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a b s t r a c t 

A ubiquitous problem in optimization and machine learning pertains to the design of systems that enact 

a desired behavior in dynamical environments. For example, the classical example of a control system 

that stabilizes an inverted pendulum. In this paper, we consider a complementary and less well-studied 

problem: the design of the environment itself. That is, can we create a dynamical system that in a general 

but mathematically rigorous way, is readily ‘usable’ by an unknown agent. We are especially interested in 

the synthesis of neuronal dynamics that are maximally labile with respect to afferent inputs. That is, can 

we create neural dynamics that propagate information well. To do so, we blend ideas from control and 

information theories, by turning specifically to the notion of empowerment, or the information capacity 

of a dynamical system in an input-to-state sense. We devise a strategy to optimize the dynamics of a 

system using empowerment over its state space as an objective function. This results in dynamics that 

are generically conducive to information propagation. For example, the optimized environment would be 

expected to perform well as an encoder (of afferent input distributions). We outline the key technical 

innovations needed in order to perform the optimization and, by means of example, discuss emergent 

dynamical characteristics of systems optimized according to this principle. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

A wide range of learning problems deal with the design of an

ptimal policy for an agent interacting with a dynamical envi-

onment, such as a controller attempting to balance an inverted

endulum. Here, a policy is a set of rules that determines the

ctions or inputs that the agent imparts on the environment based

n observations. The fundamental goal of an optimal policy is to

aximize a pre-specified objective function, such as a cumulative

eward accrued over time [1,2] . 

In this paper we deviate from the classical notion of policy

earning. Instead of seeking a policy for a fixed environment, we

onsider the scenario where the environment itself is variable,

arameterized along a continuum of possible configurations. Our

uestion of interest is then to find the particular environment that

s maximally ‘functional’ according to a general usability criterion.

n other words, we seek an environment that is most favorable, or

erhaps usable, to an unknown agent. This problem is interesting
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n the context of computational neuroscience, because it relates to

he fundamental problem of neural coding, or how circuits in the

rain represent afferent information. For example, if we consider

he environment as a set of biophysiological neuronal dynamics,

e could study the sorts of kinetics that make a neuron a good en-

oder of afferent information. This could help us to derive general

nsights into the functionality of neural circuits. We are especially

urious as to whether, there is a general principle that links the

otion of maximal functionality to particular forms of dynamics. 

In particular, we define the notion of functionality in terms

f information theoretic quantities, since such quantities allow

s to address the concept of optimality in a general way that is

ell-defined, task-independent and applicable universally to any

gent-environment interaction. Specifically, we use as our objective

he notion of empowerment, a measure of information processing

apacity of a dynamical system [3–5] . At a conceptual level, em-

owerment can be understood as the maximum potential effect

hat an agent can impart on an environment through exogenous

nput. Thus, empowerment is a property of the input-to-output

or, input-to-state) transfer function of a system and is fundamen-

ally related to the notions of channel capacity and reachability,

rom communication and control theories, respectively [5] . The

https://doi.org/10.1016/j.neucom.2020.03.008
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t  
greater the empowerment of a system, the greater the diversity

of states/outputs an agent can induce. As such, if empowerment

is high, then the actions of the agent are well-encoded in the

states/outputs of the system in question. 

1.1. Related works: 

The concept of empowerment was first introduced in [4] as

a hypothetical, information-based utility function that might

be considered as a formal definition of intrinsic motivation for

learning and adaptation. Subsequently, empowerment has been

widely used in reinforcement learning as a general framework for

obtaining agent policies based on the value of information rather

than manually-designed, task-specific utility functions [6–8] . The

fundamental algorithm for evaluating empowerment is the Blahut–

Arimoto (BA) algorithm [9] , which is an enumeration-based ap-

proach with exponential computational complexity. However, the

intensive computational complexity of empowerment calculation

necessitates devising an effective method for its approximation.

The authors in [10] proposed variational inference method as a

scalable approach for empowerment approximation with the aim

of using empowerment as a proxy for interinsically-motivated

reinforcement learning. Similarly, the authors in [6] addressed

the empowerment approximation over continuous systems for

learning optimal policies via empowerment maximization. 

The mathematical definition of empowerment is highly related

to the ‘Infomax’ objective used in theoretical studies of neural

coding [11–13] . 

1.2. Contributions: 

The primary contribution of our work is a fundamental

information-theoretic paradigm for system design. In particular, we

seek to manipulate an environment so that it attains maximum

empowerment. Concretely, we consider environments that can be

mathematically represented as controlled dynamical systems. A

primary motivation for this problem is a desire to understand the

sorts of dynamics that are most advantageous for information en-

coding. We are most interested in revealing dynamical substrate of

information processing in neurons and neuronal networks. That is,

how do the dynamics of neurons facilitate information propagation

and representation? 

Our principle contributions are in terms of: 

(i) the mathematical formulation of the above problem; 

(ii) the use of the system impulse response to reduce the com-

putational burden associated with empowerment calculation

and optimization; 

(iii) a method to find optimal environments, i.e., to solve (i).

Particularly, our method involves considering a variable

environment parameterized along a continuum of possible

configurations; 

(iv) illustration of the novelty of our ideas for typical and well-

understood classical systems including linear/nonlinear dy-

namical systems and a well-known neural mass model, i.e.,

the Wilson–Cowan model. 

As described, the main facet of our approach underlying these

contributions involves adapting the information-theoretic defi-

nition of empowerment into the context of dynamical systems.

Specifically, we use dynamical systems as (abstract) mathematical

models of environments, for which we seek to optimize infor-

mation capacity. Thus, all analysis and design is done at the

level of the dynamical system, using the formalism of channel

capacity/empowerment. In this sense, the terms dynamical system,

channel and environment are interchangeable (i.e., dynamical sys-

tems are mathematical models of environments, in our context). 
The remainder of the paper is structured as follows. In

ection 2 , we formalize our optimization problem. Sections 3 and

 provide our proposed method for technical simplification of em-

owerment maximization and our method for designing usable en-

ironment, respectively. In Section 5 , we provide simulation re-

ults illustrating the efficacy of empowerment maximization and

he emergent dynamics. We conclude the paper and provide a brief

iscussion in sections 6 . 

. Problem formulation and the environment model 

In this section, we present the mathematical definition of em-

owerment as our objective function. Then, we provide the dy-

amical system model under consideration and specifically note

he parameterization over which empowerment will be maxi-

ized. This problem setup allows the desirable dynamics of the

nvironment to emerge only via the empowerment maximization

riterion so as to form the environment maximally usable with-

ut having any a priori knowledge about the optimal dynamics.

hroughout the paper the terms dynamical system and environment

re used interchangeably. 

.1. Empowerment 

Mutual Information is a core information theoretic quantity that

easures the dependency between two random variables. In our

ormulation, the environment can be perceived as a communica-

ion channel from actions (its afferent inputs) to states. Given the

urrent state s , the mutual information between the action a and

he final state s ′ is: 

( a , s ′ | s ) = E p( s ′ | a , s ) ω( a | s ) log 
p( s ′ , a | s ) 

p( s ′ | s ) ω( a | s ) (1)

here we denote ω( a | s ) as the action distribution and p ( s ′ | a , s ) as

he transition distribution . 

With this formulation of a dynamical system, empowerment is

imply the channel capacity , i.e., the maximum information that an

gent can potentially emit to the environment by manipulating the

tates [4,14] via actions/inputs. Particularly, for the given current

tate, the empowerment is: 

( s ) = max 
ω( a | s ) 

I( a , s ′ | s ) (2)

ere, a can be seen as an exogenous input (that is uncorrelated

ith the dynamics of the environment), referred to in the com-

unication theory literature as a ‘source’. Consequently, empower-

ent quantifies the extent to which the source is encoded in the

ystem states. 

.2. Dynamical system model 

We consider environments that can be described as dynamical

ystems of the affine form: 

˙  (t) = f K ( s (t)) + a (t) (3)

here f (·) : R 

d → R 

d denotes the vector field, which is in this case

arameterized by K . Here, s ( t ) and a ( t ) are the states and input

ctions at time t , respectively. We discretize the system using a

xed time-step dt , leading to: 

 t+1 = s t + ( f K ( s t ) + a t ) dt. (4)

. Simplified empowerment calculation via impulse response 

The discrete model in Eq. (4) is a one-step autoregressive equa-

ion that describes the effect of an input action at the current time
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Fig. 1. Panel A shows the evolution of states over 5 sequence of actions. Panel B 

presents our proposed method of increasing the horizon of empowerment maxi- 

mization. There is a one-to-one correspondence between the colors of the plots in 

panel B. The top plot shows the simplified method for evolution of states and the 

bottom one clarifies how the action is propagated through the dynamics. In this 

plot the continuous time response of the system is discretized for dt = 0 . 5 . 
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n the state of the system at the subsequent time. When charac-

erizing empowerment it is desirable to capture the effect of in-

ut actions over a prolonged temporal horizon [10,15,16] . In such

 procedure, one obtains an optimal input action sequence leading

o a trajectory within the state space (see, e.g., Fig 1 . A where a

equence of 5 actions evolves the state according to (4) ). However,

alculating empowerment in this way is computationally expen-

ive because there is exponential explosion in the search space (of

ctions/inputs) as a function of time steps. 

Because of the dynamical nature of the environment, we posit

 simplification of this idea wherein we instead calculate empow-

rment based on the system impulse response. We consider only a

ingle step action a t at time t , then allow the states to evolve over

 horizon of n time steps i.e. s t+ n in (5) . This constrains the search

pace (to a single input step), while nonetheless allowing the sys-

em dynamics to evolve the state over larger swaths of the state

pace. That is, we provide the dynamical system with enough time

o nontrivially react to the input. This idea simplifies the schematic

f the optimization problem, as shown in Fig. 1 .B; comparing the

raphs in panel A with B, we can see that using the scheme in

anel A, the computational complexity of calculating empower-

ent is linearly proportional to the number of actions. However,

sing the impulse response simplification, we can reduce the com-

utational complexity to a constant with respect to a single action.

For n time steps, we can obtain the final state as follows: 

 t+ n = s t + f K ( . . . f K (( f K ( s t ) + a t ))) dt (5)

here the number of recursions of f K is n . To make the notion

f empowerment meaningful it is necessary to introduce stochas-

icity to the above dynamics (in order to create nontrivial proba-

ility distributions). We do this by assuming additive noise in the
eadout of the system states, i.e., 

ˆ  t = s t + w t , (6) 

here w t is an uncorrelated noise process. 

. Empowerment maximization for creating usable 

nvironment dynamics 

.1. Environment parameterization 

Thus far, we have set up the problem of calculating the em-

owerment of a dynamical system, as per Eq. (2) . Our goal at this

oint is to treat the question of maximizing the empowerment of

he system at hand with respect to its parameterization, i.e. K . In

articular, suppose that K in Eq. (5) represents a degree of freedom

o alter the dynamics (e.g., in the case of a pendulum, altering the

ass or length of the rod). We denote the number of discretized

tates of our considered system as M . For a given current state of

he system, i.e. s (m ) 

t ∈ { s (1) 

t , ..., s (M) 

t } , we posit the problem of em-

owerment maximization with respect to the parameterization K

s follows: 

ax 
K 

E( s t ) = max 
K 

max 
ω 

1 

M 

∑ 

m 

I( a t , s t+ n | s (m ) 
t ) (7)

.2. Variational empowerment maximization 

The problem (7) is challenging since it involves nested maxi-

ization over a continuous state space and nontrivial probability

istributions. Prima facie , this is near intractable. Thus, in order

o proceed, an approximation is required and for this we turn to

he popular approach of using a variational lower bound for the

ey quantities [6,10,17,18] . We will specifically adopt the variational

ower bound for empowerment approximation in [6] , which en-

bles evaluation of mutual information for continuous variables.

owever, we will use this computational approach in a different

ontext (i.e., to design environments) and with an additional level

f approximation to aid tractability. We proceed to discuss these

ontributions. 

Specifically the major computational challenge alluded to above

rises from the intractability of the probability terms in Eq. (1) and

he integration over the continuous domain of all actions and

tates. To circumvent the mentioned issues, we can rewrite

q. (1) as: 

 p( s t+ n | a t , s t ) ω( a t | s t ) log 
p( a t | s t+ n , s t ) 

ω( a t | s t ) (8) 

here p( a t | s t+ n ) is the posterior distribution of actions. In a

ayesian sense, the action distribution, ω( a t | s t ) , is the prior. 

Due to the intractability of the true posterior distribution, we

se the mutual information variational bound, introduced in [11] ,

o approximate the above equation as follows: 

 

 ( s t+ n , a t | s t ) = E p( s t+ n , a t | s t ) log 
q ( a t | s t+ n , s t ) 

ω( a t | s t ) (9)

here q ( a t | s t+ n , s t ) is the variational distribution that approximates

he true posterior. Using the variational approximation method,

btaining the variational distribution can be considered as an op-

imization problem where q ξ ( a t | s t+ n , s t ) is a variational family of

istributions with parameter ξ [19] . Given that the variational dis-

ribution expressively represents the true posterior distribution, a

ight variational lower bound can be achieved [6] . Hence, we can

btain a variational lower bound on the empowerment as follow:

ˆ 
 ( s t ) = max 

ω,q 
ˆ I ( s t+ n , a t | s t ) (10)



288 E. Ghazizadeh and S. Ching / Neurocomputing 400 (2020) 285–293 

Fig. 2. The vector field and empowerment landscape result from n step empowerment calculation. Plot (a) shows the state space and its corresponding vector field of 

a 2 dimensional linear system and (b) depicts the corresponding empowerment landscape (in nats ) optimized over two time steps of states. Plot (c) and (d) depict the 

comparison of empowerment (in nats ) landscape over 5 time steps of states (i.e., the proposed impulse response method) versus 5 time steps of actions, respectively. 
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To perform the optimization of the variational bound, we

can obtain the action distribution and the variational distribu-

tion via deep neural networks parameterized by φ and ξ , respec-

tively. Sharing the same ideas with amortized variational infer-

ence [20,21] , using neural networks(NNs) as a mapping from states

to the distribution parameters enables us to only deal with finite

number of neural network parameters (i.e. weights and biases) in-

stead of learning a separate action distribution and variational dis-

tribution for each state. In this work, we choose the action and

variational distributions from the Gaussian family as follows: 

ω( a t | s (m ) 

t ) = N (μφ( s (m ) 

t ) , σ 2 
φ ( s (m ) 

t ) I) 

q ( a t | s (m ) 

t , s t+ n ) = N (μξ ( s 
(m ) 

t , s t+ n ) , σ
2 
ξ ( s (m ) 

t , s t+ n ) I) 
(11)

where mean μ and variance σ are also parameterized by NNs. θ =
{ φ, ξ} are the joint parameter set of Eq. (10) . Via joint optimization

of variational bound w.r.t. parameters of ω and q, we can achieve

the action distribution that maximizes the mutual information and

the variational distribution that is responsible for the tightness of
he variational lower bound. Exploiting the variational lower bound

n empowerment, we pose our optimization problem as follows: 

ax 
K 

max 
θ

J( K , θ ) , (12)

here 

( K , θ ) = 

1 

M 

∑ 

m 

ˆ I ( s t+ n , a t | s (m ) 

t ) (13)

nd 

ˆ 
 ( s t+ n , a t | s (m ) 

t ) = E 

p( s t+ n , a t | s (m ) 
t ) 

[ log q ( a t | s t+ n , s (m ) 

t ) − log ω( a t | s (m ) 

t )] 

(14)

We can perform the joint Monte-Carlo sampling method to

btain samples from the joint distribution, p( s t+1 , a t | s (m ) 
t ) , and

se the reparameterization trick [22,23] to evaluate the stochastic
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Fig. 3. The pendulum vector field and its corresponding empowerment landscape 

(in nats ) obtained via empowerment calculation over 50 step states. 

Fig. 4. The vector field, nullclines and empowerment landscape result from n step 

empowerment calculation for the Wilson-Cowan model (the empowerment values 

are in nats ). 
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radients of the objective function with respect to K and θ as: 

∂ 

∂θ
ˆ I ( s t+ n , a t | s (m ) 

t ) ≈ 1 

L 

∑ 

l 

∂ 

∂θ
[ log q ( a 

(l 

t | s (l) 

t+ n , s 
(m ) 

t ) − log ω( a 

(l) 

t | s (m ) 

t )] 

(15) 

nd 

∂ 

∂ K 

ˆ I ( s t+ n , a t | s (m ) 

t ) ≈ 1 

L 

∑ 

l 

∂ 

∂ K 

[ log q ( a 

(l) 

t | s (l) 

t+ n , s 
(m ) 

t ) − log ω( a 

(l) 

t | s (m ) 

t )] 

(16) 

here L is the number of samples. Algorithm 1 summarizes the

ptimization procedure. It is worth mentioning that if f K is dif-

erentiable, a gradient-based approach can be used to update the

ecision variables. When examining convergence, we look at the

agnitude of the gradients with respect to the decision variables

nd the magnitude of the cost function, J . However, we do not set

ny formal thresholds on these quantities, since they depend on

he dynamics and parameters of the system under consideration. 

lgorithm 1 Maximization of Empowerment Variational Lower

ound, w.r.t. θ = { φ, ξ} and K . 

Initialize uniform samples from state space, { s (m ) 
t } m =1 , ... ,M 

repeat 

for each s (m ) 
t do 

draw one sample from ω( a t | s (m ) 

t ) : 

a t ∼ ω( a t | s (m ) 

t ) 

transit to the final state s t+ n 
end for 

J = 1 
M 

∑ 

m 

log q ( a t | s (m ) 
t , s t+ n ) − log ω( a t | s (m ) 

t ) 

θ ← θ + ηθ∇ θ J for r epoches 

K ← K + ηK ∇ K J 

until convergence 

. Results 

We proceed to show the efficacy of the proposed method on

hree canonical examples: linear dynamical systems, the inverted

endulum on fixed pivot and the Wilson–Cowan neural mass

odel. We then discuss the emergent dynamics of these systems

ollowing empowerment maximization. 

.1. Efficacy of the proposed impulse response procedure 

First, we demonstrate the efficacy of the proposed empower-

ent calculation procedure. 

.1.1. Linear system 

For the 2-dimensional linear systems, Eq. (5) is: 

 t+ n = s t+ n −1 + ( A s t+ n −1 + a t ) dt + w t+ n , (17)

here A ∈ R 

2 ×2 determines the vector field of the system. In this

xample, A is chosen so that the origin is unstable. Fig. 2 (b) and

c), depicts the computed empowerment over the state space for

orizons of 2 and 5 steps, respectively. As it is seen, the states

round the origin have largest empowerment, which is intuitive

iven the dynamics of the system (because the origin is unstable,

nputs applied for these initial conditions have the potential to ac-

ess the largest swaths of state space). 

As means of comparison, we have also performed calculation

f the empowerment using a full iteration of actions (i.e., as in

ig. 1 A). Fig. 2 (d) shows the obtained empowerment landscape for

his case. As seen, the proposed impulse response-based approach

ompares favorably to the full solution. Full details regarding

imulations are found in Appendix. 
.1.2. Pendulum 

To show the performance of our method for nonlinear systems,

e studied the simple pendulum with the following dynamics 

¨
 = −3 g 

2 l 
sin (s + π) + 

3 

ml 2 
(u − 0 . 05 ̇

 s ) (18)

For the sake of comparison with previous works [6,15] , we

onsidered the optimization over n = 50 steps. As seen in Fig. 3 ,

he impulse response method produced an interpretable empow-

rment landscape, wherein the locus of high empowerment cor-

esponds with the unstable manifold associated with the equilib-

ium at the origin (i.e., the pendulum in the inverted position). Like

he unstable linear system, this is intuitive because on this mani-

old the input is able to drive the system to a larger swath of the

tate space. This is exactly equivalent to the idea of reachability in

ontrol systems analysis. 

.1.3. The wilson–Cowan model 

We also demonstrate the performance of our method for the

anonical neural mass model, the Wilson–Cowan model, which

rovides a course-grained representation of the overall activity

f populations of neurons [24–26] . The 2-dimensional system de-

cribing the excitatory and inhibitory activity of these populations

s: 

˙ 
 e = −s e + (1 − r e s e ) F e (c 1 s e − c 2 s i + I e + P ) 

˙ 
 i = −s i + (1 − r i s i ) F i (c 3 s e − c 4 s i + I i + Q ) 

(19) 
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Fig. 5. Empowerment maximization of a linear dynamical system/environment with one stable equilibrium point (a). After optimization, the resultant environment 

(b) exhibits a dominant unstable equilibrium. 

Fig. 6. Empowerment maximization of a nonlinear dynamical system/environment with four equilibrium points (a). After optimization, the number of equilibria is reduced 

and a single dominant unstable node emerges (b). 
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where s e and s i are the overall activity in the excitatory and in-

hibitory populations. Here, r j , j ∈ { i, e } represents a constant de-

scribing the refractory period. c 1 , c 2 , c 3 and c 4 present the strength

of excitatory and inhibitory interactions. P and Q are the excitation

level in the system and I e and I i are the control input currents that

affect the respective populations. Also, F j is a sigmoid function: 

F j (s ) = 

1 

1 + exp [ −a j (s − θ j )] 
− 1 

1 + exp (a j θ j ) 
(20)
here a and θ are free parameters representing the slope

nd the threshold, respectively. We applied our method to the

ilson-Cowan model over n = 100 steps. Particularly, we study the

ase wherein the system exhibits 3 multiple fixed points (2 stable

xed points and an unstable fixed point, see Appendix for details).

ig. 4 , depicts the empowerment landscape obtained using the im-

ulse response method. As seen, the locus of high empowerment

orresponds to the unstable manifold associated with the unstable

xed point. 
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Fig. 7. Comparison of the empowerment landscapes and the environments dynamics for empowerment maximization in the Wilson–Cowan model. In (a), the system initially 

exhibits a stable fixed point and the empowerment landscape is flat ( P = 0 ). In (b), after learning the optimal environment parameterization, i.e. P , the environment exhibits 

a limit cycle ( P = 1 . 177 ). (c) and (d) present the comparison between the time response of the system before and after empowerment maximization. 
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.2. Creating usable environments 

We now move to the main problem considered in this pa-

er: optimization of the empowerment with respect to the

ystem/environment dynamics. We performed this study for the

ame systems considered above. 
.2.1. Linear and nonlinear systems 

For simplicity, we first consider a horizon of two steps and a

inear parameterization as follows: 

 t+2 = s t + f ( f ( s t ) + K s t + a t ) dt + w t+2 (21)
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Fig. 5 , shows the vector field and the landscape of a stable linear

system before and after optimization of the linear parameterization

(again, see Appendix for details). Perhaps intuitively, the optimiza-

tion has taken the original system (wherein the origin is asymp-

totically stable) and destabilized it. As a consequence, the environ-

ment is more ‘usable’ in the sense that a greater diversity of states

is accessible (asymptotically) to an agent. The usable environment

in Fig. 5 (b) depicts higher empowerment around the center as

opposed to Fig. 5 (a). 

We also consider the case of a nonlinear system with multi-

ple equilibria (again, see Appendix for details). As shown, the op-

timization tends to accentuate the dominance of a single unstable

equilibrium point. In Fig. 6 (a), the basal system has 4 equilibria (2

saddle, one stable and one unstable equilibrium). The optimization

leaves a dominant unstable equilibrium and destroys the rest of

them, Fig. 6 (b). 

These results are intuitive insofar as the optimization appears

to be simplifying the environment dynamics and making as much

of the state space to be accessible or reachable as possible. Thus,

an agent interacting with the optimized environments can ‘do

more’ than one interacting with the basal system. Although we

have considered only the simplified case of a linear parameter-

ization, there are clear ways to generalize this concept includ-

ing parameterizing the dynamics along a basis set of nonlinear

functions. 

5.2.2. The wilson–Cowan model 

We carry out further simulations for the Wilson-Cowan model

to look into the sorts of dynamics that emerge after learning the

optimal parametrization of the environment. In Fig. 7 , we have

considered P in Eq. (19) as the environment parameterization and

performed the empowerment optimization. Fig. 7 (a) and (b) de-

picts the corresponding empowerment landscape of the initial and

the optimal environment. As seen, the emergent dynamics from

empowerment maximization for n = 300 create a limit cycle. This

observation again is intuitive since the limit cycle permits differ-

ent initial conditions to remain ‘separated’ asymptotically (versus

converging to a single stable fixed point). This observation is also

intriguing from a scientific perspective, since such limit cycle os-

cillations are thought to be pervasive in actual neuronal dynamics.

6. Discussion and conclusion 

In our work, we have explored the use of empowerment as a

way to shape an environment so as to render it more usable by

an agent. From the perspective of dynamical systems and control

theory, this problem amounts to altering the dynamics of the

system at hand so that as much of the state space is reachable as

possible. To do so, we suggest a computational simplification to

aid in the calculation of empowerment (noting that the calculation

of empowerment is itself an optimization problem over the space

of agent actions/inputs). We then use a variational approach to

facilitate the optimization of the environment as intended. Our

simulation results show that the maximally usable environment

created via this procedure leads to ‘simple’ dynamics with a single

unstable fixed point and a large number of reachable states, which

agrees with basic intuition. 

Returning to the idea alluded to in the Introduction, one pos-

sible avenue for these results is to enable a study of biophysical

neuronal dynamics. That is, we can fashion neurons as environ-

ments and study how their dynamics mediate information capac-

ity. This may help us to derive general insights into the functional-

ity of neural circuits and also reveal principles for network design

that do not require task specificity. Finally, one can connect these

results back to the general idea of agent policy design, by viewing

the parameterization as a degree of freedom that can be chosen
y the agent, so that it can both shape the environment and then

xploit it according to a secondary objective. It is also worth men-

ioning that in our simulations, we constrained the degree of free-

om as a linear parametrization of the environment; a potential fu-

ure direction is augmenting the environment according to a more

eneral parameterization, for example through the use of basis

unctions that allow for nonlinear manipulation of the vector field.
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ppendix 

In this section, we provide the details of parameters used in

ur simulations. Particularly, the dynamical model parameters for

endulum and the Wilson-Cowan model are obtained from the

orresponding references [6,24] . For the remaining, i.e. linear and

onlinear systems, the model parameter are chosen to highlight

he key idea of empowerment maximization with respect to the

ystem dynamics. 

.1. Dynamical models parameters: 

In Fig. 2 

 = 

[
1 −1 

−1 1 

]

In Fig. 3 , the parameter set-up for pendulum are the same as

he model provided in [6] . 

In Fig. 4 , c 1 = 12 , c 2 = 4 , c 3 = 13 , c 4 = 11 , a e = 1 . 2 , a i = 1 , θe =
 . 8 , θi = 4 and P = Q = 0 . We have set [ I e , I i ] = [ u 1 , u 2 ] . 

We obtained excitatory and inhibitory nullclines by setting ˙ s e =
 and ˙ s i = 0 , respectively. The fixed points of the system are lo-

ated where the nullclines intersect. 

In Fig. 5 (a) 

 = 

[
−0 . 5 0 

0 −0 . 5 

]

In Fig. 5 (b) 

 = 

[
0 . 626 0 . 032 

0 . 022 0 . 674 

]

In Fig. 6 (a) 

f ( s ) = 

{
s 2 x − 0 . 5 

s 2 y − 0 . 5 

https://doi.org/10.13039/100000181
https://doi.org/10.13039/100000001
https://doi.org/10.13039/100000148
https://doi.org/10.13039/100000001
https://doi.org/10.13039/100000147
https://doi.org/10.13039/100000181
https://doi.org/10.13039/100000001
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In Fig. 6 (b) 

 = 

[
1 . 533 −0 . 414 

−0 . 430 1 . 566 

]

In Fig. 7 , c 1 = 16 , c 2 = 12 , c 3 = 15 , c 4 = 4 , a e = 1 . 3 , a i = 2 , θe =
 θi = 3 . 7 . We have set [ I e , I i ] = [ u 1 , u 2 ] . In Fig. 7 (b), k = P . 

.2. Simulation parameters: 

We have used TensorFlow [27,28] framework for our implemen-

ations. The NNs structure for our simulations are as follows: 

Linear system: d = 2 , 

ω( a t | s t ) : 16 ELU + 16 ELU + { d idenity , d exp } 
q ( a t | s t , s t+ n ) : 16 ELU + 16 ELU + { d idenity , d exp } 
Pendulum: d = 2 , 

ω( a t | s t ) : 128 tanh + 128 tanh + 128 tanh + 128 tanh + 

 1 idenity , 1 exp } 
q ( a t | s t , s t+ n ) : 128 tanh + 128 tanh + 128 tanh + 128 tanh + 

 1 idenity , 1 exp } 
Nonlinear system: We have used the same structure as the lin-

ar one. 

The Wilson-Cowan model: d = 2 , 

ω( a t | s t ) : 16 ELU + 16 ELU + 16 ELU + { d idenity , d exp } 
q ( a t | s t , s t+ n ) : 16 ELU + 16 ELU + 16 ELU + { d idenity , d exp } 
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