
48 IEEE TRANSACTIONS ON EDUCATION, VOL. 62, NO. 1, FEBRUARY 2019
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Abstract—Contribution: This paper demonstrates curricular
modules that incorporate engineering model-based approaches,
including concepts related to circuits, systems, modeling, electro-
physiology, programming, and software tutorials that enhance
learning in undergraduate neuroscience courses. These modules
can also be integrated into other neuroscience courses.

Background: Educators in biological and physical sciences urge
incorporation of computation and engineering approaches into
biology. Model-based approaches can provide insights into neu-
ral function; prior studies show these are increasingly being
used in research in biology. Reports about their integration
in undergraduate neuroscience curricula, however, are scarce.
There is also a lack of suitable courses to satisfy engineering
students’ interest in the challenges in the growing area of neural
sciences.

Intended Outcomes: (1) Improved student learning in inter-
disciplinary neuroscience; (2) enhanced teaching by neuro-
science faculty; (3) research preparation of undergraduates; and
4) increased interdisciplinary interactions.

Application Design: An interdisciplinary undergraduate neu-
roscience course that incorporates computation and model-based
approaches and has both software- and wet-lab components, was
designed and co-taught by colleges of engineering and arts and
science.

Findings: Model-based content improved learning in neuro-
science for three distinct groups: 1) undergraduates; 2) Ph.D.
students; and 3) post-doctoral researchers and faculty. Moreover,
the importance of the content and the utility of the software in
enhancing student learning was rated highly by all these groups,
suggesting a critical role for engineering in shaping the neu-
roscience curriculum. The model for cross-training also helped
facilitate interdisciplinary research collaborations.

Index Terms—Biological neural networks, biomedical engineer-
ing, brain modeling, computational neuroscience, experiential
learning, neural engineering.
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I. INTRODUCTION

UNQUESTIONABLY, the field of biology has had a sig-
nificant impact on the engineering curriculum over the

past two decades. This is evident from the creation of new
departments of biological or biomedical engineering in most
universities (e.g., [1] and [2]), and by the electrical and com-
puter engineering (ECE) departments, such as those at MIT,
CalTech, and Duke, making biology a requirement at the
undergraduate level (e.g., [3] and [4]). These developments
were spurred by engineering students’ growing interest in tack-
ling the theoretical and technical challenges of the biological
and medical sciences. This increasingly data- and problem-rich
field is attractive for its promise to shed light on biological
function and to improve human health.

In addition to collaborating on tackling technical chal-
lenges in life sciences, engineering faculty also have increasing
opportunity to introduce model-based approaches into biol-
ogy and medicine, areas whose research and curricula lack
such content. Herein the terms ‘model-based approach’ and
‘engineering content’ are used interchangeably to denote engi-
neering concepts such as computation, circuits, systems theory,
modeling, electrophysiology, and programming skills.

This paper focuses on the role that engineers can play
in implementing such model-based approaches into curric-
ula in neuroscience, a sub-area within life sciences that has
seen a 592% increase in PSAT major selections among 9-11th

graders (2007-2013; [5]) and a 100% increase in Ph.D. degrees
awarded (2003-13; [6]). This surge in interest has resulted
in the initiation of undergraduate majors in neuroscience at
four-year institutions and at universities such as MIT, Harvard,
UCLA, and University of Chicago [7], [8]. Indeed, a National
Research Council report, Research at the Intersection of the
Physical and Life Sciences [9], identified ‘Understanding the
Brain’ as one of the top five grand challenges for research
that will significantly benefit society, and to this end recom-
mended development of introductory undergraduate courses
at the interface of the appropriate disciplines. This, together
with the recognition of ‘reverse engineer the brain’ as one
of the 14 Grand Challenges for Engineering in the 21st

century [10] and the substantial funding investment by the
federal BRAIN initiative [11], represents a tremendous oppor-
tunity for engineers to collaborate with neuroscientists to
tackle some of the neuro-challenges for the next century at the-
oretical, computational, experimental, and workforce readiness
levels.
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TABLE I
SYLLABUS FOR UNDERGRADUATE SEMESTER-LONG COURSE ECE/BIOSCI 4590 COMPUTATIONAL NEUROSCIENCE

Leaders in the field of neuroscience believe that the tools
and ideas developed in the physical sciences will play a piv-
otal role in this undertaking [9]. They assert that a model-
based approach, the hallmark of engineering, physics, and
statistics, is critical to piecing together the numerous seem-
ingly disjointed findings and the voluminous data being
produced in neuroscience into a coherent portrait of func-
tion, including behavior [12]. Although courses and textbooks
(e.g., [13]–[15]) related to computational neuroscience are
being developed, they are typically at the graduate level.
Also, they tend to lack significant model-based or engi-
neering content, and/or biological realism, particularly at the
undergraduate level [15].

Computational neuroscience refers to the study of brain
function in terms of the information processing proper-
ties of the structures that make up the nervous system. It
is an interdisciplinary science that links the diverse fields
of neuroscience, cognitive science, and psychology with
electrical engineering, computer science, mathematics, and
physics [16]. This emerging computational toolkit is impor-
tant for furthering understanding of the nervous system, as
evidenced by the critical emphasis placed on incorporating
computation into biology by educators and federal funding
agencies [11], [17], [18]. While there is a surge in interest
in neuroscience at both undergraduate and graduate levels,
engineers and quantitative scientists lack the training in neu-
roscience necessary to adequately understand ‘systems’ in
brains and facilitate improved interactions with neurosci-
entists. Similarly, biological and behavioral scientists lack
adequate training in the quantitative sciences [18], and are
thus interested in collaborations with engineering to jointly
develop curricula. Such curricula and interactions are critical

for effective interdisciplinary research, including the devel-
opment of relevant computational and technological tools.
National [11] and international [19] initiatives to accelerate
research in neuroscience represent a unique convergence of
interests, beneficial for electrical and other engineering depart-
ments at levels including curriculum development, research,
and outreach.

A novel interdisciplinary undergraduate neuroscience
course, ‘ECE/BioSci 4590 Computational Neuroscience,’ was
developed in 2008 and has been co-taught since by a faculty
team from the Colleges of Engineering and Arts & Science at
the authors’ university. The lab course includes neurophysiol-
ogy, computation, systems and programming concepts, and is
taught in alternating weeks of modeling/software and wet-labs,
Table I. This paper focuses on the modeling/software part of
the course, and specifically on the integration of model-based
approaches (see Section II) in the course. To measure learn-
ing and the importance of model-based approaches to student
learning and faculty teaching, three distinct groups were sur-
veyed: (i) neuroscience faculty from four-year undergraduate
institutions around the nation, who participated in a one-week
on-campus course [20]; (ii) neuroscience researchers (Ph.D.
students, postdoctoral fellows, and faculty), who as well as
an in-depth one-week exposure had an additional week of
research training [21]; and (iii) undergraduate alumni of the
semester-long course.

The next section describes the specific model-based
approaches incorporated into the course. Section III describes
the results from the survey of each group that rated the
importance of model-based approaches to student learning
and to teaching neuroscience. Section IV summarizes the
salient features of the course. It is noted that the model-based
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engineering approaches can be integrated into other neuro-
science courses.

II. RELEVANT COMPUTATION, CIRCUITS & SYSTEMS,
AND PROGRAMMING CONCEPTS

A. Specific Need and a Solution

In a report from the National Academies that summa-
rizes numerous past efforts to redefine undergraduate biology
and science education, Labov et al. [22] highlighted that
quantitative tools are increasingly important for biologists
and should be part of undergraduate education. Two of the
six core competencies proposed in the Vision and Change
document [18] directly pertain to computation (i.e., the abil-
ity to use quantitative reasoning, modeling, and simulation),
and two others pertain to interdisciplinarity (i.e., the ability
to use, communicate, and collaborate with multiple disci-
plines). Specific recommendations from biology educators in
this regard include [18]: (1) build a strong interdisciplinary
curriculum that includes biological science, physical science,
information technology, and mathematics; (2) design mean-
ingful laboratory experiences; (3) provide teaching support
and training to faculty; and (4) eliminate administrative and
financial barriers to cross-departmental collaboration.

The collaboratively-developed interdisciplinary lab-based
undergraduate neuroscience course, Table I, addresses some
of these needs. The course incorporates computation, circuits
& systems, modeling, and programming concepts into neu-
roscience, and uses a framework of ‘biology to model and
back again.’ The course is designed for undergraduates from
any department within the colleges of engineering or arts
& science, and assumes only a background level of high
school-level cell biology, mathematics, and programming. The
elective course, with ∼25 students/section, has been offered
annually at the university since 2008 and focuses on con-
cepts at the cellular and systems level. The students have
come from various departments such as (in order of decreas-
ing numbers) bioengineering, electrical engineering, biology,
psychology, biochemistry, physics, and mathematics.

The model-based theme of ‘function-biology-model-math’
enhances systems thinking by having students approach any
neurobiological concept by determining what function is being
implemented, then determining how biology implements it (in
wet labs or biology labs), then modeling it in circuit terms,
and finally writing down and simulating the mathematical
representation of the model (in software labs). Each biology
lab is followed by a virtual or software lab (with graphi-
cal user interface developed using the open-source package
NEURON [23]) to illustrate the same neurobiological concepts
and data as in the biology lab [24]. For example, students see
an action potential in the biology lab using a crab neuron,
and then in the software experiment they study how the cur-
rents in the crab neuron generate the action potential. The
biology laboratory has six state-of-the-art electrophysiology
workstations to support six wet labs, while the software lab
has standard desktops that run the NEURON code. The math-
ematical and neuroscience topics are covered sequentially in

this order: basics of math, circuits, systems modeling, pro-
gramming, and electrophysiology (see Section III); Nernst
and rest potentials (using a crayfish prep); action potential
and bursting (using a crab cardiac ganglion prep); synaptic
transmission (using an earthworm prep); and functioning of
a simple network (using a crab stomatogastric ganglion prep).
The course also has a ten-week modeling project that helps
students appreciate the importance of the function-biology-
model-math framework in understanding biological systems
(see next section). Students learn programming formally using
the package NEURON during this semester-long project, start-
ing week 9, Table I. So programming is largely self-learned,
starting with sample codes and carefully prepared but ‘incom-
plete’ templates. Supported by help-sessions conducted by the
teaching assistant, students complete pacer-modules related to
programming every week, which are graded and returned to
provide immediate feedback. The final modeling project report
and presentation is scheduled for week 15.

The course has six open-source software experiments
(virtual labs; Table I) that have been disseminated to
undergraduate neuroscience faculty since 2007 via annual
summer workshops [24]. (The curricular contents of
these workshops can be accessed via the Canvas site
https://courses.missouri.edu/: scroll to bottom of page and
click on ‘Canvas Guest and Visitor Login,’ and enter the site
with username ‘cns’ and password ‘workshop,’ both without
quotes.)

B. Integrating Model-Based Content

The model-based content has the following steps:
(i) Instruction begins with an introduction to high-school

concepts of functions, differentiation, and integration.
(ii) The students then consider two first-order systems. The

first is modeling the dynamics of a car from throttle angle
to speed using a model-based framework, where the students
first define the problem, then write down all the relevant laws
(Newton’s 2nd law for motion, linear drag force), and derive
the differential equation describing the evolution of the system.
They realize how speed would increase in a first order fashion
when the throttle angle is kept constant, which is something
they can relate to easily. The second example is a passive neu-
ronal membrane, i.e., with only the leak channel, which has
a first order response from injected current to membrane volt-
age, Fig. 1a. Then Kirchoff’s laws, Ohm’s law, and the Nernst
equation (a balance between diffusion and electrostatic forces)
are introduced, and the students derive the first order ODE for
a passive membrane; this derivation approach is followed in
all components of the course. Such an approach enables the
students to understand the linkage of differentiation and inte-
gration to first order ODEs via laws that govern the dynamics
of the system; this key connection is typically not sufficiently
emphasized even in engineering undergraduate courses. Two
other optional examples are provided—the increase in tem-
perature of a cold house when the heating is turned on, and
the filling of a tank of water when the drain faucet is open—
in which students again see how the equations for all these
different systems have the same first order dynamics.
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Fig. 1. Passive and active membrane models. Vm -voltage;
Cm – capacitance; R – resistance; Em – reversal potential; m – mem-
brane; Na- Sodium; K – Potassium. (a) Passive and (b) active membrane
models.

(iii) Once familiar with derivation of a first order ODE,
the students solve it by hand using the Euler approxima-
tion for the derivative. Then they are shown how to solve it
using packages such as Wolfram Alpha and MATLAB. This
learning-by-doing also serves to provide valuable ‘under the
hood’ insights related to numerical analysis packages.

(iv) The concept of time constant and gain for first order
ODEs is introduced next, using two examples: car dynamics
(cited above) and the passive membrane equation. To grasp
this, the students have to understand how biology (membrane,
channels, electrode for current injection in slice) can be viewed
as a circuit model (capacitance, resistance, battery, and cur-
rent injection source), and then how the biological system is
converted into a first order ODE.

(v) The full neuron model is then considered. This begins
with an introduction to probability concepts using single and
multiple coin toss experiments. The joint probability concept
is then tied to on/off positions of gates in channel proteins
and to the concept of voltage-gated conductance. This enables
students to extend the electrical circuit diagram of passive
membrane to that of a spiking neuron (transition of mem-
brane voltage from −65 mV to +10 mV in 1-2 ms) by adding
parallel conductances for voltage-gated sodium and potassium
channels. Students see how four first order ODEs can rep-
resent a spiking neuron in the form of a circuit, Fig. 1b.
This step-by-step model-based introduction to the underlying
mechanisms of what makes a neuron spike—typically difficult
for neuroscience students to grasp—helps convey the concept
logically.

(vi) The concepts of bursting (spikes followed by periods
of quiescence) and of summation and attenuation of voltage in
dendrites are easy to introduce once students understand how
the circuit with voltage-based conductances causes spiking.

(vii) The alternating biology/software lab schedule, Table I,
helps reinforce students’ learning of the difficult neurobiologi-
cal concepts. The hands-on and ‘minds-on’ format ensures that
the students do not merely memorize facts, but have the oppor-
tunity to use programming concepts and high school calculus
to better understand physiology and neuroscience principles.

(vii) Students are introduced to programming using the
open-source software NEURON, starting with its use as a cal-
culator, then progressing to loops, and then to modeling
specific components of a neuron (such as membrane with
capacitance, or various intrinsic and synaptic current channels

TABLE II
SELF-EFFICACY ITEMS; RATING FROM 0 TO 100 0 = CANNOT DO AT

ALL, 50 = MODERATELY CONFIDENT, 100 = HIGHLY CONFIDENT

with conductance and reversal potential). Students are then
assigned a programming project that brings together all the
components of the course over the remaining ten weeks of the
semester. The students first study the literature on half-center
oscillators, such as those that control blood flow in a leech
heart. They then develop an electrical circuit model with all
components, implement the model in NEURON, and then tune
the parameters to reproduce the alternating oscillation pattern
in the neurons.

(viii) Throughout the course, principles of electrophysiology
are emphasized, including the functioning of the record-
ing setup, buffering and amplification, and providing current
injection using the electrode. Students perform a virtual lab
experiment and analyze the circuit details such as the number
of ions injected by the electrode for realizing a 1 pA cur-
rent. This reinforces their learning related to electronics and
instrumentation.

III. STUDENT RESPONSES TO THE COURSES

Surveys were developed and administered to three groups
who participated in different courses at the university to
determine gains in learning and in self efficacy, Table II,
and how they rated the importance of engineering content,
Table III.

A. Description of Participants

Three groups were studied:
(1) The faculty group (‘faculty’ in Table III) comprised

39 neuroscience faculty, from four-year institutions around
the nation, interested in incorporating the contents into their
own courses; during 2016 (n = 18) and 2017 (n = 21) they
attended an in-depth one-week on-campus course focused on
the model-based approaches [20]. This group had 22 females
and 17 males, of whom 26 were White, one Native
American, one African-American, three Latino, six Asian, and
two other.

(2) The researcher group (‘researchers’ in Table III)
included Ph.D. students, postdoctoral fellows, and faculty
in neuroscience (from MIT, Stanford, UC-SF, USC, Brown,
Tulane etc.) who were interested in model-based approaches
for their research and so attended two-week research training
courses offered during 2016 (n = 23) and 2017 (n = 23) [21].
The first week was the same as for the faculty group, and
the second covered more advanced content. This group of
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TABLE III
RATINGS OF IMPORTANCE AND USEFULNESS OF ENGINEERING CONTENT IN THE COURSE BY THREE NEUROSCIENCE GROUPS: (1) 4-YEAR COLLEGE

FACULTY (FAC.; 2016& 2017; n = 26); (2) PH.D. STUDENTS, POST-DOCS, AND JUNIOR RESEARCH FACULTY (RES.; 2016&2017; n = 30);
(3) UNDERGRADUATE ALUMNI OF OUR COURSE (UNDERGRADS; 2015&2016; n = 16). SCALE OF 1-5 (1-NOT IMPORTANT,

3-MODERATELY IMPORTANT, AND 5-VERY IMPORTANT)

46 had 16 females and 30 males, of whom 28 were White, two
African-American, eight Latino, seven Asian, and one other.

(3) The undergraduates (‘undergrads’ in Table III) included
students from the semester-long undergraduate course on com-
putational neuroscience. The 22 undergraduates surveyed for
gain in learning (2017; described in Section III-B) were
13 males and 9 females, of whom one was African-American,
three Asian American, and 18 White. Alumni of the course
(2015-16) were surveyed on the importance of model-based
approaches and utility of software (Section III; Table III); of
the 16 respondents 6 were male and 10 female, of whom two
were Asian American, 13 White, and one not reported.

B. Gains in Learning Neuroscience

Gains in learning in the course for the three groups
were measured as described below. (Note that the number
of participants for individual statistical tests varies due to
fluctuation in participation).

Faculty group: Scores were compared on identical knowl-
edge assessment tests, approximately one hour long, adminis-
tered before and after the course, consisting of 15 items that
measured concepts in math (two items) and in neuroscience
(13 items). Items included topics such as the calculation
of the time constant for membrane response with constant
current injection, sketching an electrical circuit with linear and
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nonlinear resistors and capacitors, Fig. 1, and writing the gov-
erning equations for a spiking neuron. The scores on the post-
test were much higher than on pre-test (58 vs. 30; p<.0001,
t-test; n = 35). Differences in gains between disciplines
(Physical Sciences, Biological Sciences, and Psychology) were
not significant (31 vs. 32 vs. 24; p = 0.32, one-way ANOVA).

Researcher group: The same approach was used as
for the faculty group. The mean scores on the post-
test were much higher than on the pre-test (64 vs 46;
p<.0001, t-test; n = 46). Learning gains between disci-
plines (Physical Sciences, Biological Sciences, Medicine,
and Psychology) did not differ significantly among these
groups (14 vs. 16 vs. 32 vs. 23; p = 0.08, one-way
ANOVA).

Undergraduates: Lacking similar pre- and post- tests for
the undergraduate group, responses were examined (n = 22;
2017) on three questions that were identical to questions
on the closed-book mid-term and final exams (for which
students do not get to keep the question sheets), and per-
tained to model-based content: (i) parsing contributions of
various nonlinear currents to the resting membrane potential,
(ii) sketching and writing the ordinary differential equa-
tions (ODEs) for the circuit in Fig. 1, and (iii) writing
the first order equation for a membrane with leak channels,
sketching its response to a constant current injection, and
finding the time constant. Scores on all questions were signif-
icantly higher on the final compared to the mid-term (p<.01,
n = 22). Differences in gains between disciplines (Engineering
or Biological Sciences) were not significant (8.78 vs. 7.35;
p = 0.63).

C. Gains in Self-Efficacy

In addition to learning, self-efficacy was measured in
researchers and faculty. Self-efficacy refers to confidence
that one can carry out actions necessary to attain a desired
performance; it is future oriented and refers to confidence
for future behavior. Increases in self-efficacy have been
linked by Bandura to enhanced learning and increases in test
scores [25]. Self-efficacy is as important because learners with
high efficacy tend to demonstrate increased interest, effort,
persistence, and use of strategy. Several items in the study
reported here were developed to measure self-efficacy, fol-
lowing suggestions in [25]; the neuroscience-related items are
listed in Table II. On a scale of zero to 100 in ten-point
increments (on an 11-point scale), participants indicated at
the beginning of, and after the course, how confident they
were that they could perform each behavior. The items in
Table II were averaged to create a self-efficacy for neu-
roscience score. The efficacy scores increased significantly
from pre- to post-course for both researchers (pre = 66,
post = 85; p<.001; n = 38), and faculty (pre = 61, post = 80;
p<.001; n = 13), indicating enhanced confidence in learn-
ing neuroscience for both groups. Taken together, the findings
from the knowledge and self-efficacy assessments suggest that
incorporation of model-based content increases learning in
neuroscience.

D. Importance of Model-Based Approaches and Usefulness
of Virtual Labs in Teaching Neuroscience

Surveys administered to the three groups (Table II) were
used to examine the importance of model-based approaches
described in Section II to student learning and the utility of
the virtual (software) labs to enhance instruction. The under-
graduates who responded to this survey were alumni of the
2016 and 2017 offerings of the course. Specifically, the groups
were first asked to rate the importance of (i) introducing rele-
vant math and systems content separately, and (ii) integrating
math/systems content into neuroscience case studies, and then
were asked to rate (iii) the usefulness of software tutorials to
teach neuroscience concepts.

The rating of the importance of model-based approaches
in general was very high, with an average of 4.02 out of
5.0 for the seven items in Table IIIa (the scale levels were
5=very important and 3=moderately important), indicating
that all the topics were perceived as being important for
undergraduate neuroscience. Between groups, the researchers
rated the foundational model-based concepts higher on items
1–4 (p<.2) compared to four-year college faculty, and higher
than both the other groups on items 5–7 (p<.01), Table IIIa.
Furthermore, the average rating by undergraduates was higher
on every item compared to those of faculty, although not sig-
nificantly. Interestingly, all groups gave the highest rating to
the item Understanding a passive membrane as a capacitance
in parallel with a resistance (with battery), and developing
an electrical circuit model for a passive membrane, Table III,
a key model-based approach in engineering. All groups also
gave their lowest rating (still a 3/5) to the same item,
Understanding how a first order ODE is solved by hand calcu-
lations, with researchers rating it highest at 3.96/5. Research
preparedness of undergraduates is evidenced only indirectly
by the fact that two of the alumni of the undergraduate course
secured funding to pursue advanced research in computational
neuroscience (an NSF Graduate Fellowship to pursue a Ph.D.
at the University of Washington, and a summer internship
at MIT).

The importance of integrating model-based approaches
directly into neuroscience case studies for instruction was
again rated highly by all groups (undergrads were not asked
to rate these items) with averages of 4.44 and 4.17 for
researchers and faculty, respectively, with no appreciable dif-
ferences on most items except the fourth (p<.01) in Table IIIb.
For the section related to usefulness of software for teach-
ing model-based approaches, the teacher ratings were higher
than those of researchers for simpler tutorials (items 1–3 of
Table IIIb) and vice versa or comparable for complex ones
(items 4–7), although not significantly so. Interestingly, under-
grads rated the usefulness of software lower than the other
groups (although not significantly), except for the last one,
which was linked to real-world applications. Implications of
these findings are elaborated in Section IV. In summary, the
importance of engineering content for student learning, of inte-
grating that into concepts for teaching, and of the importance
of software incorporating such content, were all consistently
highly rated by faculty, researchers and undergraduates.
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E. Standards of Expectations for Learning in Neuroscience

Based on input from the more than 150 faculty and
researcher attendees so far in the summer programs, and
a survey of the literature, one can see that neuroscience cur-
ricula lack even partial coverage of the model-based content
reported here, although several programs require calculus and
differential equations. An analysis of the topics in Table I
shows that it is difficult to disentangle model-based con-
cepts from those of neuroscience, highlighting the utility of
such ‘integrated’ modules. The survey findings above, and the
fact that model-based approaches are part of well-supported
standards for expectations for learning in engineering [26],
suggest that incorporation of such engineering content has the
potential to improve learning and instruction in undergraduate
neuroscience.

F. Limitations

Limitations of the study include: (i) Students in the sum-
mer workshops and undergraduate classes self-selected to be
in the courses and probably represent unique groups, so results
should not be generalized to all possible students. (ii) There
was no random assignment to treatment and control groups, so
attributing pre-test/post-test improvement to the courses is log-
ical but not definite. (iii) Even though the undergraduate course
has been offered since 2008, only one cohort of undergraduates
participated in this data set, which limits generalizability.

IV. DISCUSSION AND CONCLUSION

An unprecedented surge of interest in neuroscience over
the past decade has resulted in institutions, from liberal arts
colleges to research universities, initiating new undergradu-
ate majors in neuroscience [8], and NAE recognizing ‘reverse
engineer the brain’ as one of 14 grand challenges for the 21st

century [10]. This development ushers in tremendous oppor-
tunities for engineers to contribute to the exciting challenge
of understanding the brain, and the course reported here pro-
vides a direction for engineering involvement in curricular
development in neuroscience.

The field of neuroscience spans a wide range, including
genetic, molecular, cellular, systems, and behavioral levels of
study [27]. Engineering model-based approaches are critical to
bridge these diverse levels and provide links to behavior [28].
The model-based content in the course, beyond basic modeling
aspects, includes system theoretic concepts, starting with link-
age of high school concepts of differentiation/integration to
first order differential equations, basic electric circuit theory,
derivation of passive membrane dynamics emphasizing laws
to reveal first order dynamics (and elaboration using mechan-
ical, hydraulic and thermal systems), illustration of the role of
stochasticity in channel dynamics and spiking, highlighting the
grouping of current modules to preserve function in bursting
cells, instruction on electrophysiology fundamentals in a stand-
alone virtual lab, and programming. Importantly, ‘systems
thinking’ (using a function/biology/model/math framework) is
emphasized throughout the course and reinforced using theory,
open-source ‘virtual’ labs available on students’ own laptops
to facilitate self-paced learning, and by small group work.

A survey of faculty, researchers, and undergraduates revealed
that incorporation of engineering content into neuroscience
enhances learning of the difficult neuroscience concepts, facil-
itates teaching, and is welcomed by each of the three groups.

Model-Based Approaches Enhance Student Learning and
Facilitate Instruction: Gains in learning were quantified by
pre- and post-tests, and by self-efficacy scores. Significant
improvement in scores was found for all the groups. Also, the
faculty from four-year colleges and researchers (Ph.D. stu-
dents, postdocs and junior faculty) from around the nation
who participated in the summer programs rated all components
of the engineering content highly, attesting to the importance
of such engineering content in teaching undergraduate neu-
roscience. Their enthusiasm is probably due to the fact that
learning neuroscience is rated as a challenging and laborious
task by undergraduate students [29]. One could argue that this
is because most neuroscience courses are taught using the stan-
dard ‘lecture-and-textbook’ paradigm. It could also be that few
neuroscience courses have sufficient quantitative content to
explain the complex contents, and even if included, such con-
tent is unlikely to be woven into case studies in a tightly knit
form as reported here. Once students began to comprehend the
linkage between biology and models, they displayed tremen-
dous interest. It was remarkable that the average rating of the
importance of the general model-based contents, Table IIIa,
was a high 3.69 among the faculty from four-year colleges that
do not typically have strong research programs. This attests to
the critical need for the utilization of such concepts to explain
the intricate concepts in neuroscience. This observation is fur-
ther strengthened by the fact that the perceived importance
by trainees increases with research level: (i) undergraduates
from the research university rated the same contents higher
(although not significantly; Table IIIa) compared to faculty;
and (ii) researchers from around the nation rated them the
highest of all groups (p<.2; see Section III-D). Furthermore,
all groups rated the usefulness of the open source software to
learn these foundational concepts highly. The differential rat-
ing of the utility of software to illustrate the neuroscience case
studies was along expected lines, with four-year college fac-
ulty focusing more on simpler case studies relevant to their
students, Table IIIb, and the researchers desiring a deeper
understanding of the more complex case studies. The impor-
tance of connecting to real-world application is highlighted by
the fact that undergraduates rated items 6 (neuronal network
and gaits in horses) and 7 (short-term memory and winner-
take-all networks) of the software tutorials higher than the
other two groups. Such interactive software tutorials improve
learning and are particularly important for students from
underrepresented groups [30], [31]. It is noted that model-
based approaches can be taught with only the software tutorials
(i.e., without the biology labs), as has been largely the case in
the summer programs for faculty and researchers. Importantly,
the engineering content can be distributed in more than
one neuroscience course, as may happen eventually in this
important and growing area of neural engineering.

An understanding of model-based approaches will be essen-
tial to “prepare the next generation of students to think
critically, synthetically, and creatively as they confront the
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problems facing humanity in the 21st century” [8, p. A34].
For instance, in the neurosciences, the disciplines of biology,
psychology, and medicine would benefit from interactions with
engineering to utilize model-based approaches for a fundamen-
tal understanding of neurons and circuits, the building blocks
of the brain. Interestingly, biology and psychology faculty,
and their administrators, are keen to incorporate computational
skills and software tools in their curricula. This is evident from
the fact that the annual summer workshops to disseminate such
curricula have, since 2008, attracted 113 undergraduate neu-
roscience faculty from two- and four-year institutions from
27 US states, and continue to be popular [20]. It could also
be argued that the voluminous data beginning to be generated
at multiple neural levels in neuroscience make model-based
approaches feasible, and perhaps imperative. At the authors’
institution, the curricular collaboration between engineering
and arts & science resulted in the institution of a popular inter-
disciplinary minor in computational neuroscience for under-
graduates from both colleges; this has also benefited engi-
neering with increased research collaborations. Indeed, neuro-
science research challenges for engineering are numerous and
include technological ones such as large scale monitoring of
brain activity at fine temporal and spatial scales (e.g., [32]
and [33]). Some challenges at the theoretical/systems level
include novel hierarchical frameworks and big data analytics to
bridge scales (genetic, molecular, cellular, systems, and behav-
ior/clinical). These researchers are investigating how brains
solve computational problems and what makes them unique,
and how to enhance clinical decision-making by understanding
neural mechanisms of dysfunction (e.g., [34]).

Finally, it is noted that although engineering departments
have difficulty attracting female students [35], women are
more likely to participate when biology is included in the
program. One of the best demonstrated gender differences is
that women are underrepresented in fields that are mathemat-
ics intensive, and are much better represented in fields such
as the life sciences [36]. The course reported here bucked this
trend, with a female/male ratio of 46% in a total enrollment of
29/year from 2015-17. This makes neuroscience an attractive
area for recruiting women into engineering with its emphasis
on model-based approaches to understanding the life sciences
and human health.
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