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A ubiquitous problem in optimization and machine learning pertains to the design of systems that enact
a desired behavior in dynamical environments. For example, the classical example of a control system
that stabilizes an inverted pendulum. In this paper, we consider a complementary and less well-studied
problem: the design of the environment itself. That is, can we create a dynamical system that in a general
but mathematically rigorous way, is readily ‘usable’ by an unknown agent. We are especially interested in
the synthesis of neuronal dynamics that are maximally labile with respect to afferent inputs. That is, can
we create neural dynamics that propagate information well. To do so, we blend ideas from control and
information theories, by turning specifically to the notion of empowerment, or the information capacity
of a dynamical system in an input-to-state sense. We devise a strategy to optimize the dynamics of a
system using empowerment over its state space as an objective function. This results in dynamics that
are generically conducive to information propagation. For example, the optimized environment would be
expected to perform well as an encoder (of afferent input distributions). We outline the key technical
innovations needed in order to perform the optimization and, by means of example, discuss emergent
dynamical characteristics of systems optimized according to this principle.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A wide range of learning problems deal with the design of an
optimal policy for an agent interacting with a dynamical envi-
ronment, such as a controller attempting to balance an inverted
pendulum. Here, a policy is a set of rules that determines the
actions or inputs that the agent imparts on the environment based
on observations. The fundamental goal of an optimal policy is to
maximize a pre-specified objective function, such as a cumulative
reward accrued over time [1,2].

In this paper we deviate from the classical notion of policy
learning. Instead of seeking a policy for a fixed environment, we
consider the scenario where the environment itself is variable,
parameterized along a continuum of possible configurations. Our
question of interest is then to find the particular environment that
is maximally ‘functional’ according to a general usability criterion.
In other words, we seek an environment that is most favorable, or
perhaps usable, to an unknown agent. This problem is interesting
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in the context of computational neuroscience, because it relates to
the fundamental problem of neural coding, or how circuits in the
brain represent afferent information. For example, if we consider
the environment as a set of biophysiological neuronal dynamics,
we could study the sorts of kinetics that make a neuron a good en-
coder of afferent information. This could help us to derive general
insights into the functionality of neural circuits. We are especially
curious as to whether, there is a general principle that links the
notion of maximal functionality to particular forms of dynamics.
In particular, we define the notion of functionality in terms
of information theoretic quantities, since such quantities allow
us to address the concept of optimality in a general way that is
well-defined, task-independent and applicable universally to any
agent-environment interaction. Specifically, we use as our objective
the notion of empowerment, a measure of information processing
capacity of a dynamical system [3-5]. At a conceptual level, em-
powerment can be understood as the maximum potential effect
that an agent can impart on an environment through exogenous
input. Thus, empowerment is a property of the input-to-output
(or, input-to-state) transfer function of a system and is fundamen-
tally related to the notions of channel capacity and reachability,
from communication and control theories, respectively [5]. The
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greater the empowerment of a system, the greater the diversity
of states/outputs an agent can induce. As such, if empowerment
is high, then the actions of the agent are well-encoded in the
states/outputs of the system in question.

1.1. Related works:

The concept of empowerment was first introduced in [4] as
a hypothetical, information-based utility function that might
be considered as a formal definition of intrinsic motivation for
learning and adaptation. Subsequently, empowerment has been
widely used in reinforcement learning as a general framework for
obtaining agent policies based on the value of information rather
than manually-designed, task-specific utility functions [6-8]. The
fundamental algorithm for evaluating empowerment is the Blahut-
Arimoto (BA) algorithm [9], which is an enumeration-based ap-
proach with exponential computational complexity. However, the
intensive computational complexity of empowerment calculation
necessitates devising an effective method for its approximation.
The authors in [10] proposed variational inference method as a
scalable approach for empowerment approximation with the aim
of using empowerment as a proxy for interinsically-motivated
reinforcement learning. Similarly, the authors in [6] addressed
the empowerment approximation over continuous systems for
learning optimal policies via empowerment maximization.

The mathematical definition of empowerment is highly related
to the ‘Infomax’ objective used in theoretical studies of neural
coding [11-13].

1.2. Contributions:

The primary contribution of our work is a fundamental
information-theoretic paradigm for system design. In particular, we
seek to manipulate an environment so that it attains maximum
empowerment. Concretely, we consider environments that can be
mathematically represented as controlled dynamical systems. A
primary motivation for this problem is a desire to understand the
sorts of dynamics that are most advantageous for information en-
coding. We are most interested in revealing dynamical substrate of
information processing in neurons and neuronal networks. That is,
how do the dynamics of neurons facilitate information propagation
and representation?

Our principle contributions are in terms of:

(i) the mathematical formulation of the above problem,;

(ii) the use of the system impulse response to reduce the com-
putational burden associated with empowerment calculation
and optimization;

(iii) a method to find optimal environments, i.e., to solve (i).

Particularly, our method involves considering a variable

environment parameterized along a continuum of possible

configurations;

illustration of the novelty of our ideas for typical and well-

understood classical systems including linear/nonlinear dy-

namical systems and a well-known neural mass model, i.e.,

the Wilson-Cowan model.

(iv

—

As described, the main facet of our approach underlying these
contributions involves adapting the information-theoretic defi-
nition of empowerment into the context of dynamical systems.
Specifically, we use dynamical systems as (abstract) mathematical
models of environments, for which we seek to optimize infor-
mation capacity. Thus, all analysis and design is done at the
level of the dynamical system, using the formalism of channel
capacity/empowerment. In this sense, the terms dynamical system,
channel and environment are interchangeable (i.e., dynamical sys-
tems are mathematical models of environments, in our context).

The remainder of the paper is structured as follows. In
Section 2, we formalize our optimization problem. Sections 3 and
4 provide our proposed method for technical simplification of em-
powerment maximization and our method for designing usable en-
vironment, respectively. In Section 5, we provide simulation re-
sults illustrating the efficacy of empowerment maximization and
the emergent dynamics. We conclude the paper and provide a brief
discussion in sections 6.

2. Problem formulation and the environment model

In this section, we present the mathematical definition of em-
powerment as our objective function. Then, we provide the dy-
namical system model under consideration and specifically note
the parameterization over which empowerment will be maxi-
mized. This problem setup allows the desirable dynamics of the
environment to emerge only via the empowerment maximization
criterion so as to form the environment maximally usable with-
out having any a priori knowledge about the optimal dynamics.
Throughout the paper the terms dynamical system and environment
are used interchangeably.

2.1. Empowerment

Mutual Information is a core information theoretic quantity that
measures the dependency between two random variables. In our
formulation, the environment can be perceived as a communica-
tion channel from actions (its afferent inputs) to states. Given the
current state s, the mutual information between the action a and
the final state s’ is:

p(s'.als) )
p(s'ls)w(als)
where we denote w(als) as the action distribution and p(s’|a, s) as
the transition distribution.

With this formulation of a dynamical system, empowerment is
simply the channel capacity, i.e., the maximum information that an
agent can potentially emit to the environment by manipulating the
states [4,14] via actions/inputs. Particularly, for the given current
state, the empowerment is:

Z(a, S,|S) = IEp(s’\a,s)w(als)l()g

£(s) = maxZ(a,s’|s) (2)
w(als)

Here, a can be seen as an exogenous input (that is uncorrelated

with the dynamics of the environment), referred to in the com-

munication theory literature as a ‘source’. Consequently, empower-

ment quantifies the extent to which the source is encoded in the

system states.

2.2. Dynamical system model

We consider environments that can be described as dynamical
systems of the affine form:

$(t) = fx(s(t)) +a(t) (3)

where f() : R? — RY denotes the vector field, which is in this case
parameterized by K. Here, s(t) and a(t) are the states and input
actions at time t, respectively. We discretize the system using a
fixed time-step dt, leading to:

Sei1 =S¢ + (fie(se) +ap) dt. (4)
3. Simplified empowerment calculation via impulse response

The discrete model in Eq. (4) is a one-step autoregressive equa-
tion that describes the effect of an input action at the current time
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Fig. 1. Panel A shows the evolution of states over 5 sequence of actions. Panel B
presents our proposed method of increasing the horizon of empowerment maxi-
mization. There is a one-to-one correspondence between the colors of the plots in
panel B. The top plot shows the simplified method for evolution of states and the
bottom one clarifies how the action is propagated through the dynamics. In this
plot the continuous time response of the system is discretized for dt = 0.5.

on the state of the system at the subsequent time. When charac-
terizing empowerment it is desirable to capture the effect of in-
put actions over a prolonged temporal horizon [10,15,16]. In such
a procedure, one obtains an optimal input action sequence leading
to a trajectory within the state space (see, e.g., Fig 1. A where a
sequence of 5 actions evolves the state according to (4)). However,
calculating empowerment in this way is computationally expen-
sive because there is exponential explosion in the search space (of
actions/inputs) as a function of time steps.

Because of the dynamical nature of the environment, we posit
a simplification of this idea wherein we instead calculate empow-
erment based on the system impulse response. We consider only a
single step action a; at time t, then allow the states to evolve over
a horizon of n time steps i.e. s;, in (5). This constrains the search
space (to a single input step), while nonetheless allowing the sys-
tem dynamics to evolve the state over larger swaths of the state
space. That is, we provide the dynamical system with enough time
to nontrivially react to the input. This idea simplifies the schematic
of the optimization problem, as shown in Fig. 1.B; comparing the
graphs in panel A with B, we can see that using the scheme in
panel A, the computational complexity of calculating empower-
ment is linearly proportional to the number of actions. However,
using the impulse response simplification, we can reduce the com-
putational complexity to a constant with respect to a single action.

For n time steps, we can obtain the final state as follows:

Sean =St + f (.. fe((fr(se) +ac)))dt (5)

where the number of recursions of fy is n. To make the notion
of empowerment meaningful it is necessary to introduce stochas-
ticity to the above dynamics (in order to create nontrivial proba-
bility distributions). We do this by assuming additive noise in the

readout of the system states, i.e.,
St =5 +w, (6)

where w; is an uncorrelated noise process.

4. Empowerment maximization for creating usable
environment dynamics

4.1. Environment parameterization

Thus far, we have set up the problem of calculating the em-
powerment of a dynamical system, as per Eq. (2). Our goal at this
point is to treat the question of maximizing the empowerment of
the system at hand with respect to its parameterization, i.e. K. In
particular, suppose that K in Eq. (5) represents a degree of freedom
to alter the dynamics (e.g., in the case of a pendulum, altering the
mass or length of the rod). We denote the number of discretized
states of our considered system as M. For a given current state of
the system, ie. si™ e {s{",...,s™}, we posit the problem of em-
powerment maximization with respect to the parameterization K
as follows:

1
Max & (S;) = maxmax ;- zm:Z(a[, Seen|s™) (7)

4.2. Variational empowerment maximization

The problem (7) is challenging since it involves nested maxi-
mization over a continuous state space and nontrivial probability
distributions. Prima facie, this is near intractable. Thus, in order
to proceed, an approximation is required and for this we turn to
the popular approach of using a variational lower bound for the
key quantities [6,10,17,18]. We will specifically adopt the variational
lower bound for empowerment approximation in [6], which en-
ables evaluation of mutual information for continuous variables.
However, we will use this computational approach in a different
context (i.e., to design environments) and with an additional level
of approximation to aid tractability. We proceed to discuss these
contributions.

Specifically the major computational challenge alluded to above
arises from the intractability of the probability terms in Eq. (1) and
the integration over the continuous domain of all actions and
states. To circumvent the mentioned issues, we can rewrite
Eq. (1) as:

p(a;|Sein, St) (8)

EP(S[m|a[-3z)w(ﬂr\sr)10g w(ac|st)

where p(a;|s;.,) is the posterior distribution of actions. In a
Bayesian sense, the action distribution, w(a,|s;), is the prior.

Due to the intractability of the true posterior distribution, we
use the mutual information variational bound, introduced in [11],
to approximate the above equation as follows:

q(ac|Sein, St) 9)

T (Stan, ar|S) =E lo
( t+n tl t) P(St4n.Gc|St) g C()(a[|st)

where q(a;|s;.n, S;) is the variational distribution that approximates
the true posterior. Using the variational approximation method,
obtaining the variational distribution can be considered as an op-
timization problem where qs (a;|Sc4n, S:) is a variational family of
distributions with parameter & [19]. Given that the variational dis-
tribution expressively represents the true posterior distribution, a
tight variational lower bound can be achieved [6]. Hence, we can
obtain a variational lower bound on the empowerment as follow:

E(s) = ngogle(Sr+n, ai|s;) (10)
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Fig. 2. The vector field and empowerment landscape result from n step empowerment calculation. Plot (a) shows the state space and its corresponding vector field of
a 2 dimensional linear system and (b) depicts the corresponding empowerment landscape (in nats) optimized over two time steps of states. Plot (c) and (d) depict the
comparison of empowerment (in nats) landscape over 5 time steps of states (i.e., the proposed impulse response method) versus 5 time steps of actions, respectively.

To perform the optimization of the variational bound, we
can obtain the action distribution and the variational distribu-
tion via deep neural networks parameterized by ¢ and &, respec-
tively. Sharing the same ideas with amortized variational infer-
ence [20,21], using neural networks(NNs) as a mapping from states
to the distribution parameters enables us to only deal with finite
number of neural network parameters (i.e. weights and biases) in-
stead of learning a separate action distribution and variational dis-
tribution for each state. In this work, we choose the action and
variational distributions from the Gaussian family as follows:

w(@lsy™) = N (g (™), 03 (57
Q@S Sin) = N (e (877, 8in). 0Z (877, Se)])

t St

(11)

where mean p and variance o are also parameterized by NNs. 6 =
{¢. &} are the joint parameter set of Eq. (10). Via joint optimization
of variational bound w.r.t. parameters of w and q, we can achieve
the action distribution that maximizes the mutual information and
the variational distribution that is responsible for the tightness of

the variational lower bound. Exploiting the variational lower bound
on empowerment, we pose our optimization problem as follows:

mlflxmeax](K,G), (12)

where

J.0) = 5 3 E(scen, alsi”) (13)

and

Z(Stsn. ar|s™) = B sema |s§'"))[10g q(a;|Sein, s) — log w(ac|sy™)]

(14)

We can perform the joint Monte-Carlo sampling method to
obtain samples from the joint distribution, p(s..:,a|s{™), and
use the reparameterization trick [22,23] to evaluate the stochastic
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gradients of the objective function with respect to K and 0 as:
a 7 (M) ~ 1 8 l e (m) l )| gm)
@I(st‘f’n’ at|st )"’ z Z @[ qu(at |st+n’ St ) - ng(at |$t )]
I

(15)
and

3 . 1 @ . .
S L Sem adls™)~ ¢ X’: scllogaal’lsy,,. s") —logw(a|s;™)]

(16)

where L is the number of samples. Algorithm 1 summarizes the
optimization procedure. It is worth mentioning that if fy is dif-
ferentiable, a gradient-based approach can be used to update the
decision variables. When examining convergence, we look at the
magnitude of the gradients with respect to the decision variables
and the magnitude of the cost function, J. However, we do not set
any formal thresholds on these quantities, since they depend on
the dynamics and parameters of the system under consideration.

Algorithm 1 Maximization of Empowerment Variational Lower
Bound, w.r.t. 6 = {¢, £} and K.

repeat
for each s!™ do
draw one sample from w(a;|s(™) :
a ~ w(ar|si™)
transit to the final state s;,,
end for
J= ﬁ Y mlogq(a|s™. s.n) — logw(a|s™)
0 <6 +nyVy] for r epoches
K < K+ ngVg]
until convergence

5. Results

We proceed to show the efficacy of the proposed method on
three canonical examples: linear dynamical systems, the inverted
pendulum on fixed pivot and the Wilson-Cowan neural mass
model. We then discuss the emergent dynamics of these systems
following empowerment maximization.

5.1. Efficacy of the proposed impulse response procedure

First, we demonstrate the efficacy of the proposed empower-
ment calculation procedure.

5.1.1. Linear system
For the 2-dimensional linear systems, Eq. (5) is:

Stin = Stin-1 + (AStin1 + @)dE + Wiy, (17)

where A € R2*2 determines the vector field of the system. In this
example, A is chosen so that the origin is unstable. Fig. 2(b) and
(c), depicts the computed empowerment over the state space for
horizons of 2 and 5 steps, respectively. As it is seen, the states
around the origin have largest empowerment, which is intuitive
given the dynamics of the system (because the origin is unstable,
inputs applied for these initial conditions have the potential to ac-
cess the largest swaths of state space).

As means of comparison, we have also performed calculation
of the empowerment using a full iteration of actions (i.e.,, as in
Fig. 1A). Fig. 2(d) shows the obtained empowerment landscape for
this case. As seen, the proposed impulse response-based approach
compares favorably to the full solution. Full details regarding
simulations are found in Appendix.

1.4
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Fig. 3. The pendulum vector field and its corresponding empowerment landscape
(in nats) obtained via empowerment calculation over 50 step states.
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0.00

201 00 01 02 03 04 05

Fig. 4. The vector field, nullclines and empowerment landscape result from n step
empowerment calculation for the Wilson-Cowan model (the empowerment values
are in nats).

5.1.2. Pendulum
To show the performance of our method for nonlinear systems,
we studied the simple pendulum with the following dynamics

c 38
21
For the sake of comparison with previous works [6,15], we
considered the optimization over n =50 steps. As seen in Fig. 3,
the impulse response method produced an interpretable empow-
erment landscape, wherein the locus of high empowerment cor-
responds with the unstable manifold associated with the equilib-
rium at the origin (i.e., the pendulum in the inverted position). Like
the unstable linear system, this is intuitive because on this mani-
fold the input is able to drive the system to a larger swath of the
state space. This is exactly equivalent to the idea of reachability in
control systems analysis.

. 3 .
sm(s+7r)+W(u—0.055) (18)

5.1.3. The wilson-Cowan model

We also demonstrate the performance of our method for the
canonical neural mass model, the Wilson-Cowan model, which
provides a course-grained representation of the overall activity
of populations of neurons [24-26]. The 2-dimensional system de-
scribing the excitatory and inhibitory activity of these populations
is:

Se=—Se + (1 — 1eSe) Fe(CiSe — €251 + I + P)

. (19)
Si=—si+ (1 —ris) Fi(C3se —Casi +; + Q)
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Fig. 5. Empowerment maximization of a linear dynamical system/environment with one stable equilibrium point (a). After optimization, the resultant environment

(b) exhibits a dominant unstable equilibrium.

(b)

Fig. 6. Empowerment maximization of a nonlinear dynamical system/environment with four equilibrium points (a). After optimization, the number of equilibria is reduced

and a single dominant unstable node emerges (b).

where s, and s; are the overall activity in the excitatory and in-
hibitory populations. Here, r;, j € {i, e} represents a constant de-
scribing the refractory period. cq, ¢, c3 and c4 present the strength
of excitatory and inhibitory interactions. P and Q are the excitation
level in the system and I, and I; are the control input currents that
affect the respective populations. Also, F; is a sigmoid function:

1 1
T+expl—a;(s—0;)]  1+exp(a;0;)

Fj(s) = (20)

where a and 6 are free parameters representing the slope
and the threshold, respectively. We applied our method to the
Wilson-Cowan model over n = 100 steps. Particularly, we study the
case wherein the system exhibits 3 multiple fixed points (2 stable
fixed points and an unstable fixed point, see Appendix for details).
Fig. 4, depicts the empowerment landscape obtained using the im-
pulse response method. As seen, the locus of high empowerment
corresponds to the unstable manifold associated with the unstable
fixed point.
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a limit cycle (P = 1.177). (c) and (d) present the comparison between the time response of the system before and after empowerment maximization.

5.2. Creating usable environments

We now move to the main problem considered in this pa-
per: optimization of the empowerment with respect to the
system/environment dynamics. We performed this study for the
same systems considered above.

t (msec)

()

Fig. 7. Comparison of the empowerment landscapes and the environments dynamics for empowerment maximization in the Wilson-Cowan model. In (a), the system initially
exhibits a stable fixed point and the empowerment landscape is flat (P = 0). In (b), after learning the optimal environment parameterization, i.e. P, the environment exhibits

5.2.1. Linear and nonlinear systems

0.59

0.31

0.02

291

For simplicity, we first consider a horizon of two steps and a

linear parameterization as follows:

Sei2 = Sc + f(f(se) + Ks; + ag)dt + wy )

(21)
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Fig. 5, shows the vector field and the landscape of a stable linear
system before and after optimization of the linear parameterization
(again, see Appendix for details). Perhaps intuitively, the optimiza-
tion has taken the original system (wherein the origin is asymp-
totically stable) and destabilized it. As a consequence, the environ-
ment is more ‘usable’ in the sense that a greater diversity of states
is accessible (asymptotically) to an agent. The usable environment
in Fig. 5(b) depicts higher empowerment around the center as
opposed to Fig. 5(a).

We also consider the case of a nonlinear system with multi-
ple equilibria (again, see Appendix for details). As shown, the op-
timization tends to accentuate the dominance of a single unstable
equilibrium point. In Fig. 6(a), the basal system has 4 equilibria (2
saddle, one stable and one unstable equilibrium). The optimization
leaves a dominant unstable equilibrium and destroys the rest of
them, Fig. 6(b).

These results are intuitive insofar as the optimization appears
to be simplifying the environment dynamics and making as much
of the state space to be accessible or reachable as possible. Thus,
an agent interacting with the optimized environments can ‘do
more’ than one interacting with the basal system. Although we
have considered only the simplified case of a linear parameter-
ization, there are clear ways to generalize this concept includ-
ing parameterizing the dynamics along a basis set of nonlinear
functions.

5.2.2. The wilson-Cowan model

We carry out further simulations for the Wilson-Cowan model
to look into the sorts of dynamics that emerge after learning the
optimal parametrization of the environment. In Fig. 7, we have
considered P in Eq. (19) as the environment parameterization and
performed the empowerment optimization. Fig. 7(a) and (b) de-
picts the corresponding empowerment landscape of the initial and
the optimal environment. As seen, the emergent dynamics from
empowerment maximization for n = 300 create a limit cycle. This
observation again is intuitive since the limit cycle permits differ-
ent initial conditions to remain ‘separated’ asymptotically (versus
converging to a single stable fixed point). This observation is also
intriguing from a scientific perspective, since such limit cycle os-
cillations are thought to be pervasive in actual neuronal dynamics.

6. Discussion and conclusion

In our work, we have explored the use of empowerment as a
way to shape an environment so as to render it more usable by
an agent. From the perspective of dynamical systems and control
theory, this problem amounts to altering the dynamics of the
system at hand so that as much of the state space is reachable as
possible. To do so, we suggest a computational simplification to
aid in the calculation of empowerment (noting that the calculation
of empowerment is itself an optimization problem over the space
of agent actions/inputs). We then use a variational approach to
facilitate the optimization of the environment as intended. Our
simulation results show that the maximally usable environment
created via this procedure leads to ‘simple’ dynamics with a single
unstable fixed point and a large number of reachable states, which
agrees with basic intuition.

Returning to the idea alluded to in the Introduction, one pos-
sible avenue for these results is to enable a study of biophysical
neuronal dynamics. That is, we can fashion neurons as environ-
ments and study how their dynamics mediate information capac-
ity. This may help us to derive general insights into the functional-
ity of neural circuits and also reveal principles for network design
that do not require task specificity. Finally, one can connect these
results back to the general idea of agent policy design, by viewing
the parameterization as a degree of freedom that can be chosen

by the agent, so that it can both shape the environment and then
exploit it according to a secondary objective. It is also worth men-
tioning that in our simulations, we constrained the degree of free-
dom as a linear parametrization of the environment; a potential fu-
ture direction is augmenting the environment according to a more
general parameterization, for example through the use of basis
functions that allow for nonlinear manipulation of the vector field.
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Appendix

In this section, we provide the details of parameters used in
our simulations. Particularly, the dynamical model parameters for
pendulum and the Wilson-Cowan model are obtained from the
corresponding references [6,24]. For the remaining, i.e. linear and
nonlinear systems, the model parameter are chosen to highlight
the key idea of empowerment maximization with respect to the
system dynamics.

A.1. Dynamical models parameters:

In Fig. 2

SRR

In Fig. 3, the parameter set-up for pendulum are the same as
the model provided in [6].

In Fig. 4, c1=12,c,=4,c3=13,c4,=11,a.=12,0,=1,6, =
2.8,60; =4 and P = Q = 0. We have set [, [;] = [uy, u].

We obtained excitatory and inhibitory nullclines by setting s. =
0 and s; = 0, respectively. The fixed points of the system are lo-
cated where the nullclines intersect.

In Fig. 5(a)
=[50 8]
In Fig. 5(b)
K — |:O.626 0.032}
0.022 0.674
In Fig. 6(a)
s2-05
fs) = {53 o5
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In Fig. 6(b)
K- 1.533 -0.414
~1-0430 1.566

In Flg 7, c1=16,c3=12,c3=15,c4 =4,0e = 1.3,(1,’ =2,0, =
460; = 3.7. We have set [, ;] = [uq, uy]. In Fig. 7(b), k = P.

A.2. Simulation parameters:

We have used TensorFlow [27,28] framework for our implemen-
tations. The NNs structure for our simulations are as follows:

Linear system: d = 2,

w(ac|s¢) : 16 ELU + 16 ELU + {d idenity, d exp}

q(ac|s¢. St4n) : 16 ELU + 16 ELU + {d idenity, d exp}

Pendulum: d = 2,

w(ac|s¢) : 128 tanh + 128 tanh + 128 tanh + 128 tanh +
{1 idenity, 1 exp}

q(ac|st, Ston) - 128 tanh + 128 tanh + 128 tanh + 128 tanh +
{1 idenity, 1 exp}

Nonlinear system: We have used the same structure as the lin-
ear one.

The Wilson-Cowan model: d = 2,

w(at|sy) : 16 ELU + 16 ELU + 16 ELU + {d idenity, d exp}

q(a¢|st, St4n) : 16 ELU + 16 ELU + 16 ELU + {d idenity, d exp}
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