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1 Introduction

Inflation is a theory of accelerated expansion of the early universe [1-8], which accounts for
the origin of the present large-scale structure. It explains the approximate isotropy of the
cosmic microwave background radiation and allows us to study the quantum fluctuations
as sources of the cosmological perturbations that seed the formation of the structures of
the cosmos [9-15]. It also provides a rich environment where we can develop knowledge
that might allow us to establish a nontrivial connection between high-energy physics and
the physics of large scales.

Inflationary cosmology is often studied with the help of a matter field that drives
the expansion by rolling down a potential V' (¢) (for reviews, see [16-18]). Alternatively,
gravity itself can drive the expansion, as in the Starobinsky R+ R? model [2] and the f(R)



theories [19, 20]. The predictions end up depending strongly on the model, specifically the
choices of V(¢) and f(R). In single-field slow-roll inflation, potentials with a plateau lead
to a scalar power spectrum that is compatible with current observations [21-23].

In particular, the Starobinsky R + R? model works well at the phenomenological level.
However, once R? is introduced, it is hard to justify why the square Clvpe CHP? of the Weyl
tensor C),, s is not included as well, since it has the same dimension in units of mass. We
can spare the other quadratic combinations, such as R, R*” and R, ,-R*"*?, since they
are related to R? and ClvpoCHP? by algebraic identities and the Gauss-Bonnet theorem.
Thus, we are lead to consider the action
Mg,

S T

/d4x\/jg (R+ aR?+ BCupeCHr), (1.1)
which we briefly refer to as “R + R? + C? theory”. The trouble with (1.1) is that the
C? term is normally responsible for the presence of ghosts. Immediate ways out are to
expand the physical quantities in powers of 8 [24], which is equivalent to assume that the
ghosts are very heavy, and/or restrict to situations where the ghosts are short-lived. This
approach amounts to “living with ghosts” [25], but does not eliminate the problem.

If we want to work with the R + R? 4+ C? theory, we must explain how to treat C?
in order to remove the ghosts, at least perturbatively and at the level of the cosmological
perturbations. Here we use the procedure of eliminating them in favor of purely virtual
particles [26, 27]. This procedure originates in high-energy physics, where the requirements
of locality, renormalizability and unitarity result in consistency contraints on perturbative
quantum field theory.

The simplest way to think of the idea is as follows. A normal particle can be real or
virtual, depending on whether it is observed or not. As far as we know, a particle that
is always real does not exist. What about a particle that is always virtual and can never
become real? We can think of it as a purely virtual quantum [28] or a fake particle, i.e., a
particle that mediates interactions among other particles, but is invisible to our detectors.
And by that we mean invisible in principle, not just in practice.

Perturbative quantum gravity can be formulated as a unitary theory of scattering if the
action (1.1) is quantized in a new way [26], by eliminating the would-be ghost in favor of
a purely virtual particle, called fakeon [27]. In the expansion around flat space, the fakeon
is introduced by replacing the Feynman ie prescription (for a pole of the free propagator)
with an alternative prescription that allows us to project the corresponding degree of free-
dom away consistently with the optical theorem. This means that the loop corrections are
unable to resuscitate the degree of freedom back. Moreover, the prescription is compatible
with renormalizability [26, 27]. A fakeon mediates interactions, but does not belong to the
spectrum of asymptotic states. In this sense it is a “fake degree of freedom”. Note that it re-
moves a ghost at the fundamental level, without advocating its irrelevance for practical pur-
poses. Incidentally, the calculations of Feynman diagrams with the fakeon prescription in
quantum gravity [29, 30] are not harder than analogous calculations for the standard model.

Nevertheless, quantum field theory is formulated perturbatively, commonly around
flat space. To study inflation and cosmology it is necessary to work on nontrivial back-



grounds. This raises the issue of understanding purely virtual quanta in curved space.
A simplification comes from the fact that in cosmology we do not need to go as far as
computing loop corrections, as argued in ref. [31], although we have to study the quantum
fluctuations. In this paper, we show that we can work with the classical limit of the fakeon
prescription/projection, which amounts to taking the average of the retarded and advanced
potentials as Green function Gy for the fake particles [32],

1
Gr = 3 (GRret + Gadv) » (1.2)

combined with a certain wealth of knowledge on how to use this formula and interpret its
consequences. Note that the quantum fakeon prescription cannot be inferred from (1.2),
because (1.2) is not a good propagator in Feynman diagrams [28].

As said, the predictions of the popular models of inflation are model dependent. On
the other hand, in high-energy physics the constraints of locality, unitarity and renormal-
izability leave room for a limited class of interactions, scalar potentials, and so on, to the
extent that the theory of quantum gravity emerging from the idea of fake particle is essen-
tially unique (when matter is switched off) and contains just two independent parameters
more than Einstein gravity. They can be identified as the masses my and m, of a scalar
field ¢ (the inflaton) and a spin-2 fakeon x,,. The triplet graviton-scalar-fakeon exhausts
the set of degrees of freedom of the theory. From the cosmological point of view the phys-
ical modes are the usual curvature perturbation R and the tensor fluctuations. The extra
degrees of freedom are turned into fake ones and projected away. In particular, no vector
fluctuations, or additional scalar and tensor fluctuations survive.

We show that the consistency of the picture in curved space leads to a lower bound
my > mg/4 on the mass m, of the fakeon with respect to the mass mgy of the inflaton. To
the next-to-leading order, the amplitude Az and the spectral index ng — 1 of the scalar
fluctuations depend only on mg (and the number N of e-foldings). Instead, the amplitude
A7 and the spectral index n7 of the tensor fluctuations do depend on m,. The bound
my > mg/4 narrows the window of allowed values of ny and the tensor-to-scalar ratio
r = Ap/Ag to less than one order of magnitude and makes the predictions quite precise,
even before knowing the actual values of mg and m,.

Inflationary cosmology in higher-derivative gravity with ghosts have been studied in
refs. [33—-39]. Typically, the ghost sector is quantized by means of negative norms. Extra
spectra are predicted, which may or may not be suppressed on superhorizon scales. Inflation
has been considered in nonlocal theories of gravity as well [40], where the classical action
contains infinitely many free parameters. The cosmological perturbations in those scenarios
have been studied in [41, 42].

The gain achieved by means of fakeons is that no ghosts are present and the number
of independent parameters is kept to a minimum. Whenever there is an overlap, we find
agreement with the results derived in the other approaches. This occurs, for example, when
H/m, or mg/m, are sufficiently small to suppress the effects of the fakeons in our theory
and the effects of the ghosts in the theories of refs. [38, 39], where H is the value of the
Hubble parameter during inflation. Even when H or m, are not large, we can still relate



some results, due to the universality of the low-energy expansion. For example, we can do so
for any quantity that has a convergent, resummable expansion for small H/m, or mg/m..
In the limit m, /mg — 0o, the results we find agree with those of the theory R+ R? [19, 43)].

We make the calculations in two frameworks and show that the final results match.
In the first approach, which we call inflaton framework, the scalar field ¢ is introduced
explicitly to eliminate the R? term, while the C? term is unmodified. The scalar potential
coincides with the Starobinsky one. In the second approach, which we call geometric
framework, both R? and C? are present. The C? term does not affect the FLRW metric,
so in both approaches the background metric coincides with the one of the Starobinsky
theory. The differences arise in the action of the fluctuations over the background. The
map relating the two frameworks is a field-dependent conformal transformation, combined
with a time reparametrization. A third formulation, where the scalar ¢ and a spin-2 fakeon
X are introduced explicitly in order to eliminate both higher-derivative terms R? and C?
is also available [30], but will not be studied here.

The paper is organized as follows. In section 2, we briefly review the formulation
of quantum gravity with fakeons and present the two frameworks just mentioned. In
section 3, we study the tensor and scalar fluctuations in the inflaton framework. The
fakeon projection, which allows us to make sense of the term C2, is briefly introduced in
section 2 and discussed in detail in section 4. In section 5, we make the calculations in the
geometric framework. In section 6, we study the vector fluctuations and show that they
are projected away altogether at the quadratic level. Section 7 contains the summary of
our predictions and section 8 contains the conclusions. In appendix A, we derive the map
relating the inflaton framework to the geometric framework and show that the results agree.
In appendix B we show that the curvature perturbation R can be considered constant on
superhorizon scales for adiabatic fluctuations of the energy-momentum tensor.

2  Quantum gravity with fakeons

In this section we introduce the theory and the two frameworks we are going to work with.
We begin by recalling a few basic features of the fakeons. Being purely virtual quanta,
they are particles that mediate interactions, but do not belong to the physical spectrum
of asymptotic states. Expanding around flat space, they are introduced by means of a
new quantization prescription for the poles of the free propagators [26], alternative to the
Feynman ie prescription. The physical subspace V is obtained by projecting the fake
degrees of freedom away. The theory is unitary in V', where the optical theorem holds.
What makes the projection consistent to all orders [27] is that the fakeon prescription does
not allow the loop corrections to resuscitate back the states that have been projected away.

The prescription makes sense irrespective of the sign of the residue at the pole of the
propagator. Yet, it requires that the real part of the squared mass be positive. Indeed,
fakeons cannot cure tachyons, but only ghosts. The no-tachyon condition is the main
requirement we have to fulfill and its analogue on nontrivial backgrounds is going to play
an important role.



The projection must also be performed at the classical level. An action like (1.1) is
physically unacceptable as the classical limit of quantum gravity, because it has undesirable
solutions. Yet, (1.1) is the starting point to formulate quantum gravity as a quantum
field theory. It is local and provides the Feynman rules that allow us (together with the
Feynman prescription for physical particles and the fakeon prescription for fake particles),
to calculate the loop diagrams and the .S matrix. An action of this type is called “interim”
classical action [32].

The true classical action Sgjags is obtained from the interim classical action Sipter by
projecting the fake degrees of freedom away. At the classical level, the projection is achieved
by means of the classical limit of the fakeon prescription. Precisely, Scass is obtained by: (7)
solving the field equations of the fakeons (derived from Sipter) by means of the fakeon Green
function; and (i7) inserting the solutions back into Siyter- In the perturbative expansion
around flat space, the fakeon Green function is the arithmetic average of the retarded and
advanced potentials [32]. We will see that this piece of information is enough to derive the
fakeon Green function on nontrivial backgrounds.

The plan of the paper is to calculate the effects of inflationary cosmology on the
fluctuations of the cosmic microwave background radiation at the quadratic level. Since we
do not need to work out loop corrections, we can quantize the projected action Sgjass, rather
than projecting the quantum version of Siyter- This simplification saves us a lot of effort.

The good feature of S¢j.ss is that it no longer contains the fake degrees of freedom, by
construction, so in principle it can be quantized with the usual methods. The nontrivial
counterpart is that Sgjags is not fully local, due to the nonlocal remnants left by the fakeon
projection. Because of this, the quantization of S¢.gs i not as simple as usual, also taking
into account that we must perform it on a nontrivial background. However, in a variety of
lucky cases, which include those studied in this paper, it is possible to treat the nonlocal
sector of S¢ass in a relatively simple way and extract physical predictions with the procedure
described above, either because the nonlocal sector of Sg,ss does not affect the quantities
we are interested in, or because it affects them only at higher orders.

Summarizing, the simplest way to proceed, which we adopt in the paper, is as follows.
First, we work out the classical action S Of quantum gravity, by projecting the interim
action Sipter- Second, we quantize Scjags With the usual methods, paying special attention
to the nonlocal sector, anticipating that in the end it does not create too serious difficulties.

Now we give the interim classical actions Sipter 0of quantum gravity in the two ap-
proaches we study in the paper. The projection Sipter — Sclags and the quantization of S¢jass
will be performed in the next sections, after expanding around the de Sitter background.

The higher-derivative form of the interim classical action is

M3 1 oo B2
Sgeom(g7 q)) = —Wl;_l /d4.’IJ\/ —g R + WCNVPUCM pPo W + Sm(g-; q)), (21)
X ¢

where C),,0 denotes the Weyl tensor, Mp; = 1/ VG is the Planck mass, ® are the matter
fields and Sy, is the action of the matter sector. The no-tachyon condition (i.e., the require-
ment that the free propagator around flat space does not have tachyonic poles) determines
the signs in front of C,,,,C***? and R2.



The degrees of freedom of the gravitational sector are the graviton, a scalar field ¢ of
mass mg and a spin-2 fakeon X, of mass m,. The reason why x,, must be quantized as
a fakeon is that the residue of the free propagator has the wrong sign at the x,, pole, so
the Feynman prescription would turn it into a ghost, causing the violation of unitarity. On
the other hand, ¢ can be quantized either as a fakeon or a physical particle, because the
residue at the ¢ pole has the correct sign. In this paper, we assume that ¢ is a physical
particle (the inflaton).

For simplicity, we have omitted the cosmological term in (2.1). We will do the same
throughout the paper. Once it is included, the theory is manifestly renormalizable, like
Stelle’s theory [44], because the fakeon prescription does not modify the ultraviolet diver-
gences [26, 27].

With the help of an auxiliary field ¢, we can write Sqg in the equivalent form

MFQ’I 4 1 vpo
Sgeom - _1677'[' d T\ —g R+ Tmicuypgc'u P
M}%l 4
+96 2 /d HT\/TQ(QR—(p)go—i—Sm(g, CI))- (2.2)
7rm¢
Making the Weyl transformation
s 1
0] _ ¥
Guv — Guv€ ", p=——=In (1 - 2) , (2.3)
R 3m¢

where & = Mgll 167/3, we can diagonalize the quadratic part and obtain the new action

M2 1 :
Sinﬂ - ——H d4517\/ —g (R + WC’ﬂyngﬂW’”) + Sd)(gv (b) + Sm(geﬁ¢7 q))a (24)
X
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where
Sol.0) = 5 [ dlov=g (DD ~ 2V () (25)
and
V(g) = ;L}; (1 - e’%"ﬁ)2 (2.6)

is the Starobinsky potential. The action (2.4) is not manifestly renormalizable. In fact, it
is as renormalizable as (2.1) — once the cosmological term is reinstated —, because it is
related to (2.1) by a (perturbative and nonderivative) field redefinition.

The geometric framework is defined by the interim actions (2.1) or (2.2), while the
inflaton framework is defined by (2.4). In the rest of the paper, we switch the matter
sector Sy, off. If needed, its effects can be studied along the guidelines outlined in the next
sections. We do not review the details on the parametrizations of the fluctuations and
their transformations under diffeomorphisms, which are easy to find in the literature (see
for example [17-19]).



3 Inflaton framework (R+scalar+C?)

In this section, we study the tensor and scalar fluctuations in the inflaton framework. The
action is (2.4), with the potential (2.6). The Friedmann equations are

. .2 .2 .
e A LS P L S
CoL = e, S =T (Faavie),  6485=—V(6),  (31)
where V'(¢) = dV(¢)/d¢. We define the usual quantities
_H g &
ZEA ) P
where H = a/a is the Hubble parameter.

€= (3.2)

The de Sitter limit is the one where H is approximately constant. It is easy to show
that the constant value it tends to is mg/2. Indeed, H ~ 0 in the first equation (3.1) gives
¢ ~ 0. On the other hand, if we insert ¢ ~ 0 (and so ¢ ~ 0) in the third equation (3.1) we
obtain V’/(¢) ~ 0, which has two solutions: ¢ ~ 0 and ¢ — —oc. The first possibility gives
the trivial case, since ¢ ~ 0, qﬁ ~ 0 in the second equation (3.1) give H ~ 0. The second pos-
sibility is the right one, since ¢ — —00, ¢ ~ 0 in the second equation (3.1) give H ~ mgy/2.

The expansion around the de Sitter background is an expansion in powers of y/e. This
can be proved by studying the solution of the equations (3.1) around the de Sitter metric.
Leaving the details to appendix A, here we just mention the properties that we need to
proceed. It is possible to show that n = O( /) and

d"e

o= H"O(e"2). (3.3)

In other words, each time derivative raises the order by /¢, so the expansion in powers of
V€ is also an expansion of slow time dependence. Moreover, we have

_mg (V3 Te 3/2
H == (1 ot T OE) ),

13
n = —2\/§+ o€ + O(%/?), (3.4)
—aHT = 14¢+0O(?).

(see formulas (A.7), suppressing bars). The last line is the expansion of —aH7, where 7 is

oo gy
S /t et (3.5)

with the initial condition chosen to have 7 = —1/(aH) in the de Sitter limit ¢ — 0.

the conformal time, defined by

3.1 Tensor fluctuations

To study the tensor fluctuations, it is convenient to parametrize the metric as
g = diag(1, —a?, —a?, —a?) — 2a* (u%éi - uéiég + véiég + 05355) , (3.6)

where u = u(t, z) and v = v(t, z) are the graviton modes.



Let uk(t) denote the Fourier transform of w(t¢,z) with respect to the coordinate z,
where k is the space momentum. The quadratic Lagrangian obtained from (2.4) is

L k2 1 k2 I
(87CQ) % = i? — —su? — — [i’ﬂ -2 <H2 —21GP* + a2> w? + a4u2] , (3.7)

plus an identical contribution for v, where k£ = |k|. To simplify the notation, we understand
that u? stands for u_juy, > for _gty, etc. We extend this convention to mixed products
such as uwu, which can be interpreted either as u_j iy or u_juy.

It is possible to eliminate the higher derivatives by considering the extended Lagrangian

L, =L+ AL, (3.8)
where
AL I
(SWGmi)a—; = (S —ii — fu— hu)*. (3.9)

Here f(t), h(t) are functions to be determined, and S, which may stand for S_y(¢) or Sk(t),
denotes an auxiliary field. The equivalence of £ and Ly is due to the fact that £ = £; when
S is replaced by the solution of its own field equation. The higher derivatives disappear in
the sum Ly + ALy, because the term proportional to 4? cancels out.

Next, we perform the field redefinitions

u=U+aV, S=V+pU, (3.10)

where a(t) and S(t) are other functions to be determined. We use the freedom to choose f,
h, a and (3 to write £{ in a convenient form, such that it contains a unique, nonderivative
term mixing U and V. Specifically, we reduce the Lagrangian £{ to the form

=" 4" 4 V), (3.11)
where
Et(;U) T2 2772 2 2 EEUV)
(87G) e = U —wU*, (8nGmy M) = =20UV,
(V) ,
(87rGM4)it37 = V210V (3.12)

and 7, w?, Q2 and o are other functions of time, while M is constant and has the dimension
of a mass. Since 7 is going to be positive, V is the fakeon and U is the physical excitation,
up to the mixing due to EéUV).

The fakeon projection amounts to solving the V' field equations by means of the fakeon
prescription and inserting the solution back into £{. In all the cases considered here, this
is achieved by determining the solution Gg(t,t") of XG¢(t,t') = §(t — t') as the arithmetic
average of the retarded and advanced potentials, where 3} is an operator of the form

d? d

EEFQ(f)@'f‘Fl(t)E-FFO(t), (313)



F;(t) being functions of time. A certain detour allows us to get to the results we need
here without even knowing the explicit expression of G¢(t,t’), which is derived in section 4,
where the projection is discussed in detail.

If we take
1
QZW, /8:M2—|—mi+2Hg, f:3H,
k2
h:M2+mi+H§+H2(l+e)+ﬁ, (3.14)
where Hj is a constant, we obtain the decomposition (3.11) with

H2

=142 0 WM Ty, 2=h- M2 T
My My My

= (1+¢e)(1—-25)1 —3e)H* +£(1—6¢e) H? (3.15)
k2

m2(1+¢e)+&+ 45— H? — Hi(H§ +m?).

The constant Hy is in principle arbitrary, but a remarkable choice, Hy = m/2, makes

EEUV) vanish in the de Sitter limit. There, U and V' decouple and
£(U ) k2 ) A E(V)
—U~", (8rGM*)=t— e

-

(87G) =2 pEw .

. 2
2 2 2
= -V <7mx + a2> Ve (3.16)

It is relatively straightforward to derive the power spectrum of the fluctuations in this
limit. The V' equation of motion is

2 2
.. 3 . 9 m¢ k

As said, we need to solve it by means of the fakeon prescription and insert the solution
back into the action. Since (3.17) is homogeneous and U-independent, the solution is just
V =0.

Using V' = 0, formula (3.10) gives u = U, so we obtain a Mukhanov action

L0 _ (M2 )
t - Qmi tE

that coincides with the one of Einstein gravity with a scalar field, apart from the overall
factor. The u two-point function in the de Sitter limit is

2m?2

(ure (T (7)) = mwk(ﬂuw(ﬂm (3.18)

where

T m2
(u (T (7))E = (2m)30) (k + K') jk?’ d (1+ k*72).

Details on the derivation of (3.18) are given below. Formula (3.18) makes us already
appreciate that the result depends on the mass m, of the fakeon in a nontrivial way.



Quasi de Sitter expansion. Formulas (3.14) and (3.15) are exact, i.e., they do not
assume € small. From now on, we work to the first order in €, where we can use approximate
formulas. Observe that (3.14) and (3.15) depend on my, H, € and my (through Hy =
mg/2). However, the last three quantities are related by (3.4), so we can eliminate one
of them. The price of this is that we introduce terms proportional to /e, which are
unnecessary at this level. It is possible to avoid it by switching to a slightly different
parametrization. Specifically, if we choose

1 4eH?
= = M? 4+ m? =3H —
k2 H*(m2 —4H? H?
h=M*+miy+ 5 +e (722 ), y=1425, (3.19)
X7 X
and
wzzh—Mz—%—mify, szh_M2+%7
m
X X
2 2 o AR
we find the Lagrangian
L . 1 : 20
87G)Sh = U2 = WU + — (<72 + 02V?) uv. 3.21
(87 )a3’y w +M4 + +m§M2 (3.21)
The V equation of motion is now
M2
v =-221, (3.22)
my
where ) )
d d &k
S = %o+ ym3, o= g5 3+ 5 (3.23)

Anticipating that the solution for V' is of order e, we have dropped higher-order terms
proportional to eV, eV from (3.22). Let Z_l‘f denote the fakeon Green function Ge(¢,t'),
i.e., the solution of XG¢(t,t") = §(t — t’) defined by the fakeon prescription (see section 4).
Then the solution of (3.22) can be written as
V(t) 1 / e / / / -1
— = dt' Ge(t, t ) o (Y U({t') = —— Y| . oU. (3.24)
M?2 mi e ‘f
Inserting this expression into the Lagrangian (3.21), we can see that the nonlocal
contribution due to EEUV) is of order €2, so we can drop it. The projected Lagrangian is

£Pr . ;2 B 2:H?
BrG) =i =U>- U  k=k (1 - 522> : (3.25)
asy a myy
At this point, it is straightforward to work out the Mukhanov action. Defining
3
= aﬁ U’ Vt = - —|— 57 (326)
4G 2 v

,10,



and switching to the conformal time (3.5), the w action to order ¢ derived from (3.25) reads

1 _ 2 1
SEI‘J _ 2/d7’ |:w/2 _ k2w2 + % (l/t? _ 4>:| , (327)

where the prime denotes the derivative with respect to 7.

Power spectrum and spectral index. Formula (3.27) tells us that the conjugate mo-
mentum of w is p = w’, so after turning w, p into operators w0, p, we impose the equal time
quantization condition

[pic(7), e (7)] = —i6®) (k = ') , (3.28)

where we have reinstated the subscripts k. As usual, we write the Fourier decomposition
= i + v (T)a]! i, al,] = (2m)30) (k — K/ 3.29
wie(7) = vi(T)ax + 0Ty (T)aly, [, ay] = (2m)°6( ); (3.29)

T

where a, and ay are creation and annihilation operators.

The limit k/(aH) — oo of (3.27) allows us to define the Bunch-Davies vacuum state
|0). From formula (3.27), we see that the only difference with respect to the result obtained
in the de Sitter limit is a rescaling of k. Thus, we require
—ikT

e k
= for — — oo. 3.30
V2k aH (3.50)

Using the condition (3.30), we can work out the modes vk and obtain

Vk —

Uk = TH(1 - ¢)|r[*/% /f [em<2”t+1>/4ﬂgg)(|z‘w|)ak e @ ADAED (krat, |, (3.31)

having used the third formula of (3.4), where HS 2) are the Hankel functions. For the

purpose of computing the power spectrum, we need to work out the leading behavior in
the superhorizon limit |k7| — 0. There we have

7 (3—214)/2
kT HTI (v 8G T _1\/4- in (20 —1) /4 ~
MFZG_@<MJ> e[S emen D tay g el ] (32)

The redefinitions (3.10) tell us that to compute the u two-point function we also need

the fakeon Vi, which is given by formula (3.24). While the general discussion of the
fakeon Green function is left to section 4, here we can quickly get to the result we need as
follows. In the superhorizon limit |[k7| — 0 we can ignore the term proportional to k?/a?
in the expression (3.20) of 0. Once we do this, we can commute o and 2*1“ in (3.24),
because the commutator gives corrections of higher orders in . Moreover, recalling that
YoUx = O(e), because Uy solves the Mukhanov equation of the projected Lagrangian Efrj
of formula (3.25), E_l} ¢ just multiplies Uy by 1/ (fymi) Collecting these facts, we have, in

the superhorizon limit and discarding higher orders,

Vk 1 —1 g —1 o2 1 g 1
T e 1 s ey I e e
X X X 20T M g PRRALLY
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that is to say,
7 —W(mx — 4H*)Uy. (3.33)
The power spectrum P, of each graviton polarization is defined by
272
F’Pfu.

The two-point function can be evaluated in the superhorizon limit from (3.10), (3.31)

and (3.33). We find
GH> 2 2 k|| "%/
o G (120 2 o) (HE)
Y Yo 2

(ug (T (7)) = (27)%68) (k + K') (3.34)

where 1) is the digamma function.

The power spectrum of the tensor fluctuations, matched with the usual conventions,
is Pr = 16P,. Replacing || by 1/k., where k., is a reference scale, it is common to write

k
InPr(k) =InAr + nrln R (3.35)

where Ap and np are called amplitude and spectral index (or tilt), respectively. We find

_ 8Gm§<m§5 B 2\/35mi B em? (2m?3 + 37m§5) B

T 7r(m35 +2m2) m3 +2m3 6(m? + 2m?2)>

4em?

=3 -2y = 3.36
nr " m?b—i-Qmi (3:36)

nr(2 —vg —In 2)) ,

where v is the Euler-Mascheroni constant and we have used the first formula of (3.4) to
eliminate H.

3.2 Scalar fluctuations

Now we study the scalar fluctuations in the inflaton framework. We work in the comoving
gauge, where the ¢ fluctuation d¢ is set to zero and the metric reads

g = diag(1, —a?, —a?, —a?) + 2diag(®, a® ¥, a®V, a*¥) — 525£8¢B — 525201B. (3.37)

After Fourier transforming the space coordinates, (2.4) gives the quadratic Lagrangian

. . 2 .
(&G)% = —3(V + H®)? 4 4nGH*P? + % 2B(V + HD) + U (¥ — 2@)}
4

——— |(B+®+ )2 - 2BH(® + U) — 47TG¢'>ZB2} . (3.38)
3a ms

As before, U2 stands for U_ Uy, U2 for U_, ¥y, and so on.
Since ® appears algebraically, we eliminate it by means of its own field equation. We
remain with a Lagrangian that depends only on B and W. The field redefinitions

U a? 3U
U= B=—V+4+ ——— 3.39
Ve w2t VEH(3 —¢)’ (3:39)
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allow us to decompose Lg as
L=, 4+ V)4 V) (3.40)

where EéUV) is the sum of a term proportional to UV plus one proportional to UV. In
addition, EgUV) vanishes in the de Sitter limit.
We do not give the full expression of Lg here, but stress that after the redefinition (3.39)
it admits a series expansion in powers of k and /. In particular,
. L . 1 .
lim (87G)=% = 0% = —— (v2 - mfﬂxﬂ) ,

e—0,k—0 3mi

where « is defined in (3.19). As before, V' is the fakeon and U is the physical excitation.

Quasi de Sitter expansion. In the de Sitter limit € — 0, we find

EgU) 2 k? 2 uv
(87G) =5 = U= U% LV =0, (3.41)
2 Eg‘/) 72 4 2.2 7.2 7.4 74 4 7.2 2
(24rCmiv) =5 = —V? + [18H +3Hm2(3 — I + 2k*) + P md (1 + & )} el
where
l%4m2 A k

= ]_ X ,IC — .

v + 9H?2"’ mya

Note that v and the coefficient of V2 in (3.41) are positive definite.

Again, we see that the fakeon V decouples. Its own equation of motion sets it to
zero, so the Lagrangian of U coincides with the usual Mukhanov expression, normalization
included. This means that the power spectrum of the scalar fluctuations coincides with
the one of Einstein gravity in this limit.

To order n ~ /e, we find

ﬁ(U) . ]{72
(87G) = = U? — S U? + 2V3cH?U?, (3.42)
a3 a?
ﬁgUV) 2\/eV ) : I%Zmi 2 2972 P42 | 74,2
(87G) = = = | (22 = 3)U + 5 (9H —12k2H? + SEH? + k mX) Ul.

Since the V equation of motion implies V' = O(,/¢), £8") remains the one of formula (3.41)
to the order we are considering. Moreover, after integrating V' out, the projected U La-
grangian is just ,CgU), since the V-dependent corrections are O(e).

From EéU), we can derive the Mukhanov action by following the steps from (3.26)

to (3.32), with the replacements k — k, v — 1 and v — v, where

3 €
s ==+ 24/=. A4

Recalling that in the comoving gauge the curvature perturbation R coincides with ¥, we
can derive the power spectrum Pr, defined by

(Rae(T)Rae (7)) = (2m)%6) (k + k/)ifm. (3.44)
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Inserting the solution for U into the left formula of (3.39), we find

InPr(k) =InAg + (ng —1)In T (3.45)
where the amplitude Az and the spectral index ng — 1 are
Gm?
_ (1 _ _ _ NPV
Ag = —— (1 V3e — (nr — 1)(2 —vp — In 2)) , (3.46)

ng—1=3—2y = —4\/? (3.47)

respectively. We see that the mass m, of the fakeon does not affect the result to the order
we are considering.
Finally, from (3.36) we derive the tensor-to-scalar ratio

A 32em?2 ( \/gmi

r=—-—= X

Ar mi + 2m>2<

—-1-— 2—yg—1n2)|. 3.48
e R S IR n>) (3.43)

4 The fakeon projection

In this section we discuss the fakeon projection, starting from the tensor fluctuations. The
Lagrangian ﬁg\/) of formula (3.21) leads to the V' equation of motion (3.22). The fakeon
Green function Gg(t,t") is the solution of £G(t,t") = (t — t'), defined by the fakeon pre-
scription, where ¥ is given in formula (3.23). For the purposes of this paper, it is sufficient
to invert ¥ in the de Sitter limit a(t) = e!, where H is treated as a constant. We keep H
generic to make the discussion easily adaptable to the geometric framework. We will use
the information that H is my/2 in the de Sitter limit (in the inflaton framework) only later.
It is convenient to switch to a symmetric operator by noting that

2 2 2
Ya 3 = q 3?2 ((;itz + mi - + ];2> a=3/2, (4.1)

We want to prove that the fakeon solution Gy(t,t') of

d2 }I2 k;2 ~
(g +m2 =T+ 5 ) Gty = o~ ) (42)

is
imsgn(t —t')

Gf(t,t/) = m [Jinx (if)t]—inx (/%/) - Jinx(l%/)t]—inx (]%)] ) (4-3)

where sgn(t) is the sign function, J,, denotes the Bessel function of the first kind and

m2 1 - k - k
— X _ =" K =——. 4.4
EN T T a()H’ a(t)H (44)

In principle, we could add solutions of the homogeneous equation, which are the func-
tions Jiip, (lve), multiplied by constants. The job of the projection is to determine those
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constants uniquely. Because it comes from quantum field theory, the fakeon projection is
known perturbatively around flat space, in four-momentum space. However, a notion of
four-momentum is not immediately available in curved space.

Fortunately, there are three limits where Gy is known, which are k/(aH) — oo,
k/(aH) = 0 and a = constant. The limit k/(aH) — oo gives the flat-space case once
we switch to conformal time. The limit k/(aH) — 0 gives the flat-space case if we keep the
cosmological time. The case a = constant is precisely flat space, but is not relevant here,
since we are interested in the de Sitter background. Hence, necessary conditions are that
the solution (4.3) reduces to the known expressions [32, 45] in both cases k/(aH) — oo
and k/(aH) = 0. Any of these two conditions is also sufficient. The other condition can
be seen as a consistency check.

Switching to conformal time 7 = —1/(aH), equation (4.2) can be written as

d? m? .
(d7’2 + K+ 7_2;;2> (HVTT’Gf) =5(r—1).

For k|7| large we obtain

<dZ + k;2> (H\/TT"C%) ~ §(t —1'). (4.5)

dr?

Solving it by means of the arithmetic average of the retarded and advanced potentials, we
find [32, 45]

G 1
2HkVTT!

It is easy to check that (4.3) does satisfy (4.6) when k||, k|7/| > 1.
As said, the most general solution of (4.2) is equal to (4.3) plus solutions of the homo-

sin (k|7 — 7']) . (4.6)

geneous equation, multiplied by constant coefficients ¢; and ¢o. Now we know that those
coefficients must vanish, to match (4.6) for k|7|, k|7'| large. This proves that (4.3) is the
correct fakeon Green function.

A consistency check is given by the limit & — 0. There, (4.2) turns into an equa-
tion similar to (4.5), provided we keep the cosmological time ¢ instead of switching to 7.
Consequently, the solution (4.3) must tend to [32, 45]

2, sin (Hny|t —t']) . (4.7)
It is easy to check that this is indeed the k& — 0 limit of (4.3).

From (4.1) we derive the fakeon Green function
imsgn(t — t')e 3H-1)/2

N —
Gilt£) = 4H sinh (n, )

[in, (B) T —in (K') = Tin (K —in (E)] . (4.8)

4.1 Consistency condition

We have determined the fakeon Green function in curved space by referring to two situations
where the problem becomes a flat-space one, which are k/(aH) — oo and k/(aH) — 0.
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As mentioned in the introduction, purely virtual particles are subject to a consistency (no-
tachyon) condition in flat-space, i.e., their squared mass should be positive. Formula (4.6)
shows that this requirement is always satisfied for k/(aH) — oo, while formula (4.7) shows
that it is satisfied for k/(aH) — 0 if n, is real. Recalling that H is mg/2 in the inflaton

framework, the condition reads
me

4
which is a lower bound on the mass of the fakeon with respect to the mass of the inflaton.
When (4.9) holds, the oscillating behavior of (4.7) suppresses the contributions with

my > (4.9)

1 4
[t —t'] > T = - =
X 16mx—m¢

One may wonder if it is meaningful to impose a condition stronger than (4.9), for
example require that the time-dependent squared mass be positive for all values of k/(aH ).
To discuss this issue, let us consider the Lagrangian that gives the fakeon Green function
of formula (4.2), which is

~ 2
. 1/(d )2 . H? K
f- 1 ((;) G e HR (4.10)

A redefinition t = h(t'), V(t) = f(t')V(t'), with dh/dt’ = f?, leaves the kinetic term
invariant, but changes the squared mass. Specifically, the transformed Lagrangian reads

L=-1 (dv> L M) 5o

2\ dt/ 2
where L2 a2/
1
2 _ rd, 2 _ o4, 2 3

This transformation law shows that the signs of m(t)2 and M(#)? do not have a
reparametrization-independent meaning, in general, so a squared mass that becomes neg-
ative in some time interval is not necessarily a sign of a lack of consistency.

In passing, it is easy to verify that if the masses are independent of time, then the
condition of positive square mass is independent of the parametrization. Indeed, if m(t)?
is t-independent and positive, the most general reparametrization f (#') that leaves M (t')?

FE@®))? =1/p? + Aﬂ{j + pcos(2mt + 6),

where p and 6 are arbitrary real constants of integration. Since f? must be real and

t’-independent has

identically positive, M? must also be positive.
Summarizing, a necessary condition for the fakeon projection in the inflationary sce-
nario is that the fakeon squared mass be positive in the superhorizon limit:

2
m(t)* [ am) 0 > 0- (4.12)
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This condition also leads to (4.9) in the case of the scalar fluctuations. Indeed, consider

)

the Lagrangian £§V given in formula (3.41). Making the change of variables

NG

the W equation of motion takes the form
W+ m(t)2W = O(/), (4.14)

for some involved rational function m(t)* of H?/m? and k*/(aH)?, equal to (4m3 — H?) /4
in the superhorizon limit. Thus, (4.12) gives again the bound (4.9).

As we show in section 6, the vector fluctuations give the same bound. The same bound
is also found in the geometric framework. It is conceivable that, if (4.9) were violated, the
theory would predict a rather different large-scale structure of the universe, or a different
scenario would have to be envisaged to produce the present situation.

The stronger requirement that m(t)? be positive for every k makes sense if we believe
that the cosmological time plays a special role. Then we still find the bound (4.9) for the
tensor fluctuations, while a stronger bound is obtained in the case of the scalar fluctuations.
Studying the coefficient m(t)? of W in (4.14) numerically, we find that it is positive for all
values of k%/(aH)? if

my = 0.312my. (4.15)

As soon as my < 0.312my, there exists a finite & domain where m(t)? has negative values.
When m,, satisfies (4.9) but not (4.15), there is a time interval At ~ In(k/mg)/mg, com-
parable with the duration of inflation, where the fakeon Green function is “tachyonic” and
its nonlocal contribution is no longer negligible.

In the rest of the paper, we take (4.9) as the consistency condition for the fakeon projec-
tion in inflationary cosmology, because it is universal and reparametrization independent.
Yet, the issues just mentioned suggest that there is a chance that it might be conservative.
The formulas of the power spectra do not depend on it, but (4.15) narrows the window of
allowed values of the tensor-to-scalar ratio r a little bit more than (4.9) (see section 7).

5 Geometric framework (R + R? + C?)

In this section we study the geometric framework, which is sometimes known in the liter-
ature as Jordan frame. The higher-derivative equations of the background metric, derived
from (2.1) with the FLRW ansatz, can be written in the simple form

. 2

€ € my

£ __3 (1—7) 9 5.1

- U 73) o (5:1)
where ¢ is again —H /H?. Tt is worth to stress that e, H, a and the cosmological time
t are different from those of the inflaton framework, although we denote them by means
of the same symbols. The match between the two frameworks is worked out in detail in
appendix A.
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The quasi de Sitter approximation of (5.1) requires € ~ mi/(ﬁfﬂ) < 1,80 H is no
longer related to mg in the de Sitter limit, where actually my < H. As far as the mass
m, is concerned, it can be either of order H or of order mg. This means that we have
two types of quasi de Sitter expansions, depending on whether m, ~ H or m, ~ mg. We
study the scalar and tensor fluctuations in both.

The two possibilities can also be understood as follows. The de Sitter metric is not an
exact solution of the field equations of the theory R + R? 4+ C?. It is an exact solution in
two cases: (i) when we ignore both R and C?; and (ii) when we ignore just R. In other
words, the term R? is leading with respect to the term R, while the term C? can either
be of order R or of order R? (as far as the fluctuations are concerned). The first case is
studied by expanding in powers of ¢ with & = H?/ mi fixed. The second case is studied by
expanding in powers of ¢ with ¢ = mi / mé fixed.

The relation between my, H and ¢ is

m2
H—g =¢ (6 +e— §€2> + O(eh). (5.2)

It can be found by writing down the most general expansion for mé /H? in powers of ¢,
differentiating it and applying (5.1) to determine the coefficients. If needed, (5.2) can be
extended to arbitrarily high orders (an asymptotic series being obtained).

5.1 m, ~ H: tensor fluctuations

We start from the tensor fluctuations. Parametrizing the metric as in (3.6), the quadratic
Lagrangian obtained from (2.1) is

L ) 2T T 2k2 k2 27T k2 2
(SWG)CL;:u2<1+2++>—Cl2<1+2+>u2—m?<7 (5.3)

2 2,12 2,112
m¢ mx CLTTLX m¢ amX

plus an identical contribution for v, where
T =2H?+H. (5.4)

Expanding around the de Sitter background with ¢ = H?/ mi fixed, the first nonvanish-
ing contribution to the spectral index ny turns out to be O(¢?). For this reason, we work out
the predictions to the second order in ¢ included. Expanding the Lagrangian (5.3), we find

L . 5 2e2 3k2e
(8wG)t—U2<+g+;+3£+5£—l— 2) (3 4+ 26 + 9¢€) e H2U?
X
k2U2 5e  2¢ 302
14+ = + = 432 5.5
a? <+6+9+€£+22m) 2m2’ (5:5)
where
_ ]2
- 36u'
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The important point of (5.5) is that the unique higher-derivative term U? is multiplied
by €, so the fakeon projection can be handled iteratively. The change of variables

Se 43¢ 3 Te
27 9e€ .

< 262FE — 2 FE + Ok} 7%, eEE, - --) (5.6)

+ 4H

allows us to cast the Lagrangian in the form

Ly ., K2
L= F? - ZE? -3¢ (1—¢)H?E

(87TG) g = 0,2

Since E ~ ¢F for |kr| small [as in (3.32)], the corrections eO(k?|7|?,¢E, E, - - - ) of (5.6)
are either O(£%/2) or give subleading contributions in the superhorizon limit & |7| < 1. This
means that we do not need to specify them for our purposes.

At this point, it is sufficient to upgrade the steps from formula (3.26) to formula (3.32)
to the appropriate order, with the substitutions U — E, k — k, v — 1. We find

v = % } 362 (5.7)

The power spectrum of the tensor fluctuations is Pr = 16P,, with P, defined by (3.34).
Using the definition (3.35), the amplitude and the spectral index are

24G H? 17 31
Ap = —¢ |1 - { — 3ef — %52 + 17626 + 92262 —np(2 — v —In2) |, (5.8)
nT = e = 3 — 2 = —6e”. (5.9)

5.2 m, ~ H: scalar fluctuations

Now we discuss the scalar fluctuations in the geometric framework by expanding in powers
of £ to the next-to-leading order with ¢ = H?/ mi fixed. We switch directly from (2.1)
to the action (2.2) (with Sm — 0), to remove the higher derivatives without changing the
metric that couples to matter. We isolate the background value of ¢ from its fluctuation
Q by writing

p=—67T+Q, (5.10)

where T is defined in (5.4). The gauge invariant curvature perturbation R is

rR-—w-g (5.11)
67

We work in the spatially-flat gauge, where 2 is an independent field and W is set to
zero. This means that the metric is

g = diag(1 + 20, —a®, —a®, —a®) — 6,6,0;B — 6,600, B. (5.12)
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After Fourier transforming the space coordinates, the quadratic Lagrangian reads

(8 G)E - (Y — H)®Q — HOO — 31292 — o + lﬁHB(I)
) s T m3 12| a2
k2 .
——— _|HQ(® + B) + 2H?>BQ) — 3YB®(Y + 2H?
3Hm?¢a2 [ (2+B)+ (T + )]
4
" _(®+ B - BH)?. 5.13
3a4m§<( * ) ( )

The field ® appears in (5.13) as a Lagrange multiplier, so we integrate it out by solving
its own field equation and inserting the solution back into the action. So doing, we obtain
a two-derivative quadratic Lagrangian for B and €2, which we then expand around the de
Sitter background by means of (5.2). Making the field redefinitions

3a2 [e

Q=12V2eH?U, B= /5" (5.14)

we obtain an action that is regular for e,k — 0. Its ¢ = 0 limit is

Ly o o K2, 20V KPU?
(BrG)lim- 3 = U+ Vo= G \ U+ 35 ~ a2 )

We note that at this level V' appears algebraically and can be integrated out. This means
that the fakeon projection can be handled iteratively in €.

After integrating V' out, every m, dependence disappears to the first order in €. In
particular, if we define

U= (1 - 1525> B, (5.15)
the action becomes )
L . k

(87TG)a—§ = F? - EEQ + 3cH?E?. (5.16)

The redefinition (3.26) with U — E, v — 1 and vy — vs, where

3
VS — 5 _|_ 28, (517)

gives the action (3.27) with & — k. Inserting the solution for E into (5.15), (5.14) and
then (5.11), and using the definition (3.45), we find in the superhorizon limit,

GH? 17
Ar = l——e—(nr—-1)2—v—1In2) |, (5.18)
2me 6
_dlnPr -
nr—1= Tk =3 -2y, = —4e. (5.19)

Together with (5.8), formula (5.18) gives the tensor-to-scalar ratio

=" =48¢% (1 — 3ef — 4¢(2 — v — In2)), (5.20)
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to the next-to-leading order in €. More explicitly, we get, after inverting (5.2),

96m§<z-:2

r= sy
m¢+2mx

(1—4e(2— g —In2)). (5.21)

So far, we have assumed € small and £ arbitrary. However, we see from (5.8) and (5.20)
that higher orders of e carry higher powers of £. To write (5.21) we have used

=1 —3ef + 922 + O(383).

1+ 3e¢

Conservatively, formula (5.21) is reliable as long as 3e€ ~ mi / (2mi) is reasonably smaller
than one. However, we may argue that the overall factor in front of (5.21) is exact. In the
next two subsections we show that it is indeed so.

5.3 m, ~ mgy: tensor fluctuations

Now we study the tensor fluctuations in the geometric framework with ¢ = mi / mi fixed.
The metric is still parametrized as (3.6) and the quadratic Lagrangian obtained from (2.1)
is (5.3), plus an identical contribution for v. After replacing mi with mic , we use (5.2) to
eliminate mi and then expand in €. We work out the leading and next-to-leading orders
in e.

As in subsection 3.1, we eliminate the higher derivatives of (5.3) by considering the
extended Lagrangian £{ = Ly + AL, where ALy is defined in (3.9). If we perform the
redefinitions

o 3€C 5¢ B 5e
u = @(1—12> (U+V),  S=23eC(1+2()H? (1—12> (U — V),

and choose ,
k
f=3H, h=2(1+20)H? + L (5.22)
we obtain
EEU) "9 k? 2 2e 2772
(87@) e —U—?U 1—1+2< —3cH"U",
£ ey @ B
(87@) 3 Va4 hV=, (87@) 3 eV U+ 21490

As usual, we have just written the e — 0 limit of EEV), since the fakeon projection

implies V' = O(e). This means that, to the order of approximation we are considering, we
can drop both CEV) and [,EUV), so the projected Lagrangian is just [,EU).

Switching to conformal time and defining

alU 3 - €
w= , %= g, k—k<1—1+2c>, (5.23)
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the Mukhanov action is (3.27). The fakeon Green function G(t,t’) can be discussed as in
subsection 4, with the replacements

m? — ACH?, ny — (5.24)

and the solution is still (4.8). The consistency condition (4.12) gives again (4.9). Aside from
the changes (5.24), everything works as before and we find, from the V field equation of £},

K2 U@
a(t')* 1+ 2C] '

+00 .
V(t) = —25/ dt' Ge(t, 1) [HU(t’) + (5.25)

—0o0
The fakeon average can be worked out with the procedure of subsection 3.1. Recalling
that the terms in the square bracket of (5.25) are subleading or of higher orders in &, we
obtain that V' does not contribute in the superhorizon limit |k7| < 1.
Inverting (5.2) to restore the mé dependence of the overall factor, the power spectrum
Pr = 16P, of the tensor fluctuations gives the amplitude

8G m2m?2 6em?
Ap =7 2l (1— sl B (5.26)
s m¢+ my m¢+ ms

while the spectral index nr is O(g?).

5.4 m, ~ mg: scalar fluctuations

Now we study the scalar fluctuations in the geometric framework with ¢ = mi / mi fixed.
We replace mi with mi{ , use (5.2) to eliminate mi and then expand in powers of €. We
work to the next-to-leading order in ¢.

We eliminate the higher derivatives of (2.1) by means of (2.2). The metric is still
parametrized as (5.12) in the spatially-flat gauge ¥ = 0. The curvature perturbation
is (5.11) and the ¢ fluctuation 2 is defined by (5.10). The quadratic Lagrangian obtained
from (2.2) is (5.13). Defining

5e Vv eU Te
QO =12V2eHU (1 - = B= k4 44 ——(1+—=
) U< 12) ’ \@@H\/g( - 36CatHT) + \/QH < * 12) ’

and expanding to the next-to-leading order in e, we obtain the decomposition (3.40) with

ﬁ(U) . k’2
(87@) ;3 =U? - ?U2 + 3eH?U?,
Egv) . 2
(87G)=5 = -V 4 [2(1 +20) + 773 —l—gl] H?*V?, (5.27)
EgUV) ) kQ
(87TG)73 =V ggHU—F 7g3U s
a a

where g;, i = 1,2,3, are regular functions of k/(aH) and ¢, which tend to finite values in
both limits k/(aH) — 0,00. Moreover, g; tends to zero for k/(aH) — 0 and g3 tends to
zero for k/(aH) — 0.
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The expression of L’gv) of (5.27) is to the leading order, which is sufficient for our
present purposes. The discussion about the fakeon Green function proceeds as before. It is
easy to check that the consistency condition (4.12) coincides with (4.9). Clearly, the fakeon
projection implies V' = O(e). This means that the projected Lagrangian is just EgU) to the
order of approximation we are considering, i.e., we can drop both Egv) and ,céUV).

The Mukhanov action is (3.27) with v — 1, k — k and v, — vs = (3/2) + 2¢. The

power spectrum Pr gives the amplitude

G
Mg

Ar = [9nc2 (1-3e—(ngr—1)(2—vg —1n2)) (5.28)
and the spectral index ng —1 = —4¢. Again, the dependence on m, drops out. Combining

this result with (5.26), the tensor-to-scalar ratio is

r =

2_2 2
96mX5 ( 3em )

é X

2 2
m¢+2mx

which agrees with (5.21) for ¢ large.

6 Vector fluctuations

In this section we study the vector fluctuations and show that they are set to zero by
the fakeon projection at the quadratic level. For definiteness, we work in the geometric
framework, but equivalent results are obtained in the inflaton framework.

We parametrize the metric as

g = diag(1, —a®, —a*,—a®) — 6,6, B; — 6,0, B; — 6,8, (0 E; + 0; E;),
where 0°B; = 0 and 0°E; = 0. A gauge invariant quantity is
B; — E; (6.1)
We choose a gauge where E; = 0 and rewrite the metric as
g = diag(1, —a®, —a*,—a®) — 6)6,C — 6,6 D — 6,60C — 626D, (6.2)

where C' = C(t,z) and D = D(t,z) are the independent vector modes. After Fourier
transforming the space coordinates, the quadratic Lagrangian £, obtained from (2.1) is

given by

L, : k2
(327eria)ﬁ =—C?+ |m2 4+ (4 +e—2eC) H? + = c? (6.3)

plus an identical contribution for D, where ( = mi / mi As before, C? stands for C_xC,
C? for C'Lka, and so on. After the redefinition

kC

Y=
2myal/?
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the Lagrangian turns into

: H? K?
(87G)Ly = —V* + |m + (16¢ — 1 + 2¢ — 8eQ) + 5 V2, (6.4)

The kinetic term has the wrong sign, so V needs to be quantized as a fakeon. Since )V does
not couple to any other field at this level, the fakeon projection sets it to zero. Therefore,
the vector modes do not contribute to the two-point functions. Note that these conclusions
hold without expanding around the de Sitter background.

The consistency condition (4.12) is studied by requiring that the coefficient of 12
in (6.4) be positive in the superhorizon/de Sitter limit, which gives again (4.9).

7 Summary of predictions and connection with observations

In this section we summarize the predictions and make contact with observations. We
express the results in terms of the number of e-foldings, which is defined by
ty
N= [ H(®)dt, (7.1)
t;
where t; is the time when €(¢;) = € and ¢ is when inflation ends, e(t;) = 1. It is convenient
to work in the geometric framework, where we can use (5.1) and (5.2). Then we translate
the formulas to the inflaton framework by means of the map of appendix A. Expressing
every quantity as a function of ¢, (7.1) gives

1 1( 1 / !
H({'() ., de € 9 1 1 0
N = ———>=de’ = — |1+=+0 =———1 O(e"). 7.2

/s () ° /5 e PTG HOE) | =5 — et O (T2)
The O(£") corrections are not very meaningful, because they depend on the upper bound
of integration and (t¢) = 1 is just a conventional choice. To the leading order, we can take

N ~ i,
2e
in the geometric framework. Note that in the inflaton framework we have instead
N =~ /3/(2y/€), as can be shown using (A.6). Once expressed in terms of N, the
predictions obtained in the two frameworks agree (see appendix A). Collecting the results
of formulas (3.36), (3.46)—(3.47), (5.26) and (5.28), we obtain, to the leading order,

Ar Ar r ng — 1 np
(7.3)
m3N? 8mym?, 24m2 2 I
3mM3, ﬂ(mi—&—Qmi)Mgl NQ(mi_FQmi) N NQ(mi_FQm_?()

The formula of np comes from (3.36), since in this particular case the inflaton framework
is more powerful than the geometric framework.
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Figure 1. Allowed values of the tensor-to-scalar ratio r.

We see that the predictions for Az and ng — 1 coincide with the ones of the R + R?
model. Instead, the predictions for Ay, r and ny are smaller by a factor 2m?< / (mi + 2mi)
Note that (7.3) implies the relation

r~ —8nr, (7.4)

which is known to hold in single-field slow-roll models independently of the scalar potential
V(¢).! It is a nontrivial fact that it does not depend on my, besides N and m.

The bound (4.9) on m,, is also a prediction of the theory, required by the consistency of
the fakeon projection with inflationary cosmology. Because of it, the tensor-to-scalar ratio r
and the spectral index np are predicted within less than one order of magnitude. Precisely,

1 _ N? 2N?
5 S 157 3 S (7.5)
For example, for N = 60 we have
0.4 <1000r < 3, —0.4 < 1000n7 < —0.05.

The allowed values of r are shown in figure 1, where the vertical lines denote the minimum
and maximum values of N in the range ng = 0.9649 + 0.0042 at 68% CL [23]. The
windows (7.5) are compatible with the data available at present, which give r < 0.1 [23].

The results of this paper also provide corrections to the amplitudes, which can be used
to estimate the theoretical errors. From (7.2) we find

!See for example ref. [46].
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so we obtain

GN?2m?2 In N 1
_ 6 (, In
Ap = 3 <1 6 +O< >>

8G  mym; 3m? In N 1
A = 27 xX"o 1— X 1 _ Ol — .
T mZom2 ( Nm2+2m2) \" 128 ) T\
With N = 60, the first correction to Az is between 0.3% (m, = mg/4) and 2.5% (m, —
00). Although Az and ng — 1 do not depend on m, in our approximation, they will at

higher orders.

8 Conclusions

We have worked out the predictions of quantum gravity with fakeons on inflationary cos-
mology. By expanding around the de Sitter background the amplitudes and spectral indices
of the scalar and tensor fluctuations have been calculated to the next-to-leading orders,
comparing different frameworks, which lead to matching results. The physical content of
the theory is exhausted by the two power spectra. The vector degrees of freedom, as well
as the other scalar and tensor ones, are handled by means of the fakeon prescription and
projected away. The methodologies we have developed to deal with this operation appear
to be generalizable to higher orders.

The local, renormalizable, unitary, perturbative quantum field theory of gravity con-
sidered in this paper depends only on four parameters: the cosmological constant, Newton’s
constant, mg and m,. The values of the cosmological constant and Newton’s constant are
known. It will be possible to derive the values of my and m, from ngz and r once new
cosmological data will be available [47]. At that point, the theory will be uniquely deter-
mined and all other predictions (tensor tilt, running of the spectral indices, and so on) will
be stringent tests of its validity.

The consistency of the approach puts a lower bound on the mass m, of the fakeon
with respect to the mass mg of the scalar field. The tensor-to-scalar ratio r is determined
within less than an order of magnitude. Moreover, the relation » = —8ny is not affected by
m, within our approximation. A separate analysis is required to study the case where the
consistency bound on m,, is violated and work out the consequences of the violation on the
physics of the primordial universe. Finally, the investigation of this paper and the results
we have obtained shed light on the problem of understanding purely virtual particles in
curved space.
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A Map relating the inflaton framework to the geometric framework

In this appendix we derive some expansions used in the paper and show that the results
of the inflaton and geometric frameworks agree with each other. For definiteness, the
quantities with bars (a, t, H, &, 7, etc.) refer to the inflaton framework, while the quantities
without bars (a, t, H, €, n, etc.) refer to the geometric framework.
We start by determining —aH 7 in the geometric formalism. Writing the most general
expansion
—aHT =14 aie +ase® +aze® +- -+, (A.1)

the numerical coefficients a; are calculated by differentiating (A.1) and then using the
definition (3.5), the equation (5.1) and (A.1) again. This procedure gives an equality of
two power series. Matching the coefficients recursively, we obtain a; for every i. To the
lowest orders, the result is

44
—aHT =14¢+3%+ 353 + O(eh). (A.2)
If we continue to arbitrary orders, we find an asymptotic series.
The action (2.4) is obtained from (2.1) by means of the conformal transformation (2.3).
If we want to map the parametrizations (3.6) and (3.37) of the background metrics into
each other, we need to combine that transformation with a time redefinition #(¢), so that
ai _
dt

, ds? = gudatdz’ = Wds? = Wy, datda?,  W=1- #. (A.3)
b

Q| QI

We split the conformal factor W into the sum of its background part W, and the
fluctuation 6W. Using (5.10) and the second equation of (2.3), it is easy to find

27 Q
Wo=1+ —5 oW = -0 = —EWho . (A.4)
mg 3m¢

The transformations of the background quantities are

dt a _ 1 Wo
& a - YW ( + 2)/\/0) ’ (A-5)

plus those of ¢ and 7, which follow directly from their definitions. Using (5.1), (5.4)
and (5.2), we find, to the lowest orders,

5 ( 2—1—45 +0(%) ), € T 3e e+ 0(e),
_ 13 2 3 m¢ (3 1962 3
- _9 H=—"2|[1-— . A.
7 e+ 5e+0(), @< 5+ 9sg T OE) (A.6)
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The relations can be extended to arbitrary orders, if needed. We find 7 = O(£'/?) and
dre/di™ = H"O(£"+2)/2) which justifies the organization (3.3) of the expansion around
the de Sitter background in the inflaton framework. In particular, inverting &(¢) we get

) = o _3/2
H:% 1_\/73?4_&_&_’_0(52) ,
2 2 12 793
S o e[ 18 Je 2 _3/2
- 2\/;<1 A )), (A7)

73 +§€ + O(&9).

The last formula is derived from (A.2). Without passing through the geometric framework,

—aHt =1+&+

the relations (A.7) can be worked out directly in the inflaton framework by expanding the
equations (3.1) around the de Sitter background.

The map relating the fluctuations can be worked out from (A.3). The tensor modes u
and v are clearly invariant,

o a2 ) a2 N
u=Wo—u =1, U—WQ?U—U, (A.8)
while the scalar fluctuations ¥ and ® transform as
_ Q - Q
V=Uv4+ —— P=Pp - ————— . A9
* 6(m3 +27)’ 6(m3 +27) (A.9)

These formulas are written up to corrections of orders O(uf2), O(vQ2), O(¥) and O(PS?),
respectively. We can omit them for our purposes, since they do not affect the quadratic
action and the two-point functions. We recall that the action is expanded around a solution
of the equations of motion (which is then expanded around the de Sitter metric — which
is not an exact solution), so the linear terms in the fluctuations are absent. Switching from
one framework to the other, the corrections just mentioned affect the cubic terms, but not
the quadratic ones.

From (A.9) we derive the transformation of the curvature perturbation R. Observe
that, given a scalar Y = Yy +0Y, where §Y denotes the fluctuation around its background

value Yp, the combination
oY

Ry =V +H— (A.10)
0
is invariant under infinitesimal time reparametrizations. If we choose Y = W and use the
relations (A.4), we find, in the geometric framework,
mg Q Q
Rw=U-H- 2 """ —W_-H - =R, (A.11)
27 3mg, 6T
the last equality following from (5.11). Using (A.4), (A.5) and (A.9) to rewrite this expres-
sion in the inflaton framework, we obtain
deo

-1
RW:@+ﬁ<&) 5p =R, (A.12)
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where ¢q is the background value of ¢ = ¢g + d¢, such that Wy = e 0. We recall
that in section (3.2) the comoving gauge d¢ = 0 was used, so we just had R = ¥ there.
Equations (A.11) and (A.12) prove that R = R, so R is also invariant when we switch
frameworks.

This fact, together with (A.8), ensures that the power spectra calculated in the paper
coincide in the two frameworks. We can use the formulas (A.6) to check it explicitly to the
orders we have been working with. Comparing (3.36) with (5.8), (5.26) and (5.9), we find

Ar(H,8) = Ar(H,¢), nr(€) = nr(e).

Finally, comparing (3.46) and (3.47) with (5.18), (5.19) and (5.28), it is easy to verify that

AR(Haé)ﬁ) :AR(Ha€,77)7 nR(Ean) :nR(Ean)'

B Superhorizon evolution

In this appendix we show that the curvature perturbation R can be considered constant on
superhorizon scales for adiabatic fluctuations of the energy-momentum tensor, in particular
after the metric fluctuations exit the horizon and before they re-enter it. We start by
showing this result in the inflaton framework.

Consider the energy momentum tensor 7}, with components

JAN
Too = p(1+2®)+0p, Toi = —0;0q, Ty = a5;;[p(1—2W) +dp] + <3z‘<9j - 357;;') o1l

where dp, dq, op and JII are its scalar fluctuations around the background. The gauge
invariant curvature perturbation is

H
R=¥Y—-——(d¢+pB). B.1
G0+ pB) (B.1)

The unprojected equations derived from the action (2.4) for the metric (3.37) in the Newton
gauge (B = 0) read

. 2AW
2\Il+2H<I>—72VV2+87TG5q:0,
3mxa
1 .. . A
<I>—\I/+2<W+HW—V;/>+87TG5H_0,
ms 3a
. 2AT 2N
6HU — ——— + == 4+ 871G (0p+ 2pP) = 0
2 +3m§<a4+ nG(dp +2p®) = 0,
. . . . AN(D — T A2
U+ H(3Y + @) +20H + 3H*® + ( ) _ oW —47Gdp = 0, (B.2)
3a? 9m§<a4

where W = ¥ + & and the contributions of the scalar field ¢ are moved into Tj,,. It is
possible to show that formulas (B.2), together with the Friedmann equations

_87TG
3

3

H? 0, H+ §H2 = —4nwGp,
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imply the equation

H . P A |p AW  HW HW  87xG
—R=—4rG (op-Lsp) - S |E(w- - = ST| . (B.3
H " < =5 p) a2 [p < 3mZa?  m2 ) smZH 3 (B:3)

Thus, for adiabatic fluctuations
op="Zap
P

and on superhorizon scales k/(aH) < 1, the scalar R is practically constant. Since the
property holds for the whole set of solutions of the unprojected equations, it also holds
for the projected ones. Note that after the end of inflation ¢ is no longer small, so the H
factor in front R in (B.3) is not a source of trouble.

In the geometric framework we reach the same conclusions. It is sufficient to work with
the action (2.2) and note that the only difference with respect to the formulas just written
is a redefinition of 7},,, brought by the variation of the terms containing ¢ with respect to
the metric. Since we are considering only scalar quantities here, this is just a redefinition
of p, p and the fluctuations dp, dq, op and J1I. Observe that we may need a nontrivial §11
for this redefinition, which is the reason why we kept it nonzero in the derivation above.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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