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Matrix Completion under Low-Rank Missing Mechanism

Xiaojun Mao ∗ Raymond K. W. Wong † Song Xi Chen ‡

Abstract

Matrix completion is a modern missing data problem where both the missing struc-

ture and the underlying parameter are high dimensional. Although missing structure is a

key component to any missing data problems, existing matrix completion methods often

assume a simple uniform missing mechanism. In this work, we study matrix completion

from corrupted data under a novel low-rank missing mechanism. The probability matrix of

observation is estimated via a high dimensional low-rank matrix estimation procedure, and

further used to complete the target matrix via inverse probabilities weighting. Due to both

high dimensional and extreme (i.e., very small) nature of the true probability matrix, the

effect of inverse probability weighting requires careful study. We derive optimal asymptotic

convergence rates of the proposed estimators for both the observation probabilities and the

target matrix.

keywords: Low-rank; Missing; Nuclear-norm; Regularization.

1 Introduction

The problem of recovering a high-dimensional matrix A⋆ ∈ R
n1×n2 from very few (noisy) ob-

servations of its entries is commonly known as matrix completion, whose applications include,

collaborative filtering, computer visions and positioning. From a statistical viewpoint, it is a
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high-dimensional missing data problem where a high percentage of matrix entries are miss-

ing. As in many missing data problems, the underlying missing mechanism plays an important

role. Most existing work (e.g., Candès and Recht, 2009; Keshavan et al., 2009; Recht, 2011;

Rohde and Tsybakov, 2011; Koltchinskii et al., 2011) adopt a uniform observation mechanism,

where each entry has the same marginal probability of being observed. This leads to signifi-

cant simplifications, and enables the domain to move forward rapidly with various theoretical

breakthroughs in the last decade. However, the uniform mechanism is often unrealistic. Re-

cent works (Foygel et al., 2011; Negahban and Wainwright, 2012; Klopp, 2014; Cai and Zhou,

2016; Cai et al., 2016; Bi et al., 2017; Mao et al., 2019) have been devoted to relaxing such an

restrictive assumption by adopting other missing structures. The usage of these settings hinges

on strong prior knowledge of the underlying problems. At a high level, many of them utilize

some special forms of low-rank structures for missing mechanism. For instance, Foygel et al.

(2011) and Negahban and Wainwright (2012) both adopt a rank-1 structure based on the esti-

mated marginal probabilities. In this paper, we aim at recovering the target matrix A⋆ under a

flexible high-dimensional low-rank sampling structure. This is achieved by a weighted empirical

risk minimization, with application of inverse probability weighting (e.g., Schnabel et al., 2016;

Mao et al., 2019) to adjust for the effect of non-uniform missingness.

Data arising in many applications of matrix completion, such as recommender systems,

usually possesses complex “sampling” structure which is largely unknown. For a movie recom-

mender system, users tend to rate movies that they prefer or dislike most, while often remain

“silent” to other movies. Another example of the complex sampling regime is in the online

merchandising, where some users may purchase certain items regularly without often rating

them, but often evaluate products that they rarely buy. Similar to the widely adopted model

that ratings are generated from a small number of hidden factors, it is reasonable to believe

that the missingness is also governed by a small and possibly different set of hidden factors,

which leads to a low-rank model the missing structure.

Inspired by generalized linear models, we model the probabilities of observation Θ⋆ =

(θ⋆,ij)
n1,n2

i,j=1 ∈ (0, 1)n1×n2 by a high-dimensional low-rank matrix M⋆ = (m⋆,ij)
n1,n2

i,j=1 ∈ R
n1×n2
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through a known function f . That means, on the entry-wise level, we have θ⋆,ij = f(m⋆,ij). In

generalized linear models, the linear predictor m⋆,ij is further modeled as a linear function of ob-

served covariates. However, to reflect difficulties to attain (appropriate and adequate) covariate

information and the complexity in the modeling of Θ⋆ in some situations of the matrix comple-

tion, the predictor matrix M⋆ is assumed completely hidden in this study. Despite M⋆ being

hidden, as demonstrated in this work, the low-rankness of M⋆ together with the high dimension-

ality of M⋆ allows both identification and consistent estimation of Θ⋆, which facilitates inverse

probability weighting based matrix completion. Motivated by the nature of matrix completion,

we propose a novel parametrization M⋆ = µ⋆1n1
1T

n2
+ Z⋆ where Z⋆ satisfies 1T

n1
Z⋆1n2

= 0.

Our proposal extends the work of Davenport et al. (2014), which aims to solve a binary matrix

completion problem and pursues a different goal. Compared with Davenport et al. (2014), the

proposed method does not regularize the estimation of µ⋆, but only regularize the nuclear norm

of the estimation of Z⋆, which require different algorithmic treatment to avoid bias caused by

the nuclear-norm penalty.

There are three fundamental aspects that set our work aside from the existing works of

matrix completion as we consider: (i) the high-dimensional probability matrix Θ, whose di-

mensions n1, n2 go to infinity in our asymptotic setting; (ii) the diminishing lower bound of the

observation probabilities (as n1, n2 go to infinity), and added issue to the instability of inverse

probability weighting; (iii) the effects of estimation error in inverse probability weighting to the

matrix completion procedure. Aspects (i) and (ii) are unique to our problem, and not found

in the literature of missing data. The work related to Aspect (iii) is sparse in the literature of

matrix completion. It is noted that Mao et al. (2019) focused on a low-dimensional parametric

modeling of inverse probability weighting with observable covariates.

We develop non-asymptotic upper bounds of the mean squared errors for the proposed

estimators of the observation probabilities and the target matrix. To sustain the convergence

rate of the target matrix under the high-dimensionality of M⋆ and low levels of observation

probabilities, we propose to re-estimate Z⋆ by constraining the magnitude of its entries to

a smaller threshold. Our analysis shows that the proposed constrained inverse probability

3



weighting estimator achieves the optimal rate (up to a logarithmic factor in estimation of target

matrix). We also compare the inverse probability weighting based completion based on the

proposed constrained estimation, with the completion based on direct weight trimming (or

winsorization), a known practice in the conventional missing value literature (e.g., Rubin, 2001;

Kang and Schafer, 2007; Schafer and Kang, 2008) and show that the constrained estimation has

both theoretical and empirical advantages.

2 Model and Method

2.1 General Setup

Let A⋆ = (a⋆,ij)
n1,n2

i,j=1 ∈ R
n1×n2 be an unknown high-dimensional matrix of interest, and Y =

(yij)
n1,n2

i,j=1 be a contaminated version of A⋆ according to the following additive noise model:

yij = a⋆,ij + ǫij , for i = 1, . . . , n1; j = 1, . . . , n2, (1)

where {ǫij} are independently distributed random errors with zero mean and finite variance.

In the setting of matrix completion, only a portion of {yij} is observed. For the (i, j)th entry,

define the sampling indicator wij = 1 if yij is observed, and 0 otherwise, and assume {ǫij} are

independent of {wij}.

As for the sampling mechanism, we adopt a Bernoulli model where {wij} are indepen-

dent Bernoulli random variables with observation probabilities {θ⋆,ij}, collectively denoted by

a matrix Θ⋆ = (θ⋆,ij)
n1,n2

i,j=1 ∈ (0, 1)n1×n2 . Similar to generalized linear models, the observation

probabilities can be expressed in terms of an unknown matrix M⋆ = (m⋆,ij)
n1,n2

i,j=1 ∈ R
n1×n2 and

a pre-specified monotone and differentiable function f : R → [0, 1], i.e., θ⋆,ij = f(m⋆,ij) for all

i, j. The matrix M⋆ plays the same role as a linear predictor in the generalized linear model,

while the function f is an inverse link function. Two popular choices of f are inverse logit

function g(m) = em/(1 + em) (logistic model) and the standard normal cumulative distribution

function (probit model).
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2.2 Low-rank Modeling of A⋆ and M⋆

The above setup is general. Without additional assumption, it is virtually impossible to recover

the hidden feature matrix M⋆ and also the target matrix A⋆. A common and powerful assump-

tion is that A⋆ is a low-rank matrix, i.e., rank(A⋆) ≪ min{n1, n2}. Take the Yahoo! Webscope

data set (to be analyzed in Section 7) as an example. This data set contains a partially observed

matrix of ratings from 15,400 users to 1000 songs, and the goal is to complete the rating matrix.

The low-rank assumption reflects the belief that users’ ratings are generated by a small number

of factors, representing several standard preference profiles for songs. This viewpoint has been

proven useful in the modeling of recommender systems (e.g., Candès and Plan, 2010; Cai et al.,

2010).

The same idea could be adapted to the missing pattern, despite that the factors that induce

the missingness may be different from those that generate the ratings. To this end, we assume

M⋆ is also low-rank. Next, we consider decomposing M⋆ as

M⋆ = µ⋆J +Z⋆ where 1T

n1
Z⋆1n2

= 0 (2)

with 1n being an n-vector of ones, and J = 1n1
1T

n2
. Here µ⋆ is the mean of M⋆, i.e., µ⋆ =

1T

n1
M⋆1n2

/(n1n2). Note that this decomposition holds for any matrix M by setting µ =

(n1n2)
−11Tn1

M1n2
and Z = M − µJ . Moreover, the decomposition is unique due to the

constraint that 1T

n1
Z⋆1n2

= 0. The key here is to reparametrize M⋆ in terms of µ⋆ and Z⋆,

which require different treatments in their estimation. See Section 3 for details. Further, the

low-rankness of M⋆ can be translated to the low-rankness of Z⋆.

We note that the rank of M⋆ is not the same as that of Θ⋆ due to the nonlinear transfor-

mation f . In general, the low-rank structure of M⋆ implies a specific low-dimensional nonlinear

structure of Θ⋆. For a common high missingness scenario, most entries of M⋆ are significantly

negative, where many common choices of the inverse link function can be well-approximated by

a linear function. So our modeling can be regarded as a low-rank modeling of Θ⋆.

There are some related but more specialized models. Srebro and Salakhutdinov (2010) and
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Negahban and Wainwright (2012) utilize an independent row and column sampling mechanism,

leading to a rank-1 structure for Θ⋆. Cai et al. (2016) consider a matrix block structure for Θ⋆

and hence M⋆, which can be regarded as a special case of the low-rank modeling. Mao et al.

(2019) considered the case when the missingness is depends on observable covariates, and

adopted a low-rank modeling with a known row space of M⋆. The proposal in this paper

is for the situation when the missingness is dependent on some hidden factors, which reflects

situations when obvious covariates are unknown or not available.

2.3 Inverse Probability Weighting Based Matrix Completion: Motivations

and Challenges

Write the Hadamard product as ◦ and the Frobenius norm as ‖·‖F . To recover the target matrix

A⋆, many existing matrix completion techniques assume uniform missing structure and hence

utilize an unweighted/uniform empirical risk function R̂UNI(A) = (n1n2)
−1‖W ◦ (A − Y )‖2F

(e.g., Candès and Plan, 2010; Koltchinskii et al., 2011; Mazumder et al., 2010), which is an

unbiased estimator of the risk R(A) = E(‖A − Y ‖2F )/(n1n2) (up to a multiplicative constant)

under uniform missingness. The work of Klopp (2014) is a notable exception that considers the

use of R̂UNI under non-uniform missingness.

For any matrix B = (bij)
n1,n2

i,j=1 , we denote B† = (b−1
ij )n1,n2

i,j=1 and B‡ = (b
−1/2
ij )n1,n2

i,j=1 . Under

general missingness (uniform or non-uniform), one can show that, for any A ∈ R
n1×n2 ,

R (A) =
1

n1n2
E

(
‖A− Y ‖2F

)
=

1

n1n2
E

(∥∥∥W ◦Θ‡
⋆ ◦ (A− Y )

∥∥∥
2

F

)
.

Clearly, A⋆ uniquely minimizes R. If Θ⋆ were known, an unbiased estimator of R would be

R̂ (A) =
1

n1n2

∥∥∥W ◦Θ‡
⋆ ◦ (A− Y )

∥∥∥
2

F
, (3)

which motivates the use of inverse probability weighting in matrix completion as in Mao et al.

(2019). In addition, our theoretical analysis shows that the nuclear-norm-regularized empirical

risk estimator (to be defined in details later) based on R̂ (assuming the use of true observation
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probabilities) improves upon existing error upper bound of corresponding estimator based on

R̂UNI achieved by Klopp (2014) as shown in Section 5.3. However, the inverse probability

weights Θ
‡
⋆ are often unknown and have to be estimated, which has to be conducted carefully

in the context of matrix completion.

Despite the popularity of inverse probability weighting in missing data literature, it is known

to produce unstable estimation due to occurrences of small probabilities (e.g., Rubin, 2001;

Kang and Schafer, 2007; Schafer and Kang, 2008). This problematic scenario is common for

matrix completion problems for recovering a target matrix from very few observations. The-

oretically, a reasonable setup should allow some θ⋆,ij to go to zero as n1, n2 → ∞, leading

to diverging weights and a non-standard setup of inverse probability weighting. Due to these

observations, a careful construction of the estimation procedure is required.

For uniform sampling (θ⋆,ij ≡ θ0 for some probability θ0), one only has to worry about a

small common probability θ0 (or that θ0 diminishes in an asymptotic sense.) Although small

θ0 increases the difficulty of estimation, R̂(A) changes only up to a multiplicative constant.

However, for non-uniform setting, it is not as straightforward due to the heterogeneity among

{θ⋆,ij}. To demonstrate the issue, we now briefly look at the Yahoo! Webscope dataset described

in Section 7. A sign of the strong heterogeneity in {θ⋆,ij} is a large θU/θL, where θL = mini,j θ⋆,ij

and θU = maxi,j θ⋆,ij. We found that the corresponding ratio of estimated probabilities θ̂U/θ̂L

based on the rank-1 structure of Negahban and Wainwright (2012) was 25656.2, and that based

on our proposed method (without re-estimation, to be described below) was 23988.0. This

strong heterogeneity can jeopardize the convergence rate of our estimator, which will be properly

addressed in our framework.

In the following section, we propose an estimation approach for Θ⋆ in Section 3.1 and an

appropriate modification in Section 3.3 which, when substituted into the empirical risk R̂, allows

us to construct a stable estimator for A⋆.
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3 Estimation of Θ⋆

3.1 Regularized Maximum Likelihood Estimation

We develop the estimation of Θ⋆ based upon the framework of regularized maximum likelihood.

Given the inverse of link function f , the log-likelihood function with respect to the indicator

matrix W = (wij) ∈ R
n1×n2 is

ℓW (M) =
∑

i,j

[
I[wij=1] log {f (mij)}+ I[wij=0] log {1− f (mij)}

]
,

for any M = (mij)
n1,n2

i,j=1 ∈ R
n1×n2 , where IA is the indicator of an event A. Due to the low-rank

assumption ofM⋆, one natural candidate of estimators toM⋆ is the maximizer of the regularized

log-likelihood ℓW (M)−λ‖M‖∗, where ‖ · ‖∗ represents the nuclear norm and λ > 0 is a tuning

parameter. It is also common to enforce an additional max-norm constraint ‖M‖∞ ≤ α for

some α > 0 in the maximization (e.g., Davenport et al., 2014). Note that the nuclear norm

penalty flavors M = 0, corresponding to that Pr(wij = 1) = 0.5 for all i, j. Nevertheless,

this would not align well with common settings of matrix completion under which the average

probability of observations is quit small, and hence would result in a large bias. In view of this,

we instead adopt a parametrization M⋆ = µ⋆J + Z⋆ and consider the following estimator of

(µ⋆,Z⋆):

(
µ̂, Ẑ

)
= argmax

(µ,Z)∈Cn1,n2
(α1,α2)

ℓW (µJ +Z)− λ ‖Z‖∗ ,where (1)

Cn1,n2
(α1, α2) = {(µ,Z) ∈ R× R

n1×n2 : |µ| ≤ α1, ‖Z‖∞ ≤ α2, 1
T

n1
Z1n2

= 0}.

Note that the mean µ of the linear predictor µJ+Z is not penalized. The constraint 1T

n1
Z1n2

=

0 ensures the identifiability of µ and Z. Apparently, the constraints in Cn1,n2
(α1, α2) are

analogous to ‖M‖∞ ≤ α0, where α0 = α1 + α2, but on the parameters µ and Z respectively.

With (µ̂, Ẑ), the corresponding estimator of M⋆ is M̂ = µ̂J + Ẑ.

Davenport et al. (2014) considered a regularized maximum likelihood approach for a binary

matrix completion problem. Their goal was different, as they aimed at recovering a binary
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rating matrix in lieu of the missing structure, and considered a regularization on M (instead

of Z) via ‖M‖∗ ≤ α′{rank(M⋆)n1n2}1/2. As for the scaling parameter α′, Davenport et al.

(2014) considered an α′ independent of the dimensions n1 and n2 to restrict the “spikiness” of

M . As explained earlier, in our framework, θL should be allowed to go to zero as n1, n2 → ∞.

To this end, we allow α1 and α2 to depend on the dimensions n1 and n2. See more details in

Section 5.

3.2 Computational algorithm and tuning parameter selection

To solve the optimization (1), we begin with the observation that ℓW is a smooth concave

function, which allows the usage of an iterative algorithm called accelerated proximal gradient

algorithm (Beck and Teboulle, 2009). Given a pair (µold,Zold) from a previous iteration, a

quadratic approximation of the objective function −ℓW (µJ +Z) + λ‖Z‖∗ is formed:

PL {(µ,Z) , (µold,Zold)} =− ℓW (µoldJ +Zold)

+ (µ− µold) 1
T

n1
{−∇µℓW (µoldJ +Zold)}1n2

+
Ln1n2

2
(µ− µold)

2

+ 〈Z −Zold,−∇ZℓW (µoldJ +Zold)〉+
L

2
‖Z −Zold‖2F + λ ‖Z‖∗ ,

where L > 0 is an algorithmic parameter determining the step size of the proximal gradient

algorithm, and is chosen by a backtracking method (Beck and Teboulle, 2009). Here 〈B,C〉 =
∑

i,j bijcij for any matrices B = (bij) and C = (cij) of same dimensions.

In this iterative algorithm, a successive update of (µ,Z) can be obtained by

argmin
(µ,Z)∈Cn1,n2

(α1,α2)
PL {(µ,Z) , (µold,Zold)} ,

where the optimization with respect to µ and Z can be performed separately. For µ, one can

derive a closed-form update

min
[
α1,max

[
−α1, µold + (Ln1n2)

−1
1T

n1
{−∇µℓW (µoldJ +Zold)}1n2

]]
.
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As for Z, we need to perform the minimization

argmin
‖Z‖∞≤α2,1T

n1
Z1n2

=0

〈Z −Zold,−∇ZℓW (µoldJ +Zold)〉+
L

2
‖Z −Zold‖2F + λ ‖Z‖∗ ,

which is equivalent to

argmin
‖Z‖∞≤α2, 1T

n1
Z1n2

=0

1

2

∥∥∥∥Z −Zold −
1

L
∇ZℓW (µoldJ +Zold)

∥∥∥∥
2

F

+
λ

L
‖Z‖∗ . (2)

We apply a three-block extension of the alternative direction method of multipliers (Chen et al.,

2016) to an equivalent form of (2):

argmin
Z=G1=G2,1T

n1
G11n2

=0, ‖G2‖∞≤α2

λ

L
‖Z‖∗ +

1

2

∥∥∥∥G2 −Zold −
1

L
∇ZℓW (µoldJ +Zold)

∥∥∥∥
2

F

. (3)

Write H = (H1,H2). The augmented Lagrangian for (3) is

Lu (Z,G1,G2;H) =
λ

L
‖Z‖∗ +

1

2

∥∥∥∥G2 −Zold −
1

L
∇ZℓW (µoldJ +Zold)

∥∥∥∥
2

F

− 〈H1,Z −G1〉 − 〈H2,Z −G2〉+
u

2
‖Z −G1‖2F +

u

2
‖Z −G2‖2F

+ I[1T
n1

G11n2
=0] + I[‖G2‖∞≤α2],

where u > 0 is an algorithmic parameter and, IA = 0 if the constraint A holds and ∞ otherwise.

The detailed algorithm to solve (3) is summarized in Algorithm 1 in the supplementary material.

It is noted that, in general, the multi-block alternative direction method of multipliers may fail

to converge for some u > 0 (Chen et al., 2016). In those cases, an appropriate selection of u is

crucial. However, we are able to show that the form of our algorithm belongs to a special class

(Chen et al., 2016) in which convergence is guaranteed for any u > 0. Therefore, we simply

set u = 1. We summarize the corresponding convergence result in the following theorem whose

proof is provided in the supplementary material.

Theorem 1. The sequence {Z(k),G
(k)
1 ,G

(k)
2 }, generated by Algorithm 1 in the supplementary

material, converges to the global optimum of (3).
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Notice that the alternative direction method of multipliers algorithm is nested within the

proximal gradient algorithm. But, from our practical experiences, both the number of inner

iterations (alternative direction method of multipliers) and outer iterations (proximal gradient)

are small, usually less than twenty in our numerical experiments. Similarly, we summarize the

corresponding convergence result of the overall proximal gradient algorithm in the following

theorem whose proof is provided in the supplementary material.

Theorem 2. The estimator (µ̂, Ẑ) generated by the proximal gradient algorithm, converges to

the global optimum of (1).

The tuning parameters α1 and α2 can be chosen according to prior knowledge of the problem

setup, if available. When a prior knowledge is not available, one can choose large values for

these parameters. Once these parameters are large enough, our method is not sensitive to their

specific values. A more principled way to tune α1 and α2 is a challenging problem and beyond

the scope of this work. As for λ, we adopt Akaike information criterion (aic) where the degree

of freedom is approximated by r
M̂

(n1 + n2 − r
M̂

).

3.3 Constrained estimation

To use R̂ of (3), a naive idea is to obtain Θ̂ = (θ̂ij)
n1,n2

i,j=1 = F(M̂ ), whereF(M) = (f(mij))
n1,n2

i,j=1 ∈

R
n1×n2 for any M = (mij)

n1,n2

i,j=1 ∈ R
n1×n2 , and then replace Θ‡

⋆ by Θ̂‡ = (θ̂
−1/2
ij )n1,n2

i,j=1 . However,

this direct implementation is not robust to extremely small probabilities of observation, and our

theoretical analysis shows that this could lead to a slower convergence rate in the estimation

of A⋆. In the literature of missing data, a simple solution to robustify is winsorizing the small

probabilities (Potter, 1990; Scharfstein et al., 1999).

In the estimation of Θ̂ defined in (1) that assumes ‖Z⋆‖∞ ≤ α2, a large α2 has an adverse

effect on the estimation. In the setting of diverging α2 (due to diminishing θL), the convergence

rate of Ẑ becomes slower and the estimator obtained after direct winsorization will also be

affected. That is, even though the extreme probabilities could be controlled by winsorizing, the

unchanged entries of Ẑ (in the procedure of winsorizing) may already suffer from a slower rate

of convergence. This results in a larger estimation error under certain settings of missingness,

11



as revealed in Section 5.

A seemingly better strategy is to impose a tighter constraint directly in the minimization

problem (1). That is to adopt the constraint ‖Z‖∞ ≤ β where 0 ≤ β ≤ α2. Theoretically,

one can better control the errors on those entries of magnitude smaller than β. However, the

mean-zero constraint of Z no longer makes sense as the constraint ‖Z‖∞ ≤ β may have shifted

the mean.

We propose a re-estimation of Z⋆ with a different constraint level β:

Ẑβ = argmax
Z∈Rn1×n2

ℓW (µ̂J +Z)− λ′ ‖Z‖∗ subject to ‖Z‖∞ ≤ β. (4)

Note that we only re-compute Z but not µ, which allows us to drop the mean-zero constraint.

Thus, M̂β = µ̂J + Ẑβ . The corresponding algorithm for optimization (4) can be derived

similarly as in Davenport et al. (2014), and is provided in the supplementary material. In what

follows, we write Θ̂ = F(M̂ ) and Θ̂β = F(M̂β).

4 Estimation of A⋆

Now, we come back to (3) and replace Θ
‡
⋆ by Θ̂

‡
β to obtain a modified empirical risk:

R̃ (A) =
1

n1n2

∥∥∥W ◦ Θ̂‡
β ◦ (A− Y )

∥∥∥
2

F
, (1)

where Θ̂‡
β = (θ̂

−1/2
ij,β ) ∈ R

n1×n2 . Since A is a high-dimensional parameter, a direct minimization

of R̂∗ often results in over-fitting. To circumvent it, we consider a regularized version:

R̃ (A) + τ ‖A‖∗ , (2)

where τ > 0 is a regularization parameter. Again, the nuclear norm regularization encourages

low-rank solution. Based on (2), our estimator of A⋆ is

Âβ = argmin
‖A‖∞≤a

{
1

n1n2

∥∥∥W ◦ Θ̂‡
β ◦ (A− Y )

∥∥∥
2

F
+ τ ‖A‖∗

}
, (3)

12



where a is an upper bound on ‖A⋆‖∞. The above Âβ contains as special cases (i) the matrix

completion Âα2
, with unconstrained probability estimator Θ̂, by setting β = α2 and (ii) the

estimator Âβ, with constrained probability estimator Θ̂β, when β < α2.

We use an accelerated proximal gradient algorithm (Beck and Teboulle, 2009) to solve (3).

For the choice of tuning parameter τ in (3), we adopt a 5-fold cross-validation to select the

remaining tuning parameters. Due to the non-uniform missing mechanism, we use a weighted

version of the validation errors. The specific details are given in Algorithm 3 in the supplemen-

tary material.

5 Theoretical Properties

5.1 Probabilities of observation

Let ‖B‖ = σmax(B), ‖B‖∞ = maxi,j |bij | and ‖B‖∞,2 = (maxi
∑

j b
2
ij)

1/2 be the spectral

norm, the maximum norm and l∞,2-norm of a matrix B respectively. We use the symbol

≍ to represent the asymptotic equivalence in order, i.e., an ≍ bn if an = O(bn) and bn =

O(an). The average squared distance between two matrices B,C ∈ R
n1×n2 is d2(B,C) =

‖B − C‖2F /(n1n2). The average squared errors of M̂β and Θ̂
†
β are then d2(M̂β,M⋆) and

d2(Θ̂†
β ,Θ

†
⋆) respectively. We adopt the Hellinger distance for any two matrices S, T ∈ [0, 1]n1×n2 ,

d2H(S, T ) = (n1n2)
−1

∑n1,n2

i,j=1 d
2
H(sij , tij) where d

2
H(s, t) = (s1/2−t1/2)2+{(1−s)1/2−(1−t)1/2}2

for s, t ∈ [0, 1]. In the literature of matrix completion, most discussions related to optimal

convergence rate are only up to certain polynomial orders of log n. For convenience, we use

polylog(n) for polynomials of log n.

To investigate the asymptotic properties of M̂β and Θ̂
†
β defined in Section 3, we introduce

the following conditions on the missing structure.

C1. The indicators {wij}n1,n2

i,j=1 are mutually independent, and independent of {ǫij}n1,n2

i,j=1 . For

i = 1, . . . , n1 and j = 1, . . . , n2, wij follows a Bernoulli distribution with probability of success

θ⋆,ij = f(m⋆,ij) ∈ (0, 1). Furthermore, f is monotonic increasing and differentiable.

C2. The hidden feature matrix M⋆ = µ⋆J + Z⋆ where 1Tn1
Z⋆1n2

= 0, |µ⋆| ≤ α1 < ∞ and
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‖Z⋆‖∞ ≤ α2 < ∞. Here α1 and α2 are allowed to depend on the dimensions n1 and n2. This

also implies that there exists a lower bound θL ∈ (0, 1) (allowed to depend on n1, n2) such that

min
i,j

{θij} ≥ θL ≥ f(−α1 − α2) > 0.

For the convenience of the theoretical analysis, we consider an equivalent estimator of

(µ⋆,Z⋆) defined by the constrained maximization problem (1) instead of the Lagrangian form

(1). For rZ⋆ ≤ min{n1, n2} and α1, α2 ≥ 0, let

(
µ̂, Ẑ

)
= argmax

(µ,Z)∈C̃n1,n2
(α1,α2)

ℓW (µJ +Z) ,where (1)

C̃n1,n2
(α1, α2) =

{
(µ,Z) ∈ R× R

n1×n2 : |µ| ≤ α1, ‖Z‖∞ ≤ α2,

‖Z‖∗ ≤ α2
√
rZ⋆n1n2,1

T

n1
Z1n2

= 0
}
.

It is easy to see that we have (µ⋆,Z⋆) ∈ C̃n1,n2
(α1, α2) once (µ⋆,Z⋆) ∈ Cn1,n2

(α1, α2) holds. For

the ease of presentation, we assume n1 = n2 = n and choose the logit function as the inverse

link function f in the rest of Section 5, while corresponding results under general settings of

n1, n2 and f are delegated to Section S1.3 in the supplementary material. We first establish

the convergence results for µ̂, Ẑ and M̂ , respectively. To simplify notations, let α0 = α1 + α2,

hα1,β = (1 + eα1+β)−1 and Γn = eα0(α1 + α2r
1/2
Z⋆

)n−1/2.

Lemma 1. Suppose Conditions C1-C2 hold, and (µ⋆,Z⋆) ∈ Cn1,n2
(α1, α2). Consider M̂ =

µ̂J + Ẑ where (µ̂, Ẑ) is the solution to (1). There exist positive constants C1, C2 such that we

have with probability at least 1− C1/n,

(µ⋆ − µ̂)2 ≤ C2

(
α2
1 ∧ Γn

)
,

1

n2

∥∥∥Ẑ −Z⋆

∥∥∥
2

F
≤ C2

(
α2
2 ∧ Γn

)

and
1

n2

∥∥∥M̂ −M⋆

∥∥∥
2

F
≤ C2

(
α2
0 ∧ Γn

)
. (2)

The upper bounds in (2) all consist of trivial bounds α2
j and a more dedicated bound Γn. The

trivial upper bounds α2
1, α

2
2 and α2

0 can be easily derived from the constraint set Cn1,n2
(α1, α2).
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For extreme settings of increasing α0, the more dedicated bound Γn is diverging and the trivial

bounds may provide better control. The term Γn can be controlled by the rank of Z⋆. For a

range of non-extreme scenarios, i.e., α0 ≤ 1/2 log n or θL ≥ n−1/2, the second term in Γn attains

the convergence order once rZ⋆ = O(1).

Similarly, we study the theoretical results of the re-estimation of Z⋆ in terms of the con-

strained optimization:

Ẑβ = argmax
Z∈Rn1×n2

ℓW (µ̂J +Z)

subject to ‖Z‖∞ ≤ β, ‖Z‖∗ ≤ β
√

rTβ(Z⋆)n1n2, . (3)

We now consider the constrained estimation for Z⋆, M⋆ and Θ
†
⋆. For any matrix B = (bij)

n1,n2

i,j=1 ,

define the winsorizing operator Tβ by Tβ(B) = (Tβ(bij)) where

Tβ(bij) = bijI[−β≤bij≤β] + βI[bij>β] − βI[bij<−β] for any β ≥ 0. (4)

Write M⋆,β = µ⋆J + Tβ(Z⋆) and M̂⋆,β = µ̂J + Tβ(Z⋆), and Θ⋆,β = F(M⋆,β) and Θ̂⋆,β =

F(M̂⋆,β) respectively. It is noted that M̂⋆,β serves as a “bridge” between the underlying M⋆,β

and the empirical M̂β. Write Nβ =
∑

i,j(I[z⋆,ij>β] + I[z⋆,ij<−β]) as the number of extreme

values in Z⋆ at level β. The convergence rates of d2(M̂β ,M⋆) and d2(Θ̂†
β,Θ

†
⋆) are investigated

in the next theorem. Define Λn = min[β2, Γ̃n + h−1
α1,β

n−2β{8Nβ + (n2 − Nβ)|µ⋆ − µ̂|}] where

Γ̃n = h−1
α1,β

(α1 + βr
1/2
Tβ(Z⋆)

)n−1/2.

Theorem 3. Assume that Conditions C1-C2 hold, and (µ⋆,Z⋆) ∈ C̃n1,n2
(α1, α2). Consider

M̂β = µ̂J + Ẑβ where Ẑβ is the solution to (3) and β ≥ 0, there exist some positive constants

C1, C2 and C3 such that we have with probability at least 1− 2C1/n,

d2
{
Ẑβ ,Tβ (Z⋆)

}
≤ C3Λn, d2

(
M̂β,M⋆

)
≤ C2

(
α2
1 ∧ Γn

)
+ C3Λn +

2(α2 − β)2+Nβ

n2
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and d2
(
Θ̂

†
β ,Θ

†
⋆

)
≤ C2

h2α1,β

(
α2
1 ∧ Γn

)
+

C3Λn

h2α1,β

+
8Nβ

n2θ2L
. (5)

We can derive an upper bound 4β2 for d2(ẐWin,β,Tβ(Z⋆)) from the second term in Theorem

1 where ẐWin,β = Tβ(Ẑ) is directly winsorized from Ẑ. Obviously, the order of this upper bound

is larger than or equal to Λn. Moreover, there are scenarios where Λn is a smaller order of β2.

To illustrate, assume that both α1 ≍ 1 and β ≍ 1, we have hα1,β ≍ 1. Once we have Nβ = o(n),

rTβ(Z⋆) = o(n) and |µ̂ − µ⋆| = o(1), then Λn = o(β2).

With a more dedicated investigation of (5), one can derive an upper bound for d2(Θ̂†
β , Θ̂

†
⋆,β),

which will be used in Section 5.2. Denote k′α1,α2,n = min{α2
1, e

α0(α1 + α2r
1/2
Z⋆

)n−1/2}, such an

upper bound is of order kα1,α2,β,nh
−2
α1,β

where

kα1,α2,β,n ≍ min
[
β2, h−1

α1,β
β
{
8Nβ +

(
n2 −Nβ

)
k′1/2α1,α2,n

}
n−2 + h−1

α1,β
n−1/2(α1 + βr

1/2
Tβ(Z⋆)

)
]
.

5.2 Target matrix

To study the convergence of d2(Âβ ,A⋆), we require the following conditions regarding the

random errors ǫ and the target matrix A⋆. Recall that Âβ includes both the estimations

obtained with the unconstrained estimator Θ̂ and the constrained estimator Θ̂β as Â(Θ̂) = Âα2

with β = α2.

C3. (a) The random errors {ǫij} in Model (1) are independently distributed random variables

such that E(ǫij) = 0 and E(ǫ2ij) = σ2
ij < ∞ for all i, j. (b) For some finite positive constants cσ

and η, max
i,j

E|ǫij |l ≤ 1
2 l!c

2
ση

l−2 for any positive integer l ≥ 2.

C4. There exists a positive constant a0 such that ‖A⋆‖∞ ≤ a0.

Denote h(1),β = max
i,j

(θ−1
⋆,ijθ⋆,ij,β) and

∆ = max





(cσ ∨ a) e−µ⋆/2+α2−β+|α2/2−β| (n log n)1/2

n2
,
ηeµ⋆/2+α1+|α2/2−β|k

1/2
α1,α2,β,n

log3/2 n

hα1,βn



 .

(6)

The following theorem established a general upper bound for d2(Âβ,A⋆).
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Theorem 4. Assume Conditions C1-C4 hold. For β ≥ 0, there exist some positive constants

C4, C5, C6 and C7, both independent of β, such that for h(1),βτ ≥ C4∆, we have with probability

at least 1− 3/(2n),

d2
(
Âβ,A⋆

)
≤ max

{
C6n

2h2(1),βrA⋆τ
2 +C7h

2
(1),βh

2
(2),βrA⋆n

−1 log (n) , C5h(1),βh(3),βn
−1 log1/2(n)

}
.

(7)

As for the estimator of the target matrix based on direct winsorization Θ̂Win,β = F(µ̂J +

ẐWin,β) where ẐWin,β = Tβ(Ẑ), an upper bound can be derived using Theorem 3. As noted in

a remark after Theorem 3, d2(ẐWin,β,Tβ(Z⋆)) converges at a slower rate β2 which will cause a

larger error bound for the target matrix.

Now, we discuss the rates of d2(Âβ ,A⋆) under various missing structures. For simplicity, the

following discussion focuses on the low-rank linear predictor (M⋆) setting such that rM⋆ ≍ 1.

Uniform missingness. Under the uniform missingness, i.e., θij ≡ θ0, it has been shown in

Koltchinskii et al. (2011) that θ−1
0 n−1polylog(n) is the optimal rate for d2(Âβ ,A⋆). Therefore

it is reasonable to require α1 + α2 = α0 = O(polylog(n)) for the convergence of d2(Âβ,A⋆).

Under the uniform missingness, we have α2 = 0, α0 = α1 and eµ⋆ ≍ θ0. For β = 0, our estimator

Âβ degenerates to the estimator based on the unweighted empirical risk function. Theorem 4

shows that Âβ achieves the optimal rate θ−1
0 n−1polylog(n). As for β > 0, by taking β → 0 such

that kα1,α2,β,n = O(eµ⋆−2α1−2βn−1 log−2 n), the estimator can also reach the optimal rate. Of

interest here is that β is allowed to be strictly positive to achieve the same rate.

Non-uniform missingness. Under the non-uniform missingness, suppose the lower and upper

bounds of observation probability satisfy θL ≍ eµ⋆−α2 and θU ≍ eµ⋆+α2 . For the non-constrained

case of β = α2 and hα1,β ≍ e−α1−α2 , the second term of ∆ in (6) dominates due to the fact that

e−µ⋆/2+α2/2n−3/2 log1/2 n = o(eµ⋆/2+5α1/2+3α2/2n−5/4 log3/2 n).

Thus, the convergence rate of d2(Âβ ,A⋆) is e
µ⋆+5α1+3α2n−1/2 log3 n. To guarantee convergence,

as eµ⋆/2+5α1/2+3α2/2 ≤ e3α1+3α2/2, it requires that α1 + α2/2 < (1/12) log n which implies that
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θ−1
L = O(n1/6).

However, the above range of θL = O(n−1/6) excludes θL ≡ (n−1polylog(n)), the case that

results in the number of the observed matrix entries at the order of n polylog(n) which represents

the most sparse case of observation where the matrix can still be recovered (Candès and Recht,

2009; Candès and Plan, 2010; Koltchinskii et al., 2011; Negahban and Wainwright, 2012). We

will show in the following that with an appropriately chosen β, the constrained estimator Θ̂β

can accommodate the case of θ−1
L = O(n log−1 n).

Case (I): β = 0. To demonstrate this, we start with the absolute constrained case, i.e., β = 0,

which forces the estimated probabilities to be uniform and implies e−µ⋆/2+α2−β+|α2/2−β| =

e−µ⋆/2+3α2/2 ≍ θ
1/2
U θ−1

L . Then, according to Theorem 4, d2(Âβ,A⋆) attains the convergence

rate θUθ
−2
L n−1 log(n), which converges to 0 provided θUθ

−2
L = o(n log−1 n). Obviously, the

condition θUθ
−2
L = o(n log−1 n) includes the extreme case of θ−1

L = O(n log−1 n) and n polylog(n)

observations.

Case (II): β > 0. For the more interesting setting β > 0, to simplify the discussion, we

concentrate on the case when the first term in kα1,α2,β,n is of a smaller order, which can be

achieved by choosing β = O(e−µ⋆−2α1+α2n−1/2 log−1 n). Then, according to Theorem 4,

d2(Âβ,A⋆) = Op(e
−µ⋆+2α2−2β+2|α2/2−β|n−1 log n) = Op(e

α1/2+3α2/2n−1 log n),

since e−µ⋆/2+α2−β+|α2/2−β| ≤ eα1/2+3α2/2. In the following we consider two further cases: (i)

α2 = O((log log n)−1α1) and (ii) α1 = o(α2 log log n). Note that for either cases, e
−µ⋆+2α2−2β+2|α2/2−β| ≍

θUθ
−2
L which leads to

d2(Âβ,A⋆) = Op(θUθ
−2
L n−1 log n).

If α2 = O{(log log n)−1α1}, we require α1 < (1+3 log log n)−1(log n− log log n) to guarantee

convergence, which implies that θL = O(n−1). Thus, we only lose a polylog(n) factor when

compared with the most extreme but feasible setting of θ−1
L = O[n{polylog(n)}−1]. Also β =

O(e−µ⋆−2α1+α2n−1/2 log−1 n) implies that β = O(n−1/2 log−1 n).

If α1 = o{(log log n)α2}, we require that α2 < {3 + (log log n)−1}−1(log n − log log n)
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which leads to θ−1
L = O(n1/3). Also β = O(e−µ⋆−2α1+α2n−1/2 log−1 n) implies that β =

O(n−1/6 log−1 n). However, to make d2(Âβ,A⋆) convergent, the attained rate for θ−1
L has to

be O(n1/3), which excludes the most extreme heterogeneity case of θ−1
L = O{n(polylog(n))−1}.

The reason for not being able to cover the most extreme case of θ−1
L = O{n(polylog(n))−1} is

that the current Case (ii) allows more heterogeneity in Z⋆ as reflected by having a larger α2 than

that prescribed under Case (i). As µ⋆ is jointly estimated with Z⋆ in the unconstrained esti-

mation (Section 3.1), stronger heterogeneity slows down the convergence rate in the estimation

of µ⋆, which becomes a bottleneck for further improvement. If µ⋆ was observable, the problem

would not be as serious despite the adverse effect of stronger heterogeneity on the estimation

of Z⋆.

To summarize, under the uniform missing and Case (I), (II)(i) in the non-uniform missing,

we can achieve the optimal rate up to a polylog(n) order. For Case (II)(ii), when the missingness

is not extreme, with an appropriately chosen β > 0, the proposed estimator can also attain the

optimal rate up to the polylog(n) order.

5.3 Comparison with Uniform Objective Function

Recall that the unweighted empirical risk function R̂UNI(A) = n−2‖W ◦(A−Y )‖2F is adopted by

many existing matrix completion techniques (Klopp, 2014). An interesting question is whether

there is any benefit in adopting the proposed weighted empirical risk function for matrix com-

pletion. In this subsection, we aim to shed some light on this aspect by comparing the non-

asymptotic error bounds of the corresponding estimators. Due to the additional complication

from the estimation error of the observation probability matrix, we only focus on the weighted

empirical risk function with true inverse probability weighting in this section. We will demon-

strate empirically in Sections 6 and 7 the benefits of the weighted objective function with

estimated weights.

Most existing work with unweighted empirical risk function assume the true missingness

is uniform (Candès and Plan, 2010; Koltchinskii et al., 2011). One notable exception is Klopp

(2014), where unweighted empirical risk function is studied under possibly non-uniform missing
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structure. The estimator of Klopp (2014) is equivalent to our estimator when β = 0, which is

denoted by ÂUNI. Thus, according to Theorem 4, we have with probability at least 1− 3/(2n),

d2
(
Â

UNI,A⋆

)
≤ min

{
(C6 + C7)rA⋆θUθ

−2
L n−1 log n,C5θ

1/2
U θ−1

L n−1/2 log1/2 n
}
= UUNI,

which is the same upper bound obtained in Klopp (2014). Define ÂKNOWN as the estimator

which minimizes the known weighted empirical risk function (3). Then,

d2
(
Â

KNOWN,A⋆

)
≤ min

{
(C6 + C7)rA⋆θ

−1
L n−1 log n,C5θ

−1/2
L n−1/2 log1/2 n

}
= UKNOWN.

The improvement in the upper bounds of the weighted objective function R̂ lies in that, under

non-uniform missingness, θUθ
−1
L > 1 which implies that UKNOWN < UUNI as summarized below.

Theorem 5. Assume Conditions C1-C4 holds, and take τKNOWN = C3θ
−1/2
L n−3/2 log1/2 n and

τUNI = C3θ
1/2
U f−1(µ⋆)n

−3/2 log1/2 n. The upper bound of d2(ÂUNI,A⋆) is the same as UUNI and

the upper bound of d2(ÂKNOWN,A⋆) is the same as UKNOWN. In addition, UKNOWN ≤ UUNI,

and UKNOWN < UUNI if θU > θL, i.e., the true missing mechanism is non-uniform.

Our approach draws inspiration from the missing value literature, for instance in Chen et al.

(2008), which showed that using the estimated parameters in the inverse probability weighting

can actually reduce the variance of the parameter of interest; see Theorem 1 of the paper. Given

the results of Chen et al. (2008), we would expect using the estimated parameters Θ̂β in the

weighting probability would not be inferior to the version with the true parameter Θ̂⋆.

6 Simulation Study

6.1 Missingness

This section reports results from simulation experiments which were designed to evaluate the

numerical performance of the proposed methodologies. We first evaluate the estimation per-

formances of the observation probabilities in Section 6.1 and then those of the target matrix

in Section 6.2. In the simulation, the true observation probabilities Θ⋆ and the target matrix
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A⋆ were randomly generated once and kept fixed for each simulation setting to be described

below. To generate Θ⋆, we first generated UM⋆ ∈ R
n1×(rM⋆−1) and VM⋆ ∈ R

(rM⋆−1)×n2 as

random Gaussian matrices with independent entries each following N (−0.4, 1). We then ob-

tained M⋆ = UM⋆V
T

M⋆
− m̄n1,n2,rM⋆

J where m̄n1,n2,rM⋆
is a scalar chosen to ensure the average

observation rate is 0.2 in each simulation setting. We finally set Θ⋆ = F(M⋆) where the inverse

link function f is a logistic function.

In our study, we set rM⋆ = 11, (or rZ⋆ = 10) and chose n1 = n2 with four sizes: 600, 800,

1000 and 1200, and the number of simulation runs for each settings was 500.

For the purpose of benchmarking, we compared various estimators of the missingness:

1. the non-constrained estimator Θ̂α defined in (1);

2. the constrained estimator Θ̂β defined in (4);

3. the directly winsorized estimator Θ̂Win,β = F{µ̂J + Tβ(Ẑ)};

4. the 1-bit estimator Θ̂1-bit,α proposed in Davenport et al. (2014) and its corresponding

constrained and winsorized versions Θ̂1-bit,β and Θ̂1-bit,Win,β; (note that the 1-bit estimator

Θ̂1-bit,α imposes the nuclear-norm regularization on the whole M instead of Z, when

compared to Θ̂α)

5. the rank-1 probability estimator Θ̂NW used in Negahban and Wainwright (2012) where

gi. = n−1
2

∑n2

j=1wij , g.j = n−1
1

∑n1

i=1 wij and θij,NW = gi.g.j ;

6. the uniform estimator Θ̂UNI = N/(n1n2)J .

For the non-constrained estimator Θ̂α and the 1-bit estimator Θ̂1-bit,α, the parameter α is set

according to the knowledge of the true M⋆. For the constrained estimators Θ̂β and Θ̂Win,β, the

constraint level β was chosen so that either 5% or 10% of the elements in Ẑα were winsorized.

Similarly for Θ̂1-bit,β and Θ̂1-bit,Win,β.

To quantify the estimation performance of linear predictor M⋆ and observation probabilities

Θ⋆, we considered the empirical root mean squared errors RMSE(B,C) with respect to any

two matrices B and C of dimension n1 × n2, and the Hellinger distance d2H(Θ̂,Θ⋆) between Θ̂
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Table 1: Root mean squared errors RMSE(M̂ ,M⋆), Hellinger distance d2H(Θ̂,Θ⋆), rank of

linear predictor M̂ and estimated Θ̂ and their standard errors (in parentheses) under the low
rank missing observation mechanism, with (n1, n2) = (600, 600), (800, 800), (1000, 1000), (1200,
1200) and rM⋆ = 11, for the proposed estimators Θ̂α, Θ̂1-bit,α and the two existing estimators

(Θ̂NW and Θ̂UNI).

600 Θ̂α Θ̂1-bit,α Θ̂NW Θ̂UNI

RMSE(M̂ ,M⋆) 2.6923 (0.0342) 2.9155 (0.0295) - -

d2H(Θ̂,Θ⋆) 0.0369 (0.0015) 0.0450 (0.0016) 0.1233 (1e-04) 0.1729 (1e-04)
r
M̂

12.45 (0.50) 12.69 (0.46) - -
r
Θ̂

600.00 (0.00) 600.00 (0.00) - -

800 Θ̂α Θ̂1-bit,α Θ̂NW Θ̂UNI

RMSE(M̂ ,M⋆) 2.5739 (0.0116) 2.7796 (0.0033) - -

d2H(Θ̂,Θ⋆) 0.0317 (5e-04) 0.0379 (1e-04) 0.1219 (1e-04) 0.1767 (1e-04)
r
M̂

12.04 (0.20) 12.03 (0.17) - -
r
Θ̂

800.00 (0.00) 800.00 (0.00) - -

1000 Θ̂α Θ̂1-bit,α Θ̂NW Θ̂UNI

RMSE(M̂ ,M⋆) 2.4870 (0.0212) 2.7731 (0.0015) - -

d2H(Θ̂,Θ⋆) 0.0266 (8e-04) 0.0351 (1e-04) 0.1246 (1e-04) 0.1767 (1e-04)
r
M̂

12.68 (0.53) 12.00 (0.00) - -
r
Θ̂

1000.00 (0.00) 1000.00 (0.00) - -

1200 Θ̂α Θ̂1-bit,α Θ̂NW Θ̂UNI

RMSE(M̂ ,M⋆) 2.3809 (0.0018) 2.6470 (0.0012) - -

d2H(Θ̂,Θ⋆) 0.0242 (1e-04) 0.0314 (1e-04) 0.1211 (1e-04) 0.1761 (1e-04)
r
M̂

12.00 (0.00) 12.00 (0.00) - -
r
Θ̂

1200.00 (0.00) 1200.00 (0.00) - -

and Θ⋆ defined as follows:

RMSE(B,C) =
‖B −C‖F
(n1n2)

1/2
and d2H

(
Θ̂,Θ⋆

)
=

∑n1,n2

i,j=1 d
2
H

(
θ̂ij, θ⋆,ij

)

(n1n2)
1/2

.

As the estimators F−1(Θ̂α) and F−1(Θ̂1-bit,α) are both low-rank, we also report their corre-

sponding ranks.

Table 1 summarizes the simulation results for the missingness. The most visible aspect of

the results is that the proposed estimators Θ̂α and Θ̂1-bit,α both have superior performance

than the two existing estimators Θ̂NW and Θ̂UNI by having smaller root mean square errors

with respect to M̂ , Hellinger distances d2H(Θ̂,Θ⋆) and more accuracy estimated rank of M⋆.

Without the separation of µ⋆ from M⋆, Θ̂1-bit,α has larger error and Hellinger distance than

the proposed estimators. The performance of Θ̂NW is roughly between the proposed estimators

and the uniform estimator Θ̂UNI. Estimator Θ̂UNI is a benchmark which captures no variation

of the observation probabilities.
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6.2 Target matrix

To generate a target matrix A⋆, we first generated UA⋆ ∈ R
n1×(rA⋆−1) and VA⋆ ∈ R

(rA⋆−1)×n2

as random matrices with independent Gaussian entries distributed as N (0, σ2
A⋆

) and obtained

A⋆ = 2.5J +UA⋆V
T

A⋆
. Here we set the standard deviation of the entries in the matrix product

UA⋆V
T

A⋆
to be 2.5 to mimic the Yahoo! Webscope data set described in Section 7. To achieve this,

σA⋆ = (2.52/(rA⋆ −1))1/4. The contaminated version of A⋆ was then generated as Y = A⋆+ ǫ,

where ǫ ∈ R
n1×n2 has i.i.d. mean zero Gaussian entries ǫij ∼ N (0, σ2

ǫ ). The σ2
ǫ is chosen

such that SNR = (E‖A⋆‖2F /E‖ǫ‖2F )1/2 = 1, where E‖A⋆‖2F = n1n2(rA⋆ − 1 + 2.52) implies

σǫ = 0.5(rA⋆ − 1 + 2.52)1/2.

For the estimation of the target matrix, we evaluated ten versions of the proposed estimators

Proposed Θ̂β t, Proposed Θ̂Win,β t, Proposed Θ̂α, Proposed Θ̂1-bit,β t, Proposed Θ̂1-bit,Win,β t and

Proposed Θ̂1-bit,α. Here Proposed indicates the estimators are obtained by solving problem (3),

while Θ̂β, Θ̂Win,β, Θ̂α, Θ̂1-bit,β, Θ̂1-bit,Win,β and Θ̂1-bit,α represents the probability estimators

used in (3), as described in Section 6.1, and t = 0.05 or 0.1 denote the winsorized proportion for

which β is chosen. In addition, same as Mao et al. (2019), we also compared them with three

existing matrix completion techniques: the methods proposed in Negahban and Wainwright

(2012) (NW), Koltchinskii et al. (2011) (KLT) and Mazumder et al. (2010) (MHT). Among these

three methods, NW is the only one that adjusts for non-uniform missingness. All three methods

require tuning parameter selection, for which cross-validation is adopted. See Mao et al. (2019)

for more details.

To quantify the performance of the matrix completion, in addition to the empirical root

mean squared errors with respect to Âβ and A⋆, we used one more measure:

Test Error =

∥∥∥W ⋆ ◦
(
Âβ −A⋆

)∥∥∥
2

F

‖W ⋆ ◦A⋆‖2F
,

where W ⋆ is the matrix of missing indicator with the (i, j)th entry being (1 − wij). The test

error measures the relative estimation error of the unobserved entries to their signal strength.

The estimated ranks of Âβ are also reported.
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Tables 2 summarize the simulation results for different dimensions n1=n2 ranges from 600

to 800 and two different settings of rA⋆ = 11. The results of rA⋆ = 11 for different dimensions

n1=n2 ranges from 1000 to 1200 are delegated to Table S1 and the results of rA⋆ = 31 are

delegated to Tables S2-S3 of Section S1.5 in the supplementary material. From the tables, we

notice that the ten versions of the proposed methods possess superior performance than the

three existing methods by having smaller root mean squared errors and Test Errors. Among

the first five proposed methods in the tables, Proposed Θ̂β is better than Proposed Θ̂α for most

of the time. It is because that the constrained estimator Θ̂β has much smaller ratio θ̂U/θ̂L than

Θ̂α which improve the stability of prediction and the accuracy. Another observation is that

Proposed Θ̂β 0.1 performs better than Proposed Θ̂1-bit,α at most times.

7 Real data application

In this section we demonstrate the proposed methodology by analyzing the Yahoo! Webscope

dataset (ydata-ymusic-user-artist-ratings-v1 0) available at

http://research.yahoo.com/Academic Relations. It contains (incomplete) ratings from 15,400

users on 1000 songs. The dataset consists of two subsets, a training set and a test set. The

training set records approximately 300,000 ratings given by the aforementioned 15,400 users.

Each song has at least 10 ratings. The test set was constructed by surveying 5,400 out of

these 15,400 users, each rates exactly 10 songs that are not rated in the training set. The

missing rates are 0.9763 overall, 0.3520 to 0.9900 across users, and 0.6372 to 0.9957 across

songs. The non-uniformity of the missingness is shown in Figure S1 of Section S1.6 in the

supplementary material. In this experiment, we applied those methods as described in Section

6 to the training set and evaluated the test errors based on the corresponding test set. As

there is no prior knowledge about true parameters α1 and α2, we suggest to choose α1 and

α2 large enough, say α1 = 100 and α2 = 100, to ensure that the range covers all the missing

probabilities. It was noted that Θ̂α is not sensitive to larger α.

Table 3 reports the root mean squared prediction errors, where RMSPE = ‖W test ◦ (Âβ −

Y )‖F /(
∑n1

i=1

∑n2

j=1w
test
ij )1/2 and W test is the indicator matrix of test set with the (i, j)th entry
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Table 2: Root mean squared errors, test errors, estimated ranks r
Âβ

and their standard devi-

ations (in parentheses) under the low rank missing observation mechanism, for three existing
methods and ten versions of the proposed methods where Proposed indicates the estimators
are obtained by solving problem (3), while Θ̂β, Θ̂Win,β, Θ̂α, Θ̂1-bit,β,Θ̂1-bit,Win,β and Θ̂1-bit,α

represents the probability estimators used in (3), as described in Section 6.1, and t = 0.05 or
0.1 denote the winsorized proportion for which β is chosen.

(n1, n2) = (600, 600) RMSE(Âβ ,A⋆) Test Error r
Âβ

Proposed Θ̂Win,β 0.05 1.5615 (0.0147) 0.3005 (0.0062) 65.28 (5.72)

Proposed Θ̂β 0.05 1.5548 (0.0085) 0.2996 (0.0034) 54.98 (3.01)

Proposed Θ̂Win,β 0.1 1.5621 (0.0111) 0.3013 (0.0046) 63.68 (5.36)

Proposed Θ̂β 0.1 1.5509 (0.0085) 0.2983 (0.0034) 53.13 (2.72)

Proposed Θ̂α 1.5637 (0.0147) 0.3010 (0.0061) 65.63 (5.89)

Proposed Θ̂1-bit,Win,β 0.05 1.5664 (0.0093) 0.3028 (0.0037) 62.76 (5.96)

Proposed Θ̂1-bit,β 0.05 1.5573 (0.0089) 0.2996 (0.0036) 61.80 (5.34)

Proposed Θ̂1-bit,Win,β 0.1 1.5669 (0.0092) 0.3032 (0.0037) 62.78 (2.68)

Proposed Θ̂1-bit,β 0.1 1.5540 (0.0089) 0.2987 (0.0036) 60.79 (3.01)

Proposed Θ̂1-bit,α 1.5612 (0.0097) 0.3005 (0.0040) 62.12 (4.76)
NW 1.9896 (0.2814) 0.4676 (0.1341) 167.67 (54.78)
KLT 2.2867 (0.0073) 0.5951 (0.0026) 1.00 (0.00)
MHT 1.6543 (0.0097) 0.3432 (0.0041) 51.20 (2.61)

(n1, n2) = (800, 800) RMSE(Âβ ,A⋆) Test Error r
Âβ

Proposed Θ̂Win,β 0.05 1.4754 (0.0107) 0.2669 (0.0041) 88.58 (10.81)

Proposed Θ̂β 0.05 1.4797 (0.0080) 0.2714 (0.0030) 71.79 (4.12)

Proposed Θ̂Win,β 0.1 1.4724 (0.0108) 0.2664 (0.0042) 86.25 (10.34)

Proposed Θ̂β 0.1 1.4763 (0.0082) 0.2704 (0.0031) 67.08 (4.22)

Proposed Θ̂α 1.4783 (0.0115) 0.2676 (0.0041) 88.92 (11.70)

Proposed Θ̂1-bit,Win,β 0.05 1.4917 (0.0078) 0.2743 (0.0030) 83.51 (1.45)

Proposed Θ̂1-bit,β 0.05 1.4804 (0.0080) 0.2705 (0.0031) 82.60 (3.47)

Proposed Θ̂1-bit,Win,β 0.1 1.4972 (0.0080) 0.2765 (0.0031) 81.64 (7.23)

Proposed Θ̂1-bit,β 0.1 1.4800 (0.0078) 0.2708 (0.0030) 74.89 (3.54)

Proposed Θ̂1-bit,α 1.4790 (0.0099) 0.2685 (0.0039) 88.57 (9.56)
NW 1.9515 (0.3625) 0.4585 (0.1593) 215.61 (82.24)
KLT 2.3447 (0.0064) 0.6081 (0.0020) 1.00 (0.00)
MHT 1.6067 (0.0086) 0.3245 (0.0036) 63.68 (3.02)

1 With rM⋆ = 11, rA⋆ = 11, (n1, n2) = (600, 600), (800, 800) and SNR = 1.
The three existing methods are proposed respectively in Negahban and Wainwright
(2012)(NW), Koltchinskii et al. (2011)(KLT) and Mazumder et al. (2010)(MHT)

being wtest
ij . Note that Proposed Θ̂β 0.05 performs the best among all ten versions of proposed

methods. Besides, Proposed Θ̂α also has much smaller root mean squared prediction error than

the other eight versions of proposed methods. This may indicate that only slight constraint

is required for the probabilities estimator for this dataset. Note that we cannot guarantee the

optimal convergence rate or even asymptotic convergence in certain setting of missingness for

Proposed Θ̂α, see Section 5.2 for details.

With the separation of µ, Proposed Θ̂α is better than Proposed Θ̂1-bit,α; analogously, Pro-
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Table 3: Root mean squared prediction errors based on Yahoo! Webscope dataset for the
ten versions of the proposed method and the three existing methods proposed respectively in
Negahban and Wainwright (2012)(NW), Koltchinskii et al. (2011)(KLT) and Mazumder et al.
(2010)(MHT).

Proposed Θ̂Win,β 0.05 Proposed Θ̂β 0.05 Proposed Θ̂Win,β 0.1

RMSPE 1.0396 1.0381 1.0476

Proposed Θ̂β 0.1 Proposed Θ̂α Proposed Θ̂1-bit,Win,β 0.05

RMSPE 1.0490 1.0383 1.0831

Proposed Θ̂1-bit,β 0.05 Proposed Θ̂1-bit,Win,β 0.1 Proposed Θ̂1-bit,β 0.1

RMSPE 1.1091 1.0760 1.0523

Proposed Θ̂1-bit,α NW KLT

RMSPE 1.1065 1.7068 3.6334
MHT

RMSPE 1.3821

posed Θ̂β t is better than Proposed Θ̂1-bit,β t with different constraint level t, same to Pro-

posed Θ̂Win,β s and Proposed Θ̂1-bit,Win,β s with different winsorization level s.

As compared with the existing methods NW, KLT and MHT, our proposed methods perform

significantly better in terms of root mean squared prediction errors, and achieve as much as

25% improvement when compared with Mazumder, Hastie and Tibshirani’s method (the best

among the three existing methods). This suggests that a more flexible modeling of missing

structure improves the prediction power.

8 Concluding Remarks

When the matrix entries are heterogeneously observed due to selection bias, this heterogeneity

should be taken into account. This paper focuses on the problem of matrix completion under

low-rank missing structure. In the recovery of probabilities of observation, we adopt a gen-

eralized linear model with a low-rank linear predictor matrix. To avoid unnecessary bias, we

introduce a separation of the mean effect µ. As the extreme values of probabilities may lead to

unstable estimation of target matrix, we propose an inverse probability weighting based method

with constrained probability estimates and demonstrate the improvements in empirical perspec-

tives. Our theoretical result shows that the estimator of the high dimensional probability matrix

can be embedded into the inverse probability weighting framework without compromising the

rate of convergence of the target matrix (for an appropriately tuned β > 0), and reveals a

possible regime change in the tuning of the constraint parameter (β > 0 vs. β = 0). In addition,

26



corresponding computational algorithms are developed, and a related algorithmic convergence

result is established. Empirical studies show the attractive performance of the proposed meth-

ods as compared with existing matrix completion methods.
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