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Abstract

Models based on approximation capabilities have recently been studied in the context of
Optimal Recovery. These models, however, are not compatible with overparametrization, since
model- and data-consistent functions could then be unbounded. This drawback motivates the
introduction of refined approximability models featuring an added boundedness condition. Thus,
two new models are proposed in this article: one where the boundedness applies to the target
functions (first type) and one where the boundedness applies to the approximants (second type).
For both types of model, optimal maps for the recovery of linear functionals are first described
on an abstract level before their efficient constructions are addressed. By exploiting techniques
from semidefinite programming, these constructions are explicitly carried out on a common
example involving polynomial subspaces of C[—1,1].

Key words and phrases: Optimal recovery, approximability models, semidefinite programming,
overparametrization.
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1 Introduction

The objective of this article is to uncover practical methods for the optimal recovery of functions
available through observational data when the underlying models based on approximability allow
for overparametrization. To clarify this objective and its various challenges, we start with some
background on traditional Optimal Recovery. Typically, an unknown function f defined on a
domain D is observed through point evaluations y; = f(x1),...,ym = f(z;,) at distinct points
Z1,-..,%Tm € D. More generally, an unknown object f, simply considered as an element of a
normed space X, is observed through

(1) yi=4(f),  iell:m]
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where 01, ..., ¢, are linear functionals defined on X. We assume here that these data are perfectly
accurate — we refer to the companion article [5] for the incorporation of observation error. The
data is summarized as y = L(f), where the linear map L : X — R is called observation operator.
Based on the knowledge of y € R™, the task is then to recover a quantity of interest Q(f), where
throughout this article @ : X — R is assumed to be a linear functional. The recovery procedure
can be viewed as a map R from R™ to R, with no concern for its practicability at this point.

Besides the observational data (which is also called a posteriori information), there is some a priori
information coming from an educated belief about the properties of realistic f’s. It translates
into the assumption that f belongs to a model set X C X. The choice of this model set is of
course critical. When the f’s indeed represent functions, it is traditionally taken as the unit ball
with respect to some norm that characterizes smoothness. More recently, motivated by parametric
partial differential equations, a model based on approximation capabilities has been proposed in [2].
Namely, given a linear subspace V of X and a threshold € > 0, it is defined as

(2) K=Kye:={feX: distx(f,V) <e}.
This model set is also implicit in many numerical procedures and in machine learning.

Whatever the selected model set, the performance of the recovery procedure R : R™ — R is
measured in a worst-case setting via the (global) error of R over K, i.e.,

3) ex.Q(L; R) := Sup Q) = R(L(f))]

Obviously, one is interested in optimal recovery maps R°P' : R™ — R minimizing this worst-case
error, i.e., such that

opt :

(4) ex,q(L, R°") = Rzﬂg’llf—)R ex,o(L, R).

This infimum is called the intrinsic error of the observation map L (for @ over K). It is known, at
least since Smolyak’s doctoral dissertation [12], that there is a linear functional among the optimal
recovery maps as soon as the set K is symmetric and convex, see e.g. [10, Theorem 4.7] for a
proof. The practicality of such a linear optimal recovery map is not automatic, though. For the
approximability set (2), Theorem 3.1 of [4] revealed that such a linear optimal recovery map takes
the form RP': y e R™ > Y7, a?ptyi, where a°P* € R™ is a solution to

Q- Em: ail
i=1

an optimization problem that can be solved for X = C(D) in exact form when the observation

subject to Z aili(v) = Qv) foralwvelV,
X i=1

(5) minimize
GER"”

functionals are point evaluations (see [4]) and in approximate form when they are arbitrary linear
functionals (see [5] or Subsection 3.2 below).
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The approximability set (2), however, presents some important restrictions. Suppose indeed that
there is some nonzero v € ker(L) N'V. Then, for a given fy € K observed through y = L(fy) € R™,
any f; := fo+tv, t € R, is both model-consistent (i.e., f; € K) and data-consistent (i.e., L(f;) = y),
so that the local error at y of any recovery map R : R” — R satisfies

(6) eRQ(L.R(y) = sup |Q(f) — R(y)| = sup|Q(fy) — R(y)| = sup [(Q(fo) — R(y)) + tQ(v)],
fex teR teR
L(f)=y
which is generically infinite. Thus, for the optimal recovery problem to make sense under the
approximability model (2), one must assume that ker(L) NV = {0}. By a dimension argument,
this imposes

(7) n:=dim(V) < m.

In other words, we must place ourselves in an underparametrized regime for which the number n
of parameters describing the model does not exceed the number m of data. This contrasts with
many current studies, especially in the field of Deep Learning, which emphasize the advantages of
overparametrization. In order to incorporate overparametrization in the optimal recovery problem
under consideration, we must then restrict the magnitude of model- and data-consistent elements.
A glaring strategy consists in altering the approximability set (2). We do so in two different ways,
namely by considering a bounded approximability set of the first type, i.e.,

(8) K=Ky.,:={f€X: distx(f,V) <eand | f|]x <},
and a bounded approximability set of the second type, i.e.,
(9) K= ICEM{ = {f € X: JveV with ||f —v|]|x <eand [jv]|x < /{}.

We will start by analyzing the second type of bounded approximability sets in Section 2 by formally
describing the optimal recovery maps before revealing on a familiar example how the associated
minimization problem is tackled in practice. The main ingredient in essence belongs to the sum-of-
squares techniques from semidefinite programming. Next, we will analyze the first type of bounded
approximability sets in Section 3. We will even formally describe optimal recovery maps over more
general model sets consisting of intersections of approximability sets. On the prior example, we will
again reveal how the associated minimization problem is tackled in practice. This time, the main
ingredient in essence belongs to the moment techniques from semidefinite programming. In view
of this article’s emphasis on computability issues, all of the theoretical constructions are illustrated
in a reproducible MATLAB file downloadable from the author’s webpage.

2 Bounded approximability set of the second type

We concentrate in this section on the bounded approximability set of the second type, i.e., on
(10) K={feX: 3veV with [|f —v|x <eand |[v]x <r}.

We shall first describe optimal recovery maps before showing how they can be computed in practice.
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2.1 Description of an optimal recovery map

The result below reveals how [4, Theorem 3.1] extends from the model set (2) to the model set (10).

Theorem 1. If ) : X — R is a linear functional, then an optimal recovery map over the bounded
approximability set (10) is the linear functional

m
(11) RP' .y € R™ Za?ptyi € R,
i=1

where the optimal weight a°?* € R™ are precomputed as a solution to

. + K X max ‘ (v) — iai&(v)u.
i=1

acR™

(12) minimize |:E X HQ - Z a;l;
i=1

Proof. Since the model set (10) is symmetric and convex, there exists an optimal recovery map
RP' : R™ — R which is linear, i.e., of the form R%'(y) = 3.7, af®y;. The vector a®® € R™
minimizes in particular the worst-case error e := max{|Q(f) — Y., ail;(f)| : f € K} among all
a € R™. Thus, it is sufficient to transform this worst-case error into the expression featured between
square brackets in (12). This is done by writing

(13) e = max

max Za” ‘ Hf—vHX<€forsomev€Vw1thH1)HX</<;}
€

fex
veV

— max

{lev
= max {|Q(f Za” DI If=vlix < lollx <}
{le

Qh+v) - Zaz i+ 0)| 5 Ihllx < e, ollx <}

heX
veV
= max a || <€} max{‘ a ‘ v </{}
ma { |Q(h Z” )|+ Ikllx < e} + Qv Z” Iollx
By homogeneity, the latter is readily seen to coincide with the required expression. O

Remark. The approximability set (2) where the condition |[v||x < k is not imposed can be viewed
as an instantiation of (10) with k = oco. In this instantiation, if max,ep, |Q(v) — Y i 4 ai&-(v)i
was nonzero, then the objective function would be infinite. Therefore, the infimum will be attaine
with the constraint max,ecp, [Q(v)—> i~ ai&(v)‘ = 0 in effect. This argument constitutes another
way of deriving the form of the optimal recovery map over the original approximability set (2). Let
us note in passing that, while the optimization program (5) was independent of ¢ > 0, adding the
condition ||v||x < k does create a dependence on € > 0 in the optimization program (12), unless x
is proportional to €.
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Remark. In the presence of observation error e € R™ in y = L(f) + e, modeled as in [5] by the
bounded uncertainty set

(14) &={ecR™: |ell, <n},

an optimal recovery map for a linear functional @) : X — R over K and £ simultaneously still consists
of a linear functional RPt : y € R™ s S o

", a;”y;, but now the optimal weights a°?* € R™ a
solution to the optimization program

—I—I{Xmax

acR™ vEBy

(15) minimize [5 X HQ Zal i Zal i ‘ +1n % ||a\|p}

where p' = p/(p — 1) is the conjugate exponent to p € [1,00]. The argument, which follows the
ideas presented in [5], is left to the reader. We do point out that the program (15) is solvable in
practice as soon as soon as the program (12) itself is solvable in practice, for instance as in the
forthcoming example.

2.2 Computational realization for X = C[-1,1]

For practical purposes, the result of Theorem 1 is close to useless if the minimization cannot be
performed efficiently. We show below that in the important case X = C[—1,1], choosing V as
the space P, of algebraic polynomials of degree < n leads to an optimization problem which can
be solved exactly via semidefinite programming. For that, we also assume that the observation
functionals are distinct point evaluations and that the quantity of interest @ is another point
evaluation or the normalized integral. These restrictions can be lifted if we trade exact solutions
for quantifiably approximate solutions, see Subsection 3.2. In the statement below, the notation
Toep(x) represents the symmetric Toeplitz matrix built from a vector x € RY ie.,

xl $2 oo oo xd
T2 T1 X2

(16) Toep(x) := |+ .. .. .. ],

T2 T1 X2

EZEER oo 9 1 |
and the polynomials 7}, j € [0 : n — 1], denote the jth Chebyshev polynomials of the first kind.

Theorem 2. Assuming that V = P,, C C[—1, 1] and that ¢4, ..., ¢, are point evaluations at distinct
points 1, ..., T, € [—1,1], an optimal recovery map over the bounded approximability set (10) for
the quantity of interest Q(f) = f(zo), o € {z1,...,Tm}, or Q(f) = (1/2) f_ll f(z)dz is the linear
functional

(17) RP' gy e R™ Z a®y; € R,
=1
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where the optimal weights a°®* € R™ are precomputed as a solution to the semidefinite program

m
(18) minilﬁgize |:€ X g Si+ kK X ul] subject to Toep(u + Ca —b) = 0, Toep(u — Ca+b) = 0,
s e m ‘
and s+a>0, s—a>0.

Here, b € R" and C' € R™*"™ have entries b; = Q(T}) and C;; = 4;(Tj), i € [1 : m], j € [0: n —1].

Proof. The work consists in recasting the objective function of (12) into manageable form. Under
the assumptions on #4,...,4,, and on @, the first term is not a problem, by virtue of

m
=1+ a;|.
C[_Ll]* ;| Z|

We now turn to the second term, i.e., the one involving the maximum over the unit ball By of V.

(19) |- Em: ail;
i=1

The idea, common in Robust Optimization [1], relies on duality to change the maximum into a
minimum, which is then integrated into a larger minimization problem. This is possible essentially
when By admits a linear or semidefinite description, which is the case for V' = P,. Indeed, as
already observed in [6, Subsection 5.3], following ideas formulated in [8], the unit ball of P,, admits
the semidefinite description

n—1
(20) Bp, = { Z tr[D;(P — M)]T; for some positive semidefinite matrices M, P € R™*"
j=0

that satisfy tr[D;(P + M)] = 50,3},

where, for each j € [0 : n — 1], the symmetric matrix

0 0 1 0 0
0 0 1
0 0
(21) Dj=1|1 o . "-. . 0 1|€R™
0 1 0
Do .0

has 1’s on the jth subdiagonal and superdiagonal and 0’s elsewhere — in particular Dy is the n x n
identity matrix. Thus, for a fixed a € R™, with Q, := Q — >_"; a;¢;, the maximum over By reads

(22) L max {u[(f Qa(Tj)Dj> (P— M)} : M, P = 0, te[D;(P + M)] = 50,]-}.
, =~

6
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Invoking duality in semidefinite programming (see e.g. [3, p.265-266]), the latter can be transformed
into

n—1 n—1

(23) 5211131 uy subject to Z ujDj Z Q.(T;)D; = 0.
7=0 7=0

Since Qq(Tj) = bj — (Ca); for any j € [0 : n — 1], the constraint in (23) can be condensed to

Toep(u £+ (Ca — b)) = 0. Then, combining the minimization over v € R™ with the minimization

over a € R™, the optimization program (12) becomes equivalent to

m
(24) miniﬂgnize [5 X g la;| + K x ul] subject to Toep(u £ (Ca — b)) = 0.
a€R™
uw€ER™ =1

The final step is the introduction of slack variables s € R™ such that |a;| < s;, i.e., —s; < a; < sy,
for all i € [1: m)]. O

3 Bounded approximability set of the first type

We concentrate in this section on the bounded approximability set of the first type, i.e., on
(25) K={feX: distx(f,V) <eand |f|x <r}.

Once again, we shall first describe optimal recovery maps before showing how they can be computed
in practice.

3.1 Description of an optimal recovery map

The result below reveals how [4, Theorem 3.1] extends from the model set (2) to the model set (25).

Theorem 3. If ) : X — R is a linear functional, then an optimal recovery map over the bounded
approximability set (25) is the linear functional

m
(26) RP iy eR™ > a™y; €R,
i=1
where the optimal weights a°P* € R™ are precomputed as a solution to

m
(27) miniﬂr{pize [6 X ||l x+ + K x HI/H)(*] subject to p+v =Q — Zai& and py = 0.
a€R™
nreX* =1



INSTANCES OF COMPUTATIONAL OPTIMAL RECOVERY: REFINED APPROXIMABILITY MODELS

As a matter of fact, Theorem 3 is a corollary of Theorem 4 below. The setting of the more general

result involves subspaces Vi,...,Vk of a linear space X equipped with possibly distinct norms
I llays---5 Il - llx)- The model set is then defined, for some parameters 1, ...,ex > 0, by
(28) K={feX: diStH.”(l)(f, Vi) <eq,... ,diSt”,”(K)(f, Vi) <ex}.

It corresponds to what was called the multispace problem in [2, Section 3]. One works under the
assumption that

(29) ker(L)NViN...Nn Vg = {0}.

This assumption holds for the bounded approximability set of the first type, obtained by taking
Vi=V,Va={0}, and || - [0) = |- Iy = II - [Ix-

Theorem 4. If ) : X — R is a linear functional, then an optimal recovery map over the model
set (28) is the linear functional

m
(30) ROP .y e R™ Z a?ptyi € R,
i=1

where the optimal weights a°P* € R™ are precomputed as a solution to

(31) minimize [&?1”)\1H(1) + EKH)\KH(K)] subject to Ay + -+ + A = Q — Zai&

Al AKEXT i=1
and /\1‘\/1 = 0, ce 7/\K|VK =0.
Proof. We first notice that, replacing the norms || - [|(x) by || - [[(x)/€x, We can assume that e, = 1.

Next, since the model set K is symmetric and convex, there exists an optimal recovery map which
is linear, i.e., of the form y € R™ — > a;y; € R. An optimal weight vector a°?* € R™ is then
obtained as a solution to the optimization problem

(32) miaréilgglize I}lg%({‘Q(f) — ;ai&-(f)‘ o disty.,, (f, Vi) < 1forall k € [1: K]}

opt

We claim that an optimal weight vector a°®* € R™ can also be obtained as a solution to the

optimization problem

m
33 inimi i M+ F Akl s M+ F Ak =Q — i
(33) minimize )\17“?)1\1}?6)(* {H 1||(1) ol KH(K) 1+ AR =Q ;al &

My, = 0 for all k € [1 : K]}

In other words, we shall prove in two steps that the minimal values of (32) and (33) coincide.
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Firstly, we shall justify that the objective function in (32) is bounded by the objective function
in (33) — a property which holds independently of a € R™. To do so, let us consider f € X such
that ||f —villa) < 1,...,If —vkllx) < 1 for some v; € Vi, ..., vk € Vi. Let us also consider
ALy AK€ X such that Ay +--- +Ag = Q — > 1% aifly and Ay, =0, ..., Ay, = 0. We have

B [QU) = | = )+ )] = Il )+ el )
=1

< Mlllf = villay + - + Ak lfy Lf = vkl
< Ay + - + 1Ak (k-

Taking the infimum over Aq,..., A and the supremum over f yields the desired result.

Secondly, we shall justify that the minimal value of (33) is bounded by the minimal value of (32).
To do so, let us consider the linear space Z := X X --- X X equipped with the norm

(35) e S0l 2= e [ fel.

Introducing the subspace U of Z given by
(36) U:={(h,...,h),h € ker(L)},

the assumption (29) is equivalent to U N (V} x --- x Vi) = {0}. Thus, we can define a linear
functional A on U & (V1 x --- x Vi) by

(37) A((h,...,h)) =Q(h) for h € ker(L),
(38) A(v1,...,vk)) =0 for (v1,...,vx) € Vi X -+ x Vg.

Let then A\ € Z* denote a Hahn Banach extension of A to the whole Z. With linear functionals
A, ..., Ag € X* defined for each k € [1: K] and f € X by A\x(f) :X((O,...,O,f,O,...,O)), where
f appears at the kth position, we have A\ (f) + -+ + Ag(f) = X((f,...,f)) for all f € X, hence
in particular @ — (A1 + - - - + Ax) vanishes on ker(L). This implies (see e.g. [11, Lemma 3.9]) that
Q—M+-+XAg)=>0", ag& for some af € R™. In other words, the first constraint in (33)
is satisfied by af and Ai,...,A\x. The second constraint is also satisfied: indeed, for vy € Vi,
Ai(vg) = X((O,...,O,vk,O,...,O)) = 0 since (0,...,0,vx,0,...,0) € V§ x -+ X Vg. Therefore, the
minimal value of (33) is bounded by

(39) ALl + -+ Ak (k) =

A(fr) +-+ Ak (fK)

max
1Nl (ry <1

= max M(f1) + -+ Ak (fr
11l <Ll fxc Nl ) <1 (A1) (F)

= max MN(fis- ..,
1,85, M )

= Al

max
lf1lly<1
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The latter equals the norm of A on U & (Vi x --- x Vi), by virtue of X being a Hahn-Banach
extension of A, so that

@) Wil el = e M=) fu—lz <1}
v=(v1,...,uK )EVI XX Vi
= h):||h— <lforallkell: K|}.
hénﬁfr}&){@( )b —vllgy < 1forallkel: K]}
v EVY

It follows that, for any a € R™,

heker(L
v EVY

(A1) Mty + - + Ak l[{x) =  max : {Q(h) - Zaifi(h) b = vl <1 forall ke [l: K]}
1=1

< max{‘@(f)—i a,&(f)‘ : diSt”,”(k)(f, Vi) <1forall k e [1K]}
i=1

T fex

Taking the minimum over all a € R™ shows that||Ay[[}) + - - -+ | Ax [[{f) is less than or equal to the
minimal value of (32), and in turn that the same is true for the minimal value of (33). O

Remark. The approximability set (2) where the condition ||f||x < & is not imposed can be
viewed as an instantiation of (25) with x = co. In this instantiation, if ||v|x+ was nonzero, then
the objective function in (27) would be infinite. Therefore, the minimum will be attained with
the constraint ||v| x+ = 0 in effect, leading to p = @ — >_7"; a;¢; and in turn to the constraint
Q-3 aili)jy = 0. We do retrieve the minimization of (5), as expected. We note in passing
that, while the optimization program (5) was independent of ¢ > 0, adding the condition ||f||x < k
does create a dependence on ¢ > 0 in the optimization problem (27), unless x is proportional to €.

Remark. In the presence of observation error e € R™ in y = L(f) + e, again modeled as in [5] by
the bounded uncertainty set

(42) E={ecR™: |el, <n},

an optimal recovery map for a linear functional ) : X — R over K and £ simultaneously still consists
of a linear functional R°P' : y € R™ +— >, a;-)ptyi, but now the optimal weights a°®* € R™ are

solution to the optimization program
m
(43) miléiﬂg}nize [ex||pllxs+rx|v]x-+nx]aly] subject to pu+v = Q—Z ail; and ppy = 0.
a
prEX* i=1

The argument follows the ideas presented in [5] and, although more subtle, is once again left to
the reader. We do point out that the program (43) is solvable in practice as soon as soon as the
program (27) itself is solvable in practice, for instance as in the forthcoming example.

10
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3.2 Computational realization for X = C[—1, 1]

As before, the high-level results of Theorems 3 and 4 are of little practical use if the minimizations
(27) and (31) cannot be performed efficiently. In the important situation X = C[—1,1], the dual
functionals appearing as optimization variables are identified with measures. Despite involving
infinite dimensional objects, minimizations over measures can be tackled via semidefinite program-
ming, see e.g. [9]. Although such minimizations are in general not solved exactly, their accuracy can
be quantifiably estimated in our specific case. For ease of presentation, we illustrate the approach
by concentrating on the optimization program (27) rather than (31). We also assume that V = P,

and we write the observation functionals f1,...,#,,, as well as the quantity of interest @), as
1 1
(44) 6N = [ t@an@. e = [ f@ae).  fec-1,
for some signed Borel measures Aj,..., Ay, p defined on [—1,1]. In this way, passing from linear

functionals to signed Borel measures as optimization variables, the program (27) reads

1 m
ed|p| + kd|v| subject to p+v =p— E a;\;

1 ;

v =1

(45) minimize /
a€R™

1
and / v(z)dp(x) =0 for all v € Py,
-1

Let us introduce as slack variables the nonnegative Borel measures u™, 4=, v*, and v~ involved in
the Jordan decompositions p = ™ — = and v = vt — v~ so that the problem (45) is recast as

1 m
(46) mialzéi%}ze /_1 edpum™+p )+ rdvT+v7) stout —pm vt —vT =p— Z ai\;
uE i=1

1
and / v(x)d(ut — p7)(x) =0 for all v € P,,.
~1

Next, replacing the measures u* and v* by the infinite sequences of moments w* = M, (u*) € RY
and 2% = M (vF) € RY of moments defined for k£ > 1 by

1 1
(47) wiE = /_1 Ti—1(x)dp™ (z), zf = /_1 Tr—1(z)dv (),

the problem (46) is equivalent! to the infinite semidefinite program

acR

m
(48)  minimize € (wi +w])+ k(2 +27), stow —w +27 —27 = My (p - Z ai/\i),
wi,ZiERN i=1

+ - _ ; :
and w; —w; =0 for all j € [1:n],

and Toep., (w™) = 0, Toep, (2F) = 0.

Lthe equivalence is based on the discrete trigonometric moment problem, see [7] for details.

11
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Instead of solving this infinite optimization program, we truncate it to a level N > n and solve
instead the resulting finite semidefinite program

acR™
wt zFeRN

m
(49)  minimize ¢ (w] +wy) + k(2 +27), stowT —wT +2T -2 =My (p - Z ai/\i>
i=1

and w;f—wj_ =0 for all j € [1:n],
and Toep y(w®) = 0, Toepy(zF) = 0.

The rest of this section is devoted to justifying in a quantitative way that the minimal value of this
truncated problem converges to the minimal value of the original problem. We also justify, although
not quantitatively, that the vectors aN) € R™ obtained by solving (49) converge as N — oo to
a vector a°P* € R™ solving (27) — we do not analyze the behavior of the optimal measures since
only the vector a®P! is required in (26). From now on, we also work under the assumption of linear
independence for the restrictions ¢1yp, ,...,¢mp, of the observation functionals to the space Pp,
of polynomials of degree < m. This assumption is easily seen to be equivalent to the invertibility
of (the transpose of) the moment matrix M € R™*™ defined by

(50) Mjﬂ' = Ei(Tj—l), 1,7 € [1 : m]
This holds e.g. when the observation functionals are evaluations at m distinct points in [—1, 1].

Theorem 5. Suppose that the system (f1p,,,. .., lm|p,,) is linearly independent. If there is a
unique a®?* € R™ yielding a minimizer (a®Pt, Pt v°Pt) of (27), then a°P' is the limit of any
sequence (a¥))ys, obtained by solving (49) for each N > n. Without uniqueness, it still holds
that any subsequence of (a(N )) ~N>n admits a subsequence converging to the first component of a
minimizer of (27).

Proof. The first part of the theorem follows from the second part: it is indeed well-known that the
convergence of a sequence towards a given point is guaranteed as soon as any of its subsequences
admits a subsequence converging to that point.

To establish the second part, let o) € R and (a™),w® @) zHN)) ¢ R™ x (RN)* denote, for
each N > n, the minimum value and some minimizer of (49), respectively. We write wH (V) ¢ RN
and z5((N) ¢ RN for the infinite vectors obtained by padding the finite vectors w™®) ¢ RN
and z5®) ¢ RN with zeros. Let us now consider a subsequence ((a(Nk),wj:’((Nk)),ziv((]\f’v))))%c>1
of the (£7 x (£,)%)-valued sequence ((a(N),wi’(N),zi’(N)))N>n. Our objective is to show that
there exist a subsequence ((a(N’“l),wi’((N’%)),zi’((N’%))))bl and a minimizer (a,w*,z%) of (48)
such that aMee) converges to a as £ — oco. To this end, we start by observing that the sequence
(oM} is nondecreasing and bounded by the minimal value a®P* of (48): firstly, the inequality
aNk) < oWNk+1) follows from the feasibility of (a(NkH),w[ilz’g\],z’]““),z[il:’](vj\:fl)) for (49) specified to
N = Ny, so that

(51) ale) < ¢ (wzrv(NkH) i wl_v(NkJrl)) 4 H(erv(NkH) + Zl_v(Nk+l)) — oWk+1)

?
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opt w:l:,opt 2:|:,0pt)

? T [1:NE]? “[1:Ng]
for (49) specified to N = Nj, where evidently (a°Pt,w®0°Pt z¥°Pt) represents some minimizer
of (48). We continue by remarking that the positive semidefiniteness of Toepy, (w k)Y and

Toeka(zi’(Nk)) yields, for any j € [1: Ng],

secondly, the inequality a™k) < °Pt similarly follows from the feasibility of (a

(52) ‘w;tv(Nk)‘ < wE ) < é(e (wih(Nk) _|_w1_7(Nk)) + K}(Zi‘ﬁ(Nk) + Z;’(Nk))) < éa(Nk) < éaopt,
1 1 1
(53) ‘Z;tv(Nk)‘ < zih(Nk) < E(e (wih(Nk) + w; (Nk)) + I{(’Z;—’(Nk) + 2 7(Nk))) < Ea(Nk) < anpt‘

Thus, the £ -valued sequences (w™((NV6)), 51 and (25((NV6)), 5, are bounded. This guarantees, by
the sequential compactness Banach-Alaoglu theorem, that (w™((V6)), 5 and (25((V)), 5 admit
convergent subsequences in the weak-star topology of ¢ . We denote the resulting convergent
subsequence and its limit by ((wi’((N’“e)),zi’((N’“e))))bl and (w™T,Zz%), respectively. They come
with associated (a(N kl)) ¢>1 and a. Indeed, the constraint imposed on minimizers of (49) yields in
particular, for Ny, > m,

(54) Ma Ve — Mup(p) — (w+7(NkL,) — W) 4+ (WNiey) 2_7(Nkl))[1:m]'
In view of wj-c’(Nk‘f) — @jﬁ and zj-c’(Nk‘Z) — %}i for all 7 > 1, which is a consequence of the weak-star

convergence, and of the invertibility assumption for the moment matrix, we see that

(55) a™Me) — G i= M (Mp(p) — (@7 — @7 + 25 = 27) 1))
{—00
It remains to prove that the quintuple (@, w®,z%) is a minimizer of (48). Writing the constraint

of (49) satisfied by (a™re), w™ W) 25Nk and passing to the limit as £ — oo shows that the
quintuple is feasible for (48). It is also a minimizer for this program, by virtue of

~ — ~ — ) (N —, (N (N —, (N},
(56) (i +wy)+rGE +7]) = éhm (a (wzr( ko) + w, ( kl)) + H(Z;_( ke) + 2 ( kl)))
—00
= lim aMke) < 0P,
f—00 -
Our objective is now established, so the second part of theorem is proved. O

Theorem 5 does not tell us how to choose N in order to reach a prescribed accuracy on ||a®P* —a(N)||,
not even on a®®* — a¥). We intend to provide an accuracy estimate for the latter, which we do
under the further restriction that the observation functionals and the quantity of interest are
point evaluations at distinct z1,...,2,, € [-1,1] and at z¢ € [-1,1] \ {x1,..., 2z}, respectively.
Moreover, the estimate is an a posteriori one, in the sense that we need to solve problem (49) for a
particular NV first. As a matter of fact, we also need to solve an extra linear program subordinated

13
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to a particular grid t = (¢1,...,tx) avoiding the x;’s. This program is
T
(57) mlmmlze EZrh+ﬁZSh stou+v=|—-al, {blClD}u:O,
U UER1+7”+K 0

rs€R1+m+K -
andr+u>0,r—u>0,s+v>0s—v>0.

Here, the vector b € R”, the matrix C' € R"*™ (both encountered before), and the matrix D € R**K
have entries b; = Tj_1(z0), Cji = Tj—1(x;), and Dj, = Tj_1(t), i € [1:m],j € [1:n], k€ [1: K].

Theorem 6. Suppose that the observation functionals ¢1, . . ., £,, and the quantity of interest Q) take
the form 4;(f) = f(x;), i € [1 : m], and Q(f) = f(xo) for distinct points g, z1,...,2zm € [—1,1].
For any N > n and any grid ¢ of [—1,1] not intersecting {zg, 1, ..., 7y}, the minimal value a°P*
of (27) satisfies

(58) M) < 0Pt < g0

where aN) is the minimal value of (49) and % is the minimal value of (57).

Proof. The leftmost inequality of (58) was already justified (implicitly) in the proof of Theorem 5
and actually does not rely on any assumption on the observation functionals or the quantity of

°Pt js the minimal value of

interest. For the rightmost inequality of (58), we keep in mind that «
the optimization program (45). Since this is a minimal value over all signed Borel measures, an

upper bound is provided by the minimal value 8 over the subset of all signed Borel measures

consisting of linear combinations of Dirac measures at the distinct points xg, z1,...,Tm,t1,...,tK
— the points xg, x1, ..., %, are included in order to make the constraint of (45) feasible. Writing
such measures as
m K
(59) U= udg, + Z Wby, + Z U, s
i=1 k=1
m K
(60) V=100, + Z Vioz, + Z vy 0y,
i=1 k=1
we see that the upper bound AW takes the form
(61) B = min {e(lulﬂlu'lll + ) + sl + [Vl + [[07]h) -
a€R™ u,veR

’u,/;l),ERm u// ”ERK

ut+v=1u+v=—a, v+ =0, ub+C’u'+Du":0}.

By gathering v € R, «/ € R™, and v € R¥ into a single vector u = [u;u/;u"] € R+ which
we later rename u, and similarly for v € R, v/ € R™, and v" € R¥, the objective function simply
reads e||u|l; + &||0||1, while the constraints read @ + v = [1; —a;0] and [b,C, D]u = 0. The final
transformation applied to arrive at the linear program of (57) consists in introducing slack variables
7,5 € RY™HE guch that 4] < r and |7 < s. O
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Remark. When the observation functionals and the quantity of interest are point evaluatlons a
solution a® to the linear program (57) yields a linear functional RO .y e R™ Sy Z yl eR
which turns out to be a near-optimal recovery map. Indeed, remembering that the first step of
the proof of Theorem 4 is valid for a®®, which comes with atomic measures p® and v® such that

p® 4 = p S E))\ and f (2)du® (x) = 0 for all v € P, we derive that the error of
RW over K satisfies
1
(62) sup Q(f) ~ KO(L()| < [ e+ rai?| =
c _

This estimate matches the intrinsic error a®P! with error at most 3% — o(N). This quantity, which
is available after solving (49) and (57), is small when the truncation parameter N and the size of
the grid t are large.
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