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Abstract— Neurostimulation – the practice of applying ex-
ogenous excitation, e.g., via electrical current, to the brain
– has been used for decades in clinical applications such
as the treatment of motor disorders and neuropsychiatric
illnesses. Over the past several years, more emphasis has been
placed on understanding and designing neurostimulation from
a systems-theoretic perspective, so as to better optimize its
use. Particular questions of interest have included designing
stimulation waveforms that best induce certain patterns of
brain activity while minimizing expenditure of stimulus power.
The pursuit of these designs faces a fundamental conundrum,
insofar as they presume that the desired pattern (e.g., desyn-
chronization of a neural population) is known a priori. In this
paper, we present an alternative paradigm wherein the goal
of the stimulation is not to induce a prescribed pattern, but
rather to simply improve the functionality of the stimulated
circuit/system. Here, the notion of functionality is defined in
terms of an information-theoretic objective. Specifically, we
seek closed loop control designs that maximize the ability
of a controlled circuit to encode an afferent ‘hidden input,’
without prescription of dynamics or output. In this way,
the control attempts only to make the system ‘effective’
without knowing beforehand the dynamics that are needed
to be induced. We devote most of our effort to defining this
framework mathematically, providing algorithmic procedures
that demonstrate its solution and interpreting the results of
this procedure for simple, prototypical dynamical systems.
Simulation results are provided for more complex models,
including an example involving control of a canonical neural
mass model.

I. INTRODUCTION

Neurostimulation – the practice of exciting neural tissue
using exogenous inputs (e.g., electrical fields) – is pervasive
in both basic and clinical neuroscience [1], [2]. Usually,
the objective of neurostimulation is to activate particular
population of neurons within the brain and/or to induce a
certain pattern of brain activity, such as oscillations. The
complex dynamics present in neuronal circuits means that
the design of such stimulation is quite nontrivial, especially
as it relates to shaping open-loop stimulus waveforms [3],
[4] and the design of closed-loop paradigms [5].

This paper deviates from prior efforts in neurostimulation
optimization. Rather than attempt to design controls that
induce a prescribed pattern, we face the conundrum that in
many instances, there simply is no ‘target pattern’ to design
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with. That is, we do not know if there is a ‘correct’ pattern
we should be inducing. Instead, we might suppose that
the actual goal of neurostimulation, especially in clinical
contexts, is to improve the functionality of the stimulated
system in a specifically defined yet general way, not tied to
any one pattern of activity. How can such a goal, which
is more abstract than a classical ‘tracking’ problem, be
approached? Formalizing the answer to our question neces-
sitates defining a notion of functionality that is applicable
to neuronal circuits/systems.

To define such an objective, we turn to concepts from
theoretical neuroscience and information theory. Indeed,
information theory has been used extensively in the study
of neural circuit function, under the premise that such
circuits are highly efficient at encoding and transforming
information toward higher cognitive functions [6]. In this
vein, the concept of empowerment was first proposed in [6],
[7] as a hypothetical, information-based utility function that
might account for the emergent architecture and dynamics in
sensory and motor neural circuits. Succinctly, empowerment
can be thought of as the capacity of a stochastic dynamical
system to encode an afferent input [8]. The greater the
empowerment, the better a system can represent its input.
Consistent with this notion, recently empowerment has been
proposed as a general framework by which systems might
operate without knowledge of predefined tasks [9], [10] and
strategies have been proposed to calculate it for general
dynamical systems [11].

In the present work, we approach neurocontrol in terms
of empowerment, using it explicitly as a measure of a neural
cricuit’s functionality. Specifically, to improve the function-
ality of the stimulated system, we investigate closed-loop
control designs that maximize the empowerment without
additional prescription of the desirable dynamics. We devote
most of our paper to present the mathematical framework
of using variational bounds for estimation of empowerment
as well as the algorithmic procedure. We demonstrate the
methodology and the efficiency of the proposed algorithm
via an example of a well-known neural mass model, i.e, the
Wilson-Cowan model [12].

The remainder of the paper is organized as follows.
In section II, we formalize the optimization problem and
present the algorithmic procedure for performing the opti-
mization. Section III provides simulation results illustrating
the efficacy of empowerment maximization. Section IV
concludes the paper.



II. PROBLEM FORMULATION AND LEARNING METHODS

In the following, we provide the dynamical system model
as well as mathematical definition of mutual information
and specifically empowerment as our objective function.
Next, we define a parameterization to modify the dynam-
ical system via optimizing the system empowerment. The
optimization method and the algorithmic procedure are also
discussed in detail.

A. Dynamical system model

We consider a dynamical system driven by a random
input as follows:

ẋ(t) = fK(x(t)) + u(t) (1)

where fK(·) : Rd → Rd denotes the vector field (param-
eterized by K), while x(t) ∈ Rd and u(t) ∈ Rd are the
state and the random input, respectively. We discretize the
system in (1) with a fixed interval ∆t as follows:

x(t+ ∆t) = x(t) + (fK(x(t)) + u(t)) ∆t (2)

For ease of notation, we rewrite (2):

xt+1 = xt + (fK(xt) + ut) ∆t, (3)

where we refer to xt and xt+1 as the current state and the
next state at time t, respectively.

The discrete model in (3) is a one-step autoregressive
equation that describes the effect of the input on the state of
the system at the subsequent time. Following the application
of an impulsive input ut, we allow the system to evolve
(unforced) for some number of future steps. That is, over n
time steps we obtain the terminal state as:

xt+n = xt + fK(...fK(fK(xt) + ut))∆t (4)

where the number of recursions in (4) is n. We further
introduce stochasticity to the above dynamics by adding
noise to the read-out of the system states, i,e,

x̂t = xt + wt (5)

where wt is an uncorrelated noise process.

B. Mutual information and empowerment

The Shannon mutual information is a fundamental
information-theoretic quantity that measures the statistical
dependency between two random variables. Since we as-
sume the input of the system, ut, is a random vector, the
dynamical system (2) can be treated as a stochastic channel
between input and system state. Given the current state, the
mutual information between the input and the final state is:

I(xt+n;ut|xt) = (6)

∫∫
p(xt+n|ut,xt)ω(ut|xt) log

p(xt+n,ut|xt)

p(xt+n|xt)ω(ut|xt)
dxt+ndut

where we denote ω(ut|xt) as the input distribution and
p(xt+n|ut,xt) as the transition distribution. Note that
ω(ut|xt) can also be denoted as prior distribution over
the input in the sense that it does not have the knowledge
of the final state compared to posterior distribution i.e.,
p(ut|xt+n,xt).

Empowerment is defined as the channel capacity [7],
[13], or, the maximum information that the input emits
to the dynamical system by manipulating the final state.
Particularly, for a given current state xt, the empowerment
is:

E(xt) = max
ω
I(xt+n;ut|xt). (7)

Here, ut can be seen as a ‘hidden’ exogenous input that
is uncorrelated with the dynamics of system. Indeed, maxi-
mization of mutual information with respect to all possible
distributions of ut leads to the optimal encoding of the
optimal input within the states of the system. Hence, em-
powerment quantifies the maximum potential information
flow emanating from this input through the system, or
equivalently, the channel capacity of the system at hand.

C. Dynamical System Parameterization

Thus far, we have framed empowerment of the system
as the maximal mutual information by optimizing the in-
put distribution, ut. Our problem formulation proceeds to
consider the maximization of empowerment by means of
parametrization design.

In particular, suppose that K in (1) represents a
parametrization enacted through an external control input.
Then, tuning K could be performed so as to alter the
transition distribution in such a way that empowerment
is maximized. For a given set of current states, x(m)

t ∈
{x(1)

t , ...,x
(M)

t }, we posit this optimization problem as fol-
lows:

max
K

1

M

∑
m E(x(m)

t ) , max
K

max
ω

1

M

∑
m I(xt+n;ut|x(m)

t ).

(8)
Alternatively, K can be interpreted as a degree of freedom
for the controlled dynamical system that alters the dynamics
of system based on the empowerment maximization objec-
tive.

D. Learning for empowerment lower bound maximization

The fundamental algorithm to obtain the channel capacity
is the Blahut-Arimoto (BA) algorithm [14]. However, since
the BA algorithm is based on enumeration, it cannot be
applied for evaluating mutual information over the contin-
uous domain of variables. The issue that now arises is that
calculating the quantities within (8) is highly challenging.
These quantities involve integrating over the continuous
domain of all states and inputs. Also, the marginal transition
distribution i.e. p(xt+n|xt) in (6) is not tractable. To circum-
vent the mentioned difficulties, instead of optimizing the
exact empowerment, we can maximize a variational lower
bound on the value of empowerment [10], [11]. To obtain



this lower bound, we first approximate mutual information
by simplifying (6) as:∫∫

p(xt+n,ut|xt) log
p(ut|xt+n,xt)
ω(ut|xt)

dxt+n dut (9)

where p(ut|xt+n,xt) presents the posterior distribution
over the input once the final state is observed. This posterior
distribution, too, is intractable. However, using the varia-
tional approximation introduced in [15], mutual information
can be approximated as:

Î(xt+n;ut|xt) =

∫∫
p(xt+n,ut|xt) log

q(ut|xt+n,xt)
ω(ut|xt)

dxt+n dut

(10)

where q(ut|xt+n,xt) presents a variational distribution to
approximate the true posterior distribution p(ut|xt+n,xt).
Using the variational approximation, obtaining the posterior
distribution can be considered as an optimization problem,
where qξ(ut|xt+n,xt) is a variational family of distribu-
tions parameterized by ξ [16]. If the variational distribution
expressively represents the true posterior distribution, a
tight variational lower bound can be obtained. Specifically,
following the same mathematical argument provided in [10]:

I(xt+n;ut|xt)− Î(xt+n;ut|xt) =

∫∫
p(xt+n,ut|xt) log

p(ut|xt+n,xt)

ω(ut|xt)
dxt+n dut

−
∫∫

p(xt+n,ut|xt) log
q(ut|xt+n,xt)

ω(ut|xt)
dxt+n dut =

∫
p(xt+n|xt)

∫
p(ut|xt+n,xt) log

p(ut|xt+n,xt)

q(ut|xt+n,xt)
dxt+ndut =

Ep(xt+n|xt)[KL(p(ut|xt+n,xt) || q(ut|xt+n,xt))],
(11)

where KL(·) is the KL divergence. Therefore, a variational
lower bound on empowerment can be achieved as follows:

Ê(xt) = max
ω,q

Î(xt+n;ut|xt). (12)

It is worthwhile to mention that we can approach the
optimization problem in (12) using different methods of
approximate inference, such as Markov Chain Monte Carlo
(MCMC) method and mean-field approximation. However,
the mentioned methods are computationally slow for evalu-
ation of the probability terms in (10) for each given current
state xt.

For the sake of online estimation of empowerment and
efficient sampling from the probability distributions, we
perform the optimization for ω and q, (12), using multilayer
feedforward neural networks. We can obtain the prior and
posterior distributions using deep neural networks param-
eterized by φ and ξ, respectively. Using (artificial) multi-
layer neural networks (NNs) for learning a mapping from

the states to the distribution parameters allows us to only
deal with finite number of neural network parameters (i.e.
weights and biases) instead of learning a separate prior
distribution and variational distribution for each system’s
state, which shares the similar idea as the amortized varia-
tional inference [17]. Here, we choose prior and posterior
distributions from the Gaussian family i.e.,

ω(ut|x(m)

t ) = N (µφ(x(m)

t ), σ2
φ(x(m)

t )I)

q(ut|x(m)

t ,xt+n) = N (µξ(x
(m)

t ,xt+n), σ2
ξ (x(m)

t ,xt+n)I)
(13)

where mean µ and variance σ are also parameterized by
NNs. We denote θ = {φ, ξ} as joint parameter set which
are learned via (12). By joint optimization of variational
bound w.r.t. parameters of ω and q, we can obtain the prior
distribution that maximizes the mutual information and the
variational distribution that is responsible for the tightness
of the variational lower bound [10].

Using the empowerment variational lower bound, for a
given set of current states, x(m)

t ∈ {x(1)

t , ...,x
(M)

t }, we
consider our optimization problem as:

max
K

max
θ
J(K, θ), (14)

where
J(K, θ) =

1

M

∑
m

Î(xt+n;ut|x(m)

t ) (15)

and
Î(xt+n;ut|x(m)

t ) = (16)

E
p(xt+n,ut|x(m)

t )
[log q(ut|xt+n,x(m)

t )− logω(ut|x(m)

t )]

Since the expectation in (16) is taken over the joint distribu-
tion of ut and xt+n, i.e. p(xt+n,ut|x(m)

t ), we can use joint
Monte Carlo sampling method and the reparameterisation-
trick proposed in [18], [19] to evaluate the stochastic gra-
dients of the objective function with respect to the decision
variables K and θ as follows:

∂
∂θ Î(xt+n;ut|x(m)

t ) ≈
1
L

∑
l
∂
∂θ [log q(u(l)

t |x
(l)

t+n,x
(m)

t )− logω(u(l)

t |x
(m)

t )]

(17)
and

∂
∂K Î(xt+n;ut|x(m)

t ) ≈ (18)

1
L

∑
l
∂
∂K [log q(u(l)

t |x
(l)

t+n,x
(m)

t )− logω(u(l)

t |x
(m)

t )]

where L is the number of Monte Carlo samples for estimat-
ing Î . Therefore, we formulate the optimization problem
posed in (14) as empowerment variational lower bound
maximization for θ and K.

Algorithm 1 summarizes the optimization procedure.
Given that the system’s dynamics are known and differen-
tiable, the decision variables can be updated using stochastic
gradient ascent.



Fig. 1. The vector field, nullclines and empowerment landscape (the empowerment values are in nats). The Wilson-Cowan parameters are: kj = 1,
c1 = 16, c2 = 12, c3 = 15, c4 = 3, ae = 1.3, ai = 2, θe = 4 and θi = 3.7. In plot (a), P = 0 and there exist a stable fixed point at the origin. In
plot (b) P = 1.25 and the Wilson-Cowan model manifests a limit cycle.

Algorithm 1 maximization of empowerment variational
lower bound, w.r.t. θ = {φ, ξ} and K

initialize uniform samples from state space,
{x(m)

t }m=1,...,M

while not converged do
for each x(m)

t do
draw one sample with ω(ut|x(m)

t ):
ut ∼ ω(ut|x(m)

t )
transition to the next state xt+n

end for
J = 1

M

∑
m log q(ut|x(m)

t ,xt+n)− logω(ut|x(m)
t )

θ ← θ + ηθ∇θJ , for r epochs
K ←K + ηK∇KJ

end while

III. RESULTS

In this section, we apply the problem setup to the problem
of neurocontrol. We first present the Wilson-Cowan model
and the setup for parametrization of the dynamical system
at hand. Next, we proceed by providing results for two
scenarios of variational empowerment maximization and
provide interpretation of the ensuing results.

A. The Wilson-Cowan Model

We use the well-known Wilson-Cowan model that pro-
vides a course-grained description of the overall activity of
large populations of neurons [12], [20]. In particular, the
Wilson-Cowan model represents excitatory and inhibitory
activity in synaptically coupled neuronal networks. The two-
dimensional system describing the nonlinear dynamics of

these populations is:

ẋe = −xe + (ke − rexe)Se(c1xe − c2xi + Ie + P )

ẋi = −xi + (ki − rixi)Si(c3xe − c4xi + Ii +Q)
(19)

where xe and xi represent the overall activity in the ex-
citatory and inhibitory populations. Here, kj , j ∈ {i, e},
presents a dimensional constant and rj is a constant de-
scribing the refractory period. c1, c2, c3 and c4 present the
strength of excitatory and inhibitory interactions. P and Q
are the excitation level in the system. Also, Sj is a sigmoid
function:

Sj(x) =
1

1 + exp[−aj(x− θj)]
− 1

1 + exp(ajθj)
(20)

where a and θ are free parameters. Further, Ie and Ii
are external control inputs currents that impinge on the
respective populations.

We used our variational technique to compute the empow-
erment for the WC model in two parameter regimes, the first
corresponding to a single stable equilibrium and the second
corresponding to a stable limit cycle. As shown in Figure
1, the landscapes are markedly different. In the former
case, empowerment is almost zero since all trajectories
approach the same point asymptotically. In the latter, we
see regions of higher empowerment that likely correspond
to a high density of isochrons so that nearby points tend
asymptotically to spatially disparate locations on the limit
cycle.

B. Controlling Empowerment

Our goal now is to apply exogenous input to the system in
order to improve its overall empowerment according to the
aforementioned algorithm. We consider both feedforward
and feedback design scenarios. For feedback, we assume



Fig. 2. The vector field, nullclines and empowerment landscape (the empowerment values are in nats). The Wilson-Cowan model parameters are:
kj = 1, c1 = 12, c2 = 4, c3 = 13, c4 = 11, ae = 1.2, ai = 1, θe = 2.8 and θi = 4. (a) P = 0, (b) P = −0.5 (after optimization)

a linear state-feedback via these inputs (i.e., Ie = k1xe +
k2xi)1, resulting in the closed loop dynamics:

ẋe = −xe +(ke − rexe)Se(c1xe − c2xi + k1xe + k2xi +P )

ẋi = −xi + (ki − rixi)Si(c3xe − c4xi + k3xe + k4xi +Q)
(21)

On the other hand, for the feedforward strategy we simply
design Ie as a constant offset to P (We already know from
Figure 1 that such a strategy can work).

C. Efficacy of the feedback control via empowerment vari-
ational lower bound

We proceed to demonstrate the ability of feedback control
to improve the system’s empowerment.

First, we study the case wherein the ‘open-loop’ Wilson-
Cowan model exhibits an asymptotically stable limit cycle.
It is important to note that the dynamical system equation
is discretized as mentioned in (4). In terms of aligning the
Wilson-Cowan model with (1), note that the stochastic input
(i.e., the source, u) is modeled as an additional additive term
within Se and Si. Further, x = [xe xi]

T , respectively.
a) Implementation details: We provide optimization

parameters in the following: Optimization is done over 6000
epochs and the learning rates were ηθ = 0.001 and ηK =
0.01. The NNs for representation of the prior and posterior
distributions have the same structure; 2 hidden layers, 16
hidden nodes and 2 output nodes (i.e. distribution mean
and logarithm of variance). Also, given that we choose the
number of samples, i.e., M large enough, L can be set to 1
[18], as presented in Algorithm 1. In our case, we have used

1This is a strong assumption in the context of current neurostimulation
technologies, since it is not easy to independently actuate such populations.
Further, obtaining the signals xe and xi from recording modalities is far
from easy. Our goal here is to illustrate the theoretical framework in this
paper, so this assumption should be regarded as mostly pedagogical.

exponential linear units (ELU) as the activation function
for training the NNs. For our simulations, we have used
the TensorFlow [21] framework to benefit from automatic
differentiation and facilitate performing stochastic gradient
ascent and backpropagation in the high-dimensional space
of decision variables.

b) Open-loop design: We initialized the model to P =
0 and ran Algorithm 1 for 10 iterations (as distinct from
epochs, see Algorithm 1). Figure 2 illustrates the outcome
of one instance of this optimization, where an inhibitory
solution is found (P = −0.5). This is near a bifurcation
point (note proximity of e and i nullclines), leading to a
locus of high empowerment relative to the uncontrolled
system.

c) Closed-loop design: Figure 3 illustratres the results
of Algorithm 2 for the case of the closed loop design
(21). Note that here the state space has been downsampled
relative to Figure 1. We observe that the design has altered
the shape of the nullclines so that now a stable fixed point
occurs with very slow damped asymptotic oscillations. The
high empowerment regions may reflect initial conditions
whose terminal states remain separable over our specified
time horizon (i.e. n = 300).

IV. CONCLUSIONS BLUE AND DISCUSSION

The paper has introduced a new concept for control of
neural systems: empowerment maximization. The idea is
that rather than prescribing the output or dynamics of a
system a priori, we instead define an objective only in terms
of its functionality. In the present context, empowerment
characterizes the capacity of a system of encode information
from afferent inputs, which may be a general surrogate for
the efficacy of neuronal networks to transform information.



Fig. 3. The vector field, nullclines and empowerment landscape (the empowerment values are in nats). The Wilson-Cowan model parameters are:
kj = 1, c1 = 16, c2 = 12, c3 = 15, c4 = 3, ae = 1.3, ai = 2, θe = 4 and θi = 3.7. (a) k1 = 0, k2 = 0, k3 = 0 and k4 = 0 (b)
k1 = −1.41, k2 = −1.41, k3 = 1.40 and k4 = 1.42 (after optimization).

The specific contributions of this paper are theoretical in
nature. We formulated the general problem of empowerment
maximization and provided the mathematical framework
and an algorithmic procedure for optimization by using an
empowerment variational lower bound. We demonstrated
the results of this procedure on a simple neural mass model
and highlighted how empowerment maximization affects the
vector field of this model.

These results and interpretations are early steps and
there are plenty of open questions about scalability and
practicality of the approach. We are especially curious as to
whether, there is a general principle that links empowerment
to particular forms of dynamics.
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