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Heme oxygenase (HO) enzymes catalyze heme into biliverdin, releasing carbon monoxide
(CO) and iron into circulation. These byproducts of heme degradation can have potent
cytoprotective effects in the face of stressors such as hypoxia and ischemia-reperfusion
events. The potential for exogenous use of CO as a therapeutic agent has received
increasing attention throughout the past few decades. Further, HO and CO are noted as
putatively adaptive in diving mammals and certain high-altitude human populations that
are frequently exposed to hypoxia and/or ischemia-reperfusion events, suggesting that
HO and endogenous CO afford an evolutionary advantage for hypoxia tolerance and are
critical in cell survival and injury avoidance. Our goal is to describe the importance of
examining HO and CO in several systems, the physiological links, and the genetic factors
that underlie variation in the HO/CO pathway. Finally, we emphasize the ways in which
evolutionary perspectives may enhance our understanding of the HO/CO pathway in the
context of diverse clinical settings.
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INTRODUCTION

In the late 1990s, a concept emerged suggesting that all cells possessed protective genes with
the sole purpose to ensure survival (Platt and Nath, 1998). These cytoprotective genes played
a role in the production of antioxidants, acute phase proteins, as well as regulating the effects
of aging. A few were clearly master regulators, such that when not present, the cell or tissue
was sensitive to stress. One of these was Hmox, which encodes the protein heme oxygenase
(HO), the rate limiting enzyme responsible for the degradation of heme. HO catabolizes heme
into biliverdin, which is subsequently converted to bilirubin by biliverdin reductase, releasing
carbon monoxide (CO) and iron as byproducts. Paradoxically, CO was strictly considered a
toxic pollutant. This notion stems from CO having a high affinity for the O,-binding site on
hemoproteins. Therefore, elevated levels of CO can reduce O, storage capacity and inhibit O,
transport, resulting in CO toxicity. However, recent studies have revealed the biological effects
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of the gas, leading to the acceptance of CO having therapeutic
and cytoprotective effects in modulating inflammation, cell
death, and proliferation (Motterlini and Otterbein, 2010).

Heme oxygenase genes are highly conserved and found in
most living organisms (Wilks, 2002; Li and Stocker, 2009).
The inducible HO-1 and constitutive HO-2 are ~40% identical
in their amino acid sequence in humans (Cruse and Maines,
1988), with HO-1 observed at highest levels in the spleen,
lung, and visceral adipose and HO-2 in the testes, heart, brain,
and stomach (GTEx, V6). Stressors known to stimulate HO-1
expression include oxidative stress, hypoxia, cytokines, heavy
metals, and bacterial endotoxins (Abraham, 2002). HO enzymes
function as a crucial mechanism to recycle iron in the body
through the degradation of heme (Wilks, 2002). The majority
of extant vertebrates are known to utilize iron-containing
hemoproteins (e.g., hemoglobin, myoglobin, neuroglobin,
cytochromes, catalase, and peroxidase) as a mechanism to
transport electrons in the respiratory chain for the production
of ATP, to reduce oxidative stress and/or to increase the storage
capacity and delivery of oxygen (O,) to cells (Hardison, 1996).
Therefore, the ability to recycle iron stores in the body can
offer an adaptive advantage if organisms find themselves
iron-limited. The regulation of HO enzymes can also influence
erythrocyte lifespan. Hmox1™~ mice rarely survive beyond the
development and those that do have prolonged erythrocyte
lifespans, reduced hemoglobin content, and a reduced erythrocyte
size that leads to microcytic anemia (Fraser et al, 2015).
Moreover, human patients with reduced erythrocyte lifespans
display elevated blood and breath CO levels, suggesting increased
HO activity (Strocchi et al., 1992).

Recent studies have shown that species and populations
adapted to tolerate chronic hypoxia and/or ischemia/reperfusion
(I/R) events have upregulated or modified the HO/CO pathway
in a manner that could afford beneficial side effects (Herrera
et al,, 2008; Simonson et al., 2010; Tift et al., 2014). Here,
we highlight some of those model species and populations
and discuss how such modifications could provide an
evolutionary advantage and how information from these studies
may be used to learn more about the applications of the HO/
CO pathway in the prevention and treatment of certain diseases
(Goebel and Wollborn, 2020).

EVOLUTIONARY INSIGHTS FROM
HYPOXIA-ADAPTED POPULATIONS

The late August Krogh stated that, “for such a large number
of problems there will be some animal of choice, or a few
such animals, on which it can be most conveniently studied”
(Krogh, 1929). Model organisms naturally adapted for life in
challenging conditions offer excellent opportunities to understand
how extreme phenotypes afford protective advantages that can
be directed to improve the treatment and/or the prevention
of specific human pathologies (Carey et al., 2012; Carey, 2015).
For example, some diving mammals experience dramatic
hypoxemia (Meir et al., 2009) and I/R events (Zapol et al., 1979)
during their repeated long-duration breath-holds and do not

develop injuries from this lifestyle. Species that have adapted
to live at high altitude or under other hypoxic conditions
(e.g., burrowing) also avoid pathologies associated with exposure
to chronic hypoxia (Logan et al., 2020). These natural models
offer unique insights into the adaptive mechanisms underlying
tolerance to hypoxia and/or I/R injury.

Some deep-diving mammals are known to experience levels
of hypoxemia during dives that resemble arterial oxygen
saturations of humans breathing ambient air on the summit
of Mount Everest (Meir et al., 2009). These deep-divers also
appear to be protected from repeated I/R events that occur
in a majority of their tissues on a dive-to-dive basis as a
result of the “dive response,” characterized by extreme bradycardia
and peripheral ischemia to maintain mean arterial blood pressure
during breath-holds (Halasz et al, 1974; Zapol et al, 1979;
Allen and Vazquez-Medina, 2019). In 1959, Pugh reported
levels of CO in the blood of deep-diving Weddell seals from
Antarctica that resembled those of cigarette smokers (Pugh,
1959). Since then, Tift et al. (2014) have discovered that
deep-diving northern elephant seals also maintain high levels
of CO in the blood with carboxyhemoglobin (COHb) levels
between 5 and 11% (Tift et al., 2014). While CO was shown
to be high in the blood of two deep-diving pinnipeds, the
distribution of CO concentrations in the blood of different
diving species is still unknown.

The quantity of CO found in the blood of elephant seals
is similar to that previously mentioned in laboratory studies,
which demonstrate cytoprotective effects from exogenous CO
delivery (Nakao et al., 2006). It is hypothesized that the elevated
hemoprotein stores seen in deep-diving mammals are the source
of the high CO levels, which could be used as a mechanism
to reduce the development of tissue injuries from the chronic
hypoxemia and I/R events they experience while diving
(Tift and Ponganis, 2019). These high CO levels could indicate
alterations in the erythrocyte lifespan and HO activity in specific
tissues of these animals. Such levels of CO would likely increase
the O,-binding affinity of hemoglobin, impacting O,-delivery
mechanics. Considering the low arterial pO, values routinely
experienced during breath-holds (<15-20 mmHg), it is possible
that a higher hemoglobin-O, affinity due to moderate COHb
levels could preserve blood O, stores, increasing O, availability
later in the dive (Storz, 2016). Indeed, the Haldane effect
suggests that mice exposed to trace amounts of CO will more
efficiently acquire O, and survive longer under conditions of
severe hypoxia (Roughton and Darling, 1944). Endogenous CO
also impacts mitochondrial O, consumption and ATP production,
which could contribute to hypometabolism during breath-holds
and exposure to hypoxia (D’Amico et al., 2006).

Species adapted to live at high altitude face a different hypoxic
challenge, in that the ambient environment has a reduced pO.,.
Certain pathologies may develop due to acute and chronic
hypoxia exposure at altitude (e.g., pulmonary and cerebral
edema, pulmonary hypertension, and excessive erythrocytosis).
Considering hypoxia as a stressor that increases HO-1 activity
(Shibahara et al, 2007), the HO/CO pathway is of interest
when studying organisms at high altitude. When laboratory
rats were brought from an elevation of 1,006 to 3,048 and
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4,572 m, their COHD levels increased linearly with altitude
from 0.68 to 1.16, and 1.68%, respectively (McGrath, 1992).
Similarly, when healthy adult humans were brought from an
altitude near sea level to 3,517 m, their COHDb levels increased
from 0.79 to 0.95% within 20 h (McGrath et al., 1993). When
comparing neonatal sheep (lowland species) and llama (highland
species) that underwent gestation at high altitude (3,600 m),
only sheep developed pulmonary arterial hypertension (Herrera
et al, 2008; Llanos et al, 2012). This was associated with
reduced soluble guanylate cyclase, HO, and CO production
despite increased nitric oxide synthase activity in the lungs
of the sheep. In contrast, neonatal llamas avoided pulmonary
hypertension and had an increase in pulmonary CO production
and HO-1 expression with no change in nitric oxide levels
(Herrera et al., 2008). This specific HO/CO protective effect
has not been investigated in other species adapted for living
with chronic hypoxia.

Humans of Tibetan ancestry exhibit a lower average hemoglobin
concentration compared to sojourners and long-term highland
residents in the Andes, where individuals exhibit varying degrees
of polycythemia (Beall, 2007). Whether relatively lower
hemoglobin provides a direct adaptive effect or is the side
effect of other traits that provide an advantage remains an
important question in the field (Storz, 2010; Simonson 2015).
HMOX2 has been detected as a top selection candidate gene
in ours and others studies of Tibetan adaptation and is
hypothesized to play a role in regulating heme catabolism and
CO production (Simonson et al., 2010; Yang et al, 2016). A
study of 1,250 high-altitude native Tibetans found variants at
this locus that are associated with decreased hemoglobin
concentration in males, and in vitro analysis indicates that a
derived intronic variant (rs4786504) is associated with increased
HMOX2 expression (Yang et al., 2016). While it remains to
be determined if regulatory variants at this locus lead to increased
heme catabolism, such alterations could contribute to the lower
hemoglobin concentrations seen in Tibetans living at altitude.

In contrast to Tibetans, adaptive HMOX genetic variants have
not yet been identified in Andean or Ethiopian highlanders.
However, HO could mitigate various challenges imposed by hypoxia
at altitude (e.g., higher Hb-O, affinity; Storz, 2016). Our recent
examination in Andean adult males and females living at 4,350 m
shows a positive relationship between endogenous CO in breath
and blood with both hemoglobin concentration and altitude
(Figure 1). These preliminary findings could reflect elevated
erythrocyte destruction, reduced erythrocyte lifespan, and/or
increased HO-1 or HO-2 activity. Genetic studies in lowlanders
have shown that individuals with increased HO-1 expression are
less prone to pathologies, such as diabetes, atherosclerosis, chronic
obstructive pulmonary disease (COPD), and arthritis (Motterlini
and Otterbein, 2010). Whether these levels contribute to the
variability in pathologies associated with excessive erythrocytosis
and chronic mountain sickness in Andeans remain to be determined.

CLINICAL INSIGHTS

Hypoxemia and I/R events are complications inherent to common
disease states that often lead to a suite of downstream problems,
including adverse cardiopulmonary effects, inflammation, and
tissue death. Induction of a battery of stress response genes,
such as HMOX1, respond metabolically to (1) degrade elevated
heme released during tissue damage in part due to an increase
in intracellular hemoproteins and (2) to generate bioactive
products to further enhance cell and tissue recovery (Figure 2).
Hypoxia and inflammation often occur in tandem during infection
or I/R events, whereby the hypoxia-inducible factor (HIF)
pathway interacts with NF-kB signaling to coordinate molecular
responses, including regulation of HMOXI (Lee et al., 1997;
Rushworth and O’Connell, 2004).

Why would evolution result in a system that increases CO in
the height of hypoxia or an inflammatory sequelae and ongoing
stress response that otherwise decreases tissue O, availability?
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FIGURE 1 | (A) End-tidal carbon monoxide (CO) levels (ppm) in 47 adults from Cerro de Pasco, Peru (high altitude), and 18 adults of mixed ancestry living in San
Diego, California, USA (sea level). There was no statistical difference between males (blue) and females (red) from high or low altitude groups (p > 0.8 for both). (B)
Relationship between total hemoglobin (g/dl) and the percent carboxyhemoglobin (COHb) in venous blood of adult males (n = 22; blue) and females (n = 21; red)
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Perhaps permissive hypoxia, driven by several selective O,
sensors such as HIF-1a, HIF-2a, and/or mitochondrial oxidases,
serves as a mechanism by which cells can dynamically adjust
to optimize survival in different environments. In each instance,
the availability of O,, which we define as that which is permissive
or allowed, dictates specific cellular responses that benefit the
needs of the tissue. While O, is a requisite cofactor for HO-1
activity, HO-1 is also potently induced by hypoxia; in a somewhat
paradoxical manner, this results in the generation of CO which
then competes with O, for heme binding sites (Figure 2).
This observation has led to speculation that CO creates permissive
hypoxia in tissues that serve to modulate cellular energetics
and protection (D’Amico et al., 2006).

The effects of HO-1 and CO on tissue protection have been
clearly demonstrated in models of I/R injury and many other
tissue ischemic pathologies (Wegiel et al., 2014). Due to space
constraints, we highlight a few of the seminal findings. Induction
of HO-1 or exposure to CO offer dose-dependent anti-
inflammatory and cytoprotective effects (Otterbein et al., 2016).
The cytoprotective effects of CO were first demonstrated in
acute lung injury, and these findings rapidly expanded through
the work of numerous laboratories to most models of acute
organ injury (Hopper et al., 2018). Administration of exogenous
CO or higher HO-1 activity increases the expression of
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FIGURE 2 | Impacts of aerobic exercise, breath-hold diving, and exposure
to altitude on the HO/CO pathway. The stress response protein heme
oxygenase-1 (HO-1) responds to intense aerobic exercise and/or skeletal
muscle microtrauma by (1) degrading heme that is released during tissue
injury as a danger associated molecular pattern and (2) generating bioactive
products that contribute to cell and tissue recovery. “Simonson et al., 2010.

anti-inflammatory cytokines and reduces expression of multiple
pro-inflammatory cytokines during acute pulmonary inflammation
(Konrad et al., 2016; Zhang et al., 2019). In particular, CO
inhibited = LPS-induced pro-inflammatory  signaling by
downregulating NADPH oxidase-dependent reactive oxygen
species (ROS) production in macrophages, thereby inhibiting
toll-like receptor (TLR) signaling (Nakahira et al, 2006).
Additionally, CO can inhibit tumor necrosis factor-induced
apoptosis via a p38 MAPK-dependent mechanism (Ryter et al.,
2007). These beneficial effects may also result in part from CO
stabilization of HIF-la (Chin et al, 2007). This is important
considering the impact of pulmonary function in hypoxia-induced
diseases at high altitude (Selland et al., 1993) and the consistent
hypoxemia and lung collapse seen during deep-dives in marine
mammals (McDonald and Ponganis, 2012).

CO is also hypothesized to play a role in the control of breathing
via peripheral O, sensing in the carotid body, where HO-2 is
expressed (Prabhakar, 2012). In the presence of hypoxia, decreased
HO-2 activity in glomus cells may reduce CO generation and,
since CO inhibits cystathionine-y-lyase production of the excitatory
gasotransmitter H,S, decreased CO generation may result in
increased sensory activity of the glomus cells. This is intriguing
given that the gene HMOX2 is under evolutionary selection in
Tibetan populations, who maintain elevated hypoxic ventilatory
responses compared to other high-altitude groups (Beall, 2007).

Organ transplant has been perhaps the most well studied
when considering translational potential of the HO/CO pathway.
The role of HO-1/CO in the kidney was first described in
models of I/R injury, where induction of HO-1 or exposure to
CO protected the kidney (Schaaf-Lafontaine and Courtoy, 1986;
Blydt-Hansen et al., 2003). This large body of work culminated
in the initiation of multiple clinical trials, where exogenous CO
has safely been administered to transplant patients'. The mechanism
by which CO imparts its salutary effects remain incompletely
understood, but likely targets include hemoproteins such as
mitochondria oxidases and therein the regulation of bioenergetics,
ROS formation, and consumption of O, (Schallner and Otterbein,
2015; Otterbein et al., 2016). The beneficial effects of HO-1
and CO in organ injury result from preserving mitochondrial
health and would dovetail with the observations observed in
diving mammals and populations that live at altitude. It is
intriguing to speculate that one mechanism for the cytoprotective
effects of CO, in instances of tissue hypoxia, may be that CO
permits displacement and redistribution of O, within intracellular
stores. The activity of HO-1 is known to increase during hypoxia,
increasing CO production, which can alter cellular metabolism;
thus, another potential mechanism of CO that plays a role in
hypoxia tolerance is slowing or shifting oxidative metabolism
to glycolysis through permissive use of O, (Figure 2).

The HO/CO pathway has also been the focus of many
reports in models of cardiovascular disease, including heart
failure and cardiac arrest (Shih et al., 2011). Cardiac muscle
cells deficient in HO-1 accumulate lethal amounts of ROS,
and mice that survive with embryonic HO-1 deletion
exhibit many deleterious effects (Kapturczak et al., 2004).

'www.clinicaltrials.gov
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Furthermore, Hmox1™~ mice are highly susceptible to I/R injury
and, after hypoxia, these animals show evidence of right
ventricular infarction (Yoshida et al., 2001; Liu et al., 2005).
During reperfusion in the heart, CO administration can decrease
infarct size, reduce apoptosis, and increase inotropy. Although
those effects were examined mostly in a cardiovascular system,
HO-1 also affects other cell types, including skeletal muscle
and the physiologic response to exercise (Kozakowska et al., 2018).

Skeletal muscle comprises almost 40% of total body mass in
humans, exhibiting major metabolic activity by contributing up
to 30% of the resting metabolic rate in adults (Zurlo et al., 1990).
The tissue can respond to numerous environmental and physiological
challenges (e.g., hypoxia and I/R events) by changing its phenotypic
profile and is one commonality across diving animals and individuals
living at altitude (Pette and Staron, 2001; Spangenburg et al.,
2008; Pabst et al, 2016). Skeletal muscle contraction during
exhaustive exercise generates ROS that can promote oxidative
damage to myofibers (Reid, 2001), and it has been suggested
that HO-1 can protect against exercise-induced injury (Saxena
et al, 2010). HO-1 is normally expressed at very low levels in
skeletal muscle, but increases dramatically with exhaustive exercise
(Pilegaard et al., 2000). The discovery that CO induces mitochondrial
biogenesis through specific signaling pathways has raised the
possibility that it contributes to the resolution of skeletal muscle
injury during and after episodes of oxidative stress, such as exercise
or I/R events (Suliman et al, 2007). Intermittent CO breathing
after a single exercise test led to an increase in mitochondrial
oxidative stress markers and mitochondrial fusion protein expression
indicative of mitochondrial biogenesis in skeletal muscle.

From a clinical perspective, based on high disease prevalence
and consequences, there is intense interest in both intermittent
hypoxemia (as seen in obstructive sleep apnea-OSA) and
sustained hypoxemia (as seen in COPD or at high altitude;
Soler et al,, 2015; Benjafield et al, 2019). The combination
of these stimuli (sustained plus intermittent hypoxemia) occurs
in some clinical settings, including overlap syndrome (OSA
plus COPD), or in OSA patients at high altitude (Marin et al.,
2010). The deleterious effects of hypoxemia are well established
(Drager et al, 2015; Umeda et al., 2020), although some
literature supports a potential protective role of ischemic
preconditioning with more mild levels of hypoxemia (Sanchez-
de-la-Torre et al., 2018). Regarding CO, some data support
its role as a biomarker in OSA (Kobayashi et al., 2008),
although its biological impact in these patients has been
debated (Owens et al., 2008). Further translational research
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