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Abstract

Estimation of landslide erosion rates and hazard prediction require a firm understanding of the
physical controls on landslide size. In this study we seek to understand how the characteristics of
different landscapes and forcing events influence the distribution of landslide size at a regional
scale. We explore the parameter space of a mechanically-based landslide model through a series
of simulations using digital elevation data. Consistent with previous studies, we find that large
slope failures are infrequent due to the scarcity of large, steep hillslopes in typical mountainous
topography. On the other hand, we find that the occurrence of small landslides is limited by the
cohesive strength of hillslope material, which overcomes the weaker driving forces on short slopes.
We test our model results with an empirical investigation of frequency-size distributions for eight
real co-seismic landslide inventories. Although empirical data are noisy, we find a positive
correlation between landslide size and hillslope relief, while the effects of PGA on landslide size
are less pronounced. We conclude that landslide size distributions reflect the available distribution
of hillslope geometries in a given landscape, and that external forcing (e.g., seismic ground
motion) determines which subset of the hillslope distribution fails during a particular event. For a
given landscape and forcing event, there is a particular length-scale over which landsliding is
statistically favored, leading to the concept of characteristic landslide size distributions.

Keywords: landslides; earthquakes; power-law; frequency size scaling; hillslope relief;
lognormal; scale invariant

1 Introduction

Landslide size is a strong predictor of the runout distance for a variety of different landslide types
(Legros, 2002; Roback et al., 2018) and is an important factor to consider in hazard prediction.
Runout distance controls the connectivity of landslide debris with the fluvial system (Li et al.,
2016; Roback et al., 2018), thus dictating the degree to which landslides contribute to secondary
hazards such as flooding and debris flows (Fan et al., 2019) as well as influencing how landslides
contribute to the erosion budget of mountain belts (Li et al., 2014). While prediction of landslide
size is routine in geotechnical investigations, robust estimation of the critical failure surface
requires site-specific measurements of subsurface material properties and slope geometries, which



are impractical to collect at regional scales. In place of such detailed investigation, landslide
inventories mapped after large rainstorms or earthquakes provide the opportunity to statistically
investigate the physical controls on landslide size. The growing availability of earthquake triggered
inventories in particular has facilitated recent comparisons between landslide statistics, digital
elevation data, bedrock material properties, and earthquake ground motion (Frattini and Crosta,
2013; Valagussa et al., 2019; Jeandet et al., 2019).

The power-law distribution is widely used to describe the statistical distribution of large-area
landslides (typically those >~1000 m?) in event-triggered inventories (e.g., Hovius et al., 1997;
Guzzetti et al., 2002; Frattini and Crosta, 2013; Tanyas et al., 2017, 2018; Valagussa et al., 2019;
Jeandet et al., 2019), as:

p(A) < A7 (1)

where p(A) is the probability of observing a landslide of a given size, A, and a is the power-law
scaling exponent. The concept of power-law scaling is supported by observations of highly non-
linear frequency-size statistics under an array of conditions, including for rainfall induced
landslides (Guzzetti et al., 2002), co-seismic landslides (Tanyas et al., 2017 and references
therein), large rock avalanches (Crosta et al., 2014), and even submarine landslides (ten Brink et
al., 2006). As a theoretical framework, power-law scaling in landslides has garnered support due
to the appealing analogy with Gutenberg-Richter scaling in earthquakes (Pelletier et al., 1997,
Guzzetti et al., 2002) and conceptual consistency with the “sand pile” avalanches of cellular
automata models (Liucci et al., 2017).

However, landslide distributions commonly only display power-law behavior over a small portion
of their full range, often accounting for less than 25% of the total number of landslides in an
inventory (Stark and Hovius, 2001). Typically, a decay in the frequency of smaller landslides
creates a systematic deviation from power-law behavior at smaller scales. Early studies suggested
that this reduction or “rollover” in frequency results from a sampling bias, where small landslides
are censored below the resolution of the satellite or aerial imagery used for mapping (Hovius et
al., 1997; Stark and Hovius, 2001; Brardinoni and Church, 2004). However, observation of a
rollover continues even with the growing availability of high resolution (< 2m) imagery (Tanyas
et al., 2017, 2018), suggesting that the rollover in these high-resolution inventories likely arises
from physical factors. The smoothness of topography at scales smaller than the support area of
channels (Pelletier et al., 1997), proportionally greater contribution of cohesive strength for
shallow failure surfaces (Katz and Aharonov, 2006; Stark and Guzzetti, 2009; Frattini and Crosta,
2013), a non-linear shear-surface area to volume relationship (Milledge et al., 2014), and
coalescence of small landslides through time (Tanyas et al, 2018) have been implicated as physical
mechanisms that may inhibit failures on small slopes.

Despite consensus that the divergence from power-law scaling at smaller scales is not artificial,
most landslide studies continue to devote great attention to the power-law scaling term, o (e.g.
Tanyas et al., 2017, 2018; Vallagusa et al., 2019). We suggest that a alone provides only a narrow
lens through which to view frequency size statistics for several reasons. First, because o is
calculated only after discarding the potentially substantial portion of the landslide inventory that
does not conform to power-law scaling, it is insensitive to the distribution of smaller landslides.



While the individual contribution to hazards and sedimentary budgets is lower for smaller
landslides, they may still be significant to understanding the physical and mechanical constraints
on landslide size distributions in general. Second, as a measure of the rate of decay in the frequency
of landslides with increasing size, a indicates the relative abundance of large versus smaller
landslides but conveys nothing specific about size. Two datasets could theoretically have the same
a value while exhibiting no overlap in the range of absolute landslide sizes.

As an alternative to the use of power-law distributions, some authors have noted that some
landslide size inventories are empirically consistent with the lognormal distribution (e.g., Kelsey
et al,, 1995; Evans 2003). Representing the exponentiated version of a normal (Gaussian)
distribution, the lognormal distribution is a heavy tailed function with a finite mean and variance.
This makes characterization with a lognormal distribution specific about the range of absolute
values contained in the dataset, and also somewhat familiar due to the similarity with the common
normal distribution.

In this study we investigate the utility of examining frequency-size datasets with the lognormal
mean and standard deviation in landslide size. We first test the statistical agreement between the
lognormal distribution and eight mapped inventories and then explore the physical and mechanical
controls on landslide size through simulations and analysis of empirical inventories. We argue that
the log-mean landslide size is strongly controlled by relief and rock strength, making the parameter
useful to consider when comparing inventories from different landscapes.

2 Frequency-size scaling in co-seismic landslide inventories

2.1 Selection of inventories

Statistical comparison between landslide inventories is most instructive for datasets that share a
common triggering mechanism and similar mapping standards. Compared to rainfall triggered or
historic inventories, earthquake induced landslide inventories (EQIL) that meet these standards
have become more available in recent years, with 66 digital inventories in the global database
established by Tanyas et al. (2017). We therefore chose to focus exclusively on EQIL inventories
in our study. Furthermore, we used metadata descriptions and our own evaluation against satellite
imagery to select inventories that are close to complete down to the resolution of imagery used for
mapping, with minimal amalgamation of adjacent landslides. As some censoring or amalgamation
is unavoidable for landslides near the scale of the resolution used for mapping (Tanyas et al., 2018),
we selected inventories with a modal peak much larger than the resolution-imposed limit (all
selected inventories mapped from <5m imagery, except parts of the Wenchuan inventory, which
was mapped at 10m). In total we identified eight inventories that met our criteria, which are shown
in Figure 1. The majority of these inventories do not distinguish between source and runout area.
We therefore use full landslide area for all the inventories except the Kaikoura dataset, where we
consider the debris area because the available metadata did not link the source and runout
polygons. Finally, to eliminate the statistical signature of failure mechanisms governed by different
physics than soil/rock slides, we removed debris flows, induced lateral spreading, and large rock
avalanches from each inventory. This primarily affected the Tohoku inventory which contains a
significant number of lateral spreads, and the Gorkha inventory, where we removed the Langtang
ice/rock avalanche.
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Figure 1: A) Log-scale histograms for eight previously published landslide inventories. (Northridge:
Townsend et al., in revision; Tohoku: Wartman et al., 2013; Gorkha: Roback et al., 2018; Haiti: Harp
et al., 2016; Kiholo Bay: Harp et al., 2014; Wenchuan: Xu et al., 2014; Lefkada: Clark and Zekkos,
2019; Kaikoura: Massey et al., 2018). Full landslide area (source and runout) is used to quantify size
for all of the inventories except for Kaikoura, where debris area only is shown due to the lack of data
for full landslide areas. The transparent histogram (black outline) plotted above the empirical landslide
data (blue) displays a synthetic lognormal distribution with the same mean and variance as the data. B)
Quantile-quantile plots comparing the inventories to the log-normal distribution. The log-scale
quantiles of each inventory are plotted against the log-scale quantiles of a standard lognormal
distribution. The points will plot on a straight line if the two distributions are similar.

We make a brief aside to highlight the versions of the 1994 Northridge inventory and 2015 Lefkada
inventory we use in this study. These inventories were manually re-mapped to remove the
amalgamation present in the original Harp and Jibson (1995) and Zekkos et al. (2017) versions
respectively. Townsend et al. (in review) re-mapped the northern portion of the original Northridge
inventory based on high-resolution aerial imagery and 3m digital topography. Their inventory
contains 5064 landslides and covers approximately half the region of high density landsliding
defined by Harp and Jibson (1995). The updated version of the 2015 Lefkada inventory is complete
across the entire landslide effected region and contains 716 landslides (Clark and Zekkos, 2019).

2.2 A lognormal approach to frequency-size datasets
Figure 1A shows frequency-area distributions for the eight selected co-seismic inventories as log-



scale histograms. We show histograms rather than the empirical probability density estimates
common in landslide studies because the bin value (count) is not skewed by the bin size as it is for
probability density. This property of histograms highlights the finite mean and variance in the
inventories, which is qualitatively consistent with the lognormal distribution. As a more rigorous
test for lognormality, the quantile-quantile plots in Figure 1B compare the quantiles of each
inventory to those predicted by a standard lognormal distribution. While generally strong linearity
in these plots supports a statistical match, we note that positive skewness in the Gorkha, Wenchuan,
and Kaikoura inventories create a systematic deviation from the lognormal predictions to a degree
that is unlikely to be explained as statistical noise.
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Figure 2: Comparison between log-normal and power function fits to the density estimates of landslide
size for the 2011 Tohoku inventory (Wartman et al., 2013) and the 2015 Gorkha Inventory (Roback et
al., 2018). These two datasets show endmember misfit to a lognormal distribution. Power-law
parameters were estimated using the principled approach developed by Clauset et al. (2009), which
combines maximum likelihood estimation and goodness-of-fit tests to identify the lower bound to
power-law scaling.

One explanation for the deviation from lognormal scaling may be an incomplete removal of
amalgamation or deep-seated failure modes in the Gorkha, Wenchuan, and Kaikoura inventories.
Alternatively, the lognormal distribution may not be the ‘true’ underlying statistical distribution.
Previous studies have argued for the general applicability of the power-law, inverse gamma, and
double Pareto distributions (Hovius et al., 1997; Malamud et al., 2004; Stark & Hovius, 2001).
Figure 2 compares the maximum likelihood model fits between the lognormal distribution and
these alternative heavy-tail functions for the 2011 Tohoku and 2015 Gorkha landslide inventories
(see supplementary Figures S1-S8 for the remaining six inventories). This analysis shows a
qualitatively similar statistical agreement between all four distributions. However, a rigorous
statistical selection between models is not our intent; all four of the distributions in Figure 2 have
been shown to provide accurate empirical predictions (Power Law: Hovius et al., 1997; Guzzetti
et al.,, 2002; Tanyas et al., 2017; Double Pareto: Stark and Hovius, 2001; Inverse Gamma:
Malamud et al., 2004; Lognormal: Kelsey, 1995; Evans, 2003), and all may be useful depending
on the context. Instead, our main point is that the lognormal fits are comparable to the alternative



distributions, and critically, that the lognormal distribution quantifies the finite mean and variance
observed in landslide frequency-size datasets. In this context, the lognormal is a parsimonious
distribution that conveys scale-specific information about landslide size. We focus on log-scale
mean and standard deviation statistics for the remainder of this study because our goal is to explore
how slope instability is favored or censored at specific length scales.

3 Controls on landslide size in a synthetic inventory

To explore the mechanisms that can generate the observed landslide distributions, in this section
we conduct simulations of earthquake-induced landslides and then relate model parameters back
to the resulting landslide size statistics. Previous studies have suggested that topographic
characteristics, hillslope material strength, and seismic loading are important controls on landslide
size (Frattini and Crosta, 2013; Valagussa et al., 2019, Jeandet et al., 2019). We therefore focus on
these parameters in our simulations.

3.1 Methods

We simulate landslide distributions by measuring hillslope geometries from a digital elevation
model (DEM) and then assessing the stability of each hillslope using a limit equilibrium (LE) slope
stability model. We incorporate pseudostatic seismic conditions in order to explore the effect of
variable seismic loading. Synthetic landslides are identified as unstable hillslopes (Factor of Safety
< 1), and frequency-size statistics are returned in terms of landslide length. We use length as a
proxy for landslide area because our measurements of hillslope geometry are restricted to 2D
(height and slope only). Finally, we validate our approach by comparing simulated versus observed
landslides associated with the Northridge earthquake.

Our DEM measurements of hillslope geometry rely on a variation to the conventional derivation
of digital channel networks, which are commonly determined from hydraulic flow routing
algorithms and a user-defined threshold contributing drainage area that defines channel initiation
(Montgomery and Foufoula-Georgiou, 1993). While channels are commonly defined as DEM grid
cells that correspond to a contributing drainage area greater than 10° m?, we define hillslopes as
grid cells with less than 5x10* m? of support area (roughly the contributing area for colluvial
channels; Montgomery and Foufoula-Georgiou, 1993; Whipple and Tucker, 1999). We use a
threshold representative of colluvial channels because the majority of landslides are smaller than
the ridge-main-stem-channel distance, and we want to ensure that our slope measurements cover
these smaller scales. We then use the D8 flow model (O’Callaghan and Mark, 1984) to create flow
paths along hillslopes. Following the approach of other recent studies (Townsend et al., in review;
Grieve et al., 2016), we use the slope angle and height defined by these hydraulic flow paths as
simplified hillslope geometries for slope stability analysis (Figure 3). Although the majority of
hillslope flow paths have a single start and end point, convergent topography does result in some
multi-branch flow paths. In these instances, we use the height and slope between the overall highest
and lowest points on the flow path.

While the 2D geometries generated by our approach provide more information than pixel-based
slope alone, it is important to note that the hillslope flow paths do not necessarily represent the
only location where a landslide could form. Surface roughness or minor breaks in slope may
facilitate landslides smaller than the flow distance defined by a constant support area. However, a
more complete search for the most critical slope patches would be computationally challenging to
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Figure 3: Illustration of our approach to measuring hillslope geometry from a DEM. A) Flow direction
and accumulation algorithms delineate hydraulic flow paths on hillslope grid cells, which are defined
by flow accumulation values less than the threshold for channel initiation. These flow paths provide a
simplified hillslope geometry consisting of a slope angle and height. B) Applying this technique to the
entire DEM results in a distribution of hillslope geometries, which can then be assessed for slope
stability using limit equilibrium (LE) analysis (e.g. Fig. 4).

implement at landscape scales. We therefore only consider the possibility that each 2D hillslope
profile fails along the entire distance, with the length along the failure plane corresponding to the
resulting landslide length (Figure 4).

To assess the stability of each hillslope measurement, we consider forces acting on a planar wedge
failure geometry (Culmann, 1875). We apply a pseudostatic formulation of Culmann’s analysis
(Ling et al., 1999), where seismic acceleration is portrayed as a permanent horizontal body force
added to the hillslope’s free-body diagram (Figure 4). We do not consider vertical accelerations
because they are not generally dominant (Campbell and Bozorgnia, 2003) and are not reported in
USGS ShakeMap estimates. The pseudostatic Culmann analysis provides an analytic bounding
relationship between slope gradient and hillslope relief, such that the maximum stable hillslope
height is given by:

H __4ccos 6 cos ¢ sin(a)
Crit ™ y[1 - cos(g — a - 0)]

2

where c is cohesion, ¢ is the material’s friction angle, v is the material’s unit weight, and a is the
slope angle. Slopes taller than the critical height, Herit, correspond to a Factor of Safety <1, and are
predicted to fail. The factor 0 is given by:

tan = kh (3)

where ki is the pseudostatic coefficient, which determines the magnitude of the pseudo horizontal
force on the sliding wedge (representing the force generated during an earthquake). Pseudostatic
coefficients are generally selected to be some fraction of the peak ground acceleration (PGA) to
account for the fact that peak acceleration occurs only briefly and does not create a unidirectional



or synchronous loading throughout the sliding mass (Hynes-Griffin and Franklin, 1984; Jibson,
2011). We use this approach in our preliminary test simulations (section 3.2), where we linearly
scale kn to the USGS ShakeMap PGA estimates. For simplicity in our parameter space exploration
(section 3.3), we set ki equal to 1.0, and scale PGA values from 0-0.5 g (see Figure 6).
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Figure 4: A) Force diagram for the pseudostatic extension of Culmann’s sliding wedge analysis.
Hillslopes larger than the maximum stable height, Herit, are predicted to fail. Dynamic seismic loading
is simplified as an additional horizontal force, ky - W, where W is the weight of the sliding wedge and
kn is the seismic coefficient. B) For uniform parameters, Culmann’s analysis provides a bounding
relationship between hillslope height and slope. Hillslopes plotting above the red curve are predicted to
fail as landslides (FS<I), while those below the red curve are predicted to be stable (FS>1).

3.2 Model Validation

While an inversion for strength parameters is beyond the scope of this study (cf. Gallen et al.,
2015), we compare our model simulations against a real co-seismic landslide inventory to verify
that it produces a comparable statistical distribution given realistic strength parameters. We use
the 1994 M,,6.7 Northridge Earthquake inventory as a test case because the local hillslopes are
steep, moderately tall (~100m), and planar, which are conditions where Culmann’s analysis is
closest to more rigorous limit equilibrium methods that assume log spiral geometries (Ling et al.,
1999). We simulate landslides using a 3 meter fSAR DEM (OCM Partners/NOAA, 2004), and
hillslope material properties representative of those reported by Dreyfus et al. (2013) for the
landslide affected region (¢ = 30°, cohesion = 12 kPa, unit weight = 15.7 kN/m?®). Furthermore, we
allow for a spatially variable seismic coefficient, scaling the value of ki to 50% of the USGS
ShakeMap PGA estimates for the Northridge Earthquake (contributed by ATLAS: last updated
2017-04-12 06:25:42 (UTC)), which is the value suggested by Hynes-Griffin and Franklin (1984).
Finally, for comparison to the 2D model predictions, we use the Northridge inventory by
Townsend et al. (in review), who re-mapped the northern portion of the original inventory by Harp
and Jibson (1995) to remove the effects of amalgamation. We calculate landslide length for the
mapped Northridge landslides using a simplified polygon enclosure to estimate distance along the
runout axis (minimum bounding geometry tool, ArcMap 10.6).

Figure 5 compares the predicted and observed landslide inventories. The large number of synthetic
failures reflects the flow-routing technique used to measure hillslopes; groupings of adjacent 2D



flow paths predicted to fail correspond to single landslides in a real landscape. The two inventories
show close agreement in terms of frequency-length statistics (Figure 5A), with geometric mean
sizes (i.e. 10*, where p=mean(logio(length))) of 65 m vs 58 m for the synthetic and empirical
inventories respectively. Visual inspection of the quantiles in Figure 5B shows consistency
between both inventories and a lognormal distribution over the full range of values. Thus the model
accurately reproduces the observed size statistics, which are the focus of attention here.
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Figure 5: Comparison between the mapped Northridge frequency-length distribution and a synthetic
distribution using model parameters of ky = 0.5 - PGA, unit weight = 15.7 KN/m?, ¢ =30’, and cohesive
strength of 12kPa. These model parameters produce similar frequency-size statistics to the real
Northridge inventory (A and B). Compared to the mapped inventory, the larger number of synthetic
failures in A is a consequence of the flow-routing technique used by this study to measure hillslopes.
Model landslides correspond to individual hillslope segments that are only one-pixel (3m) wide, and
many adjacent segments may correspond to a single landslide in a real landscape (see clustering of
failed hillslope segments in C).




3.3 Parameter Space Exploration

In a series of simulations, we impose variations in PGA (where kn=1ePGA) and the cohesive
strength of hillslope material, assuming a friction angle and unit weight of 30° and 15.7 kN/m?
respectively. Two examples are presented using a 3m DEM for the region affected by the 1994
Northridge Earthquake in California (IfSAR-derived product; OCM Partners/NOAA, 2004), and
a 30m DEM for the region affected by the 2015 Gorkha Earthquake in Nepal (SRTM-derived
product; Farr et al., 2007). We select these two regions in particular as they are endmembers in
terms of topographic relief amongst the locations from Figure 1.
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Figure 6: Landslide simulations for the region affected by the 1994 Northridge earthquake (southern
California). Bivariate distributions (slope angle and height) of hillslope geometries are measured from
a 3 m DEM, where lighter colors represent higher data density. The curves define FS=1 for different
values of cohesion (A), and PGA (B). Hillslopes that plot above the curves (i.e. taller, steeper slopes)
are predicted to fail (see Fig. 4), resulting in the landslide size distributions shown in the bottom
panels (C, D). The height of the histograms quantifies the percentage of failed hillslope profiles out of
the total number measured from the DEM.

The bivariate histograms for the Northridge simulations display a cross-tabulation of slope angle
and hillslope height for all of the hillslopes measured from the 3m DEM, showing peak modal
values of 30° slope and 50 m hillslope height (Figure 6A and 6B). However, hillslope height and



slope distributions are not symmetrically distributed and instead show a second peak of values for
very low slopes and short hillslope segments, which represents roughness largely owing to
anthroprogenic structures recorded by the 3m IfSAR data. Superimposed on the hillslope
distribution are the bounding curves defined by Culmann’s stability analysis (FS = 1) for a range
of cohesion (Figure 6A) and PGA (Figure 6B) values. Hillslopes plotting above the curves (i.e.
taller and/or steeper slopes) are predicted to be unstable for the choice of parameters. Landslide
size is quantified as the length of the failure plane through each unstable hillslope, which results
in the landslide distributions shown in Figure 6C and 6D.

The stability curves defining FS=1 in Figure 6A reveal how increases in cohesion increase the
critically stable hillslope height to a greater degree than increasing the critical slope gradient. This
effect is highlighted by the spacing of the curves, which are more widely spaced along the vertical
axis (height) compared to the horizontal axis (slope). Physically, the pronounced relationship
between cohesive strength and critical hillslope height can be explained by the fact that any non-
zero cohesive shear resistance will compensate the gravitational driving force on sufficiently small
sliding masses, regardless of frictional strength. Thus increasing model cohesion increases the
threshold (minimum) hillslope height required for the failure of a given slope gradient (curves
extended onto the 1D histogram of hillslope height correspond to a 90° slope, Figure 6A). As a
result, the predicted landslides are increasingly restricted to the tallest subset of hillslopes, which
causes larger landslides on average and a narrower distribution of hillslope heights, i.e., smaller
standard deviation (Figure 6C).

In contrast, increases in PGA more strongly affect the critical slope gradient required for failure
compared with the critical height (Figure 6B). This result is a physical consequence of the fact that
seismic loads are modeled as horizontal forces, which reduces shear resistance to a greater degree
on steeper slopes compared to flatter ones. While vertical accelerations do specifically penalize
slope height in the Ling et al. (1999) analysis, we highlight that the horizontal component
dominates in empirical data (Campbell and Bozorgnia, 2003). In terms of landslide frequency-size
statistics, the primary result of increasing PGA is the generation of landslides over a greater range
of length scales (i.e. increasing standard deviation; see widening of the histograms in Figure 6D).
However, we also note a subtle decrease in average size with increasing PGA, reflecting the
relative abundance of smaller hillslopes that only become unstable at high PGA. For example,
PGA greater than ~0.25g allows for failure of the most frequent hillslope geometry in the
Northridge DEM, which is around ~30° steep and ~50 m tall (i.e. PGA contours reach the peak of
the histogram in Figure 6B for values greater than 0.25g). This result highlights the role of
topography in determining landslide frequency size statistics. While increasing seismic loads
mechanically permit the failure of an increasing range of hillslope geometries, the spatial
distribution of strong ground motions in a real earthquake restricts the availability of hillslopes to
particular sizes, which provides an independent constraint on what landslide sizes are possible and
most likely.

Figure 7 shows the same parameter space exploration for the topography affected by the 2015
Gorkha Earthquake in central Nepal (Himalayan Mountains), where the principal difference from
the Northridge simulations is the order of magnitude increase in the maximum hillslope relief. In
this landscape, we observe a unimodal distribution of both slope and hillslope length with peak
values around 35° and 200 m respectively. Due to the higher relief in Nepal, we used a -
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Figure 7: Landslide simulations for the region affected by the 2015 Gorkha earthquake (central
Nepal). Bivariate distributions (slope angle and height) of hillslope geometries measured from the
30m DEM, where lighter colors represent higher data density. The lower cutoff to the bivariate
distribution results from the fact the that horizontal distance along hillslope flow paths (i.e. H/tan(a))
can only take on integer values in multiples of 30m for the 30m resolution DEM. The curves define
FS=1 for different values of cohesion (A), and PGA (B). Hillslopes that plot above the curves (i.e.
taller, steeper slopes) are predicted to fail (see Fig. 4), resulting in the landslide size distributions
below (C, D). The height of the histograms quantifies the percentage of failed hillslope profiles out of
the total number measured from the DEM.

correspondingly higher range of cohesive strength relative to Northridge in order to achieve static
stability (<0.2% of all hillslopes predicted to fail at C=100 kPa, PGA = 0). In general, we observe
the same scaling behavior described previously for our Northridge simulations, where decreasing
cohesion and increasing PGA both result in more total landslides. Also similar to the first example,
increasing cohesion significantly increases mean landslide size, while also decreasing the standard
deviation of landslide size (Figure 7C). Increasing PGA primarily increases the range of landslide
sizes, although for the Nepal simulations we observe a subtle shift to slightly larger average
landslide sizes, opposite of the Northridge example (Figure 7D). As noted previously the effect of
PGA on landslide size depends on the availability of hillslopes. Unsurprisingly, the abundance of
hillslopes many hundreds of meters in height allows for larger landslides in Nepal compared to



Northridge. However, it is difficult to separate the effect of relief alone, as hillslope-scale relief
and rock strength exhibit a co-variance under the assumption of Culmann’s model (Schmidt and
Montgomery, 1995). Indeed, higher slope cohesion is required to prevent an unrealistic number of
landslides for our simulations in the higher relief Nepal landscape (up to IMPa, Figure 7), and, as
we have now shown, increasing cohesion also predicts an increase in average landslide size
because it censors shorter and less steep slopes from the distribution.
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Figure 8: Landslide length statistics for simulations using a range of values for cohesion and PGA,
and digital topography from Northridge (A, B) and Nepal (C, D). Geometric mean landslide size (i.e.
10", where p=mean(log;o(length))) increases with increasing cohesion (A, C), while the log-
transformed standard deviation in landslide size decreases with increasing cohesion (C, D). The
standard deviation in landslide size generally increases with increasing PGA, but the effect of PGA on
the mean size depends on the landscape and the value for cohesion (B, D), with differences in
topography between the two sets of simulations influencing specific landslide scaling behavior.




Figure 8 summarizes predicted landslide length (geometric mean and standard deviation) for all
combinations of cohesion and PGA, for both the Northridge and Nepal examples. Increasing
cohesion for both landscapes produces a nearly linear increase in geometric mean landslide length
(Figure 8A, 8C) and a non-linear decrease in the log-scale standard deviation of landslide size
(Figure 8B, 8D). Both of these effects reflect the stability of increasingly larger hillslopes as
cohesion increases, thus restricting the distribution of landslide size to larger and more narrowly
distributed values (on a log scale). For increases in PGA, we find that the primary result in both
the Northridge and Nepal simulations is an increase in the log standard deviation in landslide size
(Figure 8B, 8D), and a decrease in the total number of landslides generated (the curves become
truncated at low PGA and high cohesion values because no landslides are predicted under these
conditions). Differences in the exact response to PGA between the two sets of simulations
highlight the role of topography in determining landslide statistics. For example, while we find
that geometric mean landslide length systematically decreases with PGA at low cohesion values
and increases with PGA at higher cohesion values for both sets of simulations, the value of
cohesion at which this transition occurs is unique to the landscape (i.e. the crossing, or bending
over of contours in Figure 8A, 8B). Furthermore, while the log-scale standard deviation generally
increases with increasing PGA for both sets of simulations (Figure 8B, 8D), the increase is
negligible in the Northridge simulations below 0.5g (i.e. stacking of the contours in Figure §B),
but present for all values of PGA in the Nepal simulations. The simulations for the two landscapes
are particularly different at low values of PGA because relatively few landslides are activated
under these conditions, making the underlying hillslope distribution especially important in
determining landslide size statistics.

4 Controls on landslide size in empirical inventories

Our simulations highlight rock strength, hillslope-scale relief, and ground motion intensity as
important physical parameters that affect the distribution of landslide size. Our modeling results
suggest landslides will be larger on average in regions with greater available hillslope relief and/or
higher cohesive strength. Furthermore, increasing PGA is predicted to increase the range in
landslide sizes. In this section we test for these effects in empirical data, using the mapped
inventories from section 2 along with the corresponding ShakeMap PGA datasets and DEMs.

4.1 Influence of hillslope relief on landslide size

In this section, we compare landslide size statistics to hillslope relief in two different ways. First,
to view the variance within each inventory individually, we binned the landslide distributions by
the local relief estimated at the location of each landslide. We estimated hillslope relief using the
same technique we used to extract hillslope geometries for stability analysis in section 3.1, where
we measured the vertical offset on flow paths with support areas no larger than 5x10* m2. We then
converted our hillslope relief estimates to rasters with grid cell values representing the total relief
on the flow path passing through each cell (see supplementary table S1 for DEMs used in this
analysis, and Figures S11-18 for hillslope relief maps for each region). Finally, we binned the
landslide distributions by the relief estimated at the centroid of each landslide and computed the
log-scale mean landslide size for relief bins that contain at least 20 landslides (Figure 9A).

As a second approach, we compared the inventories against each other with a single set of mean
and standard deviation statistics representing the entirety of each landscape (Figure 9B, 9C). Such
a comparison of relief between landscapes becomes sensitive to the threshold drainage area that -



T 367 B
Wenchuan
45l A % 1 : Kiholo Bay

3.2¢ Lefkada
$ ¢

Northridge
Gorkha

Mean( log, (Area) )

Kaikoura

L Tohoku IOI
=) ° % j % L = I R=0.58
DY Y R - S
mm g B & o % 0 100 200 300

% Mean Hillslope Relief [m]

3 § Gorkha
O Haiti

% Kaikoura
@}%(]f% ] f;‘ é‘ I% % %] %J % Kiholo Bay
% Lefkada
o { Northridge
o © Tohoku
2 t 1 i i i i ; : :"’e“‘h;’a“ i -
0 200 400 600 800 1000 0 ! 160 ! 260 ! 360
Hillslope relief [m] Std Hillslope Relief [m]

w
u:

e
N
u

Haiti Kaikoura .dSiIhO’UBay (
—OHOH

Lefkada

Mean( log, (Area) )

e
[2))
)

Gorkha

Tohoku

Std( log, (Area) )
o
U
U

Wenchuan
Northridge
| 1

Figure 9: Relationships between landslide statistics and the distribution of relief for 8 co-seismic
landslide inventories. A) Log-averaged landslide size as a function of relief within each landscape
individually. Vertical error bars are the 95% confidence interval on the mean for each bin. B) A similar
relation to A) holds between landscapes, when landslide size and relief are averaged for the whole
event. Horizontal error bars are the standard deviation between 100 estimates for different threshold
drainage area values. Vertical error bars are the 95% confidence interval on the mean landslide size for
each landscape. Due to the large number of data in each inventory these error bars are tightly
constrained. C) The log-transformed standard deviation in landslide area shows a positive relationship
with the standard deviation of relief, suggesting that more variable hillslope sizes allow for more
variable landslide geometries. Horizontal error bars again represent the standard deviation between
estimates for different threshold drainage area values.

defines the hillslope regime, since this value is known to vary between landscapes (Montgomery
and Foufoula-Georgiou, 1993; Whipple and Tucker, 1999). However, slope area analyses for the
DEMs we used did not reveal a clear rollover in the slope-area relationship indicative of the
hillslope drainage threshold (Figure S9). We therefore chose to account for uncertainty in the
drainage threshold by using a range of values for each landscape. Using 100 log-uniformly
distributed threshold drainage area values between 10* and 10° m?, we generated an ensemble of
100 hillslope relief rasters for each landscape. We then calculated the mean and standard deviation
in relief among the grid cells of each raster and averaged the statistics between the 100 estimates
for each landscape. This sensitivity analysis quantifies how our hillslope relief statistics depend on
the choice of the threshold contributing area value. The horizontal error bars in Figure 9B and 9C
are the standard deviation in relief statistics for the ensemble of drainage thresholds. See



supplementary section S2 for the full sensitivity analysis.

For variations within a single landscape (Figure 9A), we found that landslide size systematically
increases in the hillslope relief bins. Partial correlation coefficients computed with bin count as
the control variable are statistically significant (p<0.05) for every dataset in Figure 9A except the
Lefkada and Kiholo Bay inventories, which only contain 7 and 2 bins with at least 20 landslides
respectively. We also found that different landscapes show different landslide sizes for the same
values of relief, potentially reflecting differences in average rock strength or a bias introduced by
using the same drainage threshold for each landscape. For variations between landscapes, we found
a positive relationship (R?> = 0.58) between the overall log-scale mean landslide size and mean
hillslope relief (Figure 9B), and a weaker relationship (R? = 0.29) between the log-transformed
standard deviation in landslide area and the standard deviation of hillslope relief (Figure 9C).

While the empirical correlation between landslide size and relief in Figure 9 is consistent with the
expectation from our simulations, the underlying mechanism is less clear. High relief topography
is likely associated with higher rock strength at the scale of individual hillslopes (Schmidt &
Montgomery, 1995; Townsend et al., in review), and we have already demonstrated that a larger
sliding mass is required to achieve critical conditions in a stronger medium (Figures 6,7,8). On the
other hand, our use of full initiation and runout area for the analysis in Figure 9 leaves open the
possibility that the correlation to relief simply reflects the greater runout distance available on
longer slopes, independent of initiation area. Furthermore, correlation between the size of the
sliding mass and runout area is well established (Roback et al., 2018), suggesting that a
combination of factors is likely. Nonetheless in practical terms, the relative importance of hillslope
strength and space for runout matters little because both factors correlate to relief and also act to
increase landslide size. The strong relationships in Figure 9 indicate relief is a first order predictor
of landslide size and underscore how landslide statistics reflect the local geomorphology.

4.2 Influence of PGA on landslide size

For each of the eight empirical landslide inventories, we categorized the mapped landslide
polygons based on PGA contours taken from the USGS ShakeMap ground motion estimates. We
constructed PGA bins such that at least 20 landslides fall into each bin. We excluded the 2015
Lefkada landslide inventory because the range in PGA across the landslide affected coastline was
<0.2g.

Figure 10 displays the log-scale mean and standard deviation in landslide size for each bin, plotted
against the average PGA for that bin. For each set of bins, we computed the partial correlation
between PGA and the bin value while controlling for the sample size represented by the bin.
Regressions are shown for datasets where a Student’s t-test for the significance of the partial
correlation coefficient rejects the null hypothesis of zero correlation (p<0.05). In contrast to our
simulations reported in Section 3, we find no systematic trend between PGA and the log-scale
standard deviation in landslide size. However, we do observe weak but statistically significant
negative correlations between the log-scale mean size and PGA for 3 of the larger inventories,
which is consistent with the predictions of our simulations for lower values of cohesion (Figure
8A, 8C).
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Figure 10: Relationships between geometric mean and standard deviation in landslide size and
ShakeMap PGA estimates for seven co-seismic inventories. Regressions are shown for the datasets
where the partial correlation between mean/std landslide size and PGA while controlling for bin count
are significantly different from 0 (p<0.05). A comparison of landslide size versus average PGA across
the sites in this study (similar to that for relief in Fig. 9) is not meaningful because overall mean PGA
does not vary much between the different earthquake events.

Valagussa et al. (2019) found a weak negative correlation between the frequency-area power-law
scaling exponent and PGA for 3 of the 6 inventories they investigated, which may be consistent



with our results. Interestingly, the strongest relationship Valagussa et al. (2019) found between
PGA and a for the Wenchuan inventory is consistent with our modeling expectation that increasing
PGA facilitates landslides over a greater range of length scales. This expectation is also reflected
in the especially strong trend we resolve between PGA and the standard deviation in size for the
Wenchuan inventory (Figure 10). However, while the relationship between landslide size and PGA
may be statistically significant for very large datasets such as the Wenchuan inventory (N>10°),
we argue that PGA alone is a secondary control on landslide size in general. As we have shown in
the previous sections, topographic relief and hillslope material properties are also expected to alter
landslide size statistics and their sensitivity to PGA, and we have not adjusted for these factors in
the present analysis. Heterogeneity in these additional parameters may obscure the true
relationship with PGA, especially if ground motions are concentrated in regions with anomalous
relief or particularly strong/weak hillslope material properties. Indeed, the relatively larger
differences in statistics between inventories compared to variations within a single dataset (Figure
10) suggest that landscape characteristics exert a stronger control on the distribution of landslide
size compared to shaking intensity alone.

5 Discussion

5.1 Model Assumptions and Limitations

Our model results come with some important caveats. First, our method of discretizing hillslopes
along hydraulic flow paths limits our landslide size predictions to be within the range of the finite
distribution of measured slope segments. This limitation potentially censors landslides smaller
than the smallest flow path (~grid cell size), and does not allow for smaller failures to form along
a single flow path. A more comprehensive search for the most critical slope parcels is
computationally challenging to implement at landscape scales and is beyond the scope of this
study. However, we note that while our slope measurements do not include every conceivable
landslide candidate patch, they do extend over much smaller length scales than our predicted
landslides (Figure 6 and 7). Landslides are not predicted at these small scales because the assigned
shear strength overwhelms the driving forces, not because of a paucity of small hillslopes. Thus
we argue that our slope measurements do not significantly skew the landslide statistics in our
simulations toward large sizes.

Second, we consider how our results depend on our choice of slope stability model. Clearly the
rendering of all landslides as Culmann wedge-style failures is a crude approximation for shallow
rock and soil slides, which are the most common failure mechanism in co-seismic inventories
(Keefer, 1984). While the stability predicted by Culmann’s analysis approaches that of the more-
accurate log spiral mechanism for steep to vertical slopes, the difference is more pronounced as
the slope flattens (Ling et al., 1999), meaning that our model under-predicts landslides on gentle
slopes. Furthermore, Culmann’s analysis is intended for slopes with a horizontal backfill which
does not generally apply to our flow segment measurements, likely causing some over-prediction
of failure plane length. While alternative limit equilibrium methods (e.g. ordinary method of slices,
Spencer’s method, etc.) provide a more accurate force balance, they require numerical techniques
to discretize the sliding mass and identify the most critical failure plane. Thus the concessions in
accuracy required by Culmann’s analysis are another compromise for computational cost.
Culmann’s equation uniquely offers a closed form solution while preserving a 2D geometry and
finite length scale, which are critical to our investigation of landslide scaling behavior. We also
note that the mechanical and topographic controls on landslide size we observe in our simulations



agree with the results of previous authors (e.g., Katz and Aharonov, 2006; Klar et al., 2011; Frattini
and Crosta, 2013; Milledge et al., 2014; Jeandet et al., 2019), suggesting that these factors are
independent of the modelling approach.

5.2 Characteristic landslide distributions?

We view our key contributions to be the comparison of landslide statistics between different
landscapes, and our emphasis on the mean landslide size rather than the power-law exponent.
Regardless of whether the empirical data are truly lognormal, we show that landslide size
distributions have a finite mean and variance that arise in our model due to the tradeoff between
shear resistance and the availability of large hillslopes. While others have identified the same
mechanical and topographic constraints before (e.g., Katz and Aharonov, 2006; Klar et al., 2011;
Frattini and Crosta, 2013; Milledge et al., 2014; Jeandet et al., 2019), we are unaware of studies
showing how these effects determine landslide size for landscapes with different properties. The
correlations we found between relief, PGA, and mean landslide size in empirical data (Figures 9,
10) are broadly consistent with our model expectations, suggesting that landslide distributions
carry the statistical fingerprints of the hillslopes and forcing event with which they are associated.

Our results lead us to propose the concept of characteristic landslide distributions. We suggest that
large landslide events are associated with a characteristic landslide size, which represents the
length scale at which relative shear resistance (i.e. the Factor of Safety) is minimized for the
greatest portion of hillslopes in that region. Subsurface mechanical properties, seismic conditions,
and the availability of hillslope relief set the landscape’s potential for producing landslides of a
given size. The combination of these factors creates optimal conditions for slope failure over a
particular range of length scales, leading to the observed clustering of landslide sizes on a log
histogram. We argue that the log-scale mean landslide size is thus ‘characteristic’ of the landscape
and forcing event that caused the slopes failures.

Our theoretical framework differs from previous ideas about landslide scaling relations. In
particular, the idea that landslide distributions cluster about a characteristic size contrasts with the
scale invariance implied by the power law, inverse gamma, and double Pareto distributions, where
the focus is nearly always on the slope of the heavy tail. The vast majority of landslides in each of
the individual distributions shown in Figure 1 fall within two orders of magnitude in terms of area.
This range might be considered large in practical terms, but we argue it is fairly small in the context
of scale invariant phenomena (Evans, 2003). While we do not question the agreement with the
power-law distribution for the largest landslides (e.g., Figure 2), we highlight that observed scaling
relationships do not necessarily have a clear physical meaning (Clauset et al., 2009; Stumpf and
Porter, 2012). Previous studies have reconciled divergence from power-law scaling by suggesting
that landslides exhibit scale invariant behavior down to a threshold scale at the ‘rollover’, and that
smaller length scales are associated with a distinct change in physics or observation bias (e.g.
Malamud et al., 2004; Stark and Hovius, 2001; Katz and Aharonov, 2006; Stark and Guzzetti,
2009; Frattini and Crosta 2013; Tanyas et al., 2018). In contrast, we suggest that, compared to the
range of length scales potentially available in natural landscapes, landslides are favored at
relatively specific sizes.

6 Conclusion
Our simulations of landslide distributions demonstrate how landslide size is expected to vary on



average between landscapes with different properties. Consistent with the results of previous
studies, we find the average landslide size reflects a trade-off between the cohesive strength of
slope material and hillslope-scale relief. Our simulations also suggest that variations in PGA
primarily change the variance in landslide size for earthquake triggered landslides, although the
exact relationship depends on the specific hillslope characteristics of the landscape. Furthermore,
we find correlations in empirical datasets that are broadly consistent with our model expectations.
We argue that our focus on the finite mean and variance in landslide size rather than the power-
law exponent allows us to resolve an empirical relationship with relief in particular. Finally, we
propose the concept of characteristic landslide distributions, a conceptual framework which helps
explain the empirical consistency between landslide frequency-size distributions and the
lognormal statistical distribution.
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