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Evolutionary flexibility in flooding
response circuitry in angiosperms

Mauricio A. Reynoso'*t, Kaisa Kajala>>** Marko Bajic>®*, Donnelly A. West>*,
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Flooding due to extreme weather threatens crops and ecosystems. To understand
variation in gene regulatory networks activated by submergence, we conducted a
high-resolution analysis of chromatin accessibility and gene expression at three
scales of transcript control in four angiosperms, ranging from a dryland-adapted
wild species to a wetland crop. The data define a cohort of conserved submergence-
activated genes with signatures of overlapping cis regulation by four transcription
factor families. Syntenic genes are more highly expressed than nonsyntenic genes,
yet both can have the cis motifs and chromatin accessibility associated with
submergence up-regulation. Whereas the flexible circuitry spans the eudicot-monocot
divide, the frequency of specific cis motifs, extent of chromatin accessibility, and
degree of submergence activation are more prevalent in the wetland crop and may

have adaptive importance.

limate change has increased the frequency

and intensity of floods that affect agricul-

tural productivity. Of major crops, only rice

[Oryza sativa (Os)] is resilient to water-

logging of roots and submergence of aerial
tissue, because of adaptation to a semiaquatic
habitat. Other angiosperms experience intermit-
tent flooding and are not adapted to these con-
ditions. Submergence triggers signaling in plant
cells as a consequence of entrapment of the
gaseous hormone ethylene and depletion of avail-
able oxygen (hypoxia), leading to inefficient an-
aerobic metabolism and energy starvation (7). To
understand the variation in response to sub-
mergence, we studied rice as a representative
monocot and flood-resilient species, the legume
Medicago truncatula (Mt), and two Solanum spe-
cies, domesticated tomato [Solanum lycopersicum
(S1) cultivar M82] and its dryland-adapted wild
relative Solanum pennellii (Sp) (Fig. 1A). Roots
are the first responders to flooding, and we
thus monitored the early response of seedling
apical root tips to complete seedling submer-
gence. By monitoring the sentinel response gene
family ALCOHOL DEHYDROGENASE (ADH),
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required for anaerobic production of adeno-
sine 5'-triphosphate (I) (Fig. 1B), we identified
2 hours, the midpoint of maximal up-regulation, as
a physiologically relevant time to compare initia-
tion of the submergence response across species.

To conserve energy under hypoxia, stress-
induced mRNAs are preferentially translated
over transcripts associated with development in
the model Arabidopsis thaliana (2-4). We there-
fore considered both transcriptional and post-
transcriptional regulation under submergence
across the species surveyed. To do so, we deployed
Isolation of Nuclei TAgged in specific Cell Types
(INTACT) (5) and Translating Ribosome Affinity
Purification (TRAP) (6), using constitutive pro-
moters. INTACT was used to profile chromatin
accessibility by ATAC (assay for transposase-
accessible chromatin)-sequencing (ATAC-seq)
(7) and to measure the abundance of nuclear RNA
(MRNA). TRAP was used to monitor ribosome-
associated polyadenylated mRNA (TRAP RNA) and
to evaluate the position of individual ribosomes
along transcripts (Ribo-seq) (8) (Fig. 1C and figs.
S1and S2). We also profiled total polyadenylated
mRNA (polyA RNA). Multidimensional scaling
analysis confirmed the reproducibility and dis-
tinctness of each of the RNA subpopulations and
their changes after submergence (fig. S3 and
data S1 and S2).

Flood-adapted rice displayed the greatest plas-
ticity in terms of the number of differentially
up- and down-regulated transcripts (Fig. 1D, fig.
S4, and data S3). Cultured hairy roots (SI-HRs)
were used as a contrast to intact roots of tomato
(SI) plants and were more responsive. The cluster-
ing of modulated RNAs resolved variation in regu-
lation in all four species (Fig. 1D and figs. S5 to S9).
Rice gene regulation was coordinated across scales
(except in clusters 7 and 8, in which transcripts
were enriched or depleted in the nucleus). In Mt
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and tomato, regulation of gene activity was more
evident in the ribosome-associated RNAs, whereas
in the dryland-adapted Sp, regulation was evident
as nRNA enrichment or depletion.

Selection likely acts on species-specific traits
and adaptation to specific environments that
are largely regulated by a common set of gene
families. The root meristem is frequently oxygen
deprived because of high metabolic activity and
periodic soil inundation; therefore, its capacity
to transiently up-regulate anaerobic metabolism
might be expected in all species. Yet, rice may
have evolved a higher proportion of gene family
members that are regulated by submergence
than flooding-sensitive species did. We leveraged
gene families (9) to investigate conservation in
submergence-responsive genes of the four species,
focusing on the shared families (6685) plus those
conserved between the two Solanum species
(3301) (Fig. 1E and data S4). Tabulation of the
submergence-responsive gene family members
of each species identified families with at least
one member differentially controlled in any of the
RNA populations evaluated (Fig. 1F, fig. S10, and
data S5). This uncovered a set of 68 submergence-
up-regulated families (SURFs: 249 genes in Os,
121in Mt, 137 in SI, 181 in SI-HR, and 92 in Sp).
The 68 SURFs include 17 of the 49 ubiquitously
hypoxia-responsive genes of Arabidopsis seed-
lings (6), demonstrating evolutionary conserva-
tion of gene families activated by submergence
and hypoxia (data S5).

The 68 SURFs include 1 to 13 up-regulated genes
per family, leading us to investigate whether sim-
ilar proportions of these families are elevated in
each species (fig. S11 and data S6). Consistent
with overall numbers, rice had the highest and
Sp had the lowest proportion of up-regulated
genes per family. The restrained response of wild
tomato was evident from the 412 Solanum-
specific gene families that were up-regulated in
tomato but not in Sp. This motivated exploration
of the aerial tissue (shoot apex) response in the
Solanum species, which uncovered more gene
families and family members up-regulated in
shoots of wild tomato than those of domesticated
tomato (fig. S12 and data S7). The shoot response
of Sp showed greater overlap with Arabidopsis
shoot-specific hypoxia-responsive genes (10). Dis-
tinctions between the two Solanum species in-
cluded genes involved in cell elongation and auxin
signaling, which predominated in Sp.

We reasoned that dynamics in chromatin ac-
cessibility and transcriptional activation may be
coordinated and conserved for SURF members
across species. ATAC-seq exposed open chro-
matin regions of rice and Mt primarily within
1Kkb upstream of the transcription start site (T'SS)
and downstream of the polyadenylation (pA)
site of genes (Fig. 2A and data S8). By contrast,
Solanum roots showed a majority of intergenic
ATAC-seq reads (fig. S13). The rice and Mt trans-
posase hypersensitive sites (THS) (71) uncovered
a preference for opening of chromatin in response
to submergence (Fig. 2B and fig. S13), with in-
creases in 3497 and 7501 THSs, respectively. High-
ly submergence-up-regulated genes had elevated
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Fig. 1. Multitier evaluation of gene activity in four angiosperms
identifies highly conserved submergence—up-regulated genes.

(A) Relatedness of target species (19). MYA, million years ago. (B) ADH
transcript levels of submerged seedlings. (C) Overview of experimental

strategy. rRNA, ribosomal RNA. (D) Cluster analysis heatmap of log, fold

change [FC; submergence (Sub) versus control (Con) RNA] of differentially
expressed genes [DEGs; |logs FC| > 1 and adjusted P (Padj) < 0.01].
(Bottom) Bars indicate number of up or down DEGs after submergence |log,
FC| > 1 and Padj < 0.05. (E) Gene families per species and their overlap.

(F) Conserved SURFs and species-specific up-regulated family numbers.

accessibility 5" of their TSS and 3’ of their pA sites
(Fig. 2C and figs. S5, S6, and S14), demonstrating
that nucleosome depletion accompanies activa-
tion of transcript production under submergence.
Down-regulated genes had lower chromatin ac-
cessibility overall, particularly in rice (Fig. 2C and
figs. S5, S6, and S14y).

We exploited the ATAC-seq data to explore
conservation in gene regulatory circuitry. A pipe-
line was developed to identify transcription
factor (TF) binding site motif enrichment in
promoters and their THS regions of the up-
regulated SURFs (Fig. 2D). Four significantly
enriched TF motifs were identified. These in-
cluded the hypoxia-responsive promoter element
(HRPE), transactivated by low-oxygen-stabilized
ethylene response group VII (ERFVII) TFs that
up-regulate genes key to anaerobic metabolism
and flooding survival in Arabidopsis (12-14); a
basic helix-loop-helix (bHLH); a MYB; and a
WRKY-type motif (Fig. 2D, figs. S15 and S16A,
and data S9). At least one of the four motifs was
present in >84% of the up-regulated SURF genes
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of rice and Mt and >68% of those of the Solanum
species. HRPE and bHLH motifs predominated
near the TSS in all species, with the MYB near
the TSS in tomato and WRKY motifs more evenly
distributed across the upstream region (fig. S16B).
Differential wiring of up-regulated SURFs was
evident from the HRPE enrichment in rice (55%)
versus the MYB or bHLH motif enrichment in
these three eudicots (fig. SI6A and data S9).
Accessibility of chromatin in response to abio-
tic stress can be rapid and transient (75, 16). We
hypothesized that concordance between a TF
binding site and a THS would be representative
of a more static regulatory architecture, whereas
discordance could reflect the transient propaga-
tion of a stress signal. Chromatin accessibility
increased during submergence around HRPE
and bHLH sites in rice and Mt (fig. S17). A more
modest increase was observed for MYB and
WRKY sites, potentially representing more rapid
and/or transient regulatory interactions (fig. S17).
The co-occurrence of an HRPE and THS cor-
responded with more pronounced polyA RNA

tember 2019

up-regulation, with a similar trend observed
for bHLH sites in rice and Mt (Fig. 2E, fig. S18,
and data S10). In Mt, the presence of a THS
alone in the proximal promoter was associated
with greater elevation of polyA RNA, and co-
occurrence of a MYB and THS corresponded
with higher up-regulation than did the presence
of the motif alone (Fig. 2F and fig. S18). Repet-
itive motifs of the same type in accessible re-
gions coincided with greater up-regulation than
with repetitive motifs outside THSs. The inci-
dence of multiple HRPE or WRKY motifs cor-
responded with higher up-regulation in tomato,
whereas only an HRPE or multiple bHLH motifs
corresponded with up-regulation in Sp. These
results establish a link between the four con-
served motifs, chromatin accessibility, and tran-
scriptional activation under submergence.

The discovery of the SURFs and four conserved
cis regulatory TF binding motifs in submergence-
accessible chromatin regions motivated us to eval-
uate whether the conservation prevails in genes
maintained at syntenic chromosomal regions
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Fig. 2. Enhanced chromatin accessibility and motif enrichment in motifs present in up-regulated THSs and SURF promoters, using
responsive genes. (A) Accessible chromatin regions (THSs) measured  unsupervised [Multiple Em for Motif Elicitation (MEME)] and
by ATAC-seq. Categories: 2 kb upstream of the TSS, exons, introns, supervised [Motif Comparison Tool (TOMTOM), Analysis of Motif
1 kb downstream of pA site, and intergenic. (B) THS change in response  Enrichment (AME), and Find Individual Motif Occurrences (FIMO)]
to submergence. (C) Control and submergence ATAC-seq reads methods. (E and F) Distribution of log, FC polyA RNA submergence
on genes of up-regulated (Top; cluster 1; Up) and down-regulated and control for SURFs arranged by presence and number of
(Down) clusters from Fig. 1D. Genomic DNA (gDNA) is ATAC-seq on HRPE or MYB motif upstream of the ATG, inside or outside THSs.
naked DNA. (D) Discovery pipeline for enriched transcription factor Student’s t test; *P < 0.05, **P < 0.01, ***P < 0.001; values < O.1.
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(syntelogs). To do so, the gene activity data were
reclustered for the differentially regulated synte-
logs across the four species (711), which included
22 of the 68 SURFs (Fig. 3A, fig. S19, and data
S11). Syntelog clusters 2 and 3 had coordinated
up-regulation across the scales of gene activity in
all species. These comprised seven SURFs with
functions in anaerobic metabolism, nutrient
transport, abscisic acid (ABA) perception, and
survival of extreme stress. The up-regulated syn-
telogs included 32 and 53 SURFs in all three
eudicots and the two Solanum species, respec-
tively (figs. S20 to S22 and data S11).

Next, we explored conservation of gene regu-
lation on more recent evolutionary time scales by
evaluating the activity of syntelogs of related
species (Fig. 3B, fig. S23, and data S12 to S14).
Syntenic genes had higher transcript abundance
than nonsyntenic genes had, as reported previ-
ously (7). This was evident in all RNA popula-
tions under both conditions, with the most
pronounced difference between syntenic and
nonsyntenic genes in the Solanum species. Rice
and Mt syntenic gene control regions had slightly
higher chromatin accessibility than did nonsyn-
tenic genes at the global scale (fig. S14), con-
sistent with their higher expression. Transcript
elevation was similar for syntenic and nonsyn-
tenic SURF genes, especially for the Solanum
species (Fig. 3C, fig. S24, and data S14), indicat-
ing that up-regulated nonsyntenic genes have
maintained or acquired features enabling their
stress activation. Consistent with this, most high-
ly expressed syntenic and nonsyntenic SURF
genes contained at least one of the four TF motifs
recognized (80% rice, 80% Mt, >70% Solanum
species) (Fig. 3C, fig. S24, and data S15). Most TF
motifs were coincident with THSs in rice and
Mt. Although the number of highly expressed
but nonsyntenic SURF genes was fewer than
six in the Solanum species, all from SI contained
at least one motif. The four identified TF motifs

across eudicots-monocots in promoters of genes
essential to anaerobic metabolism and hypoxia
survival, including PLANT CYSTEINE OXIDASE
(PCO) genes (Fig. 4C, fig. S30, and data S17),
which catalyze the oxygen-promoted degrada-
tion of ERFVIIs to temper the adaptive response
(18). The up-regulated SURF genes included
ERFVIIs in all four species, with at least one with
an HRPE motif, suggesting possible autoregula-
tion (fig. S31).

The syntelog network also identified con-

servation of bHLH motif enrichment in genes
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not well associated with submergence [i.e.,
PYRABACTIN RESISTANCE 1/PYRI-LIKE (PYL)]
(Fig. 4B and fig. S32) and MYB motif enrichment
in genes that contribute to hypoxia tolerance (14)
(fig. S33 and S34). The up-regulation of these
genes often coincided with a TF motif in a region
of submergence-enhanced chromatin accessibil-
ity (Fig. 4, D to G, and fig. S33), supporting func-
tionality of the regulatory sequences. As for the
ERFVIIs, the up-regulated SURF genes in-
cluded bHLH, MYB, and WRKY family members
(fig. S31).
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gene regulation was also evident (overlapping syntenic
outer circles of network), with >70% of the genes
having more than one of the four motifs. Syn-
tenic up-regulated SURF genes across the four
species (represented with black borders) expose
a single conserved putative regulatory network
(Fig. 4B, fig. S29, and data S16). This network
illustrates conservation of TF motifs of syntelogs
of responsive genes, in addition to the HRPE
regulated by ERFVIIs.

As oxygen levels decline below a threshold,
constitutively synthesized ERFVIIs accumulate
because of attenuation of their conversion into
an N-degron for active turnover (7). The unified
SURF network uncovered HRPE conservation

syntenic

Fig. 4. Conserved transcription factor motifs in SURFs and accompanying chromatin
dynamics. (A) Regulatory networks for up-regulated SURF genes (expanded in figs. S25 to
S28). Hexagons, TFs; rectangles, genes; colored lines (edges), interactions of promoter and
TF based on motif presence. Outer circles: genes grouped with shared motifs. Genes with
black borders have a syntenic ortholog (rice to Mt; Mt to SI; and between Solanum species).
(B) Network for syntenic conserved SURF genes across species (expanded in fig. S29).
Genes of alternating families have alternating gray or black borders. Families represented

in three species are labeled. ABCG, ATP-binding cassette G; Cyt, cytochrome; LRR, leucine-rich
repeat. (C) Regulatory network of PCO up-regulated genes. Syntenic orthologs have black
borders. (D and F) Chromatin accessibility in promoters of syntenic PCO and PYL. ATAC
coverage scale is the same for genes shown in each panel. (Bottom) Locations of HRPE or
bHLH motifs for four species. (E and G) Number of up-regulated genes containing motifs
classified by syntenic and nonsyntenic.
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Information from single genes is used in breed-
ing or modifying crops for stress tolerance. The
use of multiscale gene regulatory information of
gene families across flowering plant clades to infer
regulatory networks demonstrates that conserva-
tion of flooding resilience mechanisms is com-
plex and involves diverse regulatory mechanisms.
Targeted manipulation of the four submergence-
activated modules and seven SURF loci discov-
ered in this study with the greatest interspecies
conservation might be used to enhance flooding
tolerance of susceptible crops.
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Materials and Methods

Plant material and transformation

Rice (Oryza sativa japonica cv. Nipponbare), tomato (Solanum lycopersicum var. MS§2,
LA3475), Solanum pennellii (LA0716), and Medicago truncatula (ecotype Jemalong A17) were
used. The previously reported stable transgenic rice lines used were 35S:OsNTF2-7 for INTACT
(20) and 35S:His6-FLAG:OsRPL1S8-2 for TRAP (21). Production of transgenic INTACT lines
was described previously for all but S. pennellii (11, 20, 22). For the Solanum species and M.
truncatula, the INTACT construct with the Arabidopsis WPP domain was used (22). These carry
a constitutively expressed dicot codon-optimized BirA driven by the S. lycopersicum SIACT?2
promoter (SIACT2p:mBirA) for the Solanum species and Arabidopsis thaliana AtACT2 promoter
(AtACT2p:mBirA) for M. truncatula. The TRAP construct for Solanum species was Hiss-FLAG-
GFP-AtRPL1S8 (22). For M. truncatula, the TRAP construct was identical to that of tomato
except the M. truncatula 60S ribosomal protein RPL18-3 gene (Medtrig083460) replaced
Arabidopsis RPLI18, and 2) the pB7WG backbone
(https://gateway.psb.ugent.be/vector/show/pB7WG/search/index/), conferring phosphinothricin
(BASTA) resistance, was used instead of the kanamycin resistance conferring pK7WG
backbone.

Stable transgenic Solanum species were produced by use of Agrobacterium tumefaciens
transformation by UC Davis Plant Transformation Facility (/7). The specific Solanum lines used
were tomato 35S:INNTF-1; 35S:His6-FLAG-GFP-AtRPL18-5, and S. pennellii 35S:NTF-3;
358:His6-FLAG-GFP-AtRPL18B-1.

Hairy root cultures of Agrobacterium rhizogenes transformed S. lycopersicum roots were
initiated and cultivated as described (22).

Hairy root composite M. truncatula plants were initiated by injecting the primary roots
with A. rhizogenes K599. To do so, the day before injection, a small volume of glycerol stock of
A. rhizogenes K599 carrying either 35S:NTF;AtACT2p:mBirA or 35S:His6-FLAG-GFP-
MtRPL18-3 plasmid was used to inoculate 5 ml of Yeast Extract Beef media (5 g/L tryptone, 1
g/L yeast extract, 5 g/L nutrient broth, 5 g/L sucrose, 0.49 g/l MgSO4x7H,0, 15 g/L agar, pH
7.2) additionally containing 100 mg/L Spectinomycin and grown overnight at 28°C at 200 rpm.
When the ODgpp was equal to 1.0, cultures were centrifuged at 5,000 rpm for 5 min. The

supernatant was poured off and the pellet was resuspended in Injection Media (IM) (1X PBS,
100 uM acetosyringone, 1/10,000 (v/v) Silwet). Seedlings germinating for 2.5-days were injected
by placing them in 5 mL of IM-resuspended A. rhizogenes poured out on a Petri dish and
stabbing the root a few times with an 18G1 needle. Additionally, 1-2 mm of the primary root tip
was cut off. Injected seedlings were moved to slanted Fahrdeus Media (FM) plates (0.5 mM
MgSOs, 0.7 mM KH,PO4, 0.8 mM Na,HPO4, 50 nM FeEDTA, 0.5 mM NH4NO;, ImM CaCl,,
0.1 mg of MnSOj4, CuSOy4, Zn SO4, H3BO3, and Na;MoOs, 8 g/L Phytoblend agar, pH 6.5) with
no selection and were grown horizontally for 3 days, and then were moved to FM plates with 5
mg/L phosphinothricin and were grown vertically for 3 weeks before transfer to 1X MS media
without vitamins (1% w/v agar, 1% w/v sucrose).



Growth conditions and submergence treatment

For rice, seeds were dehulled and surface sterilized in 50% (v/v) bleach solution for 30 min,
rinsed ten times with sterile distilled water and grown on plates (100 cm?) containing 0.5x
Murashige and Skoog medium (MS), 1% (w/v) agar 1% (w/v) sucrose for 7 days (16h day / 8h
night; at 28°C/25°C day/night; 110 uEm™s-'). For tomato, seeds were surface sterilized in 50%
(v/v) bleach solution for 5 min (S. pennellii) or 20 min (S. lycopersicum) and then rinsed three
times with sterile distilled water. Growth was on vertical plates (10 cm x 10 cm) containing full-
strength MS without vitamins, with 1% (w/v) agar (w/v) and 1% (w/v) sucrose. S. lycopersicum
hairy root cultures transformed with A4. rhizogenes were subcloned using a 2-cm hairy root
segment, grown on horizontal plates (10 cm x 10 cm) containing full-strength MS with vitamins,
with 1% (w/v) agar (w/v) and 3% (w/v) sucrose, 200 mg/L kanamycin and 200 mg/L cefotaxime.
All tomato root cultures or germinating seeds were grown for 7 days in a growth chamber (at
25°C, 16h day/8h night; 60-65 pEm™s-").

M. truncatula seeds were surface-sterilized by incubating in concentrated sulfuric acid for
8 minutes with gentle stirring, washing 3 times with 4°C sterile, distilled water, then 4-8 minutes
in 3% (w/v) hypochlorite (diluted bleach), washing 4 times with sterile, distilled water, and
finally placing the seeds onto moist filter paper. Seeds were germinated without stratification on
moist filter papers in inverted Petri dishes wrapped with surgical tape wrapping. These were kept
in the growth room in the dark at 20°C for 2 days. The seedlings were then injected with A.
rhizogenes, and composite plants with transformed hairy roots were obtained three weeks later.
After the composite plant transformation protocol, the plants were grown vertically for one week
(at 20°C, 16h day/8h night; 150 pEm™s-') before being used for the submergence experiment.
The day before the experiment was performed, root tips from one plate were collected and
visualized on a fluorescence stereomicroscope to check for GFP expression. Transformation
efficiency was calculated as the percentage of root tips with ubiquitous GFP expression.

Four independent biological replicates were grown for each species. For whole plant
submergence, plates were placed horizontally, opened and the seedlings covered with 5 cm of
autoclaved distilled water at ZT 4h. Root tips (apical 1 cm including the meristem, elongation
zone and early differentiation zone; all four species) and the shoot apical meristem region
(Solanum species) were harvested at ZT 6h (2h before relative noon). Control plates were not
opened, but positioned horizontally for the duration of the treatment and harvested at ZT 6h.
Oxygen partial pressure was measured with the NeoFox Sport O, sensor and probe (Ocean
Optics). The dissolved oxygen content in the water covering the plants remained above 18%
(v/v) for the 2 h duration of the stress treatment.

Quantitative real-time reverse transcriptase PCR (QRT-PCR)

Three independent biological replicates of submergence and control time courses were
conducted. Root tips (apical 1 cm) were harvested every two hours after submergence for qRT-
PCR. For the Solanum species, RNA was extracted by polyA mRNA extraction (23), cDNA was
synthesised by Superscript Il (Invitrogen) and qRT-PCR was performed with SensiFast SYBR
Hi-RIX kit (Bioline) with CFX384 Touch™ Real-Time PCR Detection System (Bio-Rad), all as
per the manufacturer’s instructions. For M. truncatula, RNA was extracted using the RNeasy
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Plant Mini Kit (Qiagen). Genomic DNA was removed using the TURBO DNA-free Kit
(Ambion) and first-strand synthesis was performed using SuperScript III on 150 ng of RNA.
qRT-PCR was performed with Power SYBR Green Master Mix (Applied Biosystems) on the
StepOnePlus Real-Time PCR System (Applied Biosystems). For rice, RNA was extracted using
Direct-zol RNA Miniprep (Zymo Research). qRT-PCR was performed with 500 ng of RNA pre-
treated with DNAse 1 (Thermo Scientific), reverse transcribed using Maxima reverse
transcriptase (Thermo Fisher) in a total volume of 20 ul, according to the manufacturer’s
instructions. cDNA was diluted with 180 ul of ddH,0 and real-time (RT) PCR was performed
with 5 pl of the diluted cDNA using SsoAdvanced™ Universal SYBR Green Supermix (Bio-
Rad) and the CFX96 Touch Real-Time PCR Detection System (Bio-Rad) using defined primers
(data S18). ADH mRNA abundance was compared to UBCII (O. sativa), ACT2 (S. lycopersicum
and S. pennelli) and RPL2 (M. truncatula). The AACt method (24) was used to calculate relative
in RNA abundance, using a Student’s ¢ test to evaluate significance using three technical and
three biological replicates.

Nuclei purification by INTACT for ATAC-seq and nRNA-seq

Nuclei were purified from frozen and pulverized tissue as described previously for A. thaliana
(25) with minor modifications (20). Tagmentation using Tn5 insertion and ATAC-seq libraries
were prepared using 20,000-50,000 nuclei as previously described (/7)(26), with slight
modifications. For rice, minor modifications in nuclei purification include: 1) the use of a 30 um
filter to exclude 30 to 70 um cellular debris from the crude extract and extended centrifugation
times (20), and 2) using AMPureXP beads instead of columns to purify amplified libraries. For
nRNA, samples were processed as described (20, 27). In brief, nuclei captured by INTACT were
processed using the RNeasy Micro kit (Qiagen), treated with Turbo DNase I (ThermoFisher
Scientific) and concentrated using Agencourt RNAClean XP beads (Beckman Coulter). To
remove contaminating pre-rRNA/rRNA a subtraction step using biotinylated oligos tiling pre-
rRNA/TRNA and high temperature double-stranded nuclease was performed (20). Samples were
re-treated with Turbo DNase I (ThermoFisher Scientific) and cleaned up with Agencourt
RNACIean XP beads prior to use in library construction as described below.

Polysomal mRNA purification by TRAP and Total RNA isolation and RNA-seq library
construction

TRAP was performed as previously described (28, 29) with the following modifications: a-
FLAG conjugated IgG Dynabeads were used for binding; after magnetic collection and washing
the polysomes were removed from the magnetic beads by the addition of Lysis and Binding
Buffer (LBB) buffer for polyA mRNA isolation using biotinylated oligo-dT primers and
streptavidin magnetic beads (NEB) (23). Total RNA was extracted from frozen tissue using
polysome extraction buffer (28) followed by LBB polyA mRNA isolation using biotinylated
oligo(dT) and streptavidin magnetic beads (23). Random primer-primed RNA-seq library
construction for nRNA (pre-rRNA and rRNA digested), polyadenylated total RNA and
polyadenylated TRAP RNA was performed as described (23) in at least four biological replicates
for each condition and species.



Ribo-seq library construction

Ribo-seq libraries were generated as described by (30) but with ribosome isolation by TRAP as
described by (32) starting with pulverized frozen root tip tissue (~1,000 1 cm root tip) thawed in
5 mL of Polysome Extraction Buffer and using a-FLAG conjugated IgG Dynabeads for binding
instead of anti-FLAG M2 magnetic beads. Manipulations were as previously described by (32)
through to the generation of ribosome footprint fragments (RFs) and on-magnetic bead digestion
of 1 mL of resuspended beads with 2,000 units of RNase I (Ambion; ca. 15 U/ug RNA) by
incubation for 180 min at 23-25 °C. RFs of 26-34 nt were gel purified, dephosphorylated using
T4 polynucleotide kinase, ligated 500 ng preadenylylated miRNA cloning linker (IDT, miRNA
cloning linker #1). The ligated-RFs were excised, recovered and resuspended in 10.0 pl of 10
mM Tris (pH 8). After this step, rRNA removal of RFs was done by use of Ribo-Zero rRNA
Removal Kit (Plant; Illumina) probe solution. Library construction continued as described by
(37) and the resultant 130 nt RF ¢cDNAs were circularized and contaminating rRNA was
subtracted by a second hybridization with custom-designed biotinylated oligos corresponding to
pre-TRNA and rRNA as described (37). rRNA-subtracted circularized fragments were used for
12 cycles of 10s at 98°C, 10s at 60°C, and 5s at 72 °C PCR amplification including library and
indexing primers. M. truncatula and S. lycopersicum libraries used indexing primers described
(23), rice libraries used the same primers as described by Ingolia et al., 2012 (32). The amplified
RF library (~175-180 bp) was excised and recovered from the gel, purified, analysed on Agilent
BioAnalyzer DNA 1000 chip, multiplexed and sequenced.

Short read processing, quality assessment, alignment to genomes, and read coverage

For rice, S. lycopersicum and S. pennellii, nRNA, total poly(A)" and TRAP libraries and all
Ribo-seq libraries, including M. truncatula, were sequenced on the Illumina HiSeq 3000 to
obtain 50 nt single-end reads at the UC Davis DNA Technologies Core. Raw reads were filtered
to remove adapter-only or polyA-pulldown primer sequences. For M. truncatula, nRNA, total
poly(A)+ and TRAP libraries were sequenced on the Illumina NextSeq 500 at the Georgia
Genomics and Bioinformatics Core at UGA to obtain 75 nt single-end reads for nRNA libraries
and 36 nt paired-end reads for total poly(A)" and TRAP libraries.

Rice and M. truncatula data analysis steps were performed on the University of California,
Riverside Institute for Integrative Genome Biology high performance bioinformatics cluster
(http://www.bioinformatics.ucr.edu/), supported by NSF MRI DBI 1429826 and NIH S10-
0OD016290. R packages from Bioconductor including systemPipeR (33) were used. Quality
reports of raw  reads were generated ~ with  the FastQC  package
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adaptors were removed from

Ribo-seq reads and RNA raw reads were mapped with the splice junction aware short read
alignment  suite = Bowtie2/Tophat2 to the IGRSP1.0-30 genome for rice
(http://plants.ensembl.org/Oryza_sativa/Info/Index) and Mt4.0 genome for M. truncatula,

allowing unique alignments with <2 nt mismatches. nRNA, polyadenylated total RNA and
polyadenylated TRAP RNA was filtered by mapping first to the mitochondrial and chloroplast
genomes before mapping to the nuclear genome. Expression analyses were performed by



generating read count data for features of exons-by-genes using the summarizeOverlaps function
from the GenomicRanges package(4).

For the Solanum samples, mapping was executed in the CyVerse Discovery Environment. STAR
v2.4.0.1 was used to align nRNA-seq reads to organelle sequences to filter out reads that map to
organelles (S. lycopersicum AFYBO1.1 mitochondrial sequence, S. lycopersicum NC _007898.3
chloroplast sequence, and S. pennellii HG74452 chloroplast sequence, all downloaded from
NCBI); alignment parameters were set to include unmapped reads as the output (--
outSAMunmapped Within, --outReadsUnmapped Fastx). For all RNA-seq libraries, reads were
then mapped to either S. lycopersicum ITAG3.10 or S. pennellii cDNA (exonic) sequences
(downloaded from SolGenomics). For both Solanum species the 90 gene models identified to
potentially encode for rRNA were masked. STAR GenerateGenomelndex was set to --
limitGenomeGenerateRAM 36000000000 to account for the large number of cDNA inputs)
using the STAR v2.4.0.1 aligner (default parameters, SAM output). Estimated count (est_counts)
abundances were calculated using eXpress v1.5.1, default parameters. For visualization of read
mapping, the reads were also mapped to either the S. /ycopersicum 1TAG3.10 or the S. pennellii
genome using STAR v2.4.0.1, default parameters.

For all species, reads were converted from SAM to sorted BAM files using Samtools
1.0.9 and the BAM files were converted to bigwig files using BedTools 2.26
genomeCoverageBed followed by UCSC bedGraphtoBigWig 332--0, default parameters.

Ribo-seq reads periodicity analysis was performed using Ribotaper (34). Modified GTF

files for each species to select protein-coding annotated genes and TRAP RNA expressed genes
were used to create annotation files (create_ annotation_files.bash). Merged bam files were used
to generate periodicity plots with the script create_metaplots.bash.

RNA-seq differential expression

Statistical analysis of differentially expressed genes was carried out using limma-voom (335)
Bioconductor package in R. Raw RNA-seq read counts were normalized with voom using the
quantile method. The functions Imfit, contrasts.fit, and ebayes were used to calculate differential
gene expression for different contrasts, including log, Fold Change (FC) values and adjusted P
values (adj.P.Val). The fdr method was used for controlling the false discovery rate (FDR).
Multidimensional scaling (MDS) plots were generated using Glimma Bioconductor package in R
(36) using genes with more than 0.5 count per million in at least 3 replicates. Following
normalization, count data were used to calculate reads per kilobase per million reads (rpkM).
Enrichment analysis of Gene Ontology (GO) terms was performed with systemPipeR (33) using
the GO definitions from the BioMart database for rice and M. truncatula, and with goseq R
package (37) using the category list specifically built for S. lycopersicum (38) for the Solanum
species.

Transcript read (average) coverage plots were calculated and produced over selected
groups of genes with the functions computeMatrix and plotHeatmap from deepTools
(http://deeptools.readthedocs.io/en/latest/index.html) using bigwig files. For each group of genes
the 5% most highly and 5% lowly expressed genes were removed from the coverage plots, as

6




highly covered regions can bias the mean. Log, FC values for genes identified as differentially
expressed were clustered using the Partitioning Around Medoids (PAM) method with £ = 12 to
24 clusters. The method of clustering and the & values were optimum for resolution of correlated
genes based on the evaluation of results with multiple & values. Clustering and heatmaps plotting
the mean log, FC values were created using the following R packages: gplots, cluster, e1071, and
RColorBrewer installed from https://cran.r-project.org.

Identification of genes families and syntenic orthologous genes (syntelogs) across species
Predicted angiosperm gene families were extracted from Phytozome v11 including O. sativa, M.
truncatula and S. lycopersicum (11). These families were established by Phytozome using
InParanoid, which uses BLAST alignment between two related protomes to identify orthology
groups, defined by the developers as homologs from a speciation event (39). Gene families
shared between S. lycopersicum 1TAG3.10 and S. pennellii were independently generated in
three ways: 1) using the synteny aligner CoGe SynMap, megablast, with an e-value of 0.001; 2)
a two-directional syntenic alignment using CoGe SynFind, default parameters, both with
ITAG3.10 as the query and S. pennellii as the query; and 3) the best blastn hit, default
parameters, between the cDNAs of ITAG3.10 and S. pennellii. The gene identifier (ID) obtained
was used to associate the gene to a gene family. As the Phytozome list used the ITAG 2.4
annotation, for the genes annotated in ITAG3.10, which do not have an assigned gene ID in
ITAG2.4, we performed a blastp (-max_target seqs 1) search between the cDNAs to find the
closest related gene in 4. thaliana. The resultant gene ID was used to associate the Solanum gene
to a gene family. To identify conserved responses across species, the overlaps in families
containing differentially expressed genes were produced with the function overLapper from
systemPipeR. Venn diagrams were plotted with the function vennPlot.

Syntenic orthologs (syntelogs) were identified using a combination of CoGe SynFind
(https://genomevolution.org/CoGe/SynFind.pl) with default parameters, and CoGe SynMap
(https://genomevolution.org/coge/SynMap.pl) with the QuotaAlign feature selected and a
minimum of six aligned pairs required (40, 41). Rice and Brachypodium distachyon, or Zea mays
syntelogs were obtained from ensembl plants (http://plants.ensembl.org/compara_analyses.html).
To identify corregulated syntelogs, each gene which had a syntelog in the comparison species

and was differentially expressed was clustered by the PAM method as described. To simplify the
visualization the median of the cluster was calculated and plotted using the functions geom_line
and geom_point from the R package ggplots2.

To evaluate the differences in transcript (nRNA, polyA RNA or TRAP RNA) levels
between syntenic and non syntenic genes, the mean of normalized rpkM values were plotted for
genes with transcript abundance > 0.5 rpM using the function geom violin. Significant
differences of means were evaluated using the Student’s 7 test, comparing a single population of
transcripts under one condition (i.e., nRNA in control samples) for syntenic and non-syntenic
genes. An F-test was used to evaluate the difference in the variances of the two populations using
the R function var.test (data S13).



Enrichment for regulated genes in gene families in each species

For each upregulated gene family in any species and comparison, the number of upregulated and
non-regulated genes were quantified to generate a contingency table including the overall
number of regulated genes. A linear model was generated to test for the enrichment in a gene
family in a species compared to others (mod=glm(formula = family ~ species +
degs,data=my.data, family = binomial(logit), weights=Freq)).

Mapping of chromatin accessibility, identification of Transposase Hypersensitive Sites, and
evaluation of accessibility changes between conditions

Rice libraries were sequenced on the HiSeq 3000 at the UC Davis DNA Technologies Core to
obtain 50 nt single-end reads. M. truncatula ATAC-seq libraries were sequenced on the NextSeq
500 at the UGA Georgia Genomics and Bioinformatics Core to obtain 36 nt paired-end reads. S.
lycopersicum, S. pennellii, and a few rice ATAC-seq libraries were sequenced on the NextSeq
500 at the UC Davis DNA Technologies Core to obtain 36 nt paired-end reads. Genomic DNA
ATAC-seq libraries from root tips for each species were sequenced on the NextSeq 500 at the
UGA Georgia Genomics and Bioinformatics Core to obtain 36 nt paired-end reads. Sequencing
reads were mapped using Bowtie2 software (42) with default parameters to each species’
corresponding genome build; rice was mapped to IGRSP1.0-30, M. truncatula was mapped to
Mt4.0, S. lycopersicum was mapped to ITAG3.10, and S. pennellii was mapped to the genome
assembly of Bloger et al. (2014) (43). Mapped reads were processed as previously described
(44), which included converting to .bam format using Samtools 0.1.19 (45), sorting and filtering
to retain only reads that had a mapping quality score of 2 or higher, and filtering to retain only
the reads that mapped to nuclear chromosomes and scaffolds.

Peak calling was done using the “Findpeaks” function of the HOMER package (46) with
the parameters “-minDist 150" “-region” and “-regionRes I”. Peaks called between replicates
were kept if they replicated at least once between replicates given the condition that they overlap
by at least 50%. This was done using the Bedtools software (47) and the “intersect” function.
Reproducible peaks that overlapped by 150 bp, half the size of the mean peak sizes called in each
species, were merged together using the Bedtools “merge” function to give the final list of
reproducible, non-redundant chromatin accessible regions identified in each species. These
regions are referred to as Transposase Hypersensitive Sites (THSs).

Read alignments, referred to as counts, present in the coordinates of identified THSs were
quantified in each species for control and submergence samples using HTSeq’s htseq-count
script (48). At least two replicates of each condition were counted and the counts were
statistically evaluated using DESeq2 (49). THSs that had a log fold change value of 1 or more, or
-1 or less, and a p-value < 0.05 were identified as THSs that are either upregulated, or
downregulated, during submergence stress. Upregulated THSs refer to chromatin regions where
chromatin was more accessible during submergence stress, compared to control conditions.

For visualization of chromatin accessibility data, .bam files were converted to bigiwg
files using the deeptools 2.0 (50) “bamCoverage” script, using the bin size of 1 bp and RPKM
normalization parameters, and UCSC’s “bigWigMerge” and “bedGraphToBigWig” programs.
Replicates for a specific condition were processed such that each replicate had the same number
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of mapped reads before merging. This was done using the Samtools “view -¢” command to count
the number of aligned reads within the replicate and the Samtools “view -S” command to scale
down globally the number of reads for that replicate. Heatmap and metaplots of chromatin
accessibility data were generated using the deepTools “computeMatrix” “plotHeatmap” and
“plotProfile” functions.

Annotation of Transposase Hypersensitive Sites

For each THS, distance to and identity of the nearest gene was assigned using the “7S5S” function
of the PeakAnnotator 1.4 program (57). Each THS was assigned to a genomic feature (upstream,
exon, intron, downstream, or intergenic) using HOMER’s “annotatePeaks.pl” program. Genomic
features were defined using published annotation files for the genomes used for alignment, as
well as HOMER’s “parseGTF.pl” and “assignGenomeAnnotation” programs. The “upstream”
regions were defined as the 2,000 bp upstream of the transcription start site, and “downstream”
regions were defined as the 1,000 bp downstream of the transcription end site.

Identification of enriched regulatory motifs

Two methods of cis-element enrichment were used. (Method 1) De novo discovery: To identify
motifs enriched in promoter regions of SURFs, the 2 kb upstream region of the ATG for all the
upregulated genes in a family were evaluated for sequence enrichment using MEME (52). Motifs
significantly enriched (E-value<0.01) were compared to databases of known transcription
factors, including DAP-seq (53) and CIS-BP (54), by using TOMTOM (55) on the MEME
output. As a control, genes not regulated from each family were processed in the same way to
detect putative regulatory elements in control conditions that are non-submergence specific.
Detected motifs were screened in all annotated genes using RSAT and the enrichment of SURFs
were evaluated using a Fisher’s exact test using the fisher.test() function in R. (Method 2) De
novo discovery in promoter-bound accessible regions of SURFs: To identify motifs enriched in
accessible sites found in promoter regions of SURFs, THS sequences found in the 2 kb upstream
and +500 bp region of the TSS, highest density of THS localization for rice and M. truncatula,
for all upregulated genes in a family were evaluated for sequence enrichment using AME (56).
This enrichment analysis was done using both DAP-seq and CIS-BP databases to match enriched
motifs to known transcription factors. Motifs with an E-value<0.01 were considered as
significantly enriched motifs found in SURF promoter-bound THSs.

Motif mapping and validation of SURF-regulated enrichment

The FIMO program (57) was used to map motifs throughout repeat-masked genome sequences
of rice (IGRSP1.0-30), M. truncatula (Mt4.0), S. lycopersicum (ITAG3.10), and S. pennellii
genome assembly of Bloger et al. (2014) (43). The default parameters for FIMO mapping were
adjusted to account for memory considerations and p-value scoring bias for smaller, more precise
positional weight matrices. This was done by using the “--max-stored-scores 100000000 option
and the “--thresh” option. The p-value threshold was set manually by choosing a low
significance value, such as “--thresh 0.005” and then visually examining the results to determine
at which cutoff there was more than 1 base pair mismatch between the identified motif and the
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sequence reported in the positional weight matrix. The only p-value cutoff changed for the main
motifs described in this work was bHLH, which was set to 0.0002 instead of the default value of
0.0001 to account for the smaller size of the motif.

A total of 23 motifs were identified as potential regulators of increased SURF expression.
To remove false-positive motifs that are found in high abundance within all gene promoters we
used the Fisher’s exact test to compare the percentage of SURF promoters of a given species that
had a motif versus the percentage of all other genes’ promoters that had a motif within that
species. Through this validation process, bHLH, HRPE, and MYB were found to be significantly
enriched in SURF promoters of all four species. WRKY was significantly enriched in SURF
promoters of rice, M. truncatula, and S. lycopersicum, but not S. pennellii.

Network analyses

The Cytoscape software (58) was used to build gene regulatory networks between the four TF-
binding sequence motifs (bHLH, HRPE, MYB, and WRKY) and the SURF genes of each
species. The TF-binding sequence motif must be located within the -2 kb upstream and +500 bp
downstream region of the TSS of the SURF gene being regulated in order for the TF-gene
connection to be made.

Phylogenetic analyses

Gene family conservation was inferred by using a Maximum Likelihood method based on the
JTT matrix-based model in the software MEGA 7 (59). The consensus tree is generated from
1000 bootstrap replicates. Branches corresponding to partitions reproduced in less than 50%
bootstrap replicates are collapsed. Initial tree(s) for the heuristic search were obtained
automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances
estimated using a JTT model, and then selecting the topology with superior log likelihood value.
All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment
gaps, missing data, and ambiguous bases were allowed at any position.

Accessible datasets

The data reported are accessible from Gene Expression Omnibus (GEO) database,
www.ncbi.nlm.nih.gov/geo (accession no. GSE128680). The scripts used are available at:
http://plant-plasticity.github.io/data-and-code/
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Fig. S1. Experimental scheme for the evaluation of nuclear and cytoplasmic gene
regulatory activity in four species. Nuclei were isolated by Isolation of Nuclei TAgged in
specific Cell Types (INTACT), which utilizes plants expressing a chimeric biotinylated Nuclear
Targeting Factor that interacts with the nucleus (Solanum ssp. and M. truncatula) (11, 25) or that
is an integral part of the nuclear envelope (rice) (20). Nuclei were used to evaluate chromatin
accessibility by Assay for Transposase-Accessible Chromatin (ATAC-seq). Gene transcripts
present in the nucleus (nRNA) were isolated following INTACT and subtraction of rRNA. These
were used for library construction without the selection of polyadenylated RNA. Total cellular
polyadenylated mRNA (polyA RNA) was obtained by use of biotinylated oligo-dT hybridization
and streptavidin magnetic bead purification. Ribosomes and associated mRNA were purified
from cell extracts by Translating Ribosome Affinity Purification (TRAP), which takes advantage
of plants expressing a FLAG-epitope tagged RPL18 (Solanum ssp., AtRPLI8B (22); Medicago
MItRPLISB (60); rice OsRPLIS8A (21)). Polyadenylated mRNAs associated with ribosomes
(TRAP RNA) was obtained by TRAP followed by biotinylated oligo-dT hybridization and
streptavidin magnetic bead purification. Ribosome footprint profiling (Ribo-seq) was used to
evaluate the position of individual ribosomes on mRNA. Non-directional RNA-sequencing
libraries were prepared for nRNA, polyA RNA and TRAP RNA.
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Fig S2. Mapped ribosome footprints demonstrate coding sequence coverage. Ribosome
footprint fragments (RFs) were generated by RNAse digestion, isolated by TRAP, sequenced and
mapped to each genome. Plots show coverage values [reads per million reads (rpM)] of the first
nucleotide of 30-nt ribosome footprints in the start and stop codon regions of expressed protein-
coding genes. Values represent three replicates each for control and submergence. Each group of
four plots are (i) 5’ untranslated region (UTR) and the coding sequence, centered on the initiation
(start) codon (position 0, red arrow) and extending to codon 5; (ii) codons 6-19; (iii) the region of
the coding sequence just prior to stop codon; and (iv) region around the stop codon (blue arrow)
and extending into the first part of the 3’UTR. Each bar represents a nucleotide. To visualize
codon-by-codon periodicity, colors of bars correspond to the first (red), second (blue) and third
(orange) position of each codon. The 3 nt periodicity characteristic of translation is most evident
for rice (O. sativa) and tomato (S. lycopersicum) and then M. truncatula. All of the species show
a rapid decline in RFs on the 3’UTR indicative of translation termination.
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Fig. S3. Multidimensional scaling analysis of nuclear and cytoplasmic responses to
submergence in multiple plant species. Comparison of complete RNA-seq datasets obtained
for nuclear RNA (nRNA), polyadenylated RNA (polyA), ribosome-associated RNA (TRAP) and
ribosome footprint fragments (Ribo-seq) after mapping to the corresponding genome and
normalized (filtered to remove very low expression genes) for the two conditions (control and
submergence). Each column corresponds to a species (Os, O. sativa/rice; Mt, M. truncatula; Si,
S. lycopersicum/tomato; Sp, S. pennellii). Each row corresponds to two different dimensions
determining the variation in the data. Each dot in the graph corresponds to a sample library.
Vertically oriented pairs of graphs are labeled by either the type of library or the condition. For
S. lycopersicum, the types of samples assayed are also compared (root tips, shoot apexes and tips
of hairy roots). Distinction between samples was driven by RNA readout and condition. Data
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A Up at any level B Down at any level
gene families gene families

Fig. S10. Identification of conserved submergence-responsive gene family members across
the four species. Related to Figure 1F. Tabulation of gene family members conserved across the
four species that were differentially regulated (llog, FCI>1 and padj<0.05) in at least one RNA
population. This analysis identified the 68 submergence-upregulated families (SURFs) across the
four species (A) and 41 submergence downregulated gene families across the four species (B).
Of the conserved down-regulated genes, only three were among the genes reduced by hypoxia in
multiple cell types of Arabidopsis (6). Data presented in data S5.
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Fig. S11. SURFs show varied enrichment in the four angiosperms surveyed. (A) Heatmap
showing the proportion of submergence upregulated gene members per gene family at any RNA
population in root tips. Each row shows this proportion for a different gene family. Absence of
gene family members in a species is indicated in grey. Clusters were generated by Partition
around the mediod method. (B) Heatmap of pValues of the differential enrichment of each
family in panel A for the four species compared to rice. The analysis illustrates species-specific
distinctions in the enrichment of SURFs active in root tips in response to submergence. Some
upregulated SURFs genes predominate in rice (clusters 1-4) and others in the other species.
Distinctions are evident for the two Solanums. Data presented in data S6.
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Fig. S12 (A-D). Comparison of submergence upregulated genes in root tip and shoot apex
regions of Solanum species. (A) Cartoon of mature S. lycopersicum (SI) and Solanum pennellii
(Sp) shoots. (B) Gene family comparison of upregulated transcripts at any level (nRNA, polyA
RNA, TRAP RNA) in S/ and Sp shoot and root apex regions shows that both species and tissues
have many of uniquely regulated transcripts. Half of the conserved SURFs are represented in
genes upregulated in shoot (32 of 68 in S/, 40 of 68 in Sp). Twenty-two of the conserved SURFs
are upregulated in both organs of S/ and Sp. The upregulated gene families in shoots are more
specific to each species: 139 shared, 493 Sl-specific, 697 Sp-specific. (C) Comparison of
Solanum shoot-specific submergence response to Arabidopsis shoot-specific hypoxia response
from (6). (D) Expression patterns of submergence-responsive /44 genes in the shoot apex (data
S7). (E) Heatmap of the proportion of submergence-upregulated gene family members per gene
family, similar to S11, in shoots of S/, and Sp. Each column shows this proportion for a different
gene family. Absence of gene family members is indicated in grey. (F) Heatmap for pValues of
the differential enrichment between the two species. Analysis illustrates species-specific
distinctions in the enrichment of SURFs elevated by submergence. Some upregulated SURF
genes predominate in S/ (clusters 2-4,6) and others in the Sp (8-12) (data S6).
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Fig. S13. Identification of Transposase Hypersensitive Sites that are enriched or depleted
during submergence stress. Chromatin accessibility visualization, evaluation, and annotation in
Oryza sativa roots (Os), M. truncatula composite plant hairy roots (Mt HR), Solanum
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lycopersicum hairy roots (S HR), S. lycopersicum roots (SI), S. lycopersicum shoot apex (S! SH),
S. pennellii roots (Sp), and S. pennellii shoot apex (S/ SH). The different sample types are
organized into columns. For each column, information for all the Transposon Hypersensitive
Sites (THSs) identified within that sample is described at the top. This information includes a
metaplot of all the THSs, the number of THSs, and heatmaps of all THSs in control,
submergence, and genomic ATAC-seq datasets. Pie charts describe the proportions of THSs
found in different genomic features. Volcano plots depict the distribution of THSs that are
upregulated (Up THSs, purple dots) or downregulated (Down THSs, green dots) during
submergence. Metaplots, numbers, heatmaps, and genomic distribution for upregulated THSs
(Up THSs) and downregulated THSs (Down THSs) is shown in the middle and the bottom,
respectively. Data presented in data S8.
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Fig. S14. Chromatin accessibility over detected genes and regulation by submergence in
different species. (A) Coverage plots for chromatin accessibility for all detected genes classified
in syntenic and non-syntenic under control condition (related to Fig. 3B). Rice genes were
evaluated for synteny to Brachypodium distachyon genes, M. truncatula genes to Solanum

lycopersicum and S. lycopersicum to S. pennellii and vice versa. (B) Profiles of chromatin
accessibility measured via ATAC-seq under control and submergence for the genes included in
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Fig. S15. Overall presence of HRPE, MYB, bHLH, WRKY TF motifs in promoter regions
of genes. Number of genes that possess (left) or lack (right) an HRPE, MYB, bHLH, WRKY
binding motif in the region 2 kb upstream and 500 bp downstream of the TSS. Data presented in
data S9.
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presented in data S10.
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Fig. S19. Stress regulation of syntenic genes is not coordinated across four angiosperm
species. Related to Fig 3A, this heatmap presents the log, FC submergence vs. control of
syntenic genes recognized across the four species which are regulated in at least one RNA
population across all the species analyzed. Data for clusters 1-11 and 14 are plotted in Fig. 3A.
Data for downregulated clusters are plotted as a line in fig. S22A. Data presented in data S11.
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Fig. S20. Stress regulation of syntenic genes coordination across three eudicots. This
heatmap represents the log; FC of syntenic genes recognized across Medicago and Solanum

species that are regulated in at least one RNA population. Plotted as a line in fig. S22B. Data
presented in data S11.
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data S11.

32



log, FC Sub/Con

Shhdbbvioawm

nRNA  polyA TRAP TRAP nRNA polyA TRAP TRAP nRNA polyA TRAP TRAP nRNA polyA TRAP NRNA polyA TRAP 9
RNA  RNA Riboseq RNA  RNA Riboseq RNA RNA Riboseq RNA RNA RNA RNA

I
Mt HR 1

log, FC Sub/Con
O o= WA

log, FG Sub/Con

W= 0=Nwh

nRNA  polyA TRAP TRAP  nRNA polyA TRAP TRAP nRNA polyA  TRAP nRNA polyA  TRAP
RNA RNA Riboseq RNA RNA  Riboseq RNA RNA RNA RNA

O
®w

SIHR ! ! Sp »

log, FC Sub/Con

N=0O =N Wwhsrn

=10
-
-6
-7
-9
=20
=21

22

24

log, FC Sub/Con
A b DO o =
|
\

nRNA polyA TRAP TRAP nRNA polyA TRAP nRNA polyA TRAP
RNA RNA Riboseq RNA RNA RNA RNA

Fig. S22. Stress regulation of syntenic genes is not coordinated across species. (A) Line
graphs representing the median of log, FC of downregulated clusters of syntenic genes across all
species analyzed. Upregulated genes shown in Fig. 3A. (B) Line graphs representing the median

of log, FC of clusters of syntenic genes across Medicago and the Solanum species analyzed. (C)
Line graphs representing the median of log,FC of clusters of syntenic genes across the Solanum
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Fig. S23. Expression levels of syntenic genes are higher than non-syntenic genes under
submergence in roots and shoot. Figure related to Fig 3B. (A) Violin plots represent logig
rpkM distribution for all detected genes classified as syntenic or non-syntenic under
submergence condition in roots. Rice genes were evaluated for synteny to Brachypodium
distachyon genes, M. truncatula genes to Solanum lycopersicum and S. lycopersicum to S.
pennellii and vice versa. (B-C) Violin plots represent log;o rpkM distribution for all detected
genes classified as syntenic and non-syntenic under control and submergence condition in shoot
of two Solanum species, respectively. (D-E) To evaluate a species more closely related to M.
truncatula, genes syntenic in the legume Trifolium pratense were identified and violin plots
prepared for the log;o rpkM distribution for all detected genes classified as syntenic and non-
syntenic genes in these legumes under control and submergence condition in roots.(F-G) To
evaluate synteny to other crop species related to rice, all detected genes were classified as
syntenic and non-syntenic in Zea mays and violin plots were prepared for the log;y rpKM
distribution in control and submergence conditions in roots. Data presented in data S12-14.
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Fig. S24. Control and submergence violin plots for genes in conserved SURFs. Related to
Figure 3C. For each RNA population and condition, genes are classified as syntenic (purple) or
non-syntenic (orange). Rice genes were evaluated for synteny to M. truncatula genes, M.
truncatula genes to S. lycopersicum and S. lycopersicum to S. pennellii and vice versa. Column
color corresponds to treatment: Control (white columns) and submergence (blue columns).
Highly expressed genes in submergence (>50 rpkM in total RNA under submergence) are
indicated with a dot with color based on the presence of a TF motif in the promoter. White
means no presence of motif, blue indicates the presence of at least one motif and red means that
there is a TF motif inside a region of open chromatin (THS). Central horizontal lines indicate the
median values. Data presented in data S15.
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Fig. S25. Regulatory networks for conserved upregulated SURF genes in rice. Presented in
Figure 4A. Colored hexagons indicate transcription factors (TFs) based on TF motif presence;
Rectangles, genes; colored lines, interaction with TF. Outer circles use colors to indicate groups
of genes with a TF type. Rice genes that have a syntenic ortholog in M. truncatula have borders
in black. Of the upregulated O. sativa conserved SURF genes, 70.1% had more than one of the
four TF sites. Data presented in data S16. The prevalence of the HRPE regulatory module in
conjunction with increased chromatin accessibility associated with transcriptional activation in
rice reflects its adaptation to an often inundated habitat. This characteristic of upregulated
SURFs was less prevalent in the eudicots examined, especially the Solanums (fig. S16).
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Fig. S26. Regulatory networks for conserved upregulated SURF genes in M. truncatula.
Presented in Figure 4A. Colored hexagons indicate transcription factors (TFs); Rectangles,
genes; colored line, interaction with TF. Outer circles use colors to indicate groups of genes with
a TF type. M. truncatula genes that present a syntenic ortholog in S.lycopersicum have borders
in black. Of the upregulated M. truncatula SURF genes, 81.8% had more than one of the four TF
sites. Data presented in data S16. Flooding-sensitive M. truncatula showed less bias presence of
the HRPE compared to rice. In this and the other species, the presence of multiple motifs per
gene indicates these may be regulated in a combinatorial manner, and likely by multiple signals.
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Fig. S27. Regulatory networks for conserved upregulated SURF genes in S. lycopersicum.
Presented in Figure 4A. Colored hexagons indicate transcription factors (TFs); Rectangles,
genes; colored line, interaction with TF. Outer circles use colors to indicate groups of genes with
a TF type. S. lycopersicum genes that present a syntenic ortholog in S. pennellii have borders in
black. Of the upregulated S. lycopersicum SURF genes, 72.4% had more than one of the four TF
sites. Data presented in data S16. The upregulated SURFs in domesticated S. lycopersicum had
greater frequency of bHLH, MYB and WRKY motifs than HRPEs, compared to rice. Most
SURFs with HRPEs had one or more of the other motifs, indicating multiple modes of
regulation. S. lycopersicum experiences periodic intense irrigation.
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Fig. S28. Regulatory networks for conserved upregulated SURF genes in S. pennellii.
Presented in Figure 4A. Colored hexagons indicate transcription factors (TFs); Rectangles,
genes; colored line, interaction with TF. Outer circles use colors to indicate groups of genes with
a TF type. S. pennellii genes that present a syntenic ortholog in S. lycopersicum have borders in
black. Of the upregulated S. pennellii SURF genes 84.6% had more than one of the four TF sites.
Data presented in data S16. Of the two Solanum species, the dryland-adapted wild species S.
pennelli displayed the most limited number of upregulated SURFs and the most limited use of
the HRPE.
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Fig. S29. Regulatory network for syntenic conserved SURF genes across species. Presented
in Figure 4B. Rectangles indicate genes and octagons indicate TFs. A coloured line indicates an
interaction between transcription factor and promoter, HRPE interactions are indicated in red,
bHLH in yellow, MYB in blue and WRKY in orange. Genes of the same family have alternating
borders in grey or black. Colored genes indicate different species, rice is indicated in orange, M.
truncatula in purple, S. lycopersicum in red and S. pennellii in cyan. Location of families with
syntelogs in three or more species represented are indicated. Data collated in data S16. ABCG,
ATP-binding cassette G; AP2, Apetala 2; Cyt, cytochrome; DUF, domain of unknown function;
ENOD, Early nodulin; ERF, ethylene response factor; HRA, hipoxia response attenuator; HRE,
ERFVII hypoxia-responsive ERF; HUP, hypoxia unknown protein; LBD, Lateral organ
boundaries domain containing; LRR, leucine-rich repeat; NBS, nucleotide-binding site; PCO,
plant cysteine oxidase; PDC, pyruvate decarboxylase; Phi, phosphate-induced; PI3P,
phosphatidylinositol 3-phosphate; PLACS, placenta associated 8; PYR/PYL, PYRABACTIN
RESISTANCE 1 / PYRI-LIKE; TGA, TGACG motif-binding; UspA, hypoxia-responsive
universal stress protein. A number of these genes are involved in hypoxia or submergence
survival: anaerobic metabolism (SUCROSE SYNTHASE; PDC) (1), survival [USPA (61),
HEMOGLOBIN1/PHYTOGLOBIN 1 (hemoglobin like) (62); PHI-1-LIKE (63); HUP54 (13, 14)]
and transcription (HRE?2) (64, 65). The deeply conserved syntenic upregulated SURFs encode
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two negative regulators of ERFVIIs: HRAI that limits transactivation of hypoxia-responsive
genes by ERFVIIs (66) and PCO that catalyze the oxygen-promoted degradation of ERFVIIs
(18,67, 68). The upregulated SURFs included other proteins with known function in low oxygen

survival but these were not syntenic across three or more species (ADHI (1), RESPIRATORY
BURST OXIDASE) (69, 70).
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Fig. S30. Molecular phylogenetic analysis of the PLANT CYSTEINE OXIDASE (PCO)
family (/8, 67). MUSCLE alignment of maximum homology was based on a total of 177 amino

29

37

25

48

acid positions of the 36 PCOs of the four species analyzed and Arabidopsis. All positions had
>95% site coverage and <5% alignment gaps. The phylogenetic tree was generated by the
Maximum Likelihood method based on the JTT matrix-based model with 1000 bootstrap
replicates. The percentage of consensus is indicated next to each branch. Colored stars indicate
genes upregulated to submergence in the four species, with a different color for each species;
black border indicates presence of an HRPE element within 2 kb 5” and 0.5 kb 3” of the TSS.
Boxes highlight genes with high expression levels. Arabidopsis PCOI and PCO2 are
upregulated by hypoxia (6, /8). Data presented in data S17.
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ERFVII

Fig. S31. Regulatory network for upregulated members of ERF, bHLH, MYB and WRKY
conserved SURF families across species. Rectangles indicate upregulated genes and octagons
indicate TFs. A colored line indicates an interaction between transcription factor and promoter,
HRPE interactions are indicated in red, bHLH in yellow, MYB in blue and WRKY in orange.
Colored genes indicate different species, rice is indicated in orange, M. truncatula in purple, S.
lycopersicum in red and S. pennmellii in cyan. Rice genes with a syntenic ortholog in M.
truncatula, M. truncatula and S. pennellii genes that have a syntenic ortholog in S. lycopersicum
and S. lycopersicum genes that have a syntenic ortholog in S. pennellii are indicated with black
borders. ERFVII genes are indicated individually. Three of the five Arabidopsis ERFVIIs, not
including the upregulated SURF HRE?2, are known to directly transactivate the HRPE (72).
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Fig. S32. Regulatory network for upregulated members of PYL/RCAR conserved SURF
and ABAOX family across species. Analysis of the upregulated SURFs encoding receptors that
perceive ABA intracellularly (PYRABACTIN RESISTANCEI / PYRI-LIKE/ REGULATORY
COMPONENTS OF ABA RECEPTORS (PYL/RCAR) (71, 72)) and ABA 8-
HYDROXYLASE (ABAOX) catalyzing the first step of ABA catabolism (/). Rectangles
indicate genes and octagons indicate TFs. A coloured line indicates an interaction between
transcription factor and promoter, HRPE interactions are indicated in red, bHLH in yellow, MYB
in blue and WRKY in orange. Colored genes indicate different species, rice is indicated in
orange, M. truncatula in purple, S. lycopersicum in red and S. pennellii in cyan. Rice genes that
have a syntenic ortholog in M. truncatula, M. truncatula and S. pennellii genes that have a
syntenic ortholog in S. lycopersicum and S. lycopersicum that have a syntenic ortholog in S.
pennellii are indicated with black borders. The ABAOX genes include a non-significantly
upregulated member in S. pennellii.
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Fig. S34. Molecular Phylogenetic analysis of the HYPOXIA UNKNOWN PROTEIN54
(HUP54) family (/4). The phylogenetic tree was generated as described for fig. S30 with an
alignment of 225 positions from 30 HUP54 genes of the four species analyzed and Arabidopsis.
Colored stars indicate genes upregulated to submergence, with a different color for each species;
black border indicates presence of a MYB element within 2 kb 5° and 0.5 kb 3’ of the TSS.
Boxes highlight genes with high expression levels. Data presented in data S17.
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Captions for Data S1 to S18

Data S1. ATAC and RNA-sequencing data statistics.

Data S2. Correlation values for RNA populations evaluated.

Data S3. Tabulation of differentially regulated genes and the cluster analysis.

Data S4. List of genes analyzed and assigned to a family.

Data SS. Overlap of submergence-regulated gene families.

Data S6. Submergence upregulated families in roots and Solanum shoots.

Data S7. Solanum and Arabidopsis shoot and root contrast analysis.

Data S8. Transposase Hypersensitive Site (THS) analysis.

Data S9. Enrichment of transcription factor motifs in conserved SURF gene promoters.

Data S10. Transposase Hypersensitive Site (THS) and Transcription factor (TF) motif co-
occurrence analysis.

Data S11. Clustering of submergence-regulated syntenic genes.

Data S12. Syntenic genes used in the analysis.

Data S13. Analysis of gene activity of syntenic genes.

Data S14. Comparison of gene activity of syntenic and non-syntenic genes.

Data S15. Submergence upregulated family (SURF) genes with high activity under
submergence.

Data S16. Gene and transcription factor motif network analysis.

Data S17. PLANT CYSTEINE OXIDASE and HYPOXIA UNKNOWN PROTEIN 54 gene
family members.

Data S18. List of qPCR primers.
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Evolutionary flexibility in flooding response circuitry in angiosperms
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Flood-resistance from gene regulation

Some plants tolerate flooding better than others. Reynoso et al. compared gene regulatory networks activated by
flooding in rice, which is adapted to flooding, with those in species less adapted to flooding. Flood-related gene regulation
was characterized according to chromatin accessibility as well as transcription. Although flood response circuitry is
evident in dryland species as well, its activation is greater in wetland rice.
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