the network slice according
to service level agreement. Denote y; x and Q!°* as the unit
price of the kth resource on the jth edge node and the total
payment of the ith network slice, respectively.

The objective of the mobile network operator is to max-
imize the sum utility of network slices on all edge nodes.
Therefore, the cross-domain resource orchestration problem
is formulated as

max 2 2 fii(xij)
{xijk20} el jeg
s.t. ot o (1)
C;: Zjejzkeq(xi’j’k}/j,k SQI-D ,VlEI,
Cy: ZiEIxi’j’kSR;’D]:,VjEj,kE(](.

Here, constraints C; ensure that the cost of the resources
allocated to a network slice do not exceed the network slice’s
payment; constraints C, restrict that the amount of the kth
resource allocated to network slices on the jth edge node
should be less than the total amount of the kth resource on
the jth edge node for all j € J and k € K. For the sake
of simplicity, we let y; x = 1, Vj € J,k € K and simplify
constraints Cy as Y je g Dpex Xijk < Q1% Vie L.

3 DISTRIBUTED RESOURCE
ORCHESTRATION

In this section, we present the distributed resource orches-

tration algorithm that solves the problem in Eq.1. This prob-

lem is difficult to solve because all utility functions f; ;(x; ;),
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Vi € I,j € J are unknown, have various mathematical
properties, and are coupled by the constraints. To solve this
problem, we decompose it to two subproblems using the
ADMM method. The first subproblem is to optimize the re-
source orchestration within an edge node, where the utility
functions of the network slices are unknown. This falls into
the realm of black box optimization. However, the classic
black box optimization methods, e.g., genetic algorithms
and pattern search methods, have very high computation
complexity and are not appropriate for solving the resource
orchestration problem. Therefore, we design a new learning-
assisted resource orchestration algorithm to solve the sub-
problem. The second subproblem is to coordinate the re-
source orchestration among network slices and can be effi-
ciently solved by convex optimization methods.

3.1 Problem Decomposition

To decompose the problem, we introduce an auxiliary vari-
able z; j i and let Z = {z; ;«|Vi € I,Vj € J,Vk € K}.
Then, the problem in Eq.1 is equivalent to

max % % fij(xiz)
{Xijezijk} i€l jeJ
S.t.
Ci: 2jed 2kek Zijk < Qf"t,Vi er, ()
Gy Sierxijk SR Vi€ T ke,
Cs: xi,j’k=Zi,j’k,Vi€I,j€j,k€7<‘.

After the transformation, the problem has two set of vari-
ables, i.e., X and Z, which are coupled by constraints Cs.
Based on the ADMM method, we decompose the problem
in Eq. 2 into two subproblems with variables X and Z, re-
spectively. Here, constraints C; apply to the first subproblem
whose variables are X, while constraints C; apply to the
second subproblem whose variables are Z. Hence, we derive
the augmented Lagrangian of the problem as

Lu=) > fui (%))

iel jeJ

_ Z Z Z § ik = zijk + “iJ’kuz’

iel jeJ keK

(3)

where p > 0 is a positive constant, and u; j i is the scaled
dual variable. Here, the augmented Lagrangian incorporates
the coupling constraints Cs, and constraints C; and C, apply
when the corresponding subproblems are solved. Accord-
ing to the ADMM method, the above problem is solved by
alternatively solving the following subproblems
(n)

1
SP1: xg’";k): arg xir;lfé(cz £u(xi,j,k,zi’j’k,u§,"j)’k), (4)
1 1
SP2: zﬁ.’";k)z arg Zirjnkaécc1 Lu(xl(.’"jjrk) JZij ks ug';) o (9
and updating the dual variables
(n+1)_ _(n) (n+1) (n+1)
Uik = Ut O =) (6)



Mobihoc *19, July 2-5, 2019, Catania, Italy

3.2 Resource Orchestration on Edge Node

Since the constraints to SP1 (constraints C,) only restrict
the resource allocation within an edge node, SP1 can be
solved independently on each edge node. Therefore, to solve
SP1, each edge node addresses the following problem:

max Z fii(xij)
{xi,0}
_Z Z 2||xl]k zl]k+ul]k||2 (7)
iel keK
sit. Cot DierXijk < Rt"t Vk e K

where z; ; 1 is assumed known. Since f; j(x; j), which is the
utility of the ith network slice on the jth edge node, is an
unknown function, we develop a probabilistic model to rep-
resent it and iteratively learn its properties from observed
data. Based on the properties, we design a gradient-based
optimization algorithm to solve the problem [24].

Since the problem is solved within an edge node, for the
sake of simplicity, we omit the subscript j in the math ex-
pression when deriving the solution in this section. Hence,
x; = {x;j x|Vk € K} and fi(x;) equal to x; ; = {x; ; x|Vk €
K} and f; j(x; j), respectively. Given x;, mobile network op-
erator can observe y; = fi(x;) + € which contains Gaussian
noises € ~ N(0,6%). Let x;'* and y* as the set of resource
allocations and the corresponding observation in ¢ iterations.
With the observations D} = {x}",y; "'}, the posterior dis-
tribution of f;(x;) can be expressed as

P(fi(x)|D;") e PO} | fixi))P(fi(x:)). (®)

We adopt the Gaussian process (GP) to model the prior dis-
tribution of f;(x;) [21]. Hence, f;(x;) can be described as
filxi) ~ GP(u(x;), c(xi,x})) where p(x;) and c(x;,x;) =
exp(—%”x,- — x/||?) are the mean function and covariance
function, respectively.

Given a resource allocation x}, the posterior distribution
at the tth iteration can be derived as

P(fi(x)DID*,x7) ~ N(u(x)), o7 (%)), )
where
p(x;) = cT[C + 821 'yl (10)
o2(x}) can be derived as
ol(x}) = c(x},x}) — cT[C + 821! (11)
where ¢ = [¢(x},x}), c(x},x%),- -+, c(x},x})] and
c(x],x}) c(x},xt)
c=| : (12)
c(x!, x}) c(xt, xt)
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Based on the posterior distribution, we define the predic-
tive gradient of f;(x}) as

B+ e D) =
_ 1 ﬂ([xfl ‘,2 +7, ~,Xl-:K]) - yf
Vfilx) =~ L . 1)
p([xf I,sz, ...,fo +7]) -yl
where x 18 the amount of the kth resource allocated to the

ith network slice at the tth iteration, and 7 is small positive
constant.

With the predictive gradient, we solve the resource or-
chestration problem on the edge node using the proximal
gradient descent method [3]. According to this method, the
resource allocation to the ith slice is updated as follow

xf“ = xf +A- (Vﬁ(xf) - p(xf - zf + uf)),

where 1 = [A1,A5,..,Ak]T are appropriate step sizes, and
- is the dot product operator. To prevent the updated re-
source allocation xf“, Vi € I from violating resource con-
straints on the edge node, we project xf“, Vi € I into a
bounded domain that satisfies the constraint of each type re-
source, i.e., constraints C, in the problem. We define Pq (x) =
arg min |lx — y||* as the Euclidean projection of x on bounded

(14)

domam Q. Denote x;"! = {xt+1|Vl € I} as the amount of
the kth resource allocated to all network slices on the edge

node. Then, xi“ is projected as

t+1_P

( t+l) , (15)

where Q is the bounded domain of the kth resource. The
algorithm stops when the resource allocations satisfy ||x}*' -

xt|| < n,Vi € I.The pseudo code of the algorithm on the
edge node is shown in Alg. 1.

3.3 Resource Orchestration on Controller

The controller is responsible to solve SP2. Since X is as-
sumed known, SP2 can be equivalently transformed to

. p 2
min 2 g ik = Zigk + Uik
{zijx} iel jeJ keK 2 ” ”2 (16)
s.t. Cy: Zje[f Zke’KZi,j,k < QitOt,Vi el.

This is a standard quadratic programming problem, and we
solve it using convex optimization tools, e.g., CVX [3]. After

solving the problem, the controller updates the dual variables
(n+1)
i,j,k

side algorithm is shown in Alg. 2.

u according to Eq. 6. The pseudo code of the controller

3.4 Algorithm Analysis

Fig. 2 illustrates the distributed resource orchestration algo-
rithm. At the beginning, each edge node derives an initial
resource allocation to the network slices and sends the re-
source allocation and the dual variables to the controller.
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Algorithm 1: Resource Orchestration: Edge Node

Algorithm 2: Resource Orchestration: Controller

Input: Rjt.f’t, ujjkandz;j, Vie I, ke XK.
Output: x;,Vi€ I, u; j,Vi€ I,k € K.

1 Initialize x;, D;, Vi € 7, and set t « 1;

2 while True do

3 [ = query the utility of slices =/,

4 Given x;, query to observe fi(x;),Vi € I ;

5 /* = update the observation set * */;

6 DFt ={x;",yl"},VieT;

7 [ = update prediction for slices % x/;

8 p(x!) « Eq. 10,0%(x!) « Eq. 11,Vi € T;

9 [* * compute predictive gradients  x/;

10 Vfi(x!) « Eq.13,Vi € I;

11 /* = update allocation based on gradients = =/;
12 xf.“ — Eq. 14,Vie I;

13 [* = project allocation with constraints  =/;

14 x/’i” = Pq, (xi“) ,Vk € K;

15 if ||x{*! —x!|| < n,Vi€ I then
16 L break;

17 te—t+1;

18 returnx;, Vi€ I, u; ;i ,Vie I,k € K.

After receiving the initial resource allocations from all edge
nodes, the controller coordinates the resource orchestration
by updating the auxiliary variables, z; j x, and the dual vari-
ables. The updated variables are fed back to edge nodes for
the next round of resource allocation. The orchestration pro-
cess stops when the resource allocations converge. We prove
the convergence in Corollary 1.
Edge Node: Alg. 1) X, U,

—>| Controller:

Alg. 2

Edge Node: Alg. 1

i
Figure 2: The distributed resource orchestration.

PrOPOSITION 1. Vfi(x;),Vi € I are the controllably accu-
rate gradient approximations of V fi(x;), Vi € I if fi(x;), Vi €
I are Lipschitz continuous.

Proor. Denote fi(x;) and fi(x;) as the utility and pre-
dicted utility of the ith slice at x;, respectively. The predictive
gradients are defined as Vf;(x;) = (fi(x; + 1) — fi(x;))/7 =
(u(x; + 1) — fi(x;))/7,Vi € I (Eq. 13). Then,

IVfi(x:) — Vfi(x)| = %l(ﬂ(xi +71) - filxi + 7)) (17)
- %ch[c LS — fi(x + 1)),

where y; = fi(x;) + €. Since the utility functions f;(x;), Vi €
I are Lipschitz continuous [3], there exists a positive real

Input: Q% x; jx and u; ;. Vie I,j € T,k € K.
Output: x; j , Ui j k. zijk- Vi€ I,j€ I,k € K.

1 /%% determine algorithm convergence s s/;

2 if || Xjeq Dkex xijk — Q%I <n,Vi € I then

3 L returnx; i, Vie I,j€ I,k € K;

4 else

5 [* = update z in the controller s x/;

6 zijk < arg max  L,(x;j k. Zi j ko Ui, j k)
zi,j,k €Cy

7 /%% update u in the controller s x/;

8 Uijk < Uijk + (Xijk = Zijk)s

9 return z; j ;. andu; j, Vi€ I,j€ J,k € K.

constant x such that, for all real x} and x?,
|fi(xi) = fitxD)| < klxj —x}|,VieT. (18)
Hence, we obtain
IVfi(xi) = Vfi(xi)| < A, (19)
where A is a constant. According to Definition 10.1 in [2],
the Vfi(x;),Vi € I are the controllably accurate gradient
approximations of Vfi(x;),Vi € 1. ]
CoRrOLLARY 1. The distributed resource orchestration al-
gorithm converges to a local optimum if fi(x;),Vi € I are
non-decreasing and Lipschitz continuous.

Proor. The distributed resource orchestration algorithm
consists of the controller-side and edge-node-side algorithms
which iteratively exchanges information. The controller-side
algorithm, i.e., Alg. 2, simply updates the auxiliary and dual
variables, and there is no need to prove its convergence.
Hence, to show the convergence of the distributed resource
orchestration algorithm, we prove that the edge-node-side al-
gorithm, i.e., Alg. 1, converges, and the iterative information
exchanges lead to a converged resource allocation.

Convergence of Alg. 1: This algorithm is designed based

on gradient-based optimization. According to Theorem 10.6
in [2], the convergence of the algorithm can be proved by
showing 1) the predictive gradients V f;(x;), Vi € I are the
controllably accurate gradient approximations of V f;(x;), Vi €
TI; and 2) the step size is positive in the gradient-based
descent method. The first condition has been proved in
Proposition 1. Since the step size in the algorithm is pos-
itive, the algorithm satisfies both conditions required for the
convergence. Therefore, the convergence of Alg. 1 is proved.
Convergence of iterative information exchanges: The it-
erative information exchanges are designed based on the
ADMM method. Therefore, we prove the convergence of
the iterative information exchanges based on the conver-
gence proofs of the ADMM method [1, 26]. First, we prove
the intermediate variables, X, Z and U, and augmented
Lagrangian £, are bounded. Second, we prove that there
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Figure 3: The design of DIRECT protocol.

exists positive constants a, and «, such that £,*! — £} <
o |x!Tt — x| + a,|z'*! — z!|; Thus, £, is monotonically
non-decreasing and lower bounded. Third, we prove that
there exists positive constants ay, a, and d* € 9L such
that |d*] < ay|x'™! — x!| + a,|z'™! — z!|. Therefore, when
t — oo, |d*| — 0. Fourth, we prove that if (X*, Z*, U*) is
the limit point of generated sequence (X', Z1, U), we
obtain £,(X*, Z*,U*) = tli_)r{)lo L, (X, Z8,UY). Therefore,
the iterative information exchanges between edge nodes and
the controller converge. Due to the space limitation, we omit
the detail convergence proof.

Since both Alg. 1 and the iterative information exchanges
are convergent, the convergence of the distributed resource
orchestration algorithm is proved. O

4 PROTOCOL DESIGN AND
IMPLEMENTATION

In this section, we design the DIRECT protocol according to
the distributed resource orchestration algorithm and imple-
ment the protocol in a small-scale testbed developed based
on the LTE and GPU computing platforms [10, 20].

4.1 Protocol Design

Fig. 3 illustrates the design of the DIRECT protocol which
mainly consists of a DIRECT controller and multiple DIRECT
agents on edge nodes. To realize the protocol, we also develop
a cross-domain resource hypervisor to manage the resource
virtualization. The DIRECT controller runs the controller-
side algorithm, i.e., Alg. 2, to coordinate the cross-domain
resource orchestration among network slices and ensure that
each network slice is properly served according to its service
level agreement. It coordinates the resource orchestration by
controlling the auxiliary variables, Z, and the dual variables,
U, which are fed back to the DIRECT agent. On the edge
node, the DIRECT agent runs the node-side algorithm, i.e.,
Alg. 1, to allocate the multiple resources to network slices
for maximizing the sum utility under resource constraints
of the edge node. We develop a cross-domain resource hy-
pervisor on each edge node to enable the coexistence of
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Figure 5: The computing resource virtualization.
multiple network slices on the same physical infrastructure,
e.g., base station and edge server. Hence, the agent can main-
tain network slices operations, such as creation, suspension
and deletion. The DIRECT agent manages the hypervisor
for the resource virtualization as well as the slice creation,
suspension and deletion. On the edge node, the resources
allocated to network slices are mapped to physical infrastruc-
ture at runtime, and the utility of network slices are reported
to the DIRECT agent.

4.2 Protocol Implementation

To realize the DIRECT protocol, we develop a cross-domain
resource hypervisor to dynamically manage the physical
resource according to the resource allocation. Meanwhile,
the hypervisor ensures the performance and functional iso-
lations among network slices during the resource orchestra-
tion. In the protocol implementation, we consider the radio
and computing resources in the context of LTE and CUDA
GPU programming, respectively.

4.2.1 Radio Resource Hypervisor. In the implementation,
the network slices on an edge node share the same con-
trol plane operations following standard LTE protocols. To
differentiate users among network slices, we implement a
user-association function in the control plane to associate
users to their corresponding network slices. The radio re-
source hypervisor focuses on managing the uplink/downlink
resources (URs/DRs), i.e., physical resource blocks (PRBs) of
PUSCH/PDSCH, in the LTE user plane. We define the re-
source allocated to users by network slices as the virtual
resource. As shown in Fig. 4, the radio resource hypervisor
maps the virtual radio resources that allocated to users by
network slices to PRBs. During the resource mapping, we
maximize the network throughput by selecting the user with
the best channel condition for each PRB. After all virtual
resources are mapped, the surplus PRBs are allocated to the
users who have the best channel condition. Since the single
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carrier-FDMA (SC-FDMA) is the access method in LTE up-
link, the PRBs allocated to a single user must be contiguous
in frequency domain [17]. Hence, the hypervisor allocates
the surplus PRBs to the users whose current PRBs and the
surplus PRBs are contiguous.

4.2.2 Computing Resource Hypervisor. In the CUDA pro-
gramming model, an application can launch multiple kernels
that can be concurrently executed by massive CUDA threads.
To realize dynamic computing resource management, we
develop a token-based kernel scheduler to control the execu-
tion of kernels. As illustrated in Fig. 5, the kernel scheduler
dispatches the kernels commands according to the computing
tokens of network slices. In the user space, we add a Ker-
nelSpawn function to push the kernel commands into a FIFO
queue. A user’s kernel commands is pulled out of the queue
and enter the kernel space if the user has sufficient tokens.
Here, the DIRECT agent allocates virtual resources to a net-
work slice, and the network slice distributes the resources to
its users. The computing resource hypervisor covers a user’s
virtual computing resources into tokens. The KernelSpawn
function is running in a system thread with non-blocking
property to ensure the asynchronous executions of kernels.

5 PERFORMANCE EVALUATION

In this section, we validate the performance of the DIRECT
protocol through experiments in a small-scale system proto-
type and network simulations.

5.1 System Prototype

We develop a small-scale prototype as shown in Fig. 6 to
evaluate the performance of the DIRECT protocol. In the
prototype, we consider three resources from two technical
domains: for the radio access network, we consider uplink
and downlink radio resources; for edge computation, we con-
sider the GPU resources for hardware-accelerated computing.
The radio and computing resources are essential for killer ap-
plications in 5G such as mobile cross reality and autonomous
driving [9]. The prototype consists of two edge nodes, and
each edge node is composed of an eNodeB and a GPU. We
place two eNodeBs in different room to emulate a cellular net-
work with the limited co-channel interference. The radio ac-
cess network is implemented based on the OpenAirInterface
(OAI) LTE platform [20], and the core network is built with
openair-cn [19]. The computing platform is NVIDIA CUDA-
enable GPU [10]. We use a dell alienware desktop (Intel i7
8700 @3.2GHz, 64GB RAM) with two NVIDIA GEFORCE
GTX 1080Ti (3584 CUDA cores, 11G RAM) for deploying the
DIRECT controller, DIRECT agents and mobile core network.
We use two desktop computers with low-latency kernel (In-
tel i5 4590@3.3GHz, 16 RAM) to deploy the eNodeBs and
emulate mobile users with Huawei E3372h LTE dongles. Two
Ettus USRP B210 SDR boards are used as the RF front-end of
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Table 1: User Association

Slice 1 | Slice 2 | Slice 3
Edge Node 1 1 0 1
Edge Node 2 0 1 1
Edge Node 1 with DIRECT Agent o -

o [ ]
2 Core A UE1@Slice |
=}
‘g > Network ¢—e. < P z * -
© GPU | S i
=~ eNodeB 1 UE 2@Slice 3
= —_ —
21 U 2 NI A UE 3@Slice 2
= | eN(ineB 2 2 -

Edge Node 2 with DIRECT Agent UE 4@Slice 3

Figure 6: The testbed implementation of DIRECT protocol.
eNodeBs. The uplink and downlink carrier frequencies are
2.655GHz and 2.535GHz, respectively (LTE Band 7). Both the
uplink and downlink bandwidths are 5SMHz (25 PRBs).

In the experiment, we create three network slices to serve
four mobile users on the edge nodes!. The user-slice-edge
node association is listed in Table 1.

We adopt the negative slice-latency as the utility of a
slice, ie., fi j(x; ), Vi € I,j € J. Here, the slice-latency is
defined as the sum latency of all users in a slice across all edge
nodes. The edge-latency is defined as the summation of the
weighted slice-latency of all network slices in an edge node.
The system-latency is the summation of the slice-latency of
all slices. Hence, maximizing the utility of slices is equivalent
to minimizing the slice-latency of slices. In this paper, we do
not study the user scheduling algorithm within a network
slice and thus assume that a network slice evenly allocates
resources to its users.

5.2 Compute-intensive Applications

In the experiments, we implement two compute-intensive
mobile applications based on the YOLO object detection
algorithm to evaluate the performance of the DIRECT pro-
tocol [22]. These applications are mobile augmented reality
(MAR) and video analytics and streaming (VAS). The first
and second network slices support the MAR application, and
the third slice supports the VAS application.

Mobile Augmented Reality (MAR): A client continu-
ously sends video frames with the resolution of 1280x720 to
server and receives the detection results. The server receives
the frames, executes the YOLO 608x608 algorithm, and sends
the detection results back to client. MAR represents the type
of applications that have heavy uplink traffic loads and inten-
sive computing workloads. Here, YOLO 608x608 means the
YOLO algorithm tuned at the image resolution of 608x608.

Video Analytics and Streaming (VAS): A client sends
a streaming request to the server. The server retrieves the

ISince the numbers of network slices and users are small in the system
prototype, we evaluate the scalability of the DIRECT protocol in simulations.
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real-time camera frames with the resolution of 1280x720,
processes it with the YOLO 416x416 algorithm, and sends
the frames with detection results back to client. VAS rep-
resents the type of applications that have heavy downlink
traffic loads and moderate computing workloads. Here, YOLO
416x416 is less compute-intensive than YOLO 608x608.

5.3 Comparison Protocols

We compare DIRECT with following protocols:

e Static: With Static, a network slice evenly distributes
its payment, Q!°’, to acquire resources from all tech-
nical domains on all edge nodes.

o PSwarm: PSwarm is a global optimization solver [25]
for bounded and linear constrained derivative-free
problems. In this protocol, PSwarm replaces Alg. 1
in the distributed resource orchestration.

e TOMLAB: The TOMLAB with glcSolve is a optimiza-
tion solver [11] that handles the global mixed-integer
nonlinear programming problems. In this protocol,
TOMLAB replaces Alg. 1 in the distributed resource
orchestration.

PSwarm and TOMLAB have very high computation com-
plexity and communication overhead and are impractical in
a real system. Therefore, we compare the performance of
DIRECT with those protocols in network simulations.

5.4 Experimental Evaluation

Convergence: Figs. 7 (a) and (b) show the system-latency
and resource allocation gap versus the number of iterations.
In the experiment, the resource allocation gap is defined as
Yier | Xjeq Zkex Xij.k — Q;°|. When the resource alloca-
tion gap reaches zero, the resource orchestration algorithm
converges. The experiment result shows that DIRECT con-
verges after 5 iterations. DIRECT reduces about 21% system-
latency as compared to the Static protocol which has an
almost constant system-latency because of its static resource
allocation. The DIRECT protocol has a small fluctuation after
the convergence because of the dynamic wireless channel
conditions. Fig. 7 (c) shows the edge-latency of edge nodes
versus the number of iterations and reflects the convergence
of Alg. 1. It shows that Alg. 1 converges after 15 iterations
and significantly reduces the edge-latency.

Resource allocation: Fig. 8 (a) shows resource alloca-
tions of network slices on different edge nodes. We can ob-
serve that all resources of the first and second slices are
allocated to the first and second edge nodes, respectively.
This resource allocation matches the traffic workload in the
experiment where the first and second slices do not have
users in the second and first edge node, respectively. Fig. 8
(b) shows the resource utilization in different technical do-
mains of network slices. It can be seen that the third slice
utilizes more downlink radio resources than other types of
resources because the slice supports VAS applications which
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Figure 8: The cross-domain resource allocation.
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Figure 9: The query interval and isolation performance.

have heavier downlink traffic loads These results indicate
that DIRECT is able to allocate multi-domain resources ac-
cording to the traffic workload among edge nodes and the
characteristics of applications served by the slices.

Performance Isolation: Fig. 9 (a) shows the slice-latency
under different scenarios with the DIRECT protocol. In the
first scenario, we remove a user from slice 3. The slice-latency
of slice 3 is reduced since the DIRECT protocol adapts to the
traffic workload of slice among edge nodes and allocates all
its resources to the single user. In the second scenario, we
remove a user from slice 2. As a result, the utility of slice 2 is
zero since there are no associated users. From the experiment,
it can be observed that the slice-latency of a network slice
will not affect or be affected by the traffic variations of other
slices, which means that DIRECT ensures the performance
isolation among network slices.

Query Interval: In the DIRECT protocol, the resource
orchestration algorithm on edge nodes, i.e., Alg. 1, queries
the utility of network slices, i.e., f; (x;),Vi € Z, for the re-
source allocation. The frequency of the utility queries im-
pacts the system latency and the convergence speed of the
algorithm. More utility queries lead to a lower system latency
but a slower convergence speed. Fig. 9 (b) shows the system-
latency versus different query intervals. A large query inter-
val means a lower query frequency. It can be seen from the
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figure that a larger query interval leads to a longer system-
latency. This because a larger query interval may incur inac-
curate predictions of the predictive gradients.

5.5 Simulation Evaluation

Here, we aim to evaluate the scalability of the DIRECT proto-
col through network simulations. In the simulation, there are
4 edge nodes and 6 network slices with 3 types of resources.
The number of users in each network slice and edge node is
random with a range of one to five. The utility function of
the ith slice in jth edge node is defined as

Fiip) = D oAk (i)l (20)
where x; j i is the kth resource of the ith slice in the jth
edge node, Ay is the weight for the kth resource, and f is a
parameter controls the property of the utility function. The
utility functions are used by individual slices to calculate
their utilities given resource allocations in the simulation.
The resource orchestrator does not know the utility functions.
When f is positive, the utility of slices f; ; is positively cor-
related to the allocated resources x; j i, e.g., more resources
lead to a larger utility. For example, the network throughput
can be such a utility. The network aims to maximize the
throughput. When f is negative, the utility of slices f; ; is
negatively correlated to the allocated resources x; j f, e.g.,
more resources result in a smaller utility. For example, the
network latency can be such a utility. The network aims to
minimize the latency. In the simulations, the default value
of f is -1. The total amount of the kth resource on the jth
edge nodes is constrained by Rjtakt =100,Vj € I,k € K. The
weights, Ay, Vk € K, are generated according to a uniform
distribution between one and ten.

Convergence: Fig. 10 validates the convergence of DI-
RECT under different number of slices and edge nodes. In
the simulation, the system latency under a simulation set-
ting is normalized with respect to the optimal system latency
derived by DIRECT under the same simulation setting. The
DIRECT protocol converges in about ten iterations with
nearly zero gap, for all simulation settings. Meanwhile, the
convergence of the Alg. 1 and service latency in edge nodes
are also shown in Fig. 10 (c). The simulation results show that
the properties of black-box function can be learned in several
iterations, and the proposed algorithm gradually converges
and significantly reduces the edge-latency of edge nodes.

Scalability: Fig. 11 evaluates the performance of the DI-
RECT protocol under different number of slices and edge
nodes. The performance gap between the DIRECT and Static
protocol enlarges with the increment of number of slices and
edge nodes. This is because the Static protocol cannot adapt
to the resource requirements of slice service that results in a
high system-latency. The simulation results also show that
the DIRECT protocol outperforms both the PSwarm and
TOMLAB. Although the performance of the DIRECT is only

189

Mobihoc ’19, July 2-5, 2019, Catania, Italy

1.6
—0— 1=6,J=8 || = ——6— Edge node 1
—— [=6,]=2 [] 2 1.9 —#*— Edge node 2
=6, 1=4 || & Edge node 3
—— [=2,)=4 ||+ 1.4 —&— Edge node 4
&
1.3
S
B2
N
=
g
5
) Doadoadopated > 1.0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 25 30
Iteration Iteration Iteration
(a) (b) (©)

Figure 10: The convergence of the DIRECT protocol.

120 . 200 n
—e— DIRECT —e— DIRECT 3
— 100 |—=— Static @ —a— Static
z PSwarm * T 150] PSwarm
2 80 Hl—*— TOMLAB g —#*— TOMLAB
g 8
= 60 = 100f
5 40 2
Z & %
& 209 [
0 2 4 6 8 10 02 4 6 8 10

The number of slices
(a)

Figure 11: The scalability of the DIRECT protocol.
1

2.0
p—1

6
The number of edge nodes
(b)

n

=Y

Normalized system-utility
Normalized system-utility

0.5

DIRECT Static Pswarm TOMLAB
(b)

DIRECT Static Pswarm TOMLAB
(a)

Figure 12: The impact of utility function.

slightly better than that of the PSwarm, both PSwarm and
TOMLAB have a very high communication overhead and
complexity and cannot be implemented in a practical system.

Utility functions: Fig. 12 shows the performance of the
DIRECT protocol with different utility functions. When g =
—1, i.e., lower utility is preferred, the DIRECT protocol re-
duces the utility of system by 17% as compared to the Static
protocol. When f = 1, i.e., higher utility is preferred, the DI-
RECT protocol improves 70% utility of system as compared
to the Static protocol.

6 RELATED WORK

This work is related to the radio access network slicing and
multiple resource management.

Radio Access Network Slicing: Network slicing has at-
tracted extensive research attentions. Kokku et. al. [15] pro-
posed a network virtualization substrate (NVS) which intro-
duces a slice scheduler to control the frame scheduling in
the MAC layer in WiMAX networks. Foukas et. al. designed
FlexRAN [7] to decouple the control and user plane of LTE.
FlexRAN provides a customized API and programmable con-
trol plane for the radio access network management. They
also developed the Orion system [6] that is able to perform
network slicing at runtime and provide the functional and
performance isolation among network slices. However, these
works do not investigate the jointly orchestration of radio
and computing resources. Moreover, none of them discuss
the radio access network slicing over multiple base stations
and edge servers.



Mobihoc *19, July 2-5, 2019, Catania, Italy

Multi-Domain Resource Management: Multi-domain
resource management has been well investigated in cloud
computing where heterogeneous applications require diverse
computing, memory and storage resources. Ghodsi et. al. [8]
developed a dominant resource fairness (DRF) algorithm to
maintain the max-min fairness among tenants. Chowdhury
et. al. [5] proposed a high utilization with guarantees (HUG)
algorithm that is an extension of DRF for handling elastic
resource demands. Liu et. al. [18] designed a multi-domain
resource allocation algorithm which maximizes the utility of
system in mobile cloud computing using a Markov decision
process. However, almost all existing works need the system
performance model for the resource management. In the
context of resource orchestration in cellular edge computing,
the performance models of network slices are unknown.

7 CONCLUSION

We have presented the DIRECT protocol that realizes the
cross-domain resource orchestration for cellular edge com-
puting. As a key component of the protocol, a new distributed
resource orchestration algorithm is developed by integrat-
ing the ADMM method and LAO. The proposed algorithm
addresses the challenge of unknown performance model
of network slices and efficiently orchestrates multi-domain
resources among network slices across edge nodes. We imple-
mented and validated the DIRECT protocol in a small-scale
system prototype based on the OpenAirInterface LTE and
CUDA GPU computing platforms. We also evaluated the
DIRECT protocol in network simulations.
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