
NeuroImage 221 (2020) 117046
Contents lists available atScienceDirect

NeuroImage

journal homepage:www.elsevier.com/locate/neuroimage
Estimation and validation of individualized dynamic brain models with

resting state fMRI

Matthew F. Singha,b,c,*, Todd S. Braverb, Michael W. Coled, ShiNung Chingc,aff5,e

aDepartment of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
bDepartment of Psychology, Washington University in St. Louis, St. Louis, MO, USA
cDepartment of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
dCenter for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
eDepartment of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
ARTICLE INFO

Keywords:

Resting state fMRI

Neural dynamics

Causal modeling

Recurrent neural networks

Dynamic functional connectivity
* Corresponding author. 600 S. Euclid Ave., 6311

E-mail address:f.singh@wustl.edu(M.F. Singh).

https://doi.org/10.1016/j.neuroimage.2020.11704

Received 20 December 2019; Received in revised f

Available online 27 June 2020

1053-8119/©2020 The Author(s). Published by Els

nc-nd/4.0/).
ABSTRACT

A key challenge for neuroscience is to develop generative, causal models of the human nervous system in an

individualized, data-driven manner. Previous initiatives have either constructed biologically-plausible models

that are not constrained by individual-level human brain activity or used data-driven statistical characterizations

of individuals that are not mechanistic. We aim to bridge this gap through the development of a new modeling

approach termed Mesoscale Individualized Neurodynamic (MINDy) modeling, wherein wefit nonlinear

dynamical systems models directly to human brain imaging data. The MINDy framework is able to produce these

data-driven network models for hundreds to thousands of interacting brain regions in just 1–3 min per subject. We

demonstrate that the models are valid, reliable, and robust. We show that MINDy models are predictive of

individualized patterns of resting-state brain dynamical activity. Furthermore, MINDy is better able to uncover the

mechanisms underlying individual differences in resting state activity than functional connectivity methods.
1. Introduction

To understand human brain function, it is necessary to understand the

spatial and temporal computations that govern how its components

interact. This understanding can take multiple levels, ranging from sta-

tistical descriptions of correlations between brain regions to generative

models, which provide a formal mathematical description of how brain

activity evolves in time. However, efforts have taken quite different ap-

proaches based upon what data is available in human vs. nonhuman

subjects. Several international neuroscience initiatives have relied upon

nonhuman subjects to collect vast amounts of anatomical and electro-

physiological data at the cellular scale (Markram, 2006,Markram et al.,

2011,Okano et al., 2016). Generative models are then formed by inte-

grating these cellular-level observations with known neuronal biophysics

at the spatial scale of individual neurons or small populations (Markram,

2006,Markram et al., 2011).

In contrast, another set of large initiatives has instead focused on

modeling individual human brain function using an approach often

referred to as“connectomics”(e.g., Human Connectome Project, (Essen

et al., 2013)). This approach relies on descriptive statistics, typically
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correlation betweenfluctuating activity signals in brain regions assessed

during the resting state (“resting state functional connectivity”or rsFC;

(Biswal et al., 1995)). As a result, it is sometimes difficult to make

mechanistic inferences based upon functional connectivity correlations

(Buckner et al., 2013). Moreover, neural processes are notoriously

nonlinear and inherently dynamic, meaning that stationary descriptions,

such as correlation/functional connectivity, may be unable to fully cap-

ture brain mechanisms. Nevertheless, rsFC remains the dominant

framework for describing connectivity patterns in individual human

brains.

Despite the promise of human connectomics, there have been only a

few attempts to equip human fMRI studies with the sorts of generative

neural population models that have powered insights into non-human

nervous systems. Notable advances have occurred in direct-

parameterization approaches, with methods being developed to iden-

tify directed, causal influences between brain regions (e.g.Razi et al.,

2017). Conversely, neural mass modeling approaches have also been

extended to study human brain activity in a generative fashion (Break-

spear, 2017), and these have provided new insights into the computa-

tional mechanisms underlying fMRI and MEG/EEG activity dynamics
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(Sanz Leon et al., 2013,Schirner et al., 2015,Jirsa et al., 2017,Demirtaş

et al., 2019,Wang et al., 2019). However, unlike (linear) data-driven

approaches (e.g. Dynamic Causal Modeling;Friston et al., 2003,Razi

et al., 2017), neural mass models have been limited to replicating

higher-level statistical summaries, such as functional connectivity, rather

than predicting the actual time-series. This fact may not be relevant for

some applications in which statistical descriptions will suffice. However,

there remain many applications in basic neuroscience, neural medicine,

and neural engineering for which more precise descriptions could be

profitably leveraged.

Unfortunately, current approaches of both types have important limi-

tations. In particular, the existing approaches to directly parameterize

models (e.g. DCM) are subject to potential misinferences due to assump-

tions of linearity (Tu et al., 2018), and, in some cases, limitation to a

relatively small number of brain regions (Ryali et al., 2011,Roebroeck

et al., 2011,Lohmann et al., 2012). This number has increased dramati-

cally in recent years by assuming afixed hemodynamic response function

(Fr€assle et al., 2017), but remains well below modern brain parcellations,

which feature several hundred regions (e.g. (Glasser et al., 2016,Schaefer

et al., 2017), See Discussion). Likewise, with current neural mass modeling

approaches, their ability to quantitatively recreate key features of

individual-level functional connectivity has also been limited (Honey

et al., 2009,Demirtaşet al., 2019,Wang et al., 2019). This may be because

the most common approach is to parameterize connectivity from estimates

of white matter integrity from diffusion imaging, which also can lead to

potential misinference, since these connectivity estimates are constrained

to be symmetric and positive ((Knock et al., 2009)). Efforts have been

made to personalize these models by using individualized diffusion im-

aging data rather than group-average and/or tuning a small number of

free-parameters to better approximate each subject’s summary statistics

(e.g. (Schirner et al., 2015,Jirsa et al., 2017,Demirtaşet al., 2019)).

However, again, these models are not directly inferred from the brain

activity time-series, which could limit their ability to accurately simulate

the dynamical features of these time-series. Indeed, up until this point, it

has not been shown that individual-level brain models can be directly

parameterized andfit from fMRI while retaining sufficient complexity to

capture–and predict–whole-brain activity. This limitation is critical

because in order to accurately characterize individual variation in humans

–which is the goal of personalized neuroscience and precision medicine

initiatives (Ashley, 2015,Psaty et al., 2018,Satterthwaiteetal.,2018)–

individualized whole-brain models are required.

In the current work, we aim tofill this gap, by advancing high-

resolution characterization of the human connectome through the

parameterization of nonlinear dynamical systems models that go beyond

statistical correlation matrices. The models consist of hundreds of

interacting neural populations, each of which is modeled as an abstracted

neural mass model evolving over time-scales commensurate with fMRI.

Most critically, the models are optimized to capture brain activity dy-

namics at the level of individual human subjects. We present a compu-

tationally efficient algorithm to rapidlyfit these models directly from

human resting-state fMRI. The algorithm extends data-driven techniques

towards the estimation of biologically interpretable models, and

conversely enables the parameterization of dynamical neural models in a

data-driven, individualized fashion with relatively few priors on the

dynamics within and between brain regions. Our approach represents a

significant departure and alternative approach to that of previous

modeling efforts, in that every parameter in our model is individually

estimated without consideration of prior anatomical constraints or long-

term summary statistics.

We describe our efforts to develop and validate these models,

demonstrating that they successfully characterize whole-brain activity

dynamics at the individual level, and as such can be used as a powerful

alternative to rsFC, and even to more closely related modeling approaches,

such as DCM. Because of this goal, we term our modeling approach

MINDy: Mesoscale Individualized Neural Dynamics. In the sections below,

we introduce the MINDy modeling framework, highlighting its most
2

innovative and powerful features, and presenting results that validate its

utility as an analytic tool for investigating the neural mechanisms and

individual differences present in fMRI data.

2. Methods

2.1. Nature of interpretations from the model

The key premise of our approach is an expansion of the architectural

description of brain networks from a simple connectivity matrix, to an

interpretable dynamical model:

_x¼WψαðxtÞ Dxtþεt: (1)

This model, which resembles a neural mass model (Wilson and

Cowan, 1972,Hopfield, 1984,Deco et al., 2011,Breakspear, 2017) de-

scribes the evolution of brain activity at each anatomical location (each

element of the vectorxt). Unlike true neural-mass models, we model

abstracted brain activity commensurate with the fMRI timescale, rather

than the evolution of populationfiring rate over milliseconds. Our model

is similar, however, in that it is described by three components: a weight

matrix (W) which identifies pathways of causal influence between neural

populations, a parameterized sigmoidal transfer function (ψ) which de-
scribes the relation between the local activity of a population and its

output to other brain regions (Eq.(3),Fig. 1A, (Marreiros et al., 2008)),

and a diagonal decay matrix (D) which describes how quickly a given

neural population will return to its baseline state after being excited (i.e.

the time-constant;Fig. 1A). Process noise is denotedεtand is assumed to
be uncorrelated between parcels. The additional parameters (αandD)
reflect regional variation in intrinsic dynamics (D) and efferent signaling

(α); critically, as described below, these parameters also show consistent
anatomical distributions. These properties vary with brain network and

are consistent even at thefiner within-network scale (Fig. 4A and B).

Thus, our model, like a neural mass model, parameterizes both the in-

teractions between brain regions and the processes that are local to each

brain region that make it distinct.

It is important to recognize that this model is a phenomenological

model in the sense that the state variables are more abstract than

encountered in traditional mean-field models which combine biophysical

first-principles and phenomenological approximations (e.g. the

sigmoidal nonlinearity). Thus, inferences gained from the model are

bounded by the inherent limitations of fMRI data (e.g. low temporal

resolution and the indirectness of BOLD). The parametric form that we

have chosen leads itself to interpretability. However, we stress that

interpretability should not be confused with biophysical equivalence. As

described in SI, there are likely many biophysical processes (including

non-neuronal) contributing to each estimated parameter (5.1).
2.2. Robust estimation of individualized neural model parameters

While theoretical neural mass models operate in continuous-time,

fMRI experiments have limited temporal sampling rates. Therefore, we

approximate the continuous time neural model byfitting a discrete-time

analogue for temporal resolutionΔt(e.g. the sampling TR;Fig. 1B):

xtþΔt xt¼ðWψαðxtÞ DxtþεtÞΔt: (2)

Parameter estimation in the MINDy algorithm contains three main

ingredients, which ensure that estimates are robust, reliable, and valid.

First, the transfer functions of neural mass models are allowed to vary by

brain region through the scalar parameterα:

ψαðxtÞ:¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2þðbxtþ:5Þ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2þðbxt :5Þ2
q

: (3)

Each brain region has its ownαparameter,fit on a subject-wise basis,
whilebis afixed global hyperparameter (b¼20=3 for the current case).

The use of a parameterized sigmoid allows for additional anatomical



Fig. 1.Overview of Methods Employed. A) The MINDy model consists of coupled 1-dimensional neural-mass models (Hopfield form (Hopfield, 1984)). The shape of

the transfer-function for each brain region is parameterized by a curvature parameterα. B) Model goodness-of-fit was measured through one-step prediction of the
empirical time-series. C) Overview of data processing and analyses: data was processed according to Siegel and colleagues (Siegel et al., 2017) and parcellated.

Reported analyses fall into three categories: validation, sensitivity to nuissance parameters, and predictions of brain activity patterns. D) In both simulations and

empirical analyses the BOLD signal was Wiener-deconvolved (Weiner, 1949) with a canonical HRF function (see Methods; (Friston et al., 1998)) before being analyzed

with either MINDy or rsFC.
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heterogeneity in region-wise dynamics. This form of transfer function is

general enough to capture conventional choices (see SI Sec. 5.2 for a

derivation of the function and its relation to conventional transfer

functions). Secondly, we make use of recent advances in optimization to

ensure that thefitting procedure (SIFig. 9 C) is robust. By using Nesterov-

Accelerated Adaptive Moment Estimation (NADAM, (Dozat, 2016)) we

achieve the speed advantage of stochastic gradient descent (SGD) algo-

rithms, while at the same time preventing both over-fitting and

under-fitting (see SI Sec. 5.3 for discussion). This approach leads to a very

reasonable time duration for estimation (approximately 1 min on a

standard laptop; see SI Sec. 5.8 for a comparison with spDCM).

Lastly, we constrain the problem by decomposing the large matrix of

connection weights (W) into two simultaneouslyfit components: a sparse

componentWSand a low-dimensional componentWL:¼W1W
T
2in which

bothW1andW2aren krectangular matrices withnbeing the number

of neural masses (brain parcels) andk<nbeing a global constant that

determines the maximum rank ofWL. This decomposition is advanta-

geous for concisely representing the interactions of structured networks

and is the most important element of thefitting process. Sparseness

criteria were achieved throughL1regularization (Donoho, 2006) with

the resultantfitting objective being to minimize:

J¼
1

2
ETjjðXTþΔt XTÞ ½ðWSþWLÞψαðXTÞ DXTjj

2
2

þλ1kWSk1þλ2TrðjWSjÞ þλ3ðkW1k1þjjW2jj1Þþ
λ4
2
kWLk

2
2 (4)

The notationET denotes the mean over all temporal samples

considered (the“minibatch”of each iteration) so thefirst term simply

corresponds to the mean square error of predictions. Each of the

remaining penalty terms have a global regularization constant (λi) that is

shared across all subjects. This regularization scheme was adopted in

order to reduce the dimensionality of the parameter estimation problem,

while at the same time, attempting to reflect the consistently observed

community-structure of brain connectivity measures. Under this view,

brain connectivity patterns can be described in terms of communities

(sub-networks) linked together by highly connected hubs. We envision

the sparse component of connectivity to mimic the communication be-

tween connectivity hubs. By contrast the low-rank component is meant to

account for the propagation of signals from hubs to their corresponding

subnetworks and vice-versa.

We employ this two-component weight formulation as a heuristic that

facilitates high-dimensional modelfitting. In most analyses we only

analyze the composite weight matrix rather than its components. How-

ever, preliminary results indicate that properties of this decomposition,
3

namely the ratio of sparse vs. low-rank components, may be a marker of

individual differences (see SI Sec. 5.6). Interestingly, recent work by

Mastrogiuseppe and Ostojic (2018)) has also considered models in which

connectivity is the sum of two terms: one low-rank and one random. The

authors found that these structures produced low-dimensional dynamics

which could be predicted based upon network structure and exogeneous

(task) input. Such analyses may be relevant for understanding the role of

connectivity in MINDy. Bayesian and algebraic interpretations of this

penalty function are presented in SI Sec. 5.5. We also discuss the

well-posedness of this problem (SI Sec. 5.5).

Throughout, we use the term“weights”to refer to the matrixWin

estimated dynamic neural models. This is to differentiate the model

connectivity parameter from the term“resting-state functional connec-

tivity”(rsFC), which instead refers to the correlation matrix of BOLD

time-series, rather than the mechanistic concept that it is often assumed

to measure (i.e. direct and indirect interactions between brain regions).

We reserve the term “effective connectivity”to indicate a causal,

monotone relationship in activity between brain regions that evolves

over no more than 2s (the typical fMRI sampling rate). Thus, both thefit

model weights and the rsFC are ways to approximate the effective con-

nectivity, even though rsFC may not support reverse inferences regarding

directedness and causality.

2.3. Study design

The objective of the current study was to rigorously validate a new

approach for data-driven whole-brain modeling (MINDy). The study

design consisted of both numerical simulations to validate the accuracy

of models with respect to a known ground-truth, as well as empirical

analyses of HCP resting-state data. The latter analyses were designed to

test whether MINDy adds additional value in-practice and to quantify its

performance in the presence of known experimental confounds (e.g.

motion).

2.4. Empirical dataset

2.4.1. HCP resting-state scans

Data consisted of resting state scans from 53 subjects in the Human

Connectome Project (HCP) young adult cohort, 900 subject release (for

acquisition and minimal preprocessing details, see (Glasser et al., 2013);

WU-Minn Consortium). Each subject underwent two scanning sessions

on separate days. Each scan session included two 15-min resting-state

runs (two scans two days) for a total resting state scan time of 60

min (4800 TRs). The two runs for each session corresponded to
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acquisitions that had left-right and right-left phase-encoding directions

(i.e., balanced to account for potential asymmetries in signal loss and

distortion). The TR was 720 ms and scanning was performed at 3T. The

subjects were selected by starting with an initial pool of thefirst 150

subjects and then excluding subjects who had at least one run in which

more than 1/3 of frames were censored (i.e. 400 bad frames out of 1200).

Although this criterion greatly decreased the number of useable

subjects from the initial pool of 150 to 53 (attrition¼65%), it should be

noted that it is likely to be overly conservative. We employed such a

strongly conservative criterion for thisfirst-stage validation effort to

provide the cleanest data from which to test the model. Likewise, we had

the luxury of drawing upon a very large-sample dataset. In contrast, we

believe that the exclusion criteria will not need to be as conservative in a

research setting for which model cross-validation is not performed on

every subject (i.e., it is probably overly stringent to require that all four

sessions be clean, since we only used two sessions at a time). In partic-

ular, the use of cross-validation required that two models befit for every

subject using disjoint data so that the validation required twice as much

data as would normally be required. Moreover, we required that the data

be uniformly clean so that we could parametrically vary the amount of

data used (i.e. criteria were in terms of absolute cleanness for each

scanning session rather than number of clean frames). However, there is

no reason why the models could not befit to clean segments of scanning

sessions.

2.4.2. Preprocessing

Data were preprocessed through the rsFC pipeline proposed by Siegel

and colleagues (Siegel et al., 2017;SIFig. 9 A). Thefirst stage of this

pipeline is the HCP minimal pre-processing pipeline (see (Glasser et al.,

2013)) with FSL’s ICA-FIX correction (Griffanti et al., 2014,Salimi--

Khorshidi et al., 2014). We then applied one of 3 s-stage pipelines

developed by Siegel and colleagues ((Siegel et al., 2017); Sec.3.7.3), to

test the effects of including various additional preprocessing steps. In all

three pipelines, drift was mitigated by detrending data. The pipelines also

all included motion scrubbing, using both Framewise Displacement (FD)

and the temporal derivative of variation (DVARS). Frames that exceeded

the cutoffs for FD (.2 mm) or DVARS (5% above median) were replaced

via linear interpolation (Power et al., 2015). Respiratory artifact was

mitigated with a 40th-order 0.06-0.14 Hz band-stopfilter applied to FD

and DVARS for all pipelines (Siegel et al., 2017).

The 3 s-stage pipeline variants differed however, in the number of

regressors included to remove nuisance signals. Thefirst variant mainly

corrected frame-to-frame motion artifact, which has been found to

induce systematic errors in functional connectivity studies, i.e. gener-

ating spurious short-distance correlations while diminishing long dis-

tance ones (Power et al., 2012). In addition to data scrubbing, motion

correction was performed using the 12 HCP motion regressors and their

temporal derivatives. The second, more extensive pipeline variant,

known as CompCor, also removed cardiac and respiratory signals, by

additionally regressing out principal components of the white matter and

cerebrospinalfluid signals (Behzadi et al., 2007). Lastly, the third pipe-

line variant also added global signal regression (GSR; (Aguirre et al.,

1998a)), in which the mean signals from white matter, cerebrospinal

fluid, and grey matter are also included as regressors. As the variables

included are cumulative, these three pipelines form a representative hi-

erarchy of preprocessing approaches, that optionally includes CompCor

or CompCorþGSR in addition to motion scrubbing. For most analyses

we used the full (third) pipeline, but we also compared the effects of

pipeline choice (Sec.3.7.3).

After the second-stage preprocessing pipelines, we deconvolved the

parcellated data (see below) with the generic SPM hemodynamic kernel

(Friston et al., 1998) using the Wiener deconvolution (Weiner, 1949). For

the Weiner deconvolution, we used noise-power to signal-power

parameter .02. The value of this parameter dictates the degree of tem-

poralfiltering during the deconvolution with smaller values being more
4

parsimonious (less additional filtering). We then smoothed by

convolving with the [0.5 0.5] kernel (2 point moving average) and

z-scored the result. To test the robustness of thefitting procedure, we

compared the effect of the second-stage preprocessing pipelines for some

analyses. Based upon these results, we chose the third variant pipeline

(GSRþCompCorþmotion) for all other analyses. For all empirical rsFC

analyses we use the deconvolved data to prevent bias from the decon-

volution procedure in comparing MINDy and rsFC. As described further

below, we also tested the effect of mismatches between“true”and ca-

nonical HRF models (Sec.3.7.4, 3.7.5).

We defined derivatives in terms offinite differences. Since HCP

employed unusually fast scanner TRs, we temporally downsampled the

estimated derivatives for calculating goodness-of-fit in non-simulation

analyses to represent the anticipated benefits to typical fMRI protocols

and improve SNR:dXðtÞ¼ðXðtþ2Þ XðtÞÞ=2.

2.4.3. Parcellation atlases

In the present framework we define whole-brain models in terms of

connected neural populations. Thus, the approach demands that the

neural populations be defined a-priori. For the present case of fMRI data,

we define these populations to be anatomical brain regions correspond-

ing to subcortical structures and cortical parcels. For subcortical regions,

we follow the HCP protocol in considering 19 subcortical regions as

defined by FreeSurfer (Fischl, 2012). For cortical parcels, we generally

employed the gradient-weighted Markov Random Field (gwMRF) par-

cellation with 200 parcels per hemisphere (Schaefer et al., 2017) and

organized according to the 17 cortical networks described in (Thomas

Yeo et al., 2011). The gwMRF parcellation is optimized to align with both

resting-state and task fMRI, and has been found to demonstrate improved

homogeneity within parcels relative to alternative parcellation tech-

niques. However, for anatomical analyses we compared with an addi-

tional atlases (SIFig. 11 C,G) to ensure generality: the MMP atlas (Glasser

et al., 2016) which was also derived from a combination of rest and

task-based data. The MMP (Multi-Modal Parcellation) atlas is symmetric

with 180 parcels per hemisphere.

2.5. MINDyfitting procedure

MINDy models werefit by applying the iterative NADAM algorithm

(Dozat, 2016) to optimize the MINDy cost-function (Eq.(4); see SI Sec.

5.12). This algorithm belongs to the family of stochastic gradient-descent

techniques and we provide further detail/discussion regarding NADAM

in SI Sec. 5.3. To ensure algorithmic stability, we used two trans-

formations (one each for the curvature and decay parameters) which are

detailed in SI Sec. 5.12. The gradient equations for each parameter in

detailed in SITab. 11.

2.5.1. Compensating for regularization bias

In order to retrieve parsimonious weight matrices and reduce over-

fitting, we employed regularization to each weight matrix (both the

sparse and the low-rank matrices) during thefitting process. One

consequence of regularization, however, is that thefitted weights may be

unnecessarily small as weight magnitudes are penalized. Afterfitting, we

therefore performed a global rescaling of weight and decay contributions

for each model using robust regression (Holland and Welsch, 1977)as

implemented by MATLAB2018a. Specifically, wefit two scalar parame-

ters:pW;pDin regressingdXðtÞ¼pWWψðXðtÞÞ pDDxcollapsed across
all parcels. HerepW andpDrepresent global rescaling coefficients for the

weights and decay, respectively. As this compensating step only used

global rescaling forWandD, it had no effect upon the relative values for

each parcel, only the total magnitude of theWandDcomponents. Since

only two values are estimated, this step does not reintroduce overfitting.

Although we performed this step using robust regression, we obtained

identical results using conventional linear regression. The choice of

robust regression was made as a safeguard for high leverage points as

might occur due to motion artifact. However, results indicate that
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conventional regression may suffice for sufficiently clean data.

2.5.2. Selecting hyperparameters and initialization

The proposedfitting procedure requires two sets of hyperparameters:

the four regularization terms specific to our procedure and the four

NADAM parameters (Dozat, 2016). By“hyperparameters”we refer to

free constants within an algorithm which distinguishes them from the

“parameters”of an individualized model.

Hyperparameters were hand-selected for model goodness-of-fit and

reliability, based upon prior numerical exploration with a subset of 10

subjects who did not belong to the“data source”subjects. Thus, these

subjects were not included in any further analyses so the hyperparameter

selection procedure did not artificially inflate model performance. The

selection criteria were to maximize cross-validated goodness-of-fit under

the constraint that test-retest correlations were greater than 0.7 for all

parameters. Regularization values were sampled with resolution 0.005.

The chosen set of hyperparameters was then constant for all test subjects.

Hyperparameter values and discussion are included in SI (Tables 12, 13).

The initialization distributions for the algorithm were similarly selected

using the same subjects and are included in the SI (Table 12). We

explored the effect of hyperparameter choices on the sparsity of MINDy

relative to rsFC and found that for any choice of regularization hyper-

parameters (even 0), the group-average MINDy weights are sparser than

rsFC (SI Sec. 5.7).
2.6. Ground-truth simulations

2.6.1. Realistic whole-brain simulations

For the analyses of sensitivity and individual differences we gener-

ated new, synthetic individuals by randomly sampling neural mass model

parameters from the parameter distributions estimated from the full

dataset (i.e. N¼53 participants). The decay and curvature parameters (α;
D) were independently sampled for each parcel from that parcel’s pop-

ulation distribution. The weight matrices, however, were sampled as a

whole rather than sampling each individual connection as we found that

the latter approach led to pathological behavior in simulations. For the

robustness analyses, ground truth models were drawn from thosefitto

experimental sessions. The ground-truth models were simulated as sto-

chastic differential equations (dX¼fðXÞdtþσWdWt) withfðXÞthe
deterministic neural mass model and units time measured in terms of the

fMRI TR. Models were Euler-Maruyama integrated withdt¼1=4 and

σW ¼:45 in units TR (720ms) to generate simulated neural activity time-
series. Neural-activity was then downsampled to 1 TR resolution (as

opposed to the simulation’s time-step of dt TR) and convolved with the

SPM-style HRF kernel ((Friston et al., 1998); SIFig. 20 C):

hðt;αf1;2g;βf1;2g;cÞ:¼
tα1 1eβ1tβα11
Γðα1Þ

tα2eβ2tβα22
cΓðα2Þ

(5)

HereΓis the gamma function (equal to factorial for integer values).

The parameters describe two gamma-distributions (oneα;βpair per
distribution) and a mixing coefficient (c) to generate a double-gamma

distribution. Parameters were set to their default values (α1¼ 6;α2¼
16;β1¼1;β2¼1;c¼1=6) except for the simulation featuring HRF

variability. In this case, random perturbations were added to each

parameter and were drawn from the normal distribution with mean zero

and SD as indicated. Thefinal simulated BOLD signal was then generated

by adding white, gaussian noise with the indicated SD (Fig. 1D).

2.6.2. Randomized network simulations

Although some ground-truth simulations leveraged the empirical

MINDy distributions to maximize realism (Sec.3.2.1, 3.2.2,3.7.1,3.7.4),

others used randomly generated networks of Hopfield or neural mass

models (Sec.3.7.5, 3.8, SISec. 5.8). The latter ground-truth simulations

prevent circularity (i.e. using MINDy distributions to test MINDy) by

drawing parameters from random hyperdistributions independent of
5

previous analyses. These distributions were designed to possess complex

network structures by superimposing three simpler network structures:

community-structure (M1), sparse structure (M2), and low rank structure

(M3). These distributions are characterized by standard-deviation pa-

rametersσ1andσ2. An asymmetry parameterσacharacterizes the degree
to which the resultant network is asymmetric. Each standard-deviation

parameters was randomly sampled for each ground-truth model from

normal distributions:σ1;σaeNð4;:052Þandσ2eNð3;:052Þ. Connectivity
matrices were then randomly parameterized as follows:

M1e
h
N0;1σ21 þN0;1σ

2
1

3
i

n=qn=q

M2e
h
N0;1σ22

3
i

nn

M3e
h
N0;1σ21 þN0;1σ

2
1

3
i

nk

h
N0;1σ21 þN0;1σ

2
1

3
i

kn

(6)

Here, the bracket outside each matrix denotes its size withn¼40

denoting the total number of nodes,qdenoting the number of nodes per

community (randomly set to either 1 or 2 with equal probability), and

k¼5 denoting the rank of the low-rank component. We denote the

Kronecker product and use it to copy the community level matrix (M1)

among each node belonging to the community:cM1:¼1qq M1. The

three component matrices are then combined as follows:

Q¼bM1þM2þM3; bQ¼ðQþðQ QTÞ σaÞ (7)

Thefinal matrixCis formed by censoring elements ofbQwhose ab-

solute value is below 1/4 the standard deviation ofbQ. This same tech-

nique was used to randomly generate networks of Hopfield models with

homogeneous, heterogeneous, or nonlinear hemodynamic effects and

realistically-paramaterized neural mass models with nonlinear

hemodynamics.

2.6.3. Hopfield network simulations

We employed two cases of non-MINDy ground truths: Hopfield net-

works and neural-mass models (Sec.3.7.5,3.8). Continuous, asymmetric

Hopfield models are similar in form to the MINDy model, but use a tanh

transfer function:

dx¼ðWtanhðb0∘xÞ DxÞdtþσWdW: (8)

Here, the slope vectorb02R
neNð6;ð:5Þ2Þand diagonal elements of

the decay matrixDdrawn fromNð:4;ð:1Þ2Þ(non-diagonal elements are

zero). As elsewhere, the symbol∘denotes the Hadamard product

(element-wise multiplication). Models were simulated via Euler-

Maruyamma integration with dt¼.1s,σW ¼0.2, TR¼.7s, and total
simulation length t¼10,000. We considered the case in which no he-

modynamics are present, in which case MINDy is fedxðtÞdownsampled

according to TR, and the case in whichxðtÞis convolved with spatially

heterogeneous hemodynamics and deconvolved with the canonical HRF

before beingfit by MINDy. In the latter case, the HRF function was

parameterized as before, but with the ground-truthα1parameter for each

brain region drawn fromNð6;ð:25Þ2Þand theβ1parameter drawn from

Nð1;ð:25=6Þ2Þ. The simulated BOLD was produced by convolving the

simulated time-series with the ground-truth HRF before temporal

downsampling. In both cases, initial conditions for each node were

independently drawn fromNð0;1Þand thefirst 100 samples were

dropped. Since the total number of nodes was approximately one-tenth of

those used in the HCP data, we rescaled the dimension of the low-rank

component by one-tenth (from 150 to 15). Similarly, we rescaled the

regularization terms inversely proportionate to the effect of rescalingW

by a factor of 10: (λ1;λ3by 1=10,λ2by 1=
ffiffiffiffiffiffi
10
p

andλ4by 1=10
2). For

simulations using the Balloon-Windkessel model of hemodynamics,xðtÞ

was rescaled to the range of average synaptic gating via 5SðtÞ¼1þ
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tanhðxðtÞ=10Þ. This transformation ofxwas then substituted into the

nonlinear hemodynamic model (below) to generate simulated BOLD

signal. In all cases, time series were z-scored, smoothed via nearest-

neighbor ([0.5 0.5] kernel) and run through MINDy for 150,000 itera-

tions (approximately 70 s) with the original batch size of 250.

2.6.4. Neural mass and Windkessel-Balloon model simulations

For our neural mass ground-truth simulations (Sec.3.7.5, 3.8), we

largely followed the approach of Wang and colleagues (Wang et al.,

2019) in using single-population neural mass models (20 masses/simu-

lation in Sec. 3.7.5 and 6 to 16 in Sec. 5.8) with Windkessel-Balloon

model hemodynamics (Friston et al., 2000). Similar to the MINDy

model, the neural mass model (Hansen et al., 2015) contains a monotone

nonlinearity (bψ) and linear decay 1=τS:

_Si¼ Si=τSþrð1 SiÞHðxiÞþσWdW

HðxiÞ¼bψð dðaxi bÞÞ

HðxiÞ¼bψð dðaxi bÞÞxi¼
X

j

Ci;jSjþISub
(9)

The variableSdescribes the average synaptic gating, whileHde-

scribes the populationfiring-rate. We used the default parameter settings:

τS¼:1s,a¼270n=C,b¼108Hz,d¼:154s,r¼:641. Unlike Wang and
colleagues (Wang et al., 2019), we used a logistic sigmoid transfer

function forbψðxÞ¼1=ð1þexpð xÞÞinstead of the rectified linear

transfer function:x=ð1 expð xÞÞ, as the former is less prone to path-

ological behavior in random networks. Subcortical input wasIsub¼ 5.

Connection weight matrices were randomly generated as described in the

previous section, but with 1.5 added to all recurrent connections and the

resultant matrix scaled by a factor of 100. Simulated neural activity is

converted into BOLD signal through the Windkessel-Balloon model

(Friston et al., 2000):

_zi¼Si κzi γðfi 1Þ

_fi¼zi

τ_vi¼fi v
α1
G
i

τ_qi¼
fi
ρ
1 ð1 ρÞ1=fi qiv

α1G 1

i

(10)

The variablesz,f,v, andqmodel vasodilation, inflow, blood volume,

and deoxyhemoglobin content, respectively. Parameters were:ρ¼ :34;

κ¼:65s1;γ¼:41s1;τ¼:98s;αG ¼:32. The simulated BOLD signal at
each TR is then modeled as:

BOLDðvi;qiÞ¼V0k1ð1 qiÞþk2 1
qi
vi
þk3ð1 viÞ (11)

Resting blood volume fraction is denotedV0¼:02. Scanning param-

etersk1;k2;k3were set to 3T values according to Demirtas and colleagues

(Demirtaşet al., 2019):k1¼3:72;k2¼:53k3¼:53. Simulations were run

with dt¼25 ms andσW ¼:005 for total lengtht¼40;000. Sampling was
performed every 29 time-steps (TR¼725ms) and thefirst 10% of samples

were dropped. The resulting time-series were deconvolved with the ca-

nonical HRF assumed by MINDy and z-scored. MINDy hyperparametes

were identical to the rate-model case and MINDy was run for 10,000 it-

erations (approximately 6 s) with batch size 250. Initial conditions for

hemodynamic variables were randomly sampled fromjNð0;1Þj. Initial

conditions for the neural variable (S) were generated byfirst samplingS0e

jNð0;1Þjand then performing the transformationS0=ð1þS0Þ.

2.7. Simulations for DFC analysis

For analyses of dynamic functional connectivity, models were esti-

mated for each subject (one per session) using the full HCP temporal

resolutiondXðtÞ¼Xðtþ1Þ XðtÞ. These models were then used to

generate simulated resting-state fMRI data, but with additional process
6

noise added as would be expected in observed fMRI timeseries data. We

used the same time-scale for simulation as in the validation models (dt¼

.5 TR). However, whereas the validation simulations employed process

noise containing constant variance across parcels, we used a naive esti-

mate of process noise for each parcel, that was based upon the residual

error of modelfits over subsequent time-steps. We avoided doing this in

the validation stage so that ground-truth parameters could not be

recovered simply by observing noise. The residual error covaried with

the decay parameter across parcels at the group-level, but not at the in-

dividual level, despite individual differences in both noise and decay

being reliable within parcel. We reintroduced parcel-based variation into

the DFC simulations to obtain maximum realism. We considered both the

case in which process noise was allowed to vary by parcel but not by

individual within a test-retest group (e.g. using the mean noise across

subjects for each session separately), as well as the case in which process

noise was determined on a subject-wise basis. Results obtained with

either method were near-identical for the DFC reliability analyses so we

present results using the session-wise group-mean process noise (e.g. the

mean process noise for each parcel averaged across all day 1 scans or all

day 2 scans). Initial conditions were drawn from each subject’s observed

data for that scanning session. Simulations were run for 2600 time steps

(1300 TRs) using 15 different initial conditions per session and tempo-

rally downsampled back to the scanning TR. After simulation, we

downsampled from the 400 parcel to the 100 cortical parcel variants of

gwMRF (Schaefer et al., 2017) and removed subcortical ROIs in order to

reduce computational complexity of subsequent DFC analyses.
2.8. DFC analyses

DFC analyses consisted of the standard deviation and excursion

(Zhang et al., 2018) of the time-varying correlation between brain re-

gions. To calculate time-varying correlations we used Dynamic Condi-

tional Correlation (DCC; (Engle, 2002)). To avoid confusion with other

references to“standard-deviation”we refer to this measure as“σ-DFC”as
it pertains to time-varying correlations. Formally,σ-DFC is calculated by
first estimating the time-varying covariance using DCC. Under this

approach, the data, (yt) is modeled as a zero-mean stochastic process

with auto-regressive covariance:

yteNð0;ΣtÞ (12)

with time-varying covariance matrixΣevolving according to thefirst-

order autoregressive model:

Σt¼ΩþA∘yt1y
T
t1þB∘Σt1: (13)

The matricesΩ;A;Bare estimated in DCC using maximum-likelihood.

We define theσ-DFC matrix as the standard deviation (over time) of the
time-varying correlation matrixQt:

σ-DFC:¼SDðQtÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
tðQt Et½QtÞ

2

T 1

s

(14)

withEt½Qt denoting the sample mean over time. To ensure numerical

stability, we repeated the DCC algorithm 10 times per case (simulation or

true data) and used the median estimated time-series for time-varying

correlations. The excursion measure was calculated according to (Zhang

et al., 2018). Reliability was computed for each pair of region’s DFC sta-

tistics using Fisher’s ICC of group-demeaned DFC metrics between scan-

ning session (ICC(2,1) in the Shrout and Fleiss convention (Shrout and

Fleiss, 1979)). Overall reliabilities collapsed across all regions were

calculated using Image Intraclass Correlation (Shou et al., 2013).
2.9. Sensitivity analyses

We conducted sensitivity analyses in Sec. 3.2.1to test how the
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different mechanisms of ground-truth models (e.g. connections vs.

decay) influence the estimates of“connectivity”in MINDy and rsFC. We

were particularly interested in how each method responded to local

heterogeneity (i.e. are MINDy/rsFC estimates of connection strength

sensitive to local model parameters: decay and curvature). For each batch

of the sensitivity analyses, wefirst simulated a resampled "individual"

multiple times to generate a distribution of trial-to-trial variability

(“within-subject”) in elements of MINDy’s weight matrix and the rsFC

matrix. We then held the weights of the ground-truth model constant

while resampling either the curvature (α) or decay (D) parameters and
calculating MINDy weights and rsFC from simulations of the new model.

Changes in the estimated connectivity (weights or rsFC) were deemed

significant if they occurred withp<:05 for the corresponding“within-

subject”distribution.
2.10. Statistical analyses

Statistical testing was primarily within-subject between method/

condition (e.g. paired t-tests). We used the conservative Bonferroni

method for all multiple-comparison corrections. All reported p-values are

calculated for two-tailed tests unless indicated otherwise. We usep 0to

denotep-values calculated as less than 1020for which precise numerical

estimates may deteriorate.

3. Results

3.1. Overview of results/approach

The Results of the paper are structured as follows. Thefirst section

serves to relate MINDy parameter estimates to resting-state Functional

Connectivity (and related partial correlation approaches) in terms of

differentiating/identifying sources of individual variation. The“ground-

truth”models for validation in thisfirst set of analyses are drawn from the

empirical distribution of MINDy parameters to ensure that the resultant

simulated data is realistic. The second section directly addresses the po-

tential for overfitting by testing whether MINDy models cross-validate and

whether parameters are reliable. The third section demonstrates that

MINDy parameters have distinct anatomical gradients consistent with

previous, theoretical results (Demirtaşet al., 2019,Wang et al., 2019), and

highly conserved individual variation (a feature not present in over-fit

models). The fourth section demonstrates models’predictive validity by

reproducing individual differences in resting-state dynamics using the

empirical models. In thefifth section, we demonstrate that the approach is

robust to measurement noise, preprocessing pipelines, and hemodynamic

confounds. This section uses three forms of“ground-truth”models. For

initially testing robustness to noise and global hemodynamic variability,

we again use parameters drawn from the empirical distribution to ensure

maximum realism. In subsequent analyses, however, “ground-truth”

parameter values are drawn from random hyper-distributions independent

of the data and combined with more nuanced hemodynamics. This step

tests model performance with more exotic“ground-truths”and prevents

circularity. We also consider an additional case in which the simulated

fMRI data is generated from randomly-parameterized neural-mass models

(operating at the millisecond-scale) to provide insight into the relation-

ship/limitations of MINDy parameter estimates from fMRI and the un-

derlying synaptic connectivity. In the sixth section (Sec.3.8), we

summarize comparisons with Dynamic Causal Modeling which receive

fuller treatment in the SI (Sec. 5.8). Thefinal results section directly as-

sesses data-requirements of MINDy and provides a minimum data quantity

(>15 min) to prevent over-fitting.
3.2. MINDy retrieves individual differences

3.2.1. MINDy retrieves individualized connectivity

A key goal of our investigation was to determine whether MINDy was
7

sufficiently sensitive to reveal individual differences in connectivity

weights that have become the focus of recent efforts within the rsFC

literature (Laumann et al., 2015,Gordon et al., 2017). We tested the

model by reconstructing individual differences in connectivity weights of

simulated subjects and comparing them against both classical rsFC and

the partial correlation matrix. Simulated subjects were generated by

permuting MINDy parameter sets across individuals (see methods). We

then simulated the resultant model with process noise and hemody-

namics to generate realistic BOLD fMRI time series (see methods;Fig. 1C;

SIFig. 9 B). This provided a ground-truth set of simulated fMRI data,

from which we could compute the rsFC/partial correlation matrices for

each“subject”, and also determine thefidelity of recovered parameters

(i.e., compared against true parameters used to generate the simulated

data). To assess the performance of the model estimation procedure, we

considered two metrics: the validity of estimated connectivity weight

differences between subjects (Fig. 2B) and the sensitivity of each pro-

cedure to different model components (SIFig. 17 A). These sensitivity

analyses reveal whether each approach (rsFC matrix, partial correlation

matrix, or model estimation) misclassifies variation in some other model

component (e.g. decay rates) as being due to a change in weights. To

better assess sensitivity, we generated data after varying only one model

component at a time across the simulated subjects: the weight matrix

(W), transfer functions (α) or decay rates (D).
Results indicated that MINDy was able to accurately recover the

ground-truth weight matrix for each individual (Fig. 2A and B). Thus, the

simulated weight changes that differentiated one individual from

another were recovered well by the MINDy parameter estimation

approach. Moreover, MINDy weight estimates were found to signifi-

cantly outperform rsFC and partial correlation measures (computed on

the simulated timeseries data) in their ability to accurately recover both

the ground-truth connectivity matrix of simulated individual subjects, as

well as the differences between individuals (Fig. 2B; SITable 5). This

finding suggests that the modest relation between rsFC and ground-truth

connectivity weights is primarily driven by the group-average connec-

tivity as opposed to individual differences. However, rsFC may be

disadvantaged in this comparison as it does not typically permit sparse-

ness commensurate with empirical MINDy weights (Fig. 5A and B).

Therefore, we used partial correlations as an additional benchmark.

While partial correlations quantitatively improved upon rsFC estimates

(single-subject:R¼:537 :032, inter-subject:R¼:392 :027), per-

formance remained significantly lower than MINDy (single-subject:

paired-tð33Þ¼40:51;p 0, inter-subject:paired-tð33Þ¼23:62;p 0).

The above analyses were designed to illustrate the additional utility of

MINDy in empiricial contexts over the most common current approaches

(rsFC and partial correlation). For this reason, we generated ground-

truths from the empirical distributions to ensure maximal realism. In

later analyses (Sec.3.8), we compare MINDy to a much closer modeling

approach (Spectral DCM; (Razi et al., 2017)). We reserve these com-

parisons for later as they employ a very different approach to generating

ground-truth models: seeking to minimize bias and sample over a wide

range of potential ground-truth scenarios. The anatomically-detailed

models used in the current section are also too large for Spectral DCM

to estimate using available computational resources (Sec.3.8).

3.2.2. MINDy disentangles sources of individual differences

After we established that MINDy outperforms rsFC and partial cor-

relations in retrieving true individual differences in weights, we bench-

marked the sensitivity of each approach to other sources of individual

variation. Rather than measuring how well each procedure correctly

retrieves connectivity, these tests quantify how well each approach

selectively measures connectivity as opposed to other sources of varia-

tion (see methods). We quantified sensitivity in terms of how often

MINDy and rsFC reported that a connection changed in strength between

simulated models, when in reality only the curvature or decay terms were

altered (SIFig. 17 A). Results indicate that MINDy correctly detects the

sources of individual variation when due to local changes such as decay



Fig. 2.Ground-truth validation of MINDy and rsFC at the level of single-subject and inter-subject variation. A) First column: Example ground-truth weightmatrices for

two simulated subjects (top two rows) and the difference between ground-truth weights (bottom-row). Second column: Recovered weight matrices using MINDy for

both subjects and their difference. Third column: same as second but using the rsFC. Fit weight matrices and simulated FC matrices are shown in standard-deviation

(SD) units with SD computed across the offdiagonal elements of each individual matrix. The ground-truth matrices are displayed in units 2/3 SD to aid visual

comparison. B) Top row: histogram of performance at the simulated single-subject level (correlation with ground-truth [GT]) for MINDy (blue) and rsFC (red). Bottom

row: same as top but for predicting the differences in matched-pairs of simulation subjects who differed only in ground-truth connectivity. Simulation subjects were

generated by sampling from the distribution of empirical (HCP) MINDy parameters (see Sec.2.6.1).
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rate and transfer function shape, as these have no appreciable impact on

MINDy’s connectivity estimates (the false positive rate is near that ex-

pected by chance). By contrast, rsFC measurements were highly sensitive

to the decay rate (27:5 12% of connections changed vs. 7:6 :6% for

MINDy, with 5% expected by chance), indicating that some individual

differences in FC may be reflective of purely local brain differences as

opposed to connectivity between brain regions (SIFig. 17A; SITable 6).

These results indicate that MINDy promises to improve both the mech-

anistic sensitivity and the anatomical accuracy of inferences based upon

individual differences in resting-state fMRI. However, it is still the case

that resting-state fMRI exhibitsgeneralizedsensitivity to individual dif-

ferences in neurobiology, which may suffice for some applications, such

as biomarker discovery (see Sec.3.4).
3.3. MINDy parameters are reliable

In addition to determining the validity of MINDy parameters, it is also

critical to establish their empirical reliability. We examined this question
Fig. 3.MINDy parameters and predictions are personalized and reliable. A) Compari

ability (blue) for rsFC and the MINDy parameters. B) Goodness-of-fit for a single ti

predictions within a subject vs. between subjects. Performance is in terms of predict

ship magnifies across time steps as evidenced by far greater similarity in test-retest 

Performance is in terms of predicting the empirical rsFC on a different scanning sessi

indicates mean.
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by analyzing measures of test-retest reliability of the parameter estimates

obtained for human subjects contributing resting-state scans on two

separate days (30 min each). Results indicated that MINDy had high test-

retest reliability for all parameter estimates (>:75;Fig. 3A). The reli-

ability of weight estimates was significantly higher than rsFC reliability,

although the mean difference was modest (ΔR :045, SITable 7,SI

Table 8). By contrast, the variability in reliability was noticeably smaller

for MINDy, meaning that while the mean advantage of MINDy in terms of

reliability was modest, its performance was much more consistent across

subjects (less variable reliability; SITable 8).
3.4. MINDy parameters are personalized

For sake of comparison with FC we have thus far emphasized the

ability of MINDy to extract brain connectivity. However, MINDyfits brain

models, with the connectivity weights (Fig. 5A and B) comprising just one

component. For the approach to faithfully reflect the stable differences

among individual brains, it is important that it not just accurately
son of the test-retest similarity between subjects (red) and the test-retest reli-

me-step prediction is uniformly (but minutely) greater for comparing test-retest

ing the difference time series. Red line indicates group-mean C) This relation-

predicted FC from model simulations of the same subject vs. different subject.

on. For similarity to the same or both scanning sessions see SIFig. 16. Blue line
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estimates the neural parameters that describe human brains, but that these

parameters accurately capture individual differences and predict brain

activity. Using the“connectomefingerprinting”approach (Finn et al.,

2015), we compared whether MINDy parameter estimates and the com-

bined model uniquely identify individuals within a sample. This analysis

was conducted in two ways. First, we computed separate parameter esti-

mates for each individual in each testing day session. Then we examined

whether the parameters estimated from one day showed the highest

similarity to the same individual on the other day (relative to all other

individuals in the dataset;Fig. 3A). Secondly, we used the estimated

model from one day to test whether the estimated parameters provided the

bestfit to the fMRI data timeseries recorded on the second day, again

relative to the estimated parameters from other subjects. Specifically, this

second analysis provides a strong form of cross-validation testing and we

performed it for both predictions of the empirical timeseries (Fig. 3B) and

for predictions of each subject’s empirical rsFC, both cross-validated across

sessions (Fig. 3C). In all analyses, we found that the best predicting model

for every subject was almost always their previouslyfit model (Table 7). In

particular, we achieved 100% accuracy when conducting connectome

fingerprinting based on MINDy weight parameters (SIFig. 17 B), and when

computing cross-validated goodness offit/cross-validated predicted rsFC

(Fig. 3B and C). For pairwise analyses of subjects, see SIFig. (17 F).

Similar patterns emerged but also some important differences, when

conducting parallel analyses using rsFC. Replicating priorfindings ((Finn

et al., 2015)), 100% accuracy was also achieved in connectomefinger-

printing (SIFig. 17E). However, between-subject similarity was signifi-

cantly lower in the rsFC analysis. Conversely, in rsFC the distinction

between across-sessions within-individual similarity scores (i.e.

test-retest similarity) and the average similarity obtained between sub-

jects was greater than that observed in the MINDy model weights (SI

Table 7). These results suggest that rsFC may actually generate an

exaggerated picture of the idiosyncratic nature of connectivity, since

MINDy individual differences are partitioned not only into weights, but

also into other mechanistic parameters that are attributed locally, to the
Fig. 4.Local MINDy parameters display consistent anatomical distributions. A) The c

thefiner parcel level. Parcels are ordered from least to greatest value for the curvatur

for mean value. Two representative brain networks are highlighted (Control-A in re

parameter. B) Same as A but for the decay parameter (D). C) Correlation between t

provided by Demirtas and colleagues (Demirtaşet al., 2019) based upon erf transfo

reflect a hierarchy of cognitive abstraction from sensory to associative cortices.
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node/parcel (i.e., the decay [D] and curvature [α] parameters). In other
words, MINDy may provide a richer and more variegated perspective on

the nature of individuality, than what can be obtained with rsFC which

lumps together what may be multiple dimensions of individual differ-

ence, into a simple, undifferentiated measure. For applications such as

biomarker discovery, these properties may not be relevant in that the

apparent magnification of individual differences in rsFC over MINDy

weights could prove beneficial despite the mechanistic ambiguity of

rsFC. However, we also note that MINDy provides additional parameters

(curvature and decay) which may also prove useful for biomarker dis-

covery. Lastly, the relevant dimensions for biomarker discovery are in

terms of separating phenotypes, rather than separating all individuals.

Since MINDy can robustly separate individuals, it has the potential to

influence biomarker discovery, but whether it possesses quantitative

advantages over rsFC will need to be investigated in the context of

explicit biomarker questions (and may be phenotype-specific).
3.5. Novel MINDy parameters show reliable individual and anatomic

variation

Interestingly, we observed important additional functional utility

from examining the novel MINDy parameters that are unavailable in

standard rsFC. With regard to individual variation andfingerprinting

analyses, we found that even ignoring the weights completely, the

transfer function curvature parameter (α) associated with each node
showed high consistency across sessions within an individual, and also

unique patterns across individuals, such that 100% accuracy could also

be achieved infingerprinting analyses (Fig. 3). A slightly lower accuracy

(94:3%) was observed when using the MINDy decay (D) parameters,

though even here performance was still significantly above chance

(1:89%) in identifying individuals (Fig. 3A;Table 7). Pair-wise, between-

subject, comparisons of similarity in these parameters are reported in SI

Fig. (17 B-E).

We followed-up on the identification of reliable individual differences
urvature-parameter displays network structure and is consistent across subjects at

e parameter (α) averaged across subjects and scanning sessions. Surface plots are
d and Limbic-(Temporal Pole) in blue) to illustrate anatomical gradients in this

hefirst principal component of MINDy decay and“hierarchical heterogeneity”

rm of the T1/T2 ratio (MMP parcelation). This measure has been theorized to
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through MINDy, by conducting exploratory analyses to examine which

brain regions/connections exhibited the greatest inter-individual vari-

ability (SI Sec. 5.9). We found that the curvature parameter had greatest

relative variability in prefrontal cortex, particularly inferior frontal gyrus

(SIFig. 13A), while the decay parameter had high variability in visual

regions, the“hand”portion of post-central gyrus, and medial prefrontal

cortex (SIFig. 13B). Connections within the visual networks had the

lowest individual variability while connections to/from the Temporal-

Parietal network had the greatest (SIFig. 13C and D). Although these

initialfindings are intriguing, due to sample size/bias considerations and

the exploratory nature of these analyses, we view them as a launching

pad for future insights rather than basic neuroscientific results per se (see

SI Sec. 5.9).

Although the above analyses focused on individual differences in the

unique MINDy parameters, these parameters also exhibited common pat-

terns across individuals (SIFig. 11 B,F) that revealed interesting anatom-

ical structure and gradients (Fig. 4 A-C; SIFig. 11 B,F). These may reflect

regional variation in intrinsic dynamics (D) and efferent signaling (α)that
vary across brain networks (SIFig. 11 A,E), but also exhibit consistency

even at thefiner within-network scale (Fig. 4A,B; SIFig. 11 B,F). For

example, most nodes within the Temporal-Parietal network showed high

curvature, but also low decay parameters; in contrast, in nodes of the

Control (A) network, the curvature parameter tended to be low, whereas

the decay parameter was high. Group-mean values show the same

anatomical gradient across the gwMRF ((Schaefer et al., 2017); SIFig. 11

D,H) and MMP ((Glasser et al., 2016); SIFig. 11 C,G) atlases. It is important

to note that the decay parameter only describes temporal integration at

time scales commensurate with fMRI sampling. Thus, the decay parameter

should not be conflated with the time-constant of traditional neural mass

models just as the latter is distinct from the membrane time constant of

neuronal models. Interestingly, the decay parameter in MINDy appears to

reflect components of both temporally-extended signal integration and the

time-constant of local sub-second integration. Whereas the mean value of

the decay parameter correlates with absolute global brain connectivity (i.e.
10
the sum of absolute values along a row of the rsFC matrix;rð377Þ¼:911;

p 0) the principal dimensions of individual variation (Fig. 4C, SIFig. 11I

and J) recreate the hierarchical organization of primate cortex as derived

from the T1/T2 ratio map (rð358Þ¼:583;p 0; using the MMP Hierar-

chy map by Demirtas and colleagues (Demirtaşet al., 2019)). As a caveat,

it is worth noting that these statistics do not take into account spatial

autocorrelation (which is challenging to model, given the large and

irregular shape of parcels), which could have contributed in part to the

anatomical gradients we observed. This hierarchy has been the subject of

recent studies into its relationship with local excitation/inhibition (Wang

et al., 2019,Demirtaşet al., 2019) which is one physiological mechanism

we suspect underlies the decay construct (see SI 5.1). This hierarchy also

predicts the time-scales of local microcircuits, patterns of gene-expression,

mylein density, and function (sensory-processing hierarchy; see (Wang

et al., 2019,Demirtaşet al., 2019).

In addition to the curvature and decay parameters, MINDy also dif-

ferentiates from rsFC in the structure of the weight matrix (W)/connec-

tivity matrix, both in terms of asymmetry (Fig. 5A,C) and sparseness

(Fig. 5A and B). The former is a direct consequence of the dynamical

systems model that underlies MINDy, which provides an estimate of

effective connectivity. Although regularization generally favors sparse

solutions, we found that, even without any regularization, the group

average Weight matrix was much sparser than rsFC (SI Sec. 5.7). We

provide a simple proof-of-concept to illustrate the potential insights that

can be gained from investigating such asymmetries. Specifically, MINDy

identified a region of left Inferior Frontal Gyrus (IFG) as the parcel with

the greatest asymmetry in positive connections. Specifically, this region

showed a positive outward-bias in connectivity with the bias primarily

exhibited in its feed-forward positive connections to ipsilateral medial

temporal lobe, inferior parietal lobule (IPL), and dorsal/ventrolateral

PFC (Fig. 5C). Excitatory connections of the left IFG with temporal cortex

are essential features of the“language network”(e.g. (Friederici and

Gierhan, 2013)). Additional results revealing other brain regions

showing directionality biases in connectivity are reported in SI (Sec.
Fig. 5.MINDy weights are structured, sparse, and

directed. A) Left-side: Mean connection matrixW

averaged across subjects and scanning session.

Parcels are grouped according to the Schaeffer

(Schaefer et al., 2017) 17-network parcellation

(hemispheres combined) plus the free-surfer sub-

corticals. Right-side: thresholded anatomical pro-

jection (positive connections 20% max

non-recurrent magnitude and negative connec-

tions with magnitude 8%). B) The MINDy weight

distribution demonstrates sparser connectivity

than rsFC. C) Parcel 187 ((Schaefer et al., 2017)

17-network), near Inferior Frontal Gyrus, had the

strongest source-bias for positive connections

(more positive out than in). Plotted surface shows

the relative magnitude of this bias (only connec-

tions with outward-bias) which largely follows

left-lateralized regions implicated in language (e.g.

(Friederici and Gierhan, 2013)) see SI Sec.5.10for

additional, preliminary directed-connectivity re-

sults. Blue highlights chosen source-parcel.
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5.10). In a later section, we explicitly test the robustness of asymmetry

estimates and how they are affected by assumptions regarding hemo-

dynamics and model mismatch.
3.6. MINDy predicts individual brain dynamics

3.6.1. MINDy predicts individual differences in dynamic functional

connectivity

We next focused our analyses on the dynamic patterns observed in

brain activity, since this has been an area of rapidly expanding research

interest within the rsFC literature, termed dynamic functional connec-

tivity or DFC (Hutchison et al., 2013,Allen et al., 2014,Betzel et al.,

2016,Preti et al., 2017). Critically, the question of whether MINDy

models can predict more slowly fluctuating temporal patterns in the

recorded brain data for individual subjects is qualitatively distinct from

the ability to predict activity over very short timescales (i.e., 1-step). This

is because small biases infitting individual time points can lead to very

different long-term dynamics (e.g. compare panels B and C inFig. 3,

which reflect short and long-term predictions, respectively). To test

model accuracy in capturing longer-term dynamic patterns, we used

fitted model parameters for each subject to then generate simulated fMRI

timeseries, injecting noise at each timestep to create greater variability

(see Methods). We then used this simulated timeseries to identify the

temporal evolution of short-term correlations between brain regions and

compared results with those obtained from the recorded data. Correla-

tion timeseries were estimated using Dynamic Conditional Correlation

(DCC; (Engle, 2002)), a method which has been recently shown to

improve reliability in the HCP data-set as compared to sliding-window

estimates (Choe et al., 2017). We then attempted to recreate DFC mea-

sures of individual subjects which have shown the greatest reliability in

the actual data. Recent reliability analyses have indicated that simple

statistics of temporal variation in individual correlation pairs such as
11
standard deviation of the conditional correlation time-series (Choe et al.,

2017) and excursion (Zhang et al., 2018) are more reliable than

state-based descriptions for the HCP resting-state data (Choe et al.,

2017). Therefore, we used these measures (see Sec.2.8for equations) to

validate dynamics within the model. To avoid confusion, we use the term

σ-DFC to refer to the temporal standard-deviation of time-varying cor-
relations, which is used as a measure of DFC. Alternatively, theσ-DFC
may be conceptualized as the signal power of the moving-correlation

time series and has proven to be one of the most reliable measures of

DFC (Choe et al., 2017). MINDy performed slightly better on recreating

another reliable DFC statistic, group-average excursion, so we chose to be

conservative and display the results fromσ-DFC for main-textfigures
rather than using excursion DFC. Results using excursion DFC and the

correspondingfigures are provided in SI (Fig. 18).

Results indicate that individual differences in the simulated dynamics

of modelsfit to separate test-retest sessions are at least as reliable as

summary dFC measures of individual differences in the original data (SI

Fig. 18A and B). The image intraclass correlation (I2C2, (Shou et al.,

2013)) for the model was 0.555 forσ-DFC and 0.481 for excursion. In the
original experimental data, I2C2 reliabilities were 0.527 forσ-DFC and
0.380 for excursion. Moreover, individual differences in the DFC of

simulated models were highly correlated with those of the original data

for most region-pairs (Fig. 6A). Lastly, we analyzed whether the simu-

lated data recreates the central tendency of observed data. In general, the

group-meanσ-DFC (SIFig. 18D) and excursion (SIFig. 18 E) estimates
were highly similar between the simulated and observed data for both

theσ-DFC (Fig. 6B;rð4948Þ¼:761) and excursion metrics (SIFig. 18C;
rð4948Þ¼:836). Thus, MINDy models recreate measures of DFC at the

level of both individual differences and the group-level. Moreover, in

some cases (e.g. the excursion metric), MINDy models (fit separately to

each session) generate more reliable estimates than those of the original

data (SIFig. 18B). A main advantage of the model in this regard is likely
Fig. 6.MINDy models predict individual

variation and central tendency of pairwise

dynamic functional connectivity (DFC) mea-

sures. A) Similarity between model and data

for predicting each subject’sσ-DFC for each
pair of brain regions (using the 100-parcel

atlas from (Schaefer et al., 2017) and

collapsing the 17-network grouping down to

8). B) Scatterplot and Pearson correlation of

group-averageσ-DFC for data vs. model. C)
Evidence of non-trivial dynamics in MINDy

models. Example phase portrait of one subject

projected onto thefirst 3 principal compo-

nents. Complex orbits link neighborhoods of

attractors 1 and 2 (orbits starting from each

neighborhood are colored red, blue respec-

tively). Insetfigures show these attractors

projected onto the brain. D) Example deter-

ministic time-series for a limit cycle in a

different representative subject averaged

acrossfive networks (Visual [blue], SomMot.

[red], Dorsal Attn. [yellow], Salience [purple],

and Control [green]). These deterministic dy-

namics demonstrate significant nonlinearity

but are qualitatively different from the simu-

lated model dynamics (e.g. for computing

DFC) which include process noise.
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due to the ability to simulate an arbitrarily large amount of data with the

model that is also free from nuisance signals/motion.

3.6.2. MINDy models generate non-trivial dynamics

In the previous section we demonstrated that MINDy predicts indi-

vidual differences in nonstationary dynamics. Thisfinding suggests that

the nonlinearities in MINDy are able to account for some features of the

data (nonstationarity) that are mathematically absent from linear models.

From a dynamics perspective, non-pathological (Schur-stable) linear

models predict that spontaneous brain activity consists of noise-driven

fluctuations about a single equilibrium. The model parameters for a

linear system (e.g.“effective connectivity”in DCM) shape the spatiotem-

poral statistics of thesefluctuations and in the case of white-noise excita-

tion result in a unimodal distribution about the equilibrium in question.

Although many nonlinear systems exhibit exotic behavior (e.g. chaos),

some systems are dominated by a single equilibrium and may thus possess

dynamics that are similar to a linear system. Therefore, we tested whether

empirical MINDy models exhibit nontrivial dynamics in the absence of

noise (see SI Sec. 5.11). We found that all subjects’models were dominated

by nontrivial dynamics (multistability, homo/heteroclinic cycles, limit

cycles, etc.). Example nonlinear dynamics for two representative subjects

are provided (Fig. 6C and D), although a thorough characterization of each

model’s full phase space is beyond our current scope (see SI Sec. 5.11).

Nonetheless, we were able to formally demonstrate that no subject exhibits

trivial dynamics (SIFig. 15A and B; Proposition 2). We conclude that the

nonlinearity of MINDy models is not superficial, but rather generates to-

pologically significant dynamics which shape model behavior.

3.7. MINDy is robust

3.7.1. MINDy is robust to measurement noise

We addressed the degree to which MINDy fitted parameters are
Fig. 7.A) Increasing the amount of additive measurement noise slightly decreases MI

is unaffected by the uncertainty in the ground-truth HRF, although performance does

ground-truth weight matrix (original matrix: red; asymmetric part (Wi;j Wj;i): blue) 

assumed by MINDy (left to right: No hemodynamic modeling, random spatially h

model). D) Test-retest reliability of MINDy parameters as the amount of (contiguo

training data (blue) and cross-validated with another scanning session (red). The diff

standard deviation.
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influenced by potential sources of contamination or artifact in the

observed fMRI data. Resting-state fMRI data is thought to be vulnerable

to three main contaminants: noise in the BOLD signal, biases induced

from post-processing pipelines that attempt to remove this noise, and

idiosyncratic variation in the hemodynamic response function that re-

lates the BOLD signal to underlying brain activity. For thefirst case, we

considered two sources of noise in the BOLD signal: additive measure-

ment error and motion artifact. The former case can result from random

fluctuations in magnetic susceptibility, bloodflow, and responsiveness of

radiofrequency coils among other factors. We examined this issue using

the ground-truth simulations described above, but systematically varying

the amount of measurement noise added at each time-step. This approach

allowed us determine how strongly these various sources of noise

impacted the ability of MINDy to recover the ground-truth parameters.

Results indicated that although the performance of MINDy decreased

with the amount of noise added (Fig. 7A), similarity to the ground-truth

values generally remained high. Additional levels of noise are plotted in

SIFig. 20. At the highest level of noise considered, Weight and Decay

parameters correlatedR 0:7 with ground-truth, while the curvature

parameter correlatedR 0:6. We note that empirical data exhibiting

such a high level of noise would (hopefully) fail quality control.

3.7.2. MINDy is robust to individual differences in motion

We next examined the impact of motion on MINDy estimates. In this

case, we used three standard measures of motion that were derived from

the observed fMRI timeseries data: 1) the number of total frames

censored due to crossing critical values of frame-wise displacement or

DVARS (see Methods), 2) the median absolute framewise-displacement

of the subject’s head across scanning sessions, and 3) the spatial stan-

dard deviation of temporal difference images (DVARS) (Power et al.,

2012). We then examined whether variability in these parameters across

individuals contributed to the quality of MINDy parameter estimation
NDy performance in recovering ground-truth parameters. B) Mean performance

 become more variable (see SIFig. 20H). C) MINDy performance in retrieving the

under mismatch between the ground-truth hemodynamics and the canonical HRF

omogeneous HRF, spatially heterogeneous HRF, nonlinear Balloon-Windkessel

us) training data is varied. E) MINDy goodness-of-fit for 1-step prediction in

erence between these lines indicates the degree of overfitting. Shading indicates
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and individuation, using test-retest reliability (of estimated parameters

from each session) as the index of quality. If MINDy estimated parameters

reflected vulnerability to the degree of motion present in an individual,

then we would expect higher test-retest reliability in the parameters for

the individuals with the lowest estimated motion (e.g., highest data

quality). Instead, we found that test-retest reliability was relatively

un-impacted by any measure of motion (SIFig. 19B–D, I). A parallel

analysis used cross-validatedfit, in which MINDy parameters were esti-

mated from one session, and then used to predict data in the held-out

session, computing goodness-of-fit of the model to the observed data in

this session (in terms of variance explained). In this case, we examined a

subset of participants that had relatively low motion in one session, but

relatively higher motion in the other compared against a second subset

that had similar levels of motion in both sessions. If the increased motion

in this latter session was problematic, it should reduce the goodness-of-fit

(either when used for parameter estimation or when used for

cross-validation in the held-out session). In fact, the cross-validatedfits

were relatively similar in each group (SIFig. 19 E,J). Together, these

results suggest that participant motion (within a reasonable range) may

not be strong factor in determining how well MINDy model parameters

can be estimated from observed fMRI data timeseries.

3.7.3. MINDy is robust to pre-processing pipelines

We next examined whether secondary data pre-processing pipelines,

which are typically applied to rsFC data prior to analysis, produce biases

on MINDy parameter estimates, again examining this issue in terms of test-

retest reliability. We considered three variants of a standard published

preprocessing pipeline (Siegel et al., 2017), one with motion-correction

only, one which adds to this CompCor (a standard method that removes

noise components associated with white matter and CSF; (Behzadi et al.,

2007)), and afinal, full variant that additionally includes global signal

regression (GSR; (Aguirre et al., 1998b)). We compared test-retest reli-

ability for data-processed with each pipeline (SIFig. 21 A)andthesimi-

larity of parameter estimates obtained when the same data were processed

using different pipelines (SIFig. 21 B). Results indicated that MINDy pa-

rameters had high test-retest reliability regardless of preprocessing choices

(allR>:7, SIFig. 21 A) and that similar parameter estimates are obtained

regardless of preprocessing choices (allr>:85, SIFig. 21 B). By com-

parison, when a parallel analysis was conducted on rsFC values, the rsFC

parameters showed lower test-retest reliability, particularly when more

pre-processing was performed on the data, and showed a larger impact of a

change in pre-processing on test-test reliability. A direct comparison of the

test-retest of MINDy weight parameters relative to rsFC revealed that these

were significantly higher (allp’s<:05), were more consistent (lower

variance of reliability) across pipelines (allp’s<:001;Table 8;SIFig. 21

A), and were less impacted by changing preprocessing pipelines (allp’s<

:001; SIFig. 21 B). Together, this set of analyses indicate that the choice of

preprocessing pipeline will not have a large effect on estimated MINDy

parameters.

3.7.4. MINDy is robust to global hemodynamics

Lastly, we considered the effect of poor estimation of the hemody-

namic response function (HRF). Currently, for simplification, the MINDy

estimation procedure assumes a canonical HRF model that is constant

across individuals and parcels ((although we have recently begun to

explore the effect of relaxing this assumption, and estimating a different

HRF for each parcel and individual; (Singh et al., 2020)). Many other

fMRI models also assume a canonical HRF (e.g. regression-DCM; (Fr€assle

et al., 2017)). However, existing literature suggests that this assumption

is likely to be incorrect (Aguirre et al., 1998a,Lin et al., 2018). To

examine the impact of mis-fitting the HRF, we modeled a variety of

ground-truth scenarios. Thefirst set of ground-truth simulations were

randomly parameterized according to the empirical MINDy distribution

and activity timeseries were convolved with spatially homogeneous, but

randomly parameterized HRFs with incrementally greater variability (SI

Fig. 20 D). We then attempted to recover MINDy parameters while again
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assuming thefixed, canonical HRF model (Friston et al., 1998). Results of

this analysis suggest that, on average, the MINDy parameters recovered

from this analysis remain consistently similar to the ground truth pa-

rameters (mean similarity of all parameters, R-value0.75,Fig. 7B).

However, the variability of thefits increased across simulations, as the

HRF became more variable across regions and individuals (SIFig. 20 H).

3.7.5. MINDy parameters are robust to model mismatch

We also considered the effect of violations of the MINDy model in terms

of the underlying neural models (MINDy vs. Hopfield, neural mass) and

neurovasculature (spatially heterogeneous HRFs and nonlinear hemody-

namics). These effects are expected to be most pronounced in estimating

asymmetric connections as unaccounted lags can potentially reverse the

direction of inferred causality in many other techniques, such as Granger

Causality. For the next set of simlations, we generated complex networks

from a non-empirical hyperdistribution whose characteristic parameters

were randomly sampled at each run. This approach allowed us to sample

over a wide range of qualitatively different network structures (Sec.2.6.2)

and these simulations did not depend upon previous empirically-fit MINDy

models. We tested the ability of MINDy to recover the weight parameter

(Fig. 7C) from a simple rate model (tanh transfer function) with four levels

of hemodynamic variability: 1) no hemodynamics, 2) random, spatially-

uniform HRF, 3) random, spatially-heterogeneous HRF, and 4) nonlinear

hemodynamics simulated by the Balloon-Windkessel model (Friston et al.,

2000,Demirtaşet al., 2019, Sec.2.6.4). In the last case, the nonlinear he-

modynamic transformation varies implicitly and systematically in space

due to spatial variation in thefiring-rate distribution. Results indicate that

MINDy can recover asymmetric connections of ground-truth networks

(Wi;j Wj;i) for all cases considered, but performance depends upon the

degree of HRF complexity (Fig. 7C; SITable 9). When no hemodynamics

were included in the model (MINDy received the downsampled neural

time-series) performance was near-perfect (r¼:949 :009 overall;r¼:

971 :007 for asymmetries,n¼1700). Performance also was high for

random, spatially homogeneous HRF’s both overall (r¼:874 :024) and

at estimating asymmetries (r¼:910:023,n¼1600). Spatial heterogeneity

of the HRF decreased MINDy performance in recovering overall

ground-truth connectivity (r¼:793 :029;tð3071:8Þ¼ 86:72,p 0;

unequal-variance), but did not differentially impair the estimation of

asymmetries (r¼:832 :028;tð3057:7Þ¼11:74,p 1, 1-tailed, un-

equal variance).

We also found that MINDy still performed well in recovering asym-

metric connectivity when a nonlinear (Balloon-Windkessel) ground-truth

hemodynamic model (r¼:865 :022 overall; r¼:927 :019 for

asymmetries,n¼2020) was used to generate simulated fMRI time-series

data as compared to when a spatially homogeneous, linear HRF model was

used (tð3073:3Þ¼23:03,p 0; unequal variance). Thus, violations of

spatial homogeneity in the hemodynamic response appear more relevant

to MINDy than violations of hemodynamic linearity. However, perfor-

mance was still strong in all cases considered (medianr :80). We also

conducted preliminary tests of MINDy’s ability to recover synaptic con-

ductances (weights) from the simulated BOLD signal (Balloon-Wind-

kessel) of a biophysically parameterized neural mass model (Hansen et al.,

2015) which evolves at a much faster timescale than the fMRI TR. MINDy

was generally able to recover connection weights (synaptic conductance

in the neural-mass model) for this case as well (r¼:684:039 overall).

However, unlike in the other simulations, performance in recovering

asymmetries (r¼:624 :052) was lower than that of the overall weight

matrix (paired-tð1399Þ¼ 109:172,p 0). This result indicates that the

difference in time-scales between neuronal and BOLD activity is a more

relevant constraint on directional inferences than hemodynamic vari-

ability. Although these simulations represent but a small subset of possible

ground-truth models, they indicate that the directionality of MINDy

connectivity estimates remains largely accurate under violations of the

assumed spatially homogeneous hemodynamic response.
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3.8. Comparing MINDy with Dynamic Causal Modeling

The earlier analyses, in which we compared MINDy and rsFC (Sec.

3.2.1), serve to demonstrate the potential linkages between methods and

how MINDy can resolve some ambiguities inherent in rsFC (e.g., direc-

tionality). However, these analyses should not be interpreted as stating

that MINDy is unambiguously“better”than rsFC as the two approaches

represent fundamentally different constructs. The correlation matrix

(rsFC) is a statistical quantification whereas MINDy is an approach for

estimating a dynamical-systems model and they may have complemen-

tary roles for exploring individual differences/biomarker discovery. In

order to benchmark MINDy as a model-fitting technique we compared

performance with spectral DCM (Razi et al., 2017) in recovering con-

nectivity weights for a variety of simulated ground-truth scenarios.

Spectral DCM (spDCM) is a recently developed Dynamic Causal Modeling

(DCM) approach for simultaneously estimating linear dynamical systems

and (region-specific) hemodynamic kernels from resting-state fMRI (Razi

et al., 2017). To be clear, we view the primary contributions of MINDy

relative to modeling approaches such as spDCM in terms of its scalability,

biological interpretability, and the ability to predict nonstationary

resting-state dynamics. However, the question remains whether these

advantages come at the expense of accuracy—i.e. whether MINDy is

inferior to DCM within the latter’s scope.

We compared performance of MINDy and spDCM across a variety of

ground-truth scenarios (see SI Sec. 5.8) to test whether MINDy performs

at least as well as spDCM in the lower-dimensional scenarios in which the

latter is applicable (i.e., estimating parameters for a small number of

nodes or neural masses). These simulations were specifically designed to

reduce bias based upon either model’s assumptions (see SITab. 1) and

considered ground-truths based upon mesoscale Hopfield-style models

(SIFig. 12A) and biophysical neural mass models (SIFig. 12B). In the

former case, we manipulated the degree of spatial variability in the he-

modynamic response (SIFig. 12C). When arbitrary choices were neces-

sary, we chose the option that empirically favored spDCM. Results

support that MINDy’s advantages do not come at a cost to accuracy. In all

settings considered, MINDy was at least as accurate, on average, as

spDCM and significantly (orders of magnitude) faster. We observed that

spDCM was more robust than MINDy to spatial variability in the ground-

truth HRF (although see extensions in (Singh et al., 2020)), but even

under the most extreme cases considered, MINDy was at least as accurate

as spDCM (SIFig. 12). The empirical examination of run-time over-

whelmingly favored MINDy (SIFig. 12D–F). For example, the largest

network we tested contained 16 neural masses (SIFig. 12D) for which

MINDy estimation took 3.5s on average vs. 2.7 h for spDCM. We estimate

thatfitting spDCM models using our chosen parcellation, involving 419

brain regions/nodes (400 of which are cortical (Schaefer et al., 2017))

would take a minimum of 44 years per model (and likely much longer;

see SI Sec. 5.8). We conclude that MINDy’s advantages (scalability, dy-

namics etc.) do not come at the expense of accuracy relative contempo-

rary approaches.

3.9. MINDy requires 15–20 min of data

In most fMRI experiments scanner-time is a precious resource and

particularly so with sensitive populations. While the Human Connectome

Project affords a full 60 min of resting-state scan time, this quantity of

data may not be a reasonable expectation for other datasets, so we varied

the training data length to determine how much data was necessary for

MINDy to reliably estimate models. Wefirst evaluated reliability in terms

of test-retest on MINDy parameters estimated from separate scanning

days using only a subset of the total data for modelfitting. As expected,

when the length of data used to estimate parameters increased, the test-

retest reliability of the estimated parameters also increased, up to the

maximum interval considered (30 min). Nevertheless, acceptable levels

of reliability (R :7) were obtained with 15 min of data (Fig. 7D). We

next examined bias or overfitting of MINDy parameters by comparing the
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fit to the trained data, relative to a cross-validation approach, examining

thefit to held-out (testing) data. As would be expected with over-fitting

bias, as the length of the training data increased, thefit to the trained data

decreased. In contrast, thefit to the held-out (test) data increased, and

the two values converged at around 15 min of data in training and test

sets (Fig. 7E). Thus, we do believe the current method is too prone to

over-fitting biases and unacceptably low reliability with fewer than 15

min of total scan time using the HCP scanning parameters and 419 par-

cels. However, since the data does not need to be acquired in a single

continuous run, we believe that this requirement is reasonable and in

concert with current recommendations for rsFC analyses (Laumann et al.,

2015,Gordon et al., 2017). Future study with other fMRI acquisition

techniques may illuminate how data-requirements change with sampling

rate (e.g. shorter TRs may potentially compensate for less scan time).

4. Discussion

4.1. Relationship with functional connectivity

There are three primary advantages to using MINDy over rsFC. First,

rsFC is limited as a statistical descriptive model. This means that even

though rsFC may be found to be reliable and powerful as a biomarker that

can characterize individuals and effects of experimental variables, it is

unable to predict how the nature of an experimental manipulation relates

to the observed changes in brain activity. By contrast, MINDy is a true

mechanistic causal neural model, which attempts to capture the physical

processes underlying resting-state brain activity in terms of neuro-

biologically realistic interactions and nonlinear dynamics (Breakspear,

2017). This feature is powerful, as it enables investigators to perform

exploratory analysis in how altering a physical component of the brain

(e.g. the connection between two brain regions) will affect brain activity

(Jirsa et al., 2017).

Second, MINDy provides a richer description of brain mechanisms

than rsFC. While rsFC and MINDy both attempt to parameterize the

connection strength between brain regions, MINDy also describes the

local mechanisms that govern how each brain region behaves. Neural

processes are thought to involve the combination of anatomically local

computations and spatially-extended signal propagation, so it is impor-

tant that descriptions of brain activity be able to define the degree to

which this activity is generated by local vs. distributed mechanisms.

Although the elements of the rsFC matrix are often interpreted as

reflecting interregional components of neural processing, we have

demonstrated that the rsFC is also sensitive to purely local characteristics

of brain regions, such as their decay rate (SIFig. 17 A). Conversely, we

have demonstrated that both the transfer function and decay rate of brain

regions can also serve as reliable markers of individual differences and

anatomical structure. By using MINDy, researchers can identify which

neural mechanisms (i.e. which of MINDy’s parameters) give rise to in-

dividual differences of interest.

Lastly, MINDy greatly improves upon rsFC’s characterizations of

effective connectivity between brain regions. Unlike the elements of a

correlation matrix, MINDy’s weight parameters can describe asymmetric

connectivity strengths and thus make inferences regarding the direc-

tionalflow of activity between brain regions. We provide tantalizing

illustration of the potential utility of these types offindings (e.g.,Fig. 5C,

SIFig. 14). Further, we demonstrated that MINDy may prove a more

valid measure of brain connectivity and individual differences in con-

nectivity than rsFC (Fig. 2E).

4.2. Relationship with other models

There are currently two classes of generative models used to study

fMRI: proxy-parameterized neural-mass models (e.g. models using

diffusion-imaging data as a proxy for synaptic efficacySanz Leon et al.,

2013,Jirsa et al., 2017) and directly-parameterized linear models (e.g.

Dynamic Causal Modeling (Friston et al., 2003,Razi et al., 2017).
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Although nonlinear variants of DCM have been proposed for task-fMRI

(Stephan et al., 2008), the techniques used for resting-state fMRI (e.g.

Razi et al., 2017) are fundamentally linked with the statistics of linear

systems. These two approaches (proxy-parameterized neural-masses and

linear models) represent opposite ends of a trade-off between realism and

tractability for mesoscale human brain modeling. Thefirst case (prox-

y-parameterized neural-mass models) excels in terms of interpretability

of the model framework, since the state-variables can always be traced

back to populationfiring rates. These models operate at relatively fast

time-scales and can produce predictions with the spatial resolution of

MRI and the temporal resolution of EEG, which make them a parsimo-

nious and general-purpose investigative tool that can be utilized across

temporal scales. Current approaches in this respect are limited, however,

in the manner by which these models are parameterized. Even in

state-of-the-art techniques (e.g.Demirtaşet al., 2019,Wang et al., 2019)

most parameters arefixed a priori (local neural-mass parameters), or

determined from diffusion imaging data, with only a limited subset taken

from fMRI functional connectivity estimates, typically at the

group-average level. Thus, the vast majority of parameters are not suf-

ficiently constrained by the relevant individual-level data, and instead

are adapted from measurement of proxy variables, which is likely to limit

the accuracy of model predictions. Diffusion imaging data, for instance is

inherently unsigned and undirected, so the resultant models are unable

to consider hierarchical connection schemes or long-distance connec-

tions that depress activity in the post-synaptic targets. Moreover, it re-

mains unknown how to convert units from white matter volume to

synaptic conductance even when these assumptions are met. In practice

the conversion is performed by choosing a single scaling coefficient,

which assumes that this relationship is linear with a universal slope. Due

to these sources of uncertainty, proxy-parameterized models do not

necessarilyfit/predict raw functional time series. To be fair, however,

this limitation may not be relevant for all scientific questions (e.g.

studying long-term phenomena such as FC,Honey et al., 2009,Demirtaş

et al., 2019,Wang et al., 2019).

By contrast, the ability of a model tofit the observed time-series

implies that its predictions are valid within the vicinity of observed

data. This property holds even when the underlying model is likely to be

inaccurate in its long-term predictions. Evidence of this can be seen in the

success of dynamic-causal modeling approaches, which can recreate task-

driven activity (Friston et al., 2019) despite using a simplified linear

model. However, the downside of using a linear modelling framework is

that the long-term predictions of these models are most likely inaccurate,

given that brain activity in a linear model will always converge to a

noise-driven stationary distribution. Thus, even though these models

may be more accurate than forward-parameterized neural-mass models

in their short-term predictions (by virtue offitting parameters), the linear

form guarantees that they will be unable to capture the extended pattern

of brain spatio-temporal dynamics. Analytically, it is known that linear

dynamical systems cannot exhibit non-trivial deterministic dynamics and

are characterized by a steady-state covariance when driven by noise

(which can be calculated by solving a Lyapunov equation). For this

reason, they are often employed as surrogate models for testing whether

proposed measures of DFC can distinguish between noise-driven trivial

(linear) dynamics and those observed in the data (Laumann et al., 2017,

Kafashan et al., 2018). Thus, DFC measures which have been shown to be

non-spurious through surrogate methods cannot, by definition, be

reproduced by a linear dynamical system with or without noise. Like-

wise, these models will also be limited in their ability to identify the

neural mechanisms underlying predictions. Since the model takes a

reduced (linear) form, it remains unknown whether the coefficientsfitto

the linear models are the same as would be retrieved byfitting a more

realistic model (e.g. neural mass model). That is not to say that the co-

efficients are uninterpretable; indeed meaningful predictions have been

made by inferring effective connectivity from the model coefficients (e.g.

Razi et al., 2017). On the other hand, the models’simplicity may lead to

nonlinear components of brain activity being mixed into the linear model
15
estimates, just as we have shown that intrinsic dynamics influence FC

estimates (SIFig. 17 A).

MINDy attempts to leverage the advantages from both approaches.

Like current neural-mass models, MINDy employs a nonlinear dynamical

systems model which is capable of generating long-term patterns of brain

dynamics. However, MINDy is also a data-driven approach, in that

models arefit from the ground-up using functional time-series rather

than using surrogate measures such as diffusion imaging (although in

principle, such information could be used to initialize or constrain

MINDy parameter estimates). From the perspective of biologically-

plausible models, MINDy extends parameterfitting from the relatively

small number of local parameters that constitute the current state-of-the-

art (Demirtaşet al., 2019,Wang et al., 2019)tofitting every parameter in

biologically-plausible individualized whole-brain mesoscale models (i.e.,

increasing the number offitted parameters by orders of magnitudes).

Likewise, MINDy extends data-driven modeling of resting-state data from

linear models containing tens of nodes (Razi et al., 2017,Fr€assle et al.,

2017) to nonlinear models containing hundreds. It is also worth noting

that the computational innovations made in the optimization process

make MINDy parameterization many orders of magnitude faster than

comparable techniques (Wang et al., 2019,Razi et al., 2017; see SI Sec.

5.8) despitefitting many more parameters (e.g.,over 176,000 free pa-

rameters can be estimated in a minute vs. several hours tofit hundreds of

parameters). This efficiency has enabled us to interrogate the method’s

validity and sensitivity in ways that would probably not be computa-

tionally feasible for less efficient methods (e.g., building error distribu-

tions for sensitivity analyses in Sec.3.2.1).

4.3. Comparison with diffusion imaging seeded neural mass models

Although we emphasize the ability to generate individualized brain

models, previous studies using neural-mass models with weights seeded

by diffusion imaging have emphasized predicting group-level data

(Honey et al., 2009,Demirtaşet al., 2019,Wang et al., 2019). Two recent

studiesfit free parameters with the explicit optimization objective of

predicting the group-average rsFC matrix (Demirtaşet al., 2019,Wang

et al., 2019). By contrast, MINDy seeks to predict the short-term evolu-

tion of the neural activity time series for single subjects, which often

results in the simulated individual rsFC correlating highly with the

empirical rsFC (Fig. 3C). Averaging across simulated rsFC’s produces a

group-level simulated rsFC that correlates extremely well with the

empirical group-average rsFC (rð87;398Þ¼:94; see SIFig. 16). As such,

the group-average MINDyfit compares very favorably with the analogous

measures for diffusion-parameterized models which typically don’t sur-

passr¼:6(Honey et al., 2007,Demirtaşet al., 2019,Wang et al., 2019).

4.4. Limitations

There are two primary limitations of MINDy. Thefirst relates to the

properties of fMRI data: MINDy is limited by the spatial and temporal

resolution at which data is gathered. This means that MINDy is more

sensitive to slow interactions that occur over larger spatial scales and is

limited to predicting infraslow dynamics (as opposed to higher-frequency

bands). Interactions that are more heterogeneous in time or space may

also be missed by MINDy as the model assumes that the transfer function

is monotone. While the strength of signaling between regions is allowed

to vary according to the transfer function, the sign of signaling (inhibi-

tory vs. excitatory) is not. Thus, MINDy cannot describe relationships

which, depending upon local activity, change sign from net excitatory to

net inhibitory. This feature is inherent in region-based modeling and so

this limitation is not unique to MINDy.

A second limitation relates to the model used to specify MINDy.

Unlike the conventional neural mass models (Breakspear, 2017), MINDy

employs a single population rather than two or more local sub-

populations of excitatory and inhibitory neurons. The model does contain

local competitive nonlinearities in that the decay term (D) competes with
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the recurrent connectivity ofWbut the precise mechanisms underlying

these dynamics are not explicated. By comparison, multipopulation

neural mass models contain separate terms for the interactions between

subpopulations and the time-constants offiring rate within each sub-

population, both of which likely influence the local parameters of

MINDy. Similarly, while MINDy can specify that the directed interaction

between a pair of regions is positive, it cannot distinguish between

excitatory projections onto an excitatory subpopulation and inhibitory

projections onto an inhibitory subpopulation (both of which could be net

excitatory; see SI sec 5.1).

4.5. Future applications and directions

We view MINDy models as providing a rich and fertile platform that

can be used both for computationally-focused explorations, and as a tool

to aid interrogation and analyses of experimental data. The most im-

mediate potential of MINDy is in providing new parameter estimates for

studies of individual differences or biomarkers. There is also immediate

potential for MINDy in model-driven discovery of resting-state dynamics

(e.g.Hansen et al., 2015), in which case MINDy simply replaces diffusion

imaging as a method to parameterize neural mass models. The potential

benefit of using MINDy over diffusion imaging is that MINDy identifies

signed, directed connections in a data-driven manner which may

improve realism. Going forward, other applications of MINDy may be in

bridging the gap between resting-state characterizations of brain net-

works and evoked-response models of brain activity during task contexts.

We envision two lines of future work in this domain: one in improving

estimates of task-evoked effects, and the other concerning the effect of

task contexts or cognitive states on brain activity dynamics.

4.5.1. Isolating task-evoked signals

One future use of MINDy may be in improving estimates of task-

related brain activity. Current methods of extracting task-related brain

signals are based upon comparing BOLD time courses during windows of

interest using generalized linear models. However, the effects of task

conditions are related to both ongoing brain activity (He, 2013) and

intrinsic network structure (Cole et al., 2016). Viewing the brain as a

dynamical system, any input to the brain will have downstream conse-

quences, so brain activity observed during task contexts likely contains

some mixture of task-evoked activity and its interaction with sponta-

neous activity. Using MINDy, it may be possible to isolate task-evoked

responses by subtracting out what would have been predicted to occur

via the resting-state MINDy model. The resultant estimate for task-related

activity would be the time-series of MINDy prediction errors (i.e. re-

siduals), ideally adjusted for the model’s error at rest. In forthcoming

work, we have been using MINDy to estimate task-related activity in this

manner, and the initial results strongly indicate that this approach im-

proves the statistical power and temporal specificity of estimated neural

events (Wang et al., 2020). Thus, MINDy has the potential to improve

estimates of task-evoked activity from fMRI data, although future vali-

dation is needed.

4.5.2. Illuminating dynamics

Present results indicate that MINDy is able to replicate some features

of infraslow brain-dynamics observed in the data (see Sec.3.6.1).

Although these slower frequency bands have been less studied in task-

contexts, growing evidence implicates them in slowly evolving cogni-

tive states such as states of consciousness (Mitra et al., 2015,Mitra et al.,

2018) and daydreaming (Kucyi and Davis, 2014). MINDy may benefit

future studies in these domains by providing a formal model by which to

identify the mechanisms underlying dynamical regimes. Moreover,

MINDy may illuminate the behavioral significance of infraslow dy-

namics. Previous studies have found that timing of pre-cue brain activity

and infraslow dynamics interact to predict behavioral performance (Fox

et al., 2007,Sch€olvinck et al., 2012,Sadaghiani et al., 2015), so future

characterizations of task-activation may benefit from considering how
16
exogeneous stimuli interact with endogenous neural processes. Genera-

tive models of resting-state brain activity may prove critical in these ef-

forts by predicting how endogenous brain states modulate the effects of

exogeneous perturbations.

5. Conclusion

We have developed a novel and powerful method for constructing

whole-brain mesoscale models of individualized brain activity dynamics,

termed MINDy. We demonstrate that MINDy models are valid, reliable,

and robust, and thus represent an important advance towards the goal of

personalized neuroscience. We provide initial illustrations of the poten-

tial power and promise of using MINDy models for experimental analysis

and computational exploration. It is our hope that other investigators will

make use of MINDy models to further test and explore the utility and

validity of this approach. Towards that end, we have made MATLAB code

and documentation for developing and testing MINDy models available

via the primary author’s GitHub:https://github.com/singhmf/MINDy.
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