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ABSTRACT
Model averaging generally provides better predictions than model selection, but the existing model
averaging methods cannot lead to parsimonious models. Parsimony is an especially important property
when the number of parameters is large. To achieve a parsimonious model averaging coefficient estimator,
we suggest a novel criterion for choosing weights. Asymptotic properties are derived in two practical
scenarios: (i) one or more correct models exist in the candidate model set and (ii) all candidate models
are misspecified. Under the former scenario, it is proved that our method can put the weight one to the
smallest correct model and the resulting model averaging estimators of coefficients have many zeros and
thus lead to a parsimonious model. The asymptotic distribution of the estimators is also provided. Under the
latter scenario, prediction is mainly focused on and we prove that the proposed procedure is asymptotically
optimal in the sense that its squared prediction loss and risk are asymptotically identical to those of the
best—but infeasible—model averaging estimator. Numerical analysis shows the promise of the proposed
procedure over existing model averaging and selection methods.
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1. Introduction

In the past two decades, there has been considerable research
devoted to model averaging; see Buckland, Burnham, and
Augustin (1997), Hjort and Claeskens (2003), Hansen (2007),
Zhang and Liang (2011), Liu and Okui (2013), Zhang, Zou,
and Liang (2014), and Lu and Su (2015), among others. Model
averaging has long been popular among Bayesian statisticians.
Reviews of the relevant Bayesian literature can be found
in Hoeting et al. (1999). In this article, we focus only on
frequentist model averaging. A primary motivation of model
averaging is that it often reduces the prediction risk in regression
estimation, as “betting" on multiple models provides a type of
insurance against a singly selected model being poor (Leung and
Barron 2006). In particular, model averaging usually improves
estimation accuracy when the underlying model is unstable
with a high noise level (Yuan and Yang 2005; Zhang, Wan, and
Zhou 2012). Additionally, it is often the case that several models
fit the data equally well, but may differ substantially in terms of
the variables included and may lead to very different predictions
(Miller 2002). Thus, combining these models is more reasonable
than choosing just one of them.

This article develops a specific model averaging procedure
inspired by the following four aspects.

(a) (Diverging pn) Many existing model averaging methods
were developed under a fixed pn, including the smoothed
focused information criterion weighting strategy of Hjort
and Claeskens (2003) and the optimal model averaging
method of Liang et al. (2011). Their theoretical properties
may not hold when pn increases with the sample size n, which
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is commonly in a high-dimensional setting. Whether similar
criteria can be developed and whether associated theoretical
properties still hold under the diverging pn scenario remain
unclear and not examined in the literature, at least to the best
of our knowledge. Our method will be developed under the
diverging pn scenario.

(b) (Parsimony) Parsimony is an especially important property
when modeling a dataset with a diverging dimension.
Mallows model averaging (MMA) (Hansen 2007) and
Jackknife model averaging (JMA) (Hansen and Racine
2012) were developed with nonfixed pn, and the latter
was recently extended to high-dimensional settings by
Ando and Li (2014). However, the number of nonzero
coefficient estimators by MMA or JMA method is large for
high-dimensional regression because it can put substantial
weights on overfitted models, as found in our numerical
examples. We investigate the parsimony property for our
model averaging procedure, showing that it adaptively puts
zero weights on overfitted models.

(c) (Asymptotic distribution) Although many model averaging
methods have been developed, little attention has been given
to the study of the asymptotic distribution of the resulting
model averaging estimator (e.g., in Ando and Li (2014),
the asymptotic distribution of their model averaging esti-
mator was not studied). Exceptions are Hjort and Claeskens
(2003) and literature following their work, such as Zhang and
Liang (2011) and Liu (2015), where asymptotic distribution
theories are built under a local misspecification framework
in which some coefficients are of order n−1/2, here n is
the sample size. Although this framework provides a useful
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tool for the study of the asymptotic distributions of the
model averaging estimators, there are some limitations on
this framework (see Ishwaran and Rao 2003; Raftery and
Zheng 2003). In addition, the asymptotic distributions are
nonnormal and have complicated forms, which makes the
inference difficult. Without using the local misspecification
framework, the asymptotic normality of our model averaging
estimator will be derived. This makes the inference feasible.

(d) (Robustness for misspecification) Asymptotic optimality in
the sense of minimizing squared prediction loss is built in
the existing literature such as Wan, Zhang, and Zou (2010)
and Liu and Okui (2013), where, but, all candidate models
are essentially needed to be misspecified. Typically, when
focusing on coefficient estimation or model selection, peo-
ple consider the scenario that there are correct models in
candidate set, under which, the existing literature has no
theoretical support for their model averaging. Our model
averaging estimator is robust to either there are correct mod-
els in candidate set or all candidate models are misspecified,
and our method has theoretical justifications under both two
scenarios. Under the former one, our method puts the weight
one to the smallest correct model and leads to a parsimonious
model. The asymptotic distribution of the estimators is also
provided. Under the latter one, prediction is mainly focused
on and we prove that the proposed procedure is asymptot-
ically optimal in the sense that its squared prediction loss
and risk are asymptotically identical to those of the best—but
infeasible—model averaging estimator.

The remainder of this article is organized as follows. Sec-
tion 2 proposes the model averaging estimation procedure and
presents its theoretical properties. Section 3 investigates its finite
sample performance by numerical examples. Section 4 provides
some discussions. Proofs of the results are presented in the
Appendix.

2. Estimation and Main Results

Consider the model

yi =
∑pn

m=1
ximβm + εi, i = 1, . . . , n, (1)

where ε1, . . . , εn are independent random variables with mean
0 and variance σ 2, xi1, . . . , xipn are nonstochastic predictors,
and pn is the number of predictors. Let β = (β1, . . . , βpn)

T,
ε = (ε1, . . . , εn)T, y = (y1, . . . , yn)T, and the predictors xm =
(x1m, . . . , xnm)T, m = 1, . . . , pn. Write the predictor matrix
X = [x1, . . . , xpn ]. Note that pn is diverging, that is, it can increase
when the sample size n increases. Let Ã = {m : βm �= 0}. The
cardinality of Ã, p0, can also be diverging. Let X̃∗ be the n × p0
matrix composed of predictors with all nonzero coefficients
and the model with X̃∗ being its regressor matrix is called true
model. We focus on the case pn < n in Sections 2.1–2.5, and
extend to the case pn > n in Section 2.6.

2.1. Candidate Models and Weight Choice Criterion

Without any constraints, there are 2pn candidate models, which
is huge when pn is large or even just moderate, say 50. Applying

model averaging methods in such a case is computationally
infeasible. Thus, prior to model averaging, we have to prepare
candidate models. Following some model averaging literature,
such as Hansen (2007) and Hansen (2014), we use nested can-
didate models, that is, the sth candidate model using the first vs
predictors, such that 0 < v1 < v2 < · · · < vqn , where qn is the
number of candidate models. Therefore, qn � 2pn and thus the
computation burden will be largely reduced. In Section 2.5, we
will show how to prepare nested candidate models.

Let Xj be the predictor matrix in the jth candidate model
and �j be a selection matrix such that X�j = Xj. We assume
Xj be of full column rank, then the estimate of β under the jth
candidate model is β̂ j = �j(XT

j Xj)−1XT
j y. Let the weight vector

w = (w1, ..., wqn)
T belong to the set W = {w ∈ [0, 1]qn :∑qn

j=1 wj = 1}. The average estimator of β is β̂(w) = ∑qn
j=1 wjβ̂ j.

We further select the weight vector by minimizing the criterion
Sn(w) = ‖y − Xβ̂(w)‖2 + φnσ̂

2wTv, (2)
that is, ŵ = argminw∈W Sn(w), where v = (v1, . . . , vqn)

T, vj is
the number of columns of Xj, σ̂ 2 = (n − vj∗)−1‖y − Xj∗ β̂ j∗‖2

is an estimator of σ 2, j∗ is the index of a submodel, and φn is
a positive scale depending on n. The estimator of σ̂ 2 and the
choice of φn will be discussed in Section 2.5. When φn = 2, the
criterion Sn(w) corresponds the Mallows criterion of Hansen
(2007).

The model averaging estimator of β is defined as β̂(ŵ) =∑qn
j=1 ŵjβ̂ j, where ŵj is the jth element of ŵ. Because β̂(ŵ)

will be proved to have the parsimony property under some
regularity conditions, we term our model averaging method the
parsimonious model averaging (PMA).

2.2. Parsimony Under the Scenario That There Are Correct
Candidate Models

The candidate models including X̃∗ are defined as correct mod-
els. Let q∗ be the index of the smallest correct model, whose
predictor matrix is denoted by X∗. Let A = {m ∈ {1, . . . , pn} :
xm is a column of X∗}. Note that Ã ⊆ A. Let O be a set
including all overfitted candidate models, that is, for any j ∈ O,
Xj includes all columns of X∗, but Xj �= X∗. Unless otherwise
stated, all limiting processes discussed in this and subsequent
sections are as n → ∞. To build the parsimony, we need the
following condition.

Condition (C.1). There exist positive constants 0 < c1 < c2 <

∞ such that
Pr(c2 ≥ σ̂ 2σ−2 ≥ c1) → 1.

Condition (C.1) requires that σ̂ 2 does not approach zero or
infinity, as n → ∞ and as implied by condition 2 of Yuan and
Yang (2005). Note that Condition (C.1) does not require that σ̂ 2

is consistent and thus is very easily satisfied.

Lemma 1. If Condition (C.1) is satisfied, and φn → ∞, then
Pr(ŵj = 0 for all j ∈ O) → 1. (3)

Remark 1. In light of φn → ∞, our criterion Sn(w) is different
from the Mallows criterion of Hansen (2007), in which φn = 2.
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Lemma 1 means that when there are correct candidate mod-
els, zero weights are put on overfitted candidate models (i.e., the
models larger than the smallest correct model) with probability
approaching 1. Let β̂(ŵ)m be the mth element of β̂(ŵ) and Ac

be the complement of A. Lemma 1 implies the following result.

Theorem 1 (Parsimony). Under the conditions of Lemma 1,
Pr{β̂(ŵ)m = 0 for all m ∈ Ac} → 1. (4)

2.3. Asymptotic Distribution Under the Scenario That
There Are Correct Candidate Models

Let U be a set including all underfitted candidate models, that
is, for any j ∈ U , X∗ includes all columns of Xj but vj < vq∗ .
Let λmin( M) and λmax( M) be the minimum and maximum
eigenvalues of a positive definite matrix M, respectively.

Condition (C.2). There exists a positive constant κ1 such that
κ1 ≤ λmin(n−1X∗TX∗).

Lemma 2. Under Conditions (C.1)–(C.2), if φn → ∞ and
φnvq∗ n−1 → 0, then for any j ∈ U ,

ŵj = Op(φnvq∗n−1). (5)

Lemma 2 means that the weight on any underfitted candidate
model is bounded by φnvq∗n−1 in probability and will be used in
the proof of Theorem 2. Combining Lemmas 1 and 2, we reach
a very important conclusion as follows.

When φn is set appropriately and the true model is in the
candidate set, the weight on the true model converges to one
as n → ∞. If the true model is not in the candidate set but
there are overfitted models in the candidate set, then from the
proofs of Lemmas 1 and 2, it is straightforward to obtain that
the weight on the smallest correct model converges to one as
n → ∞.

Based on the above theoretical results, we now build the
oracle property of our averaging method, including variable
selection consistency and asymptotic normality. Let βA be the
vector of the coefficient vector in the smallest correct model q∗,
β̂A,j be the estimate of βA under the jth candidate model, the
averaging estimate of βA be β̂(ŵ)A = ∑qn

j=1 ŵjβ̂A,j, β̂(ŵ)A,m

be the mth element of β̂(ŵ)A, and Â = {m ∈ {1, . . . , pn} :
β̂(ŵ)m �= 0}.

Condition (C.3). n−1 maxi∈{1,...,n}
∑vq∗

j=1 x2
ij = o(1), and for

some constants κ2 > 0, κ3 > 0, and 0 ≤ κ4 < 1,
λmax(n−1X∗TX∗) ≤ κ2, E(|εi|2+κ3) < ∞, and
limn→∞{log(vq∗)/ log(n)} = κ4.

Conditions (C.2) and (C.3) are from Zou and Zhang (2009),
which are typically used for establishing the distribution theory
of coefficient estimates when vq∗ → ∞ as n → ∞. We present
the following oracle property.

Theorem 2 (Oracle property). Under Conditions (C.1)–(C.3), if
φn → ∞ and v2

q∗φnn−1/2 → 0, then

Consistency in variable selection : Pr(Â = A) → 1, (6)

Asymptotic normality : αT(X∗TX∗)1/2{β̂(ŵ)A − βA}
d−→ Normal(0, σ 2), (7)

where α is a vector of norm 1.

Remark 2 (Remark on the orders of pn and p0). In this remark,
we summarize the orders of pn and p0 for the theories in Sec-
tions 2.2–2.3. The first one is limn→∞{log(vq∗)/ log(n)} = κ4
for 0 ≤ κ4 < 1, which is in Condition (C.3). When pn =
O(n1−ζ ) for 0 < ζ ≤ 1, the first one is satisfied since pn ≥ vq∗ .
The second one is v2

q∗φnn−1/2 → 0, which, along with vq∗ ≥ p0,
implies p0 = o(n1/4φ

−1/2
n ).

2.4. Asymptotic Optimality Under the Scenario That All
Candidate Models Are Misspecified

When all candidate models are misspecified, prediction is
mainly focused. We will establish the asymptotic optimality of
our method in the sense of minimizing the squared prediction
loss and risk. Let μi = E(yi) and μ = (μ1, . . . , μn)T. Different
from (1), the data generating process in this subsection is
simplified to

yi = μi + εi, i = 1, . . . , n, (8)

that is, we do not need μi is a linear function of the predictors.
The aim of this subsection is to estimate μ given a predictor
matrix Xn×pn .

For any weight w ∈ W , define μ̂(w) = Xβ̂(w). Write Pj =
Xj(XT

j Xj)−1XT
j and P(w) = ∑qn

j=1 wjPj. The squared prediction
loss and associated risk are defined as

Ln(w) = ‖μ̂(w) − μ‖2

and

Rn(w) = E{Ln(w)} = ‖P(w)μ − μ‖2 + σ 2tr{P2(w)}, (9)

respectively. Let ξn = infw∈W {Rn(w)} and dn be the column
rank of matrix [X1, . . . , Xqn ]. The following condition is used to
prove asymptotic optimality.

Condition (C.4). dnξ−1
n → 0.

Condition (C.4) places restrictions on the rates at which the
infimum risk ξn and dn increase with n. A condition that appears
to be necessary for Condition (C.4) is that ξn → ∞, which is
identical to the condition in Hansen (2007) for Mallows weight
selection and is quite similar to the conditions of Li (1987) and
Andrews (1991); its central role is advocated by Shao (1997).
In a typical nested framework, vj = j and then dn = qn. In
Ando and Li (2014), their conditions (7) and (8) imply that
q2

nn1/2ξ−1
n → 0, which, along with dn = qn, further imply

our Condition (C.4). In Wan, Zhang, and Zou (2010), instead
of Condition (C.4), they assumed that there exists an integer
1 ≤ G < ∞ and a positive constant κ such that E(ε4G

i ) ≤ κ and
qnξ−2G

n
∑qn

j=1 Rn(wo
j )

G → 0, where wo
j is a weight vector with

the jth element taking on the value of unity and other elements
zeros. When G = 1 and dn = O(qn), their assumption implies
that dnξ−2

n
∑qn

j=1 Rn(wo
j ) → 0, which along with the fact that∑qn

j=1 Rn(wo
j ) ≥ σ 2dn, leads to Condition (C.4).
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Theorem 3 (Asymptotic optimality). If Conditions (C.1) and
(C.4) are satisfied, and φndnξ−1

n → 0, then

Ln(ŵ)

infw∈W {Ln(w)}
p−→ 1. (10)

If, in addition, {Ln(ŵ) − ξn}ξ−1
n is uniformly integrable, then

E{Ln(ŵ)}
infw∈W {Rn(w)} → 1. (11)

Theorem 3 shows that the model averaging procedure is
asymptotically optimal in the sense that its squared loss and risk
are asymptotically identical to those of the infeasible but best
possible model averaging estimator. This property provides a
theoretical advantage of our method over selection methods by
using AIC or BIC, since the loss or risk of the infeasible but best
possible model averaging estimator is smaller or equal to those
of the infeasible but best possible model selection estimator.

We note that in proving (10), we actually prove
Rn(ŵ)

infw∈W {Rn(w)}
p−→ 1, (12)

which is also studied for JMA in Hansen and Racine (2012), but
is different from (11) because in (12), ŵ is directly plugged in
the right hand of the expression Rn(w) = ‖P(w)μ − μ‖2 +
σ 2tr{P2(w)} (see also (9)). In this article, for the first time,
we provide a new type of asymptotic optimally shown by (11),
where the randomness of ŵ is taken into account.

The condition φndnξ−1
n → 0 is very close to Condition (C.4).

When φn = O(1), the condition φndnξ−1
n → 0 is implied by

Condition (C.4). When φn → ∞, the condition φndnξ−1
n → 0

further restricts the rate of φn → ∞.
Typically, asymptotic optimality is of primary interest when

one believes that there does not exist a correctly specified model
in candidate model set (see, e.g., Shao 1997; Hansen 2007). Even
if a fixed-dimension candidate model is correctly specified, then
ξn will not increase to ∞ as n → ∞, and thus, the optimality
built in this subsection will be invalid. In all, the parsimony and
oracle properties built in Sections 2.2–2.3 provide theoretical
supports for our model averaging method when there are cor-
rect candidate models, while the optimality built here provides
a theoretical support for our model averaging method when all
candidate models are misspecified.

It is well known that variable selection and optimal risk
cannot be achieved simultaneously (Yang 2005), which does not
contradict the results in our article because we do not prove the
selection consistency shown by Theorem 2 and the optimality
shown by Theorem 3 under the same scenarios. The former one
is built when there are correct candidate models; while the latter
one is built when all candidate models are misspecified.

It is worth pointing out that the optimality or loss efficiency
is generally the property of the AIC-type method, whereas our
method is the BIC-type method since φn → ∞. The reason
why our method still has the optimality mainly relies on the
condition φndnξ−1

n → 0, which is similar to ξn → ∞, a
commonly used condition to derive the optimality for the AIC-
type method (Hansen 2007).

Remark 3 (Remark on the order of pn). In this remark, we
summarize the order of pn for the theories in Section 2.4. By

pn ≥ dn, we know that a sufficient condition for the condition
φndnξ−1

n → 0 is pn = o(φ−1
n ξn). Since ξn is the infimum of the

squared prediction risk Rn(w) and determined by the unknown
μ, the order of ξn is totally unknown and thus we still keep ξn in
the sufficient condition of pn.

2.5. Implementation

A key problem in the implementation of our model averaging
method is how to prepare nested candidate models. Claeskens,
Croux, and van Kerckhoven (2006) employed a forward selec-
tion approach and obtained some nested candidate models. In
Ando and Li (2014), the marginal correlation between each
predictor and the response variable was used to partition predic-
tors into several groups, and they used these groups to prepare
candidate models. Here, we use penalized regression to prepare
candidate models. Specifically, we find a solution path of the
adaptive LASSO (ALASSO) (Zou 2006), which can be done
by the LARS algorithm (Efron et al. 2004). Then we order the
predictors depending on the order to enter the solution path in
the LARS algorithm, since the order indicates the importance
of predictors in some sense. It is worthy to note that a predictor
enters the solution path, then may leave and enter the path again,
hence we use the last time of entering the path to order this
predictor. Last, we set the j candidate model include the first j
predictors in the ordering. So we have pn candidate models.

In the adaptive LASSO, the penalty term is set to be
λ

∑pn
m=1 β̂

−γ

ols,m|βm|, that is, we use the least squares estimator
β̂ols,m as the initial estimator, which was suggested by Zou
(2006). The tuning parameter γ is set as one following much
existing literature such as Wang and Leng (2007) and Huang,
Ma, and Zhang (2008). From Zou (2006), Zou and Zhang
(2009), and Wang, Li, and Leng (2009), when γ is any positive
constant, the adaptive LASSO has a selection consistency
under some regularity conditions. Varying γ may lead to a
different candidate model set by using the solution path and
then the smallest correct candidate model, infw∈W Ln(w) and
infw∈W Rn(w) may change. However, our asymptotic results
are all built under given candidate models and the positive
tuning parameter γ does not affect the holding of the asymptotic
results.

The tuning parameter φn arises inSn(w). When σ 2 is known,
the BIC value of the jth candidate model can be simplified to
‖y − Pjy‖2 + σ 2vj log(n). Therefore, to keep consistency with
BIC, we choose φn = log(n). When w = wo

j , our criterion
Sn(w) reduces to BIC. In addition, when φn = log(n), the con-
ditions φn → ∞ and n−1/2φn → 0 hold, and Condition (C.4)
also holds when dn and ξn have appropriate orders.

When σ 2 is unknown, following Hansen (2007) and Wan,
Zhang, and Zou (2010), we use the candidate model with the
largest number of predictors to obtain σ̂ 2, that is, specifically,
we define σ̂ 2 = (n − vqn)

−1‖y − Xqn β̂qn‖2.
Let ε̂j = y − Pjy and Ê = (̂ε1, . . . , ε̂qn). Then, Sn(w) =

wTÊTÊw+σ̂ 2wTv log(n). Thus, the minimization ofSn(w) with
respect to w is a quadratic programming problem. Numerous
software packages are available to obtain the solution to this
problem (e.g., Matlab and R), and they generally work effectively
and efficiently even when qn is very large.
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2.6. Extension to a High-Dimensional Situation

In this section, we extend our method to the situation with a
high dimension, that is, pn > n. But we still assume p0 < n,
that is, the number of nonzero coefficients is smaller than the
sample size. In this scenario, we will combine small candidate
models, that is, for any s ∈ {1, . . . , qn}, vs ≤ n. This idea is also
used in other works on high-dimensional model averaging such
as Ando and Li (2014).

First, we focus on the scenario that there are correct can-
didate models. When the model (1) is correctly specified, this
scenario can be easily fulfilled by using a proper model screening
method such as the adaptive LASSO combined with BIC which
is described in detail at the end of this subsection. It is seen from
the proofs that Lemmas 1 and 2 and Theorems 1 and 2 still hold
for the high-dimensional situation, because pn is not used in
their proofs and conditions. Even when the overfitted models do
not nest each other, they also hold because besides of using (A.2)
in the proof of Lemma 1, we can also use that for any k, j ∈ O
and any constant c∗ > 0,

bjk = aj − εTPkε + εTPkPjε = ak − εTPjε + εTPkPjε

and

Pr
{
εTPkε − εTPkPjε + c∗φn(vq∗ − vk) ≥ 0

}
≤ Pr

{
εTPkε + ‖P1/2

k ε‖2 + ‖P1/2
k Pjε‖2

+c∗φn(vq∗ − vk) ≥ 0
}

= Pr
{

2εTPkε + εTPjPkPjε ≥ c∗φn(vk − vq∗)
}

≤ E(2εTPkε + εTPjPkPjε)c∗−1
φ−1

n (vk − vq∗)−1

= {2σ 2tr(Pk) + σ 2tr(P1/2
k P2

j P1/2
k )}c∗−1

φ−1
n (vk − vq∗)−1

≤ 3σ 2vk(vk − vq∗)−1c∗−1
φ−1

n → 0.

For the asymptotic optimality shown in Theorem 3, since the
conditions are all about ξn and dn which are both related to the
given candidate models, the asymptotic optimality still holds for
the high-dimensional situation.

To implement the proposed method under the high-
dimensional situation, we still use the adaptive LASSO to
prepare the candidate models. Since pn > n, the least squares
estimator is infeasible. We use β̂ ini = (β̂ini,1, . . . , β̂ini,pn)

T

with β̂ini,m = ∑n
i=1 ximyi/n as the initial estimator in the

adaptive LASSO. This was proposed by Huang, Ma, and Zhang
(2008), from which we know that the adaptive LASSO still has
a selection consistency under certain regularity conditions (see
their Assumptions A1–A4 and B1–B4 for more details) for the
high-dimensional situation with pn = O(exp(na)) for some 0 <

a < 1. To prepare small candidate models for model averaging,
we use the first n solutions in the solution path of the adaptive
LASSO. Specifically, we first order the predictors selected by BIC
depending on the order to enter the solution path, then we use
the ordering to prepare nested candidate models. Furthermore,
we add the models which belong to the first n solutions and
contain the model selected by BIC to the set of candidate models.
Finally, we use the candidate model selected by BIC to estimate
σ 2, that is, σ̂ 2 = (n − v̂jBIC

)−1‖y − X̂jBIC
β̂̂ jBIC

‖2, where ĵBIC is
the index of the model selected by BIC.

3. Numerical Examples

This section reports the simulation and empirical data results to
compare the performance of the PMA with MMA and ALASSO,
the latter with the turning parameter chosen by AIC, BIC, or
GCV. We applied MMA to exactly the same set of candidate
models to which we applied PMA. As suggested by referees,
we also compared the proposed method with the smoothly
clipped absolute deviation (SCAD) penalty method (Fan and Li
2001) and the minimax concave penalty (MCP) method (Zhang
2010), where the tuning parameters are selected by 5-fold cross-
validation.

3.1. Simulation Examples

Example 1 (We have correct candidate models). We generated
data from model (1) with pn = [2n1/2],

β =
(

11
4

lT
bn

, 0T
bn

, −13
9

lT
bn

, 0T
bn

, −23
6

lT
bn

, 0T
pn−5bn

)T
,

and bn = [n1/5]. The sample size n was set to vary in
{100, 200, 400, 600}. The predictors (xi1, . . . , xipn)

T, i = 1, . . . , n,
are iid normal vectors with zero mean and covariance between
the mth and kth elements being 0.5|m−k|. The error term
εi follows Normal(0, σ 2) and σ 2 varies such that R2 =
var(

∑pn
m=1 ximβm)/var(yi) varies in the set {0.1, 0.3, 0.5, 0.7, 0.9}.

In this example, the true model can be in the candidate
models. Based on 500 replications, we evaluated the methods
by comparing the mean squared errors (MSE)

500∑
r=1

‖X(r)β̂(w)(r) − X(r)β̂
(r)‖2/500, (13)

where (r) denotes the rth replication. For each parameterization,
we normalized the MSEs by dividing the MSE by ALASSO with
GCV. The MSEs are shown in Figure 1. We can see that for
n = 100, the MMA performs the best in the majority of R2

values, but when n = 400, 600, the PMA performs the best in
the majority of R2 values. The MSE pattern by ALASSO with
BIC is the closest to that by PMA. For n = 200, 400, 600, the
PMA outperforms ALASSO with BIC except when n and R2

are large, which is not unexpected because in this situation,
the ALASSO with BIC should have a very high frequency in
selecting the true model. When R2 is large, SCAD and MCP
have good performances, but when R2 is small, their MSEs can
be much larger than those of others.

We also reported the mean number of selected variables,
shown by Figure 2. It is seen that in most of circumstances, the
MMA selects the largest number of variables while the ALASSO
with BIC selects the smallest number of variables. The PMA
selects slightly more variables than the ALASSO with BIC.

Example 2 (All candidate models are misspecified). This simula-
tion example follows basically the same set-up as in Example 1,
except that, here,

yi = sin
(

11
4

xi1

)
+ cos

(
11
4

xi2

)

+
∑pn

m=3
ximβm + εi, i = 1, . . . , n.
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Figure 1. Simulation results for Example 1. MSE against R2 based on the methods: ALASSO with AIC (filled �), ALASSO with GCV (•), ALASSO with BIC (filled �), MMA(filled
♦), PMA(+), MCP (♦), and SCAD (∗).

In this example, all candidate models are misspecified because
the above data generating process has two nonlinear terms.
The MSEs are shown in Figure 3. Different from the results
in Example 1, for n = 200, 400, 600 the PMA outperforms
ALASSO with BIC in all R2 values. The possible reason is that in
this example, the data-generating process is not included in the
candidate models. Also, the PMA outperforms the MMA, the
ALASSO with AIC, and the ALASSO with GCV in all R2 values
except when n = 100 and R2 is moderate, in which the MMA
performs the best. Similar to the finding in Example 1, when R2

is large, SCAD and MCP have good performances but when R2

is small, their performances are not good.

Example 3. (pn > n) In this example, we set (n, pn) ∈
{(100, 400), (200, 800)} and σ ∈ {1, 2, 4, 8}. Other settings
are the same as those in Example 1. The MSEs scaled by n

and the mean numbers of selected variables are shown in
Tables 1 and 2. It is seen that under this high-dimensional
setup, the PMA still yields smaller MSEs than other methods
in a majority of circumstances. Especially, the MSEs of PMA are
much smaller than those of BIC in all circumstances, although
in some circumstances, the PMA uses more variables. In all
circumstances, the MMA selects the largest number of variables.

3.2. Empirical Example

Example 4. The gene dataset reported by Scheetz et al. (2006)
consists of 31,042 genes obtained from 120 rats. The expression
levels of gene TRIM32 are the responses. As done by Kim, Choi,
and Oh (2008) and Huang, Ma, and Zhang (2008), we excluded
genes that were not expressed in the eye or that lacked sufficient
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Figure 2. Simulation results for Example 1. The average number of selected variables based on the methods: ALASSO with AIC (filled �), ALASSO with GCV (•), ALASSO
with BIC (filled �), MMA(filled ♦), PMA(+), MCP (♦), and SCAD (∗).

variation, standardized all gene expression levels, selected 3000
genes with the largest variance in expression level, and then
chose the top pn genes that have the largest absolute correlation
with TRIM32 among the selected 3000 genes. Identically to
Huang, Ma, and Zhang (2008), we set pn to be 100, 200, 300,
400, and 500, and randomly divided the data into a training set
of size 80 and a validation set of size 40, doing this 300 times.
Note that in this example pn > n, hence we used the procedure
in the last paragraph of Section 2.6 to implement the proposed
model averaging method.

To compare the results in Huang, Ma, and Zhang (2008),
we calculated the median squared errors (MeSE) in predicting
responses of validation set and the median numbers of selected
variables are shown in Table 3, where we also presented the
results from Huang, Ma, and Zhang (2008) in which the tuning
parameters are chosen by 5-fold cross-validation. Following that

article, their MeSEs are shown with three digits after the decimal
point.

The MeSEs by the two model averaging methods are similar,
but are smaller than those of the LASSO and ALASSO in all pn
cases. In all pn cases, the median numbers of selected variables
by the PMA are much smaller than those selected by other
methods.

4. Discussions

We have proposed a novel model averaging method with a
diverging number of parameters. When there are correct models
in candidate set, the proposed model averaging estimators of
coefficients are parsimonious and have oracle property. When
all candidate models are misspecified, the proposed procedure
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Figure 3. Simulation results for Example 2. MSE against R2 based on the methods: ALASSO with AIC (filled �), ALASSO with GCV (•), ALASSO with BIC (filled �), MMA(filled
♦), PMA(+), MCP (♦), and SCAD (∗).

Table 1. Simulation results for Example 3: MSE.

(n, pn) σ PMA MMA GCV AIC BIC SCAD MCP

(100,400) 1 0.168 0.214 0.946 0.946 0.960 0.118 0.244
2 0.755 1.045 1.529 1.480 1.958 0.765 0.917
4 3.576 4.505 5.558 5.936 7.726 5.241 5.283
8 16.253 19.521 23.073 34.845 30.148 27.853 26.860

(200,800) 1 0.054 0.131 0.827 0.827 0.828 0.049 0.103
2 0.330 0.793 1.019 1.014 1.169 0.235 0.349
4 1.618 3.523 3.197 3.346 4.506 2.279 2.423
8 8.323 16.628 14.446 25.942 17.812 14.341 15.123
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Table 2. Simulation results for Example 3: the average number of selected variables among 300 replications.

(n, pn) σ PMA MMA GCV AIC BIC SCAD MCP

(100,400) 1 10.4 21.8 10.5 10.5 10.2 10.1 10.0
2 13.5 26.8 19.8 21.4 14.1 18.0 13.8
4 13.2 28.8 30.3 45.9 13.5 27.4 15.0
8 12.4 28.9 34.6 69.3 9.0 20.6 10.8

(200,800) 1 10.9 39.5 9.1 9.1 9.1 10.0 10.0
2 14.5 58.3 15.0 15.2 11.8 13.5 11.7
4 15.9 59.4 36.9 52.9 12.2 31.5 16.5
8 17.8 59.1 47.7 114.9 10.4 39.1 18.8

Table 3. MeSE and numbers of selected variables in Example 4 (gene data) based on 300 replications.

MA Huang, Ma, and Zhang (2008)

MMA PMA LASSO ALASSO

pn MeSE Number MeSE Number MeSE Number MeSE Number

100 0.0043 24 0.0042 13 0.005 20 0.006 18
200 0.0037 21 0.0037 13 0.005 19 0.005 17
300 0.0037 21 0.0037 9 0.005 18 0.005 17
400 0.0036 19 0.0037 9 0.005 22 0.005 19
500 0.0036 20 0.0038 9 0.005 25 0.005 22

NOTES: The “number" column presents the median number of selected variables.

is asymptotically optimal in the sense of minimizing the squared
prediction loss. The proposed method and the corresponding
theories have been extended to a high-dimensional situation.
Numerous studies have also shown its promise.

Our current model averaging method was developed under
homoscedastic errors. How to extend it to heteroscedastic case
warrants further research. In addition, extending our method
and theory to a general nonnested framework is a very impor-
tant topic of future research. Last, how to extend our method
to generalized linear models remains for a future research. The
recent work of Ando and Li (2017) may serve as a useful guide
in this regard.

Appendix

A.1. Proof of Lemma 1

Based on definitions at the beginning of Section 2.2, we know that the
first q∗ − 1 models are underfitted and the last qn − q∗ models are
overfitted. Let Pj = Xj(X�

j Xj)X�
j aj = yT(In − Pj)y, bjk = yT(In −

Pj)(In − Pk)y and � be an qn × qn matrix with the jkth element �jk =
bjk+φnσ̂ 2(vj+vk)/2. By simple calculations, we haveSn(w) = wT�w.
It is straightforward to show that

bkj = bjk = amax{k,j}. (A.1)

Using the fact that φn → ∞ and Markov’s inequality, we observe that,
for any k ∈ O and any constant c∗ > 0,

Pr
{

aq∗ − ak + c∗φn(vq∗ − vk) ≥ 0
}

= Pr
{
εT(Pk − Pq∗)ε + c∗φn(vq∗ − vk) ≥ 0

}
= Pr

{
εT(Pk − Pq∗)ε ≥ c∗φn(vk − vq∗ )

}
≤ E{εT(Pk − Pq∗)ε}c∗−1

φ−1
n (vk − vq∗)−1

= σ 2c∗−1
φ−1

n → 0. (A.2)

Let w̃ = (w̃1, . . . , w̃qn )T be a weight vector belonging to W with
δ = ∑qn

j=q∗+1 w̃j > 0. Partition w̃ as w̃ = (w̃T
(1)

, w̃q∗ , w̃T
(3)

)T,

according to which we partition � as

� =
⎛
⎝ �11 �12 �13

�21 �22 �23
�31 �32 �33

⎞
⎠ , (A.3)

where �22 = �q∗q∗ . Let

w = (w̃T
(1), w̃q∗+δ, 0T

(qn−q∗)×1)
T and t = (0T

(q∗−1)×1, −δ, w̃T
(3))

T.

Then, w = w̃ − t. A direct simplification yields that

Sn(w) = wT�w = (w̃ − t)T�(w̃ − t) = Sn(w̃) + (t − 2w̃)T�t
= Sn(w̃) + {(0T

(q∗−1)×1, −δ, w̃T
(3))

T − 2w̃}T

�(0T
(q∗−1)×1, −δ, w̃T

(3))
T

= Sn(w̃) + (−2w̃T
(1), −δ − 2w̃q∗ , −w̃T

(3))

�(0T
(q∗−1)×1, −δ, w̃T

(3))
T

= Sn(w̃) + 2w̃T
(1)�12δ − 2w̃T

(1)�13w̃(3) + (δ2 + 2w̃q∗δ)�22

−(δ + 2w̃q∗)�23w̃(3) + w̃T
(3)�32δ − w̃T

(3)�33w̃(3)

= Sn(w̃) − 2(w̃T
(1)�13w̃(3) − w̃T

(1)�12δ)

−2w̃q∗ (�23w̃(3) − δ�22)

−(w̃T
(3)�33w̃(3) − δ2�22). (A.4)

It is seen from (A.1) that

w̃T
(1)�13w̃(3) − w̃T

(1)�12δ = w̃T
(1)(�13w̃(3) − �12δ)

= w̃T
(1)

⎛
⎝ qn∑

j=q∗+1
�1jw̃j − �1q∗δ, . . . ,

qn∑
j=q∗+1

�(q∗−1)jw̃j − �(q∗−1)q∗δ

⎞
⎠T

= w̃T
(1)

⎡
⎣ qn∑

j=q∗+1
{aj + φnσ̂ 2(v1 + vj)/2}w̃j

−{aq∗ + φnσ̂ 2(v1 + vq∗ )/2}δ,



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 981

. . . ,
qn∑

j=q∗+1
{aj + φnσ̂ 2(vq∗−1 + vj)/2}w̃j

−{aq∗ + φnσ̂ 2(vq∗−1 + vq∗)/2}δ
]T

= w̃T
(1)

⎛
⎝ qn∑

j=q∗+1
[{aj + φnσ̂ 2(v1 + vj)/2

−{aq∗ + φnσ̂ 2(v1 + vq∗)/2}]w̃j,

. . . ,
qn∑

j=q∗+1
[{aj + φnσ̂ 2(vq∗−1 + vj)/2}

−{aq∗ + φnσ̂ 2(vq∗−1 + vq∗)/2}]w̃j
)T

= w̃T
(1)

⎡
⎣ qn∑

j=q∗+1
{aj − aq∗ + φnσ̂ 2(vj − vq∗)/2}w̃j,

. . . ,
qn∑

j=q∗+1
{aj − aq∗ + φnσ̂ 2(vj − vq∗)/2}w̃j

⎤
⎦T

,

which together with (A.2) and the first part of Condition (C.1), implies

Pr{w̃T
(1)�13w̃(3) − w̃T

(1)�12δ ≥ 0} → 1. (A.5)

Similarly, from (A.1), we have

�23w̃(3) − δ�22 =
qn∑

j=q∗+1
�q∗jw̃j − δ�q∗q∗

=
qn∑

j=q∗+1
(�q∗j − �q∗q∗)w̃j

=
qn∑

j=q∗+1
{aj − aq∗ + φnσ̂ 2(vj − vq∗ )/2}w̃j,

which together with (A.2) and the first part of Condition (C.1), implies

Pr{�23w̃(3) − δ�22 ≥ 0} → 1. (A.6)

From (A.1), we have

w̃T
(3)�33w̃(3) − δ2�22

=
qn∑

j=q∗+1

qn∑
k=q∗+1

w̃jw̃k�jk − (

qn∑
j=q∗+1

w̃j)
2�q∗q∗

=
qn∑

j=q∗+1

qn∑
k=q∗+1

w̃jw̃k(�jk − �q∗q∗)

=
qn∑

j=q∗+1

qn∑
k=q∗+1

w̃jw̃k{amax{j,k} − aq∗ + φnσ̂ 2(vj + vk − 2vq∗)/2}

=
qn∑

j=q∗+1

qn∑
k=q∗+1

w̃jw̃kφnσ̂ 2(vk − vq∗ )/4

+
qn∑

j=q∗+1

qn∑
k=q∗+1

w̃jw̃kφnσ̂ 2(vj − vq∗)/4

+
qn∑

j=q∗+1

qn∑
k=q∗+1

w̃jw̃k{amax{j,k} − aq∗ + φnσ̂ 2(vj + vk − 2vq∗)/4}

≥ φnσ̂ 2/4
qn∑

j=q∗+1

qn∑
k=q∗+1

w̃jw̃k + φnσ̂ 2/4
qn∑

j=q∗+1

qn∑
k=q∗+1

w̃jw̃k

+
qn∑

j=q∗+1

qn∑
k=q∗+1

w̃jw̃k{amax{j,k} − aq∗ + φnσ̂ 2(vj + vk − 2vq∗ )/4}

= δ2φnσ̂ 2/2 +
qn∑

j=q∗+1

∑
j≤k≤qn

w̃jw̃k

×{ak − aq∗ + φnσ̂ 2(vj + vk − 2vq∗)/4}

+
qn∑

j=q∗+1

∑
q∗+1≤k<j

w̃jw̃k{aj − aq∗ + φnσ̂ 2(vj + vk − 2vq∗)/4}

≥ δ2φnσ̂ 2/2 +
qn∑

j=q∗+1

∑
j≤k≤qn

w̃jw̃k{ak − aq∗ + φnσ̂ 2(vk − vq∗)/4}

+
qn∑

j=q∗+1

∑
q∗+1≤k<j

w̃jw̃k{aj − aq∗ + φnσ̂ 2(vj − vq∗)/4},

which together with (A.2), δ > 0, and the first part of Condition (C.1),
implies

Pr{w̃T
(3)�33w̃(3) − δ2�22 > 0} → 1. (A.7)

Using (A.4)–(A.7), we know that when δ > 0, Pr{S(w) < S(w̃)} → 1,
which and the fact that ŵ = argminw∈W Sn(w) lead to

Pr

⎛
⎝ qn∑

j=q∗+1
ŵj = 0

⎞
⎠ → 1. (A.8)

By combining (A.8) and the fact that ŵk ≥ 0, we obtain (3).

A.2. Proof of Lemma 2

It is seen that

E{(�T
q∗ β̂q∗ − �T

q∗β)TX∗TX∗(�T
q∗ β̂q∗ − �T

q∗β)}
= σ 2tr{X∗(X∗TX∗)−1X∗T} = vq∗σ 2,

which together with vq∗φnn−1 → 0, implies

n−1(�T
q∗ β̂q∗ − �T

q∗β)TX∗TX∗(�T
q∗ β̂q∗ − �T

q∗β) = op(1). (A.9)

From (A.9) and Condition (C.2), a direct calculation shows that, for
any s ∈ U ,

n−1(as − aq∗)

= n−1(yTPq∗ y − yTPsy)

= n−1(β̂
T
q∗�q∗ X∗TX∗�T

q∗ β̂q∗ − β̂
T
s �sXT

s Xs�T
s β̂s)

= n−1(β̂
T
q∗�q∗ X∗TX∗�T

q∗ β̂q∗ − β̂
T
s �q∗ X∗TX∗�T

q∗ β̂s)

= n−1(�T
q∗ β̂s − �T

q∗ β̂q∗)TX∗TX∗(�T
q∗ β̂s − �T

q∗ β̂q∗)

= n−1{�T
q∗ β̂s − �T

q∗β − �T
q∗(β̂q∗ − β)}TX∗TX∗

×{�T
q∗ β̂s − �T

q∗β − �T
q∗(β̂q∗ − β)}

≥ 2−1n−1(�T
q∗ β̂s − �T

q∗β)TX∗TX∗(�T
q∗ β̂s − �T

q∗β)

−n−1(�T
q∗ β̂q∗ − �T

q∗β)TX∗TX∗(�T
q∗ β̂q∗ − �T

q∗β)

≥ 2−1λmin(n−1X∗TX∗)‖�T
q∗ β̂s − �T

q∗β‖2
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−n−1(�T
q∗ β̂q∗ − �T

q∗β)TX∗TX∗(�T
q∗ β̂q∗ − �T

q∗β)

≥ 2−1λmin(n−1X∗TX∗) min
j∈A(β2

j )

−n−1(�T
q∗ β̂q∗ − �T

q∗β)TX∗TX∗(�T
q∗ β̂q∗ − �T

q∗β)

≥ 2−1κ1 min
j∈A(β2

j )

−n−1(�T
q∗ β̂q∗ − �T

q∗β)TX∗TX∗(�T
q∗ β̂q∗ − �T

q∗β)

= 2−1κ1 min
j∈A(β2

j ) + op(1). (A.10)

By (A.10) and vq∗φnn−1 → 0, we obtain that, for any positive
constant c∗ and s ∈ U ,

Pr{aq∗ − as + φnc∗(vq∗ − vs) ≥ 0} → 0. (A.11)

Let k ∈ {1, . . . , q∗ −1} and w = (ŵ1, . . . , ŵk−1, 0, ŵk+1, . . . , ŵq∗ +
ŵk, ŵq∗+1, . . . ŵqn )T. Then,

Sn(w) = wT�w = {ŵT + (0, . . . , 0, −ŵk, 0, . . . , 0, ŵk, 0, . . . , 0)}�
×{ŵ + (0, . . . , 0, −ŵk, 0, . . . , 0, ŵk, 0, . . . , 0)T}

= Sn(ŵ) + ŵ2
k(�q∗q∗ + �kk − �q∗k − �kq∗)

+2ŵk
∑qn

j=1
{ŵj(�q∗j − �kj)}

= Sn(ŵ) + ŵ2
k(�q∗q∗ + �kk − �q∗k − �kq∗)

+2ŵ2
k(�q∗k − �kk)

+2ŵkwq∗ (�q∗q∗ − �kq∗) + 2ŵk
∑
j>q∗

{ŵj(�q∗j − �kj)}

+2ŵk
∑

q∗>j>k
{ŵj(�q∗j − �kj)}

+2ŵk
∑

1≤j<k
{ŵj(�q∗j − �kj)}. (A.12)

When j > q∗, from (3), (A.1), and Condition (C.1) we have

Pr{ŵj(�q∗j − �kj) = 0} = Pr{ŵjφnσ̂ 2(vp∗ − vk)/2 = 0} → 1.

When k < j < q∗, from the second part of Condition (C.1), (A.1), and
(A.11) we have

Pr{�q∗j − �kj ≥ 0} = Pr{aq∗ − aj + φnσ̂ 2(vq∗ − vk)/2 ≥ 0} → 0.

Similarly, when 1 ≤ j < k, we have

Pr{�q∗j − �kj ≥ 0} = Pr{aq∗ − ak + φnσ̂ 2(vq∗ − vk)/2 ≥ 0} → 0.

In addition, from (A.1), we have

2ŵkŵq∗(�q∗q∗ − �kq∗ ) + ŵ2
k(�q∗q∗ + �kk − �q∗k − �kq∗ )

+2ŵ2
k(�q∗k − �kk)

= ŵkŵq∗φnσ̂ 2(vq∗ − vk) + ŵ2
k(ak − aq∗)

+2ŵ2
k{aq∗ − ak + φnσ̂ 2(vq∗ − vk)/2}

= (ŵkŵq∗ + ŵ2
k)φnσ̂ 2(vq∗ − vk) − ŵ2

k(ak − aq∗).

From above results and Sn(ŵ) ≤ Sn(w), we have

Pr{(ŵkŵq∗ + ŵ2
k)φnσ̂ 2(vq∗ − vk) − ŵ2

k(ak − aq∗) ≥ 0} → 1,

and thus when ŵk �= 0, ŵk ≤ (ak − aq∗)−1(ŵq∗ + ŵk)φnσ̂ 2(vq∗ − vk)
holds with probability approaching to 1, which together with (A.10),
implies (5).

A.3. Proof of Theorem 2

From Theorem 3.3 of Zou and Zhang (2009) and Conditions (C.2) and
(C.3), we have that when j = q∗,

αT(X∗TX∗)1/2(β̂A,j − βA)
d−→ Normal(0, σ 2), (A.13)

and when j ∈ U ,

αT(X∗TX∗)1/2(β̂A,j − βA) = Op(n1/2). (A.14)

From v2
q∗φnn−1/2 → 0, (5) and (A.14), we have

∑
j∈U

wjα
T(X∗TX∗)1/2(β̂A,j − βA) = op(1),

which, along with (4) and (A.13), implies (7) and thus

αT(X∗TX∗)1/2{β̂(ŵ)A − βA} = Op(1). (A.15)

From (4) and (A.15), we can obtain (6). From (A.13) and (6), we obtain
(7).

A.4. Proof of Theorem 3

Write H = (X1, . . . , Xqn ), PH = H(HTH)−HT, and

S∗
n (w) = Sn(w) − ‖ε‖2 − 2μTε + 2μTPHε.

Since ‖ε‖2 + 2μTε − 2μTPHε is unrelated to w, we have ŵ =
argminw∈W S∗

n (w). By simple calculations, we obtain that

S∗
n (w) − Ln(w) = φnσ̂ 2wTv − 2

{
εTP(w)ε + μTP(w)ε − μTPHε

}
and

Rn(w)− Ln(w) = ‖P(w)ε‖2 −σ 2tr{P2(w)}− 2μT{In − P(w)}P(w)ε.

So, as in the proof of Theorem 1′ in Wan, Zhang, and Zou (2010), in
order to prove (10), we need only to verify that

supw∈W {R−1
n (w)(φnσ̂ 2wTv)} p−→ 0, (A.16a)

supw∈W {R−1
n (w)εTP(w)ε} p−→ 0, (A.16b)

supw∈W [R−1
n (w)|μT{P(w) − PH}ε|] p−→ 0, (A.16c)

supw∈W {R−1
n (w)‖P(w)ε‖2} p−→ 0, (A.16d)

supw∈W [R−1
n (w)tr{P2(w)}] → 0, (A.16e)

and

supw∈W [R−1
n (w)|μT{In − P(w)}P(w)ε|] p−→ 0. (A.16f)

First, by Condition (C.1) and φndnξ−1
n → 0, we have (A.16a).

Using the fact that the Pj’s are symmetric and idempotent, we have
tr[P2(w)] ≤ tr[P(w)] ≤ dn, so (A.16e) is implied by Condition (C.4).
By the Markov inequality, for any δ > 0,

Pr(ξ−1
n εTPHε > δ) ≤ E(εTPHε)ξ−1

n δ−1

= σ 2dnξ−1
n δ−1 → 0. (A.17)

Since Pj’s and PH − Pj’s are symmetric and idempotent, we have

‖P(w)ε‖2 ≤ εTP(w)ε ≤ εTPHε,

so (A.16b) and (A.16d) are implied by Condition (C.4) and (A.17).
From (9), it is straightforward to show that

R−2
n (w)[μT{In − P(w)}P(w)ε]2
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≤ R−2
n (w)‖{In − P(w)}μ‖2‖P(w)ε‖2

≤ R−1
n (w)‖P(w)ε‖2;

from this and (A.16d), we see that (A.16f) is true. Lastly, for (A.16c), it
follows from (9) that

R−2
n (w)

[
μT{P(w) − PH}ε

]2 = R−2
n (w)

[
μT{In − P(w)}PHε

]2

≤ R−2
n (w)‖{In − P(w)}μ‖2‖PHε‖2

≤ R−1
n (w)‖PHε‖2; (A.18)

from this and (A.17), we obtain (A.16c). This completes the proof of
(10).

Next, we prove (11). Using (A.16d)–(A.16f), we see that

supw∈W {|Ln(w) − Rn(w)|R−1
n (w)} p−→ 0. (A.19)

It is straightforward to show that

Ln(ŵ)ξ−1
n = supw∈W [{Ln(ŵ)L−1

n (w)}{Ln(w)R−1
n (w)}]. (A.20)

By (10), (A.19), and (A.20), we have

Ln(ŵ)ξ−1
n ≤ supw∈W {Ln(ŵ)L−1

n (w)} supw∈W {Ln(w)R−1
n (w)}

≤ supw∈W {Ln(ŵ)L−1
n (w)}

×[1 + supw∈W {|Ln(w) − Rn(w)|R−1
n (w)}]

= 1 + op(1)

and

Ln(ŵ)ξ−1
n ≥ supw∈W {Ln(ŵ)L−1

n (w)} infw∈W {Ln(w)R−1
n (w)}

= supw∈W {Ln(ŵ)L−1
n (w)}

×
(

1 + infw∈W [{Ln(w) − Rn(w)}R−1
n (w)]

)
≥ supw∈W {Ln(ŵ)L−1

n (w)}
×

[
1 − supw∈W {|Ln(w) − Rn(w)|R−1

n (w)}
]

= 1 + op(1).

Therefore, Ln(ŵ)ξ−1
n

p−→ 1, from which we have {Ln(ŵ) − ξn}ξ−1
n =

op(1). Consequently, from the uniform integrability of {Ln(ŵ) −
ξn}ξ−1

n , it is obvious that E[{Ln(ŵ) − ξn}ξ−1
n ] → 0, by which we

obtain (11).
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