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Abstract 
Estimation of landslide erosion rates and hazard prediction require a firm understanding of the 
physical controls on landslide size. In this study we seek to understand how the characteristics of 
different landscapes and forcing events influence the distribution of landslide size at a regional 
scale. We explore the parameter space of a mechanically-based landslide model through a series 
of simulations using digital elevation data. Consistent with previous studies, we find that large 
slope failures are infrequent due to the scarcity of large, steep hillslopes in typical mountainous 
topography. On the other hand, we find that the occurrence of small landslides is limited by the 
cohesive strength of hillslope material, which overcomes the weaker driving forces on short slopes. 
We test our model results with an empirical investigation of frequency-size distributions for eight 
real co-seismic landslide inventories. Although empirical data are noisy, we find a positive 
correlation between landslide size and hillslope relief, while the effects of PGA on landslide size 
are less pronounced. We conclude that landslide size distributions reflect the available distribution 
of hillslope geometries in a given landscape, and that external forcing (e.g., seismic ground 
motion) determines which subset of the hillslope distribution fails during a particular event. For a 
given landscape and forcing event, there is a particular length-scale over which landsliding is 
statistically favored, leading to the concept of characteristic landslide size distributions. 
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1 Introduction 
Landslide size is a strong predictor of the runout distance for a variety of different landslide types 
(Legros, 2002; Roback et al., 2018) and is an important factor to consider in hazard prediction. 
Runout distance controls the connectivity of landslide debris with the fluvial system (Li et al., 
2016; Roback et al., 2018), thus dictating the degree to which landslides contribute to secondary 
hazards such as flooding and debris flows (Fan et al., 2019) as well as influencing how landslides 
contribute to the erosion budget of mountain belts (Li et al., 2014). While prediction of landslide 
size is routine in geotechnical investigations, robust estimation of the critical failure surface 
requires site-specific measurements of subsurface material properties and slope geometries, which 



are impractical to collect at regional scales. In place of such detailed investigation, landslide 
inventories mapped after large rainstorms or earthquakes provide the opportunity to statistically 
investigate the physical controls on landslide size. The growing availability of earthquake triggered 
inventories in particular has facilitated recent comparisons between landslide statistics, digital 
elevation data, bedrock material properties, and earthquake ground motion (Frattini and Crosta, 
2013; Valagussa et al., 2019; Jeandet et al., 2019). 
 
The power-law distribution is widely used to describe the statistical distribution of large-area 
landslides (typically those >~1000 m2) in event-triggered inventories (e.g., Hovius et al., 1997; 
Guzzetti et al., 2002; Frattini and Crosta, 2013; Tanyas et al., 2017, 2018; Valagussa et al., 2019; 
Jeandet et al., 2019), as: 
 
𝑝(𝐴) ∝ 𝐴!"                  (1) 
 
where p(A) is the probability of observing a landslide of a given size, A, and α is the power-law 
scaling exponent. The concept of power-law scaling is supported by observations of highly non-
linear frequency-size statistics under an array of conditions, including for rainfall induced 
landslides (Guzzetti et al., 2002), co-seismic landslides (Tanyas et al., 2017 and references 
therein), large rock avalanches (Crosta et al., 2014), and even submarine landslides (ten Brink et 
al., 2006). As a theoretical framework, power-law scaling in landslides has garnered support due 
to the appealing analogy with Gutenberg-Richter scaling in earthquakes (Pelletier et al., 1997; 
Guzzetti et al., 2002) and conceptual consistency with the “sand pile” avalanches of cellular 
automata models (Liucci et al., 2017).  
 
However, landslide distributions commonly only display power-law behavior over a small portion 
of their full range, often accounting for less than 25% of the total number of landslides in an 
inventory (Stark and Hovius, 2001). Typically, a decay in the frequency of smaller landslides 
creates a systematic deviation from power-law behavior at smaller scales. Early studies suggested 
that this reduction or “rollover” in frequency results from a sampling bias, where small landslides 
are censored below the resolution of the satellite or aerial imagery used for mapping (Hovius et 
al., 1997; Stark and Hovius, 2001; Brardinoni and Church, 2004). However, observation of a 
rollover continues even with the growing availability of high resolution (< 2m) imagery (Tanyas 
et al., 2017, 2018), suggesting that the rollover in these high-resolution inventories likely arises 
from physical factors. The smoothness of topography at scales smaller than the support area of 
channels (Pelletier et al., 1997), proportionally greater contribution of cohesive strength for 
shallow failure surfaces (Katz and Aharonov, 2006; Stark and Guzzetti, 2009; Frattini and Crosta, 
2013), a non-linear shear-surface area to volume relationship (Milledge et al., 2014), and 
coalescence of small landslides through time (Tanyas et al, 2018) have been implicated as physical 
mechanisms that may inhibit failures on small slopes.  
 
Despite consensus that the divergence from power-law scaling at smaller scales is not artificial, 
most landslide studies continue to devote great attention to the power-law scaling term, α (e.g. 
Tanyas et al., 2017, 2018; Vallagusa et al., 2019). We suggest that α alone provides only a narrow 
lens through which to view frequency size statistics for several reasons. First, because α is 
calculated only after discarding the potentially substantial portion of the landslide inventory that 
does not conform to power-law scaling, it is insensitive to the distribution of smaller landslides. 



While the individual contribution to hazards and sedimentary budgets is lower for smaller 
landslides, they may still be significant to understanding the physical and mechanical constraints 
on landslide size distributions in general. Second, as a measure of the rate of decay in the frequency 
of landslides with increasing size, α indicates the relative abundance of large versus smaller 
landslides but conveys nothing specific about size. Two datasets could theoretically have the same 
α value while exhibiting no overlap in the range of absolute landslide sizes.  
 
As an alternative to the use of power-law distributions, some authors have noted that some 
landslide size inventories are empirically consistent with the lognormal distribution (e.g., Kelsey 
et al., 1995; Evans 2003). Representing the exponentiated version of a normal (Gaussian) 
distribution, the lognormal distribution is a heavy tailed function with a finite mean and variance. 
This makes characterization with a lognormal distribution specific about the range of absolute 
values contained in the dataset, and also somewhat familiar due to the similarity with the common 
normal distribution. 
 
In this study we investigate the utility of examining frequency-size datasets with the lognormal 
mean and standard deviation in landslide size. We first test the statistical agreement between the 
lognormal distribution and eight mapped inventories and then explore the physical and mechanical 
controls on landslide size through simulations and analysis of empirical inventories. We argue that 
the log-mean landslide size is strongly controlled by relief and rock strength, making the parameter 
useful to consider when comparing inventories from different landscapes. 
 
2 Frequency-size scaling in co-seismic landslide inventories 
 
2.1 Selection of inventories 
Statistical comparison between landslide inventories is most instructive for datasets that share a 
common triggering mechanism and similar mapping standards. Compared to rainfall triggered or 
historic inventories, earthquake induced landslide inventories (EQIL) that meet these standards 
have become more available in recent years, with 66 digital inventories in the global database 
established by Tanyas et al. (2017). We therefore chose to focus exclusively on EQIL inventories 
in our study. Furthermore, we used metadata descriptions and our own evaluation against satellite 
imagery to select inventories that are close to complete down to the resolution of imagery used for 
mapping, with minimal amalgamation of adjacent landslides. As some censoring or amalgamation 
is unavoidable for landslides near the scale of the resolution used for mapping (Tanyas et al., 2018), 
we selected inventories with a modal peak much larger than the resolution-imposed limit (all 
selected inventories mapped from <5m imagery, except parts of the Wenchuan inventory, which 
was mapped at 10m). In total we identified eight inventories that met our criteria, which are shown 
in Figure 1. The majority of these inventories do not distinguish between source and runout area. 
We therefore use full landslide area for all the inventories except the Kaikoura dataset, where we 
consider the debris area because the available metadata did not link the source and runout 
polygons. Finally, to eliminate the statistical signature of failure mechanisms governed by different 
physics than soil/rock slides, we removed debris flows, induced lateral spreading, and large rock 
avalanches from each inventory. This primarily affected the Tohoku inventory which contains a 
significant number of lateral spreads, and the Gorkha inventory, where we removed the Langtang 
ice/rock avalanche.  
 



 
 
We make a brief aside to highlight the versions of the 1994 Northridge inventory and 2015 Lefkada 
inventory we use in this study. These inventories were manually re-mapped to remove the 
amalgamation present in the original Harp and Jibson (1995) and Zekkos et al. (2017) versions 
respectively. Townsend et al. (in review) re-mapped the northern portion of the original Northridge 
inventory based on high-resolution aerial imagery and 3m digital topography. Their inventory 
contains 5064 landslides and covers approximately half the region of high density landsliding 
defined by Harp and Jibson (1995). The updated version of the 2015 Lefkada inventory is complete 
across the entire landslide effected region and contains 716 landslides (Clark and Zekkos, 2019). 
 
2.2 A lognormal approach to frequency-size datasets 
Figure 1A shows frequency-area distributions for the eight selected co-seismic inventories as log-

 
 
Figure 1: A) Log-scale histograms for eight previously published landslide inventories. (Northridge: 
Townsend et al., in revision; Tohoku: Wartman et al., 2013; Gorkha: Roback et al., 2018; Haiti: Harp 
et al., 2016; Kiholo Bay: Harp et al., 2014; Wenchuan: Xu et al., 2014; Lefkada: Clark and Zekkos, 
2019; Kaikoura: Massey et al., 2018).  Full landslide area (source and runout) is used to quantify size 
for all of the inventories except for Kaikoura, where debris area only is shown due to the lack of data 
for full landslide areas. The transparent histogram (black outline) plotted above the empirical landslide 
data (blue) displays a synthetic lognormal distribution with the same mean and variance as the data. B) 
Quantile-quantile plots comparing the inventories to the log-normal distribution. The log-scale 
quantiles of each inventory are plotted against the log-scale quantiles of a standard lognormal 
distribution. The points will plot on a straight line if the two distributions are similar. 
 



scale histograms. We show histograms rather than the empirical probability density estimates 
common in landslide studies because the bin value (count) is not skewed by the bin size as it is for 
probability density. This property of histograms highlights the finite mean and variance in the 
inventories, which is qualitatively consistent with the lognormal distribution. As a more rigorous 
test for lognormality, the quantile-quantile plots in Figure 1B compare the quantiles of each 
inventory to those predicted by a standard lognormal distribution. While generally strong linearity 
in these plots supports a statistical match, we note that positive skewness in the Gorkha, Wenchuan, 
and Kaikoura inventories create a systematic deviation from the lognormal predictions to a degree 
that is unlikely to be explained as statistical noise.  
 

 
 
One explanation for the deviation from lognormal scaling may be an incomplete removal of 
amalgamation or deep-seated failure modes in the Gorkha, Wenchuan, and Kaikoura inventories. 
Alternatively, the lognormal distribution may not be the ‘true’ underlying statistical distribution. 
Previous studies have argued for the general applicability of the power-law, inverse gamma, and 
double Pareto distributions (Hovius et al., 1997; Malamud et al., 2004; Stark & Hovius, 2001). 
Figure 2 compares the maximum likelihood model fits between the lognormal distribution and 
these alternative heavy-tail functions for the 2011 Tohoku and 2015 Gorkha landslide inventories 
(see supplementary Figures S1-S8 for the remaining six inventories). This analysis shows a 
qualitatively similar statistical agreement between all four distributions. However, a rigorous 
statistical selection between models is not our intent; all four of the distributions in Figure 2 have 
been shown to provide accurate empirical predictions (Power Law: Hovius et al., 1997; Guzzetti 
et al., 2002; Tanyas et al., 2017; Double Pareto: Stark and Hovius, 2001; Inverse Gamma: 
Malamud et al., 2004; Lognormal: Kelsey, 1995; Evans, 2003), and all may be useful depending 
on the context. Instead, our main point is that the lognormal fits are comparable to the alternative 

 
 
Figure 2: Comparison between log-normal and power function fits to the density estimates of landslide 
size for the 2011 Tohoku inventory (Wartman et al., 2013) and the 2015 Gorkha Inventory (Roback et 
al., 2018). These two datasets show endmember misfit to a lognormal distribution. Power-law 
parameters were estimated using the principled approach developed by Clauset et al. (2009), which 
combines maximum likelihood estimation and goodness-of-fit tests to identify the lower bound to 
power-law scaling.  
 



distributions, and critically, that the lognormal distribution quantifies the finite mean and variance 
observed in landslide frequency-size datasets. In this context, the lognormal is a parsimonious 
distribution that conveys scale-specific information about landslide size. We focus on log-scale 
mean and standard deviation statistics for the remainder of this study because our goal is to explore 
how slope instability is favored or censored at specific length scales. 
 
3 Controls on landslide size in a synthetic inventory 
To explore the mechanisms that can generate the observed landslide distributions, in this section 
we conduct simulations of earthquake-induced landslides and then relate model parameters back 
to the resulting landslide size statistics. Previous studies have suggested that topographic 
characteristics, hillslope material strength, and seismic loading are important controls on landslide 
size (Frattini and Crosta, 2013; Valagussa et al., 2019, Jeandet et al., 2019). We therefore focus on 
these parameters in our simulations. 
 
3.1 Methods 
We simulate landslide distributions by measuring hillslope geometries from a digital elevation 
model (DEM) and then assessing the stability of each hillslope using a limit equilibrium (LE) slope 
stability model. We incorporate pseudostatic seismic conditions in order to explore the effect of 
variable seismic loading. Synthetic landslides are identified as unstable hillslopes (Factor of Safety 
< 1), and frequency-size statistics are returned in terms of landslide length. We use length as a 
proxy for landslide area because our measurements of hillslope geometry are restricted to 2D 
(height and slope only). Finally, we validate our approach by comparing simulated versus observed 
landslides associated with the Northridge earthquake. 
 
Our DEM measurements of hillslope geometry rely on a variation to the conventional derivation 
of digital channel networks, which are commonly determined from hydraulic flow routing 
algorithms and a user-defined threshold contributing drainage area that defines channel initiation 
(Montgomery and Foufoula-Georgiou, 1993). While channels are commonly defined as DEM grid 
cells that correspond to a contributing drainage area greater than 106 m2, we define hillslopes as 
grid cells with less than 5x104 m2 of support area (roughly the contributing area for colluvial 
channels; Montgomery and Foufoula-Georgiou, 1993; Whipple and Tucker, 1999). We use a 
threshold representative of colluvial channels because the majority of landslides are smaller than 
the ridge-main-stem-channel distance, and we want to ensure that our slope measurements cover 
these smaller scales. We then use the D8 flow model (O’Callaghan and Mark, 1984) to create flow 
paths along hillslopes. Following the approach of other recent studies (Townsend et al., in review; 
Grieve et al., 2016), we use the slope angle and height defined by these hydraulic flow paths as 
simplified hillslope geometries for slope stability analysis (Figure 3). Although the majority of 
hillslope flow paths have a single start and end point, convergent topography does result in some 
multi-branch flow paths. In these instances, we use the height and slope between the overall highest 
and lowest points on the flow path. 
 
While the 2D geometries generated by our approach provide more information than pixel-based 
slope alone, it is important to note that the hillslope flow paths do not necessarily represent the 
only location where a landslide could form. Surface roughness or minor breaks in slope may 
facilitate landslides smaller than the flow distance defined by a constant support area. However, a 
more complete search for the most critical slope patches would be computationally challenging to  



 
 
implement at landscape scales. We therefore only consider the possibility that each 2D hillslope 
profile fails along the entire distance, with the length along the failure plane corresponding to the 
resulting landslide length (Figure 4).  
 
To assess the stability of each hillslope measurement, we consider forces acting on a planar wedge 
failure geometry (Culmann, 1875). We apply a pseudostatic formulation of Culmann’s analysis 
(Ling et al., 1999), where seismic acceleration is portrayed as a permanent horizontal body force 
added to the hillslope’s free-body diagram (Figure 4). We do not consider vertical accelerations 
because they are not generally dominant (Campbell and Bozorgnia, 2003) and are not reported in 
USGS ShakeMap estimates. The pseudostatic Culmann analysis provides an analytic bounding 
relationship between slope gradient and hillslope relief, such that the maximum stable hillslope 
height is given by: 
 
𝐻#$%& =

'#	)*+	,	)*+	-	+./(")
2[4	!	)*+(-	!	5	–	,)]

                (2) 
 
where c is cohesion, φ is the material’s friction angle, γ is the material’s unit weight, and α is the 
slope angle. Slopes taller than the critical height, Hcrit, correspond to a Factor of Safety <1, and are 
predicted to fail. The factor θ is given by: 
 
tan θ = kh                  (3) 
 
where kh is the pseudostatic coefficient, which determines the magnitude of the pseudo horizontal 
force on the sliding wedge (representing the force generated during an earthquake). Pseudostatic 
coefficients are generally selected to be some fraction of the peak ground acceleration (PGA) to 
account for the fact that peak acceleration occurs only briefly and does not create a unidirectional 

 
Figure 3: Illustration of our approach to measuring hillslope geometry from a DEM. A) Flow direction 
and accumulation algorithms delineate hydraulic flow paths on hillslope grid cells, which are defined 
by flow accumulation values less than the threshold for channel initiation. These flow paths provide a 
simplified hillslope geometry consisting of a slope angle and height. B) Applying this technique to the 
entire DEM results in a distribution of hillslope geometries, which can then be assessed for slope 
stability using limit equilibrium (LE) analysis (e.g. Fig. 4).  
 
 
 



or synchronous loading throughout the sliding mass (Hynes-Griffin and Franklin, 1984; Jibson, 
2011). We use this approach in our preliminary test simulations (section 3.2), where we linearly 
scale kh to the USGS ShakeMap PGA estimates. For simplicity in our parameter space exploration 
(section 3.3), we set kh equal to 1.0, and scale PGA values from 0-0.5 g (see Figure 6).  
 

 
 
3.2 Model Validation 
While an inversion for strength parameters is beyond the scope of this study (cf. Gallen et al., 
2015), we compare our model simulations against a real co-seismic landslide inventory to verify 
that it produces a comparable statistical distribution given realistic strength parameters. We use 
the 1994 Mw6.7 Northridge Earthquake inventory as a test case because the local hillslopes are 
steep, moderately tall (~100m), and planar, which are conditions where Culmann’s analysis is 
closest to more rigorous limit equilibrium methods that assume log spiral geometries (Ling et al., 
1999). We simulate landslides using a 3 meter IfSAR DEM (OCM Partners/NOAA, 2004), and 
hillslope material properties representative of those reported by Dreyfus et al. (2013) for the 
landslide affected region (φ = 30◦, cohesion = 12 kPa, unit weight = 15.7 kN/m3). Furthermore, we 
allow for a spatially variable seismic coefficient, scaling the value of kh to 50% of the USGS 
ShakeMap PGA estimates for the Northridge Earthquake (contributed by ATLAS:  last updated 
2017-04-12 06:25:42 (UTC)), which is the value suggested by Hynes-Griffin and Franklin (1984). 
Finally, for comparison to the 2D model predictions, we use the Northridge inventory by 
Townsend et al. (in review), who re-mapped the northern portion of the original inventory by Harp 
and Jibson (1995) to remove the effects of amalgamation. We calculate landslide length for the 
mapped Northridge landslides using a simplified polygon enclosure to estimate distance along the 
runout axis (minimum bounding geometry tool, ArcMap 10.6).   
 
Figure 5 compares the predicted and observed landslide inventories. The large number of synthetic 
failures reflects the flow-routing technique used to measure hillslopes; groupings of adjacent 2D 

 
 
Figure 4: A) Force diagram for the pseudostatic extension of Culmann’s sliding wedge analysis. 
Hillslopes larger than the maximum stable height, Hcrit, are predicted to fail. Dynamic seismic loading 
is simplified as an additional horizontal force, kh · W, where W is the weight of the sliding wedge and 
kh is the seismic coefficient. B) For uniform parameters, Culmann’s analysis provides a bounding 
relationship between hillslope height and slope. Hillslopes plotting above the red curve are predicted to 
fail as landslides (FS<1), while those below the red curve are predicted to be stable (FS>1). 
 



flow paths predicted to fail correspond to single landslides in a real landscape. The two inventories 
show close agreement in terms of frequency-length statistics (Figure 5A), with geometric mean 
sizes (i.e. 10μ, where μ=mean(log10(length))) of 65 m vs 58 m for the synthetic and empirical 
inventories respectively. Visual inspection of the quantiles in Figure 5B shows consistency 
between both inventories and a lognormal distribution over the full range of values. Thus the model 
accurately reproduces the observed size statistics, which are the focus of attention here. 
 

 
 

 
 
Figure 5: Comparison between the mapped Northridge frequency-length distribution and a synthetic 
distribution using model parameters of kh = 0.5 · PGA, unit weight = 15.7 kN/m3, φ = 30◦, and cohesive 
strength of 12kPa. These model parameters produce similar frequency-size statistics to the real 
Northridge inventory (A and B). Compared to the mapped inventory, the larger number of synthetic 
failures in A is a consequence of the flow-routing technique used by this study to measure hillslopes. 
Model landslides correspond to individual hillslope segments that are only one-pixel (3m) wide, and 
many adjacent segments may correspond to a single landslide in a real landscape (see clustering of 
failed hillslope segments in C). 
 



3.3 Parameter Space Exploration 
In a series of simulations, we impose variations in PGA (where kh=1•PGA) and the cohesive 
strength of hillslope material, assuming a friction angle and unit weight of 30◦ and 15.7 kN/m3 
respectively. Two examples are presented using a 3m DEM for the region affected by the 1994 
Northridge Earthquake in California (IfSAR-derived product; OCM Partners/NOAA, 2004), and 
a 30m DEM for the region affected by the 2015 Gorkha Earthquake in Nepal (SRTM-derived 
product; Farr et al., 2007). We select these two regions in particular as they are endmembers in 
terms of topographic relief amongst the locations from Figure 1. 
 

 
 
The bivariate histograms for the Northridge simulations display a cross-tabulation of slope angle 
and hillslope height for all of the hillslopes measured from the 3m DEM, showing peak modal 
values of 30º slope and 50 m hillslope height (Figure 6A and 6B). However, hillslope height and 

 
 
Figure 6: Landslide simulations for the region affected by the 1994 Northridge earthquake (southern 
California). Bivariate distributions (slope angle and height) of hillslope geometries are measured from 
a 3 m DEM, where lighter colors represent higher data density. The curves define FS=1 for different 
values of cohesion (A), and PGA (B).  Hillslopes that plot above the curves (i.e. taller, steeper slopes) 
are predicted to fail (see Fig. 4), resulting in the landslide size distributions shown in the bottom 
panels (C, D). The height of the histograms quantifies the percentage of failed hillslope profiles out of 
the total number measured from the DEM.  
 



slope distributions are not symmetrically distributed and instead show a second peak of values for 
very low slopes and short hillslope segments, which represents roughness largely owing to 
anthroprogenic structures recorded by the 3m IfSAR data. Superimposed on the hillslope 
distribution are the bounding curves defined by Culmann’s stability analysis (FS = 1) for a range 
of cohesion (Figure 6A) and PGA (Figure 6B) values. Hillslopes plotting above the curves (i.e. 
taller and/or steeper slopes) are predicted to be unstable for the choice of parameters. Landslide 
size is quantified as the length of the failure plane through each unstable hillslope, which results 
in the landslide distributions shown in Figure 6C and 6D.  
 
The stability curves defining FS=1 in Figure 6A reveal how increases in cohesion increase the 
critically stable hillslope height to a greater degree than increasing the critical slope gradient. This 
effect is highlighted by the spacing of the curves, which are more widely spaced along the vertical 
axis (height) compared to the horizontal axis (slope). Physically, the pronounced relationship 
between cohesive strength and critical hillslope height can be explained by the fact that any non-
zero cohesive shear resistance will compensate the gravitational driving force on sufficiently small 
sliding masses, regardless of frictional strength. Thus increasing model cohesion increases the 
threshold (minimum) hillslope height required for the failure of a given slope gradient (curves 
extended onto the 1D histogram of hillslope height correspond to a 90o slope, Figure 6A). As a 
result, the predicted landslides are increasingly restricted to the tallest subset of hillslopes, which 
causes larger landslides on average and a narrower distribution of hillslope heights, i.e., smaller 
standard deviation (Figure 6C).  
 
In contrast, increases in PGA more strongly affect the critical slope gradient required for failure 
compared with the critical height (Figure 6B). This result is a physical consequence of the fact that 
seismic loads are modeled as horizontal forces, which reduces shear resistance to a greater degree 
on steeper slopes compared to flatter ones. While vertical accelerations do specifically penalize 
slope height in the Ling et al. (1999) analysis, we highlight that the horizontal component 
dominates in empirical data (Campbell and Bozorgnia, 2003). In terms of landslide frequency-size 
statistics, the primary result of increasing PGA is the generation of landslides over a greater range 
of length scales (i.e. increasing standard deviation; see widening of the histograms in Figure 6D). 
However, we also note a subtle decrease in average size with increasing PGA, reflecting the 
relative abundance of smaller hillslopes that only become unstable at high PGA. For example, 
PGA greater than ~0.25g allows for failure of the most frequent hillslope geometry in the 
Northridge DEM, which is around ~30o steep and ~50 m tall (i.e. PGA contours reach the peak of 
the histogram in Figure 6B for values greater than 0.25g). This result highlights the role of 
topography in determining landslide frequency size statistics. While increasing seismic loads 
mechanically permit the failure of an increasing range of hillslope geometries, the spatial 
distribution of strong ground motions in a real earthquake restricts the availability of hillslopes to 
particular sizes, which provides an independent constraint on what landslide sizes are possible and 
most likely. 
 
Figure 7 shows the same parameter space exploration for the topography affected by the 2015 
Gorkha Earthquake in central Nepal (Himalayan Mountains), where the principal difference from 
the Northridge simulations is the order of magnitude increase in the maximum hillslope relief. In 
this landscape, we observe a unimodal distribution of both slope and hillslope length with peak 
values around 35º and 200 m respectively. Due to the higher relief in Nepal, we used a - 



 
 
correspondingly higher range of cohesive strength relative to Northridge in order to achieve static 
stability (<0.2% of all hillslopes predicted to fail at C=100 kPa, PGA = 0). In general, we observe 
the same scaling behavior described previously for our Northridge simulations, where decreasing 
cohesion and increasing PGA both result in more total landslides. Also similar to the first example, 
increasing cohesion significantly increases mean landslide size, while also decreasing the standard 
deviation of landslide size (Figure 7C). Increasing PGA primarily increases the range of landslide 
sizes, although for the Nepal simulations we observe a subtle shift to slightly larger average 
landslide sizes, opposite of the Northridge example (Figure 7D). As noted previously the effect of 
PGA on landslide size depends on the availability of hillslopes. Unsurprisingly, the abundance of 
hillslopes many hundreds of meters in height allows for larger landslides in Nepal compared to 

 
 
Figure 7: Landslide simulations for the region affected by the 2015 Gorkha earthquake (central 
Nepal). Bivariate distributions (slope angle and height) of hillslope geometries measured from the 
30m DEM, where lighter colors represent higher data density. The lower cutoff to the bivariate 
distribution results from the fact the that horizontal distance along hillslope flow paths (i.e. H/tan(α)) 
can only take on integer values in multiples of 30m for the 30m resolution DEM. The curves define 
FS=1 for different values of cohesion (A), and PGA (B).  Hillslopes that plot above the curves (i.e. 
taller, steeper slopes) are predicted to fail (see Fig. 4), resulting in the landslide size distributions 
below (C, D). The height of the histograms quantifies the percentage of failed hillslope profiles out of 
the total number measured from the DEM.  
 



Northridge. However, it is difficult to separate the effect of relief alone, as hillslope-scale relief 
and rock strength exhibit a co-variance under the assumption of Culmann’s model (Schmidt and 
Montgomery, 1995). Indeed, higher slope cohesion is required to prevent an unrealistic number of 
landslides for our simulations in the higher relief Nepal landscape (up to 1MPa, Figure 7), and, as 
we have now shown, increasing cohesion also predicts an increase in average landslide size 
because it censors shorter and less steep slopes from the distribution.  
 

 
  

 
 
Figure 8: Landslide length statistics for simulations using a range of values for cohesion and PGA, 
and digital topography from Northridge (A, B) and Nepal (C, D). Geometric mean landslide size (i.e. 
10μ, where μ=mean(log10(length))) increases with increasing cohesion (A, C), while the log-
transformed standard deviation in landslide size decreases with increasing cohesion (C, D). The 
standard deviation in landslide size generally increases with increasing PGA, but the effect of PGA on 
the mean size depends on the landscape and the value for cohesion (B, D), with differences in 
topography between the two sets of simulations influencing specific landslide scaling behavior. 
 



Figure 8 summarizes predicted landslide length (geometric mean and standard deviation) for all 
combinations of cohesion and PGA, for both the Northridge and Nepal examples. Increasing 
cohesion for both landscapes produces a nearly linear increase in geometric mean landslide length 
(Figure 8A, 8C) and a non-linear decrease in the log-scale standard deviation of landslide size 
(Figure 8B, 8D). Both of these effects reflect the stability of increasingly larger hillslopes as 
cohesion increases, thus restricting the distribution of landslide size to larger and more narrowly 
distributed values (on a log scale). For increases in PGA, we find that the primary result in both 
the Northridge and Nepal simulations is an increase in the log standard deviation in landslide size 
(Figure 8B, 8D), and a decrease in the total number of landslides generated (the curves become 
truncated at low PGA and high cohesion values because no landslides are predicted under these 
conditions). Differences in the exact response to PGA between the two sets of simulations 
highlight the role of topography in determining landslide statistics. For example, while we find 
that geometric mean landslide length systematically decreases with PGA at low cohesion values 
and increases with PGA at higher cohesion values for both sets of simulations, the value of 
cohesion at which this transition occurs is unique to the landscape (i.e. the crossing, or bending 
over of contours in Figure 8A, 8B). Furthermore, while the log-scale standard deviation generally 
increases with increasing PGA for both sets of simulations (Figure 8B, 8D), the increase is 
negligible in the Northridge simulations below 0.5g (i.e. stacking of the contours in Figure 8B), 
but present for all values of PGA in the Nepal simulations. The simulations for the two landscapes 
are particularly different at low values of PGA because relatively few landslides are activated 
under these conditions, making the underlying hillslope distribution especially important in 
determining landslide size statistics.  
 
4 Controls on landslide size in empirical inventories 
Our simulations highlight rock strength, hillslope-scale relief, and ground motion intensity as 
important physical parameters that affect the distribution of landslide size. Our modeling results 
suggest landslides will be larger on average in regions with greater available hillslope relief and/or 
higher cohesive strength. Furthermore, increasing PGA is predicted to increase the range in 
landslide sizes. In this section we test for these effects in empirical data, using the mapped 
inventories from section 2 along with the corresponding ShakeMap PGA datasets and DEMs.  
 
4.1 Influence of hillslope relief on landslide size 
In this section, we compare landslide size statistics to hillslope relief in two different ways. First, 
to view the variance within each inventory individually, we binned the landslide distributions by 
the local relief estimated at the location of each landslide. We estimated hillslope relief using the 
same technique we used to extract hillslope geometries for stability analysis in section 3.1, where 
we measured the vertical offset on flow paths with support areas no larger than 5x104 m2. We then 
converted our hillslope relief estimates to rasters with grid cell values representing the total relief 
on the flow path passing through each cell (see supplementary table S1 for DEMs used in this 
analysis, and Figures S11-18 for hillslope relief maps for each region). Finally, we binned the 
landslide distributions by the relief estimated at the centroid of each landslide and computed the 
log-scale mean landslide size for relief bins that contain at least 20 landslides (Figure 9A).  
 
As a second approach, we compared the inventories against each other with a single set of mean 
and standard deviation statistics representing the entirety of each landscape (Figure 9B, 9C). Such 
a comparison of relief between landscapes becomes sensitive to the threshold drainage area that - 



 
 
defines the hillslope regime, since this value is known to vary between landscapes (Montgomery 
and Foufoula-Georgiou, 1993; Whipple and Tucker, 1999). However, slope area analyses for the 
DEMs we used did not reveal a clear rollover in the slope-area relationship indicative of the 
hillslope drainage threshold (Figure S9). We therefore chose to account for uncertainty in the 
drainage threshold by using a range of values for each landscape. Using 100 log-uniformly 
distributed threshold drainage area values between 104 and 105 m2, we generated an ensemble of 
100 hillslope relief rasters for each landscape. We then calculated the mean and standard deviation 
in relief among the grid cells of each raster and averaged the statistics between the 100 estimates 
for each landscape. This sensitivity analysis quantifies how our hillslope relief statistics depend on 
the choice of the threshold contributing area value. The horizontal error bars in Figure 9B and 9C 
are the standard deviation in relief statistics for the ensemble of drainage thresholds. See 

 
 
Figure 9: Relationships between landslide statistics and the distribution of relief for 8 co-seismic 
landslide inventories. A) Log-averaged landslide size as a function of relief within each landscape 
individually. Vertical error bars are the 95% confidence interval on the mean for each bin. B) A similar 
relation to A) holds between landscapes, when landslide size and relief are averaged for the whole 
event. Horizontal error bars are the standard deviation between 100 estimates for different threshold 
drainage area values. Vertical error bars are the 95% confidence interval on the mean landslide size for 
each landscape. Due to the large number of data in each inventory these error bars are tightly 
constrained. C) The log-transformed standard deviation in landslide area shows a positive relationship 
with the standard deviation of relief, suggesting that more variable hillslope sizes allow for more 
variable landslide geometries. Horizontal error bars again represent the standard deviation between 
estimates for different threshold drainage area values. 
 



supplementary section S2 for the full sensitivity analysis. 
 
For variations within a single landscape (Figure 9A), we found that landslide size systematically 
increases in the hillslope relief bins. Partial correlation coefficients computed with bin count as 
the control variable are statistically significant (p<0.05) for every dataset in Figure 9A except the 
Lefkada and Kiholo Bay inventories, which only contain 7 and 2 bins with at least 20 landslides 
respectively. We also found that different landscapes show different landslide sizes for the same 
values of relief, potentially reflecting differences in average rock strength or a bias introduced by 
using the same drainage threshold for each landscape. For variations between landscapes, we found 
a positive relationship (R2 = 0.58) between the overall log-scale mean landslide size and mean 
hillslope relief (Figure 9B), and a weaker relationship (R2 = 0.29) between the log-transformed 
standard deviation in landslide area and the standard deviation of hillslope relief (Figure 9C).  
 
While the empirical correlation between landslide size and relief in Figure 9 is consistent with the 
expectation from our simulations, the underlying mechanism is less clear. High relief topography 
is likely associated with higher rock strength at the scale of individual hillslopes (Schmidt & 
Montgomery, 1995; Townsend et al., in review), and we have already demonstrated that a larger 
sliding mass is required to achieve critical conditions in a stronger medium (Figures 6,7,8). On the 
other hand, our use of full initiation and runout area for the analysis in Figure 9 leaves open the 
possibility that the correlation to relief simply reflects the greater runout distance available on 
longer slopes, independent of initiation area. Furthermore, correlation between the size of the 
sliding mass and runout area is well established (Roback et al., 2018), suggesting that a 
combination of factors is likely. Nonetheless in practical terms, the relative importance of hillslope 
strength and space for runout matters little because both factors correlate to relief and also act to 
increase landslide size. The strong relationships in Figure 9 indicate relief is a first order predictor 
of landslide size and underscore how landslide statistics reflect the local geomorphology.  
 
4.2 Influence of PGA on landslide size  
For each of the eight empirical landslide inventories, we categorized the mapped landslide 
polygons based on PGA contours taken from the USGS ShakeMap ground motion estimates. We 
constructed PGA bins such that at least 20 landslides fall into each bin. We excluded the 2015 
Lefkada landslide inventory because the range in PGA across the landslide affected coastline was 
<0.2g.  
 
Figure 10 displays the log-scale mean and standard deviation in landslide size for each bin, plotted 
against the average PGA for that bin. For each set of bins, we computed the partial correlation 
between PGA and the bin value while controlling for the sample size represented by the bin. 
Regressions are shown for datasets where a Student’s t-test for the significance of the partial 
correlation coefficient rejects the null hypothesis of zero correlation (p<0.05). In contrast to our 
simulations reported in Section 3, we find no systematic trend between PGA and the log-scale 
standard deviation in landslide size. However, we do observe weak but statistically significant 
negative correlations between the log-scale mean size and PGA for 3 of the larger inventories, 
which is consistent with the predictions of our simulations for lower values of cohesion (Figure 
8A, 8C). 



Valagussa et al. (2019) found a weak negative correlation between the frequency-area power-law 
scaling exponent and PGA for 3 of the 6 inventories they investigated, which may be consistent 

Figure 10: Relationships between geometric mean and standard deviation in landslide size and 
ShakeMap PGA estimates for seven co-seismic inventories. Regressions are shown for the datasets 
where the partial correlation between mean/std landslide size and PGA while controlling for bin count 
are significantly different from 0 (p<0.05). A comparison of landslide size versus average PGA across 
the sites in this study (similar to that for relief in Fig. 9) is not meaningful because overall mean PGA 
does not vary much between the different earthquake events. 



with our results. Interestingly, the strongest relationship Valagussa et al. (2019) found between 
PGA and α for the Wenchuan inventory is consistent with our modeling expectation that increasing 
PGA facilitates landslides over a greater range of length scales. This expectation is also reflected 
in the especially strong trend we resolve between PGA and the standard deviation in size for the 
Wenchuan inventory (Figure 10). However, while the relationship between landslide size and PGA 
may be statistically significant for very large datasets such as the Wenchuan inventory (N>105), 
we argue that PGA alone is a secondary control on landslide size in general. As we have shown in 
the previous sections, topographic relief and hillslope material properties are also expected to alter 
landslide size statistics and their sensitivity to PGA, and we have not adjusted for these factors in 
the present analysis. Heterogeneity in these additional parameters may obscure the true 
relationship with PGA, especially if ground motions are concentrated in regions with anomalous 
relief or particularly strong/weak hillslope material properties. Indeed, the relatively larger 
differences in statistics between inventories compared to variations within a single dataset (Figure 
10) suggest that landscape characteristics exert a stronger control on the distribution of landslide
size compared to shaking intensity alone.

5 Discussion 
5.1 Model Assumptions and Limitations 
Our model results come with some important caveats. First, our method of discretizing hillslopes 
along hydraulic flow paths limits our landslide size predictions to be within the range of the finite 
distribution of measured slope segments. This limitation potentially censors landslides smaller 
than the smallest flow path (~grid cell size), and does not allow for smaller failures to form along 
a single flow path. A more comprehensive search for the most critical slope parcels is 
computationally challenging to implement at landscape scales and is beyond the scope of this 
study. However, we note that while our slope measurements do not include every conceivable 
landslide candidate patch, they do extend over much smaller length scales than our predicted 
landslides (Figure 6 and 7). Landslides are not predicted at these small scales because the assigned 
shear strength overwhelms the driving forces, not because of a paucity of small hillslopes. Thus 
we argue that our slope measurements do not significantly skew the landslide statistics in our 
simulations toward large sizes. 

Second, we consider how our results depend on our choice of slope stability model. Clearly the 
rendering of all landslides as Culmann wedge-style failures is a crude approximation for shallow 
rock and soil slides, which are the most common failure mechanism in co-seismic inventories 
(Keefer, 1984). While the stability predicted by Culmann’s analysis approaches that of the more-
accurate log spiral mechanism for steep to vertical slopes, the difference is more pronounced as 
the slope flattens (Ling et al., 1999), meaning that our model under-predicts landslides on gentle 
slopes. Furthermore, Culmann’s analysis is intended for slopes with a horizontal backfill which 
does not generally apply to our flow segment measurements, likely causing some over-prediction 
of failure plane length. While alternative limit equilibrium methods (e.g. ordinary method of slices, 
Spencer’s method, etc.) provide a more accurate force balance, they require numerical techniques 
to discretize the sliding mass and identify the most critical failure plane. Thus the concessions in 
accuracy required by Culmann’s analysis are another compromise for computational cost. 
Culmann’s equation uniquely offers a closed form solution while preserving a 2D geometry and 
finite length scale, which are critical to our investigation of landslide scaling behavior. We also 
note that the mechanical and topographic controls on landslide size we observe in our simulations 



agree with the results of previous authors (e.g., Katz and Aharonov, 2006; Klar et al., 2011; Frattini 
and Crosta, 2013; Milledge et al., 2014; Jeandet et al., 2019), suggesting that these factors are 
independent of the modelling approach. 
 
5.2 Characteristic landslide distributions? 
We view our key contributions to be the comparison of landslide statistics between different 
landscapes, and our emphasis on the mean landslide size rather than the power-law exponent. 
Regardless of whether the empirical data are truly lognormal, we show that landslide size 
distributions have a finite mean and variance that arise in our model due to the tradeoff between 
shear resistance and the availability of large hillslopes. While others have identified the same 
mechanical and topographic constraints before (e.g., Katz and Aharonov, 2006; Klar et al., 2011; 
Frattini and Crosta, 2013; Milledge et al., 2014; Jeandet et al., 2019), we are unaware of studies 
showing how these effects determine landslide size for landscapes with different properties. The 
correlations we found between relief, PGA, and mean landslide size in empirical data (Figures 9, 
10) are broadly consistent with our model expectations, suggesting that landslide distributions 
carry the statistical fingerprints of the hillslopes and forcing event with which they are associated.  
 
Our results lead us to propose the concept of characteristic landslide distributions. We suggest that 
large landslide events are associated with a characteristic landslide size, which represents the 
length scale at which relative shear resistance (i.e. the Factor of Safety) is minimized for the 
greatest portion of hillslopes in that region. Subsurface mechanical properties, seismic conditions, 
and the availability of hillslope relief set the landscape’s potential for producing landslides of a 
given size. The combination of these factors creates optimal conditions for slope failure over a 
particular range of length scales, leading to the observed clustering of landslide sizes on a log 
histogram. We argue that the log-scale mean landslide size is thus ‘characteristic’ of the landscape 
and forcing event that caused the slopes failures. 
 
Our theoretical framework differs from previous ideas about landslide scaling relations. In 
particular, the idea that landslide distributions cluster about a characteristic size contrasts with the 
scale invariance implied by the power law, inverse gamma, and double Pareto distributions, where 
the focus is nearly always on the slope of the heavy tail. The vast majority of landslides in each of 
the individual distributions shown in Figure 1 fall within two orders of magnitude in terms of area. 
This range might be considered large in practical terms, but we argue it is fairly small in the context 
of scale invariant phenomena (Evans, 2003). While we do not question the agreement with the 
power-law distribution for the largest landslides (e.g., Figure 2), we highlight that observed scaling 
relationships do not necessarily have a clear physical meaning (Clauset et al., 2009; Stumpf and 
Porter, 2012). Previous studies have reconciled divergence from power-law scaling by suggesting 
that landslides exhibit scale invariant behavior down to a threshold scale at the ‘rollover’, and that 
smaller length scales are associated with a distinct change in physics or observation bias (e.g. 
Malamud et al., 2004; Stark and Hovius, 2001; Katz and Aharonov, 2006; Stark and Guzzetti, 
2009; Frattini and Crosta 2013; Tanyas et al., 2018). In contrast, we suggest that, compared to the 
range of length scales potentially available in natural landscapes, landslides are favored at 
relatively specific sizes.  
 
6 Conclusion 
Our simulations of landslide distributions demonstrate how landslide size is expected to vary on 



average between landscapes with different properties. Consistent with the results of previous 
studies, we find the average landslide size reflects a trade-off between the cohesive strength of 
slope material and hillslope-scale relief. Our simulations also suggest that variations in PGA 
primarily change the variance in landslide size for earthquake triggered landslides, although the 
exact relationship depends on the specific hillslope characteristics of the landscape. Furthermore, 
we find correlations in empirical datasets that are broadly consistent with our model expectations. 
We argue that our focus on the finite mean and variance in landslide size rather than the power-
law exponent allows us to resolve an empirical relationship with relief in particular. Finally, we 
propose the concept of characteristic landslide distributions, a conceptual framework which helps 
explain the empirical consistency between landslide frequency-size distributions and the 
lognormal statistical distribution.  
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