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ABSTRACT. We study two notions of Dirichlet problem associated
with BV energy minimizers (also called functions of least gradient)
in bounded domains in metric measure spaces whose measure is
doubling and supports a (1, 1)-Poincaré inequality. Since one of the
two notions is not amenable to the direct method of the calculus of
variations, we construct, based on an approach of [23, 29], solutions
by considering the Dirichlet problem for p-harmonic functions, p >
1, and letting p — 1. Tools developed and used in this paper
include the inner perimeter measure of a domain.
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1. INTRODUCTION

Existence, uniqueness, continuity, and stability of solutions to the
Dirichlet problem for p-harmonic functions in metric measure space
setting is now reasonably well understood when 1 < p < co. The cor-
responding problem for p = 1, that is, finding a BV function of least
gradient in the given domain, with prescribed trace on the boundary, is
not well understood. Part of the problem is that without additional cur-
vature restrictions for the boundary of the given domain, solutions to
the Dirichlet problem, where the trace of the BV function is prescribed,
are known to not always exist. Thus alternate notions of Dirichlet
problem for the least gradient functions need to be explored. Based
on the notion of Dirichlet problem set forth in [16], in [17] a notion of
Dirichlet problem was proposed ([17] considers the area functional, but
the results are easily applicable to the total variation functional). It
was shown in [17] that for a wide class of domains in metric measure
spaces equipped with a doubling measure supporting a (1, 1)-Poincaré
inequality, solutions always exist if the boundary data are themselves
given by a BV function. The notion proposed there required extension
of the BV solution to the exterior of the domain of the problem.

In this paper we discuss an alternate notion of the Dirichlet problem
for least gradient functions that does not require extension of the BV
solution to the complement of the domain of interest. The boundary
data is given by a fixed Lipschitz function. However, unlike in [17], the
direct method of the calculus of variations does not yield existence of
solutions for this notion of the Dirichlet problem. Thus an alternate
method of verifying existence needs to be adopted. In [23, Theorem 3.1]
it was shown, using the tools of viscosity solutions, that the limit of
a sequence of p-harmonic functions in a Euclidean domain, as p —
1, must be a function of least gradient. In the recent paper [29] it
was shown that such a limit function, again in the Euclidean setting,
satisfies the notion of Dirichlet problem considered in this paper. The
key tool used in [29] is the divergence theorem. In our setting of metric
measure spaces we do not have access to the divergence theorem nor
notions of viscosity solutions. We instead employ a careful study of
inner trace of BV functions for a class of domains.

We start by showing that if there is a sequence u,, of py-harmonic
functions with (px)r a monotone decreasing sequence of real numbers
larger than 1 such that limy py, = 1, and w,, converges to u in L', then
the limit function u is a function of least gradient, see Theorem 3.3.
In the case of p-energy with p > 1, there is no ambiguity in the sense
in which we want to fix the boundary values of the function, if the
boundary values are themselves restrictions of Sobolev functions. Note
that Lipschitz functions are a priori in the Sobolev class N'* for each
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1 < p < oco. However, when p = 1 and the solutions are merely func-
tions of bounded variation, it is not clear what notion of the Dirichlet
problem is the correct one.

In this paper, we propose two ways of defining solutions to the Dirich-
let problem: the first one, described in Definition 4.1(B), is based on
minimizing the BV-energy in the closure of the domain. In the second
one, given in Definition 4.1(T), extension of solutions to the comple-
ment of the domain is not required, but the energy being minimized
includes the integral of the jump in the inner trace of the BV function
(in comparison with the boundary data) measured with respect to the
interior perimeter of the domain.

The drawback of the first approach is that the structure of the un-
derlying space close to the boundary but outside the domain also af-
fects the minimization problem. This phenomenon occurs already in
weighted Euclidean spaces; see the discussion following Definition 4.1.
On the other hand, the advantage of the first approach is that the
energy being minimized is lower semicontinuous with respect to L!-
convergence, and hence existence of solutions can be proven using the
direct method of the calculus of variations. In the Euclidean setting,
Dirichlet problems related to minimizing convex functionals with lin-
ear growth have been studied in [7], and the notion of Dirichlet prob-
lem considered there is also equivalent to the notion given by Defi-
nition 4.1(B) here. The second approach given in Definition 4.1(T)
avoids the impact of the part of the complement of the domain that
is near the boundary of the domain, but the drawback is that prov-
ing the existence of solutions using the direct method of the calculus
of variations is not possible. In the setting of metric measure spaces
considered here, we do not even have the tools of divergence or Green’s
theorem, and hence our proof is more involved.

One benefit of the proof we provide here is that the results hold even
in a wider class of Euclidean domains; the standard theory from [29]
only consider smooth domains, while [7] considers Euclidean Lipschitz
domains.

The structure of this paper is as follows. In Section 2 we explain the
notation and definitions of concepts used in this paper. In Section 3 we
show that functions that arise as L!-limits of p-harmonic functions are
functions of least gradient, see Theorem 3.3. The focus of the fourth
section is to describe the two notions of solution to the Dirichlet prob-
lem, see Definition 4.1, while the fifth section gives a way of finding
good Lipschitz approximations of BV functions via discrete convolu-
tions. Such discrete convolutions are used in Section 6 to compare the
inner perimeter measure P, (§2,-) of the bounded domain © with its
perimeter measure P (€, -), see Theorem 6.9.

In Section 7, we show that the least gradient functions, obtained as
L'-limits of p-harmonic functions that are solutions to the Dirichlet
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problem with the fixed Lipschitz boundary data, are necessarily solu-
tions to the Dirichlet problem defined in Definition 4.1(T) with the
same Lipschitz boundary data. This result is Theorem 7.7. For this
result, we need some additional assumptions on 2. More precisely, we
need to assume that €2 is of finite perimeter and that at H-a.e. bound-
ary point of €2 the complement of €2 has positive density.

The focus of Section 8 is to show that in addition to perturbing the
BV energy to the LP-energy (via p-harmonic functions), if we also per-
turb the domain by approximating the domain from outside, then the
corresponding p-harmonic solutions have a subsequence that converges
to a solution to the Dirichlet problem as given in Definition 4.1(B).
While the problem (T) is associated with approximating the domain
from inside, the results of Section 8 show that the problem (B) is asso-
ciated with approximating the domain from outside; see Theorem 8.3.
It should be noted that the restrictions placed on the domain in relation
to problem (T') as in Section 7 are not needed in Section 8. Finally, in
Section 9 we consider alternate notions of functions of least gradient,
and show that all these notions coincide. For the convenience of the
reader, in the appendix we provide a proof of the fact that the inner
perimeter measure P (2, -) as considered in Definition 2.23 is indeed a
Radon measure.

Acknowledgements. The research of N.S. is partially supported
by the grant # DMS-1500440 of NSF (U.S.A.). P.L. was supported by
a grant from the Finnish Cultural Foundation. Part of the research was
conducted during the visit of N.S. to Aalto University, and during the
visit of X.L. to University of Cincinnati. Some parts of the research was
conducted during the time spent by X.L. as a postdoctoral scholar at
Aalto University. The authors wish to thank these institutions for their
kind hospitality. The authors also thank Juha Kinnunen for making
them aware of the reference [29] and for fruitful discussions on the
topic.

2. PRELIMINARIES

Throughout this paper we assume that (X, d, u) is a complete metric
space equipped with a Borel regular outer measure p that satisfies a
doubling property and supports a (1, 1)-Poincaré inequality (see defi-
nitions below). We assume that X consists of at least 2 points. The
doubling property means that there exists a constant C'; > 1 such that

0 < u(B(x,2r)) < Cap(B(x,1)) < 00
for every ball B(xz,r) C X. Given a ball B = B(x,r) and 7 > 0, we
denote by 7B the ball B(x,7r). In a metric space, a ball does not
necessarily have a unique center and radius, but whenever we use the

above abbreviation we will consider balls whose center and radii have
been pre-specified.
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In general, C' > 1 will denote a generic constant whose particular
value is not important for the purposes of this paper, and might differ
between each occurrence. When we want to specify that a constant C'
depends on the parameters a,b, ..., we write C' = C(a,b,...). Unless
otherwise specified, all constants only depend on the doubling constant
Cy and the constants Cp, A associated with the Poincaré inequality
defined below.

A complete metric space with a doubling measure is proper, that is,
closed and bounded sets are compact. Since X is proper, for any open
set Q C X we define Lip,,.(€2) to be the space of functions that are
Lipschitz in every ' € €). Here ' € 2 means that €’ is open and that
(Y is a compact subset of 2. We define other local spaces similarly.

For any set A C X, and 0 < R < oo, the restricted spherical Haus-
dorff content of codimension 1 is defined by

HR(A):inf{ E w: ACUB(mi,ri),ng}.
i )

1=1 =1

The codimension 1 Hausdorfl measure of a set A C X is

H(A) = lim Hp(A).

The codimension 1 Minkowski content of a set A C X is defined for
any positive Radon measure v by

B(z, R
v (A) := liminf ¥ (Usea B, 1)) :
R—0 2R

Definition 2.2. The measure theoretic boundary 0*F of a set £ C X
is the set of all points x € X at which both £ and its complement have
positive upper density, i.e.

(BN E) B\ B)
msup = B,y 0 and s e )

The measure theoretic interior Ig is the set of all points z € X for

which
o B\ B)
r—0t  u(B(z,71))

and the measure theoretic exterior O is the set of all points x € X
for which

(2.1)

> 0.

=0,

lim w(B(x,r)NE)
r—0t  u(B(x,r))

Observe that 0*F = X \ (Ig U Og). Note that when FE is open,
E C Ig. See the discussion following (2.13) for more on the relationship
between the measure theoretic boundary and the perimeter measure.

A curve is a rectifiable continuous mapping from a compact interval
into X.

= 0.
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Definition 2.3. A nonnegative Borel function g on X is an upper
gradient of an extended real-valued function u on X if for all curves ~
on X, we have
ule) ~u(w)] < [ gds (2.4)
v
where x and y are the end points of . We interpret |u(z) —u(y)| = oo
whenever at least one of |u(z)|, |u(y)| is infinite.

By replacing X with a set A C X and considering curves v in A, we
can talk about a function g being an upper gradient of v in A. Upper
gradients were originally introduced in [21].

We define the local Lipschitz constant of a locally Lipschitz function
u € Lipy,.(X) by

. . |u(y) — u(z)|
Lipu(z) := limsup  sup —————. (2.5)
r—0t yeB(z,r)\{z} d(y,[L‘)
Then Lipu is an upper gradient of u, see e.g. [12, Proposition 1.11].
It is easy to check that if u,v € Lip,.(X) and o, > 0, then we
have the subadditivity

Lip(au + fv)(z) < aLipu(z) + fLipv(x) for every z € X. (2.6)

Let ' be a family of curves, and let 1 < p < co. The p-modulus of
I is defined by

Mod,(T") := inf/Xp”d,u

where the infimum is taken over all nonnegative Borel functions p such
that fﬁ{ pds > 1 for every v € I'. If a property fails only for a curve
family with p-modulus zero, we say that it holds for p-almost every
(a.e.) curve.

Definition 2.7. If g is a nonnegative p-measurable function on X
and (2.4) holds for p-almost every curve, then ¢ is a p-weak upper
gradient of u. It is known that if v has an upper gradient g € L} ()
in 2, then there exists a minimal p-weak upper gradient of u in €2, which
we always denote by g,, satisfying g,(z) < g(x) for p-a.e. z € Q, for

any p-weak upper gradient g € L} (Q) of u in €2, see [8, Theorem 2.25].

loc

Remark 2.8. Note that a priori the minimal p-weak upper gradient g,
of u may depend on p. However, if v has a minimal g-weak upper
gradient gp in €2 with 1 < g < p, then gy < g, p-a.e. in ) because a
p-weak upper gradient of u is automatically a g-weak upper gradient
of u. Also, a minimal p-weak upper gradient in () is also a minimal
p-weak upper gradient in any open U C ).

From the results in [12] (see [22] for further exposition on this) it
follows that when the measure o on X is doubling and supports a (1, 1)-
Poincaré inequality, the minimal p-weak upper gradient of a locally
Lipschitz function u on €2 is Lipu for all 1 < p < oc.
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We consider the following norm
Jullviwxy = [Jullex) + igf 9l e (x),
with the infimum taken over all upper gradients g of w.

Definition 2.9. The substitute for the Sobolev space W1?(R") in the
metric setting is the following Newton-Sobolev space

N'P(X) = {u: [|ullviex) < 0o}/~,
where the equivalence relation ~ is given by u ~ v if and only if
HU — UHNLP(X) = O

Similarly, we can define N'?(§2) for any open set € C X. For more on
Newton-Sobolev spaces, we refer to [34, 22, 8|.

The p-capacity of a set A C X is given by
Capp(A) ;= inf ”U”Nl,p(x),

where the infimum is taken over all functions v € N*P(X) such that
u>11n A.

Remark 2.10. When p is doubling and supports a (1,
equality, then Lipschitz functions are dense in N'7(X
complete and p is doubling, even if X does not support a (1, p)-Poincaré
inequality Lipschitz functions are still dense in N'?(X); this follows
from the deep results in [5].

p)-Poincaré in-
). When X is

Next we recall the definition and basic properties of functions of
bounded variation on metric spaces, see [30]. See also e.g. [4, 15, 16, 35]
for the classical theory in the Euclidean setting. For u € Li (X), we
define the total variation of u on X to be

| Du||(X) := inf { liminf/ Gu; Atz u; € Lip (X)), u; — u in Llloc(X)},
1—00 X

where each g,, is the minimal 1-weak upper gradient of u;. Note that
instead of merely requiring u; — w in L _(X) we could require u; —u —
0 in L'(X). Tt turns out that even with this stricter definition, the
norm || Dul[(X) does not change; see Lemma 5.5. Note also that by [2,
Theorem 1.1] and Remark 2.8, we can replace g,, by the minimal p-
weak upper gradient Lip u;, for p > 1.

We say that a function u € L'(X) is of bounded variation, and denote
u € BV(X), if || Dul[(X) < co. A p-measurable set E C X is said to
be of finite perimeter if || DXgl||(X) < co. The perimeter of £ in X is
also denoted by

P(B, X) = | DXz]|(X).

By replacing X with an open set U C X in the definition of the total
variation, we can define || Dul[(U). The BV norm is given by

|ullBv@) == ||ullLrwy + || Dul|(U).
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It was shown in [30, Theorem 3.4] that for u € BV(X), [[Dul| is the
restriction to the class of open sets of a finite Radon measure defined on
the class of all subsets of X. This outer measure is obtained from the
map U — ||Dul|(U) on open sets U C X via the standard Carathéodory
construction. Thus, for an arbitrary set A C X,

| Dul|(A) := inf{||Du|(U) : U open, A C U}.
Similarly, if u € LL _(U) with ||Du|(U) < oo, then ||Dul|() is a finite

loc
Radon measure on U.

For any Borel sets Ey, Fy C X, we have by [30, Proposition 4.7]
P(EyNEy, X)+ P(EyUEy, X) < P(Ey, X)+ P(Es, X).

The proof works equally well for g-measurable Fy, £y C X and with
X replaced by any open set, and then by approximating an arbitrary
set A C X from the outside by open sets we obtain

P(EyN Ey, A)+ P(E1UEy, A) < P(Ey, A) + P(Ey, A).  (2.11)

We have the following coarea formula from [30, Proposition 4.2]: if
F C X is a Borel set and u € BV(X), then

| Dul|(F) = /_oo P({u > t}, F)dt. (2.12)

[e.9]

In particular, the map ¢ — P({u > t}, F') is Lebesgue measurable on
R.

We assume that X supports a (1,1)-Poincaré inequality, meaning
that there are constants Cp > 0 and A > 1 such that for every ball
B(z,r), for every locally integrable function v on X, and for every
upper gradient g of u, we have

][ |U - uB(m,r)‘ d,u < CPT][ g d:u7
B($7r) B(Z‘,)\T)

where

1
UB(zr) 1= wdp ::7/ wds.
() ]{Ei(ar,r) M(B(l‘,’l")) B(z,r)

Given a set FF C X of finite perimeter, for H-a.e. x € 0*F we have

~v < liminf wE 0 Bz, ) < lim sup wE 0 Bz, r))
o T B ) S e u(B@ )
where v € (0,1/2] only depends on the doubling constant and the
constants in the Poincaré inequality, see [1, Theorem 5.4]. We denote
the set of all such points by >, E.
For any open set {2 C X, any p-measurable set £ C X with P(E, Q) <
0o, and any Borel set A C €, we know that

DXl = [ bpan, (2.14)
O*ENA

<1-—+, (2.13)
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where 0p: QN O*E — [, Cy], with a = a(Cy,Cp,\) > 0, see [1,
Theorem 5.3] and [6, Theorem 4.6].
The jump set of u € BV(X) is the set
Sy i={r e X : u'\(z) <u'(x)},

where u”(x) and u”(x) are the lower and upper approximate limits of
u defined respectively by

u(x) = sup {t cR: rlirgi u(B(zkgg’%L; ) _ 0} (2.15)

and

u”(x) := inf {t eER: rlir(% M<B<Z’<2<2’£l;)> ) = O} : (2.16)

By [6, Theorem 5.3], the variation measure of a BV function can be
decomposed into the absolutely continuous and singular part, and the

latter into the Cantor and jump part, as follows. Given an open set
2 C X and u € BV(Q), we have for any Borel set A C

[Dul|(A) = [[Dul[*(A) + [[Dul]*(A)
= [[Dul|*(4) + || Dul|*(A) + [[ Dull’(A)

uY ()
:/adﬂ+||Du||c(A)+/ / By (2) di dH(2),
A ANSy JuN(x)
(2.17)

where a € L'(Q) is the density of the absolutely continuous part and
the functions 0;,~4 are as in (2.14).

Definition 2.18. Let {2 C X be a u-measurable set and let u be a
p-measurable function on 2. Let Ng be the collection of all points
x € 0N for which there is some r > 0 with p(B(z,r) N Q) = 0. A
function T, u: 002 \ No — R is the interior trace of w if for H-a.e.
x € 02 we have

lim |lu —Tyu(x)| dp = 0.
r—0+t QNB(z,r)

Note that if €2 is an open set, then Ng is empty. Furthermore, we
have Nx\q C 002\ 9%

Definition 2.19. Given an open set U C X, the family BV (U) is
the collection of all functions u € BV(X) whose support is a compact
subset of U. By BV(U) we mean the collection of all functions u €
BV(U) for which T’ u exists and T, u = 0 H-a.e. in OU.

Definition 2.20. Given an open set {2 C X and an open set U C X,
we define

1—00

P, (Q,U) := inf {liminf/ 9, du} ,
U
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where each gy, is the minimal 1-weak upper gradient of ¥, in U, and

where the infimum is taken over all sequences (V;) C Lip,,.(U) such

that U; — Xq — 0in L'(U) and ¥; = 0 in U \ Q for each i € N.
Furthermore, for any A C X we let

P (QA) :=inf{P, (2,U): Uopen, ACU}.

In the Appendix we show that if P, (€, X) < oo, then P, (,-) is a
Radon measure on X, which we call the inner perimeter measure of €.

Note that P(Q2,A) < P.(Q,A) for any A C X. We will show in
Section 6 that the two quantities P(Q2, X) and P, (€, X) are in fact
comparable when €2 is open and bounded and satisfies the ezterior
measure density condition

B Q

s PLEE T\ D)
r—0+ M(B("L‘a T))

Definition 2.22. Let 1 < p < oo and let 2 C X be a nonempty

bounded open set with Cap,(X \ Q) > 0. A function u € N"P(Q) is
said to be p-harmonic in  if whenever ¢ € N'?(X) with ¢ = 0 in

X\ Q, we have
/%@S/ﬁwm
Q Q

Given f € N'?(X), we say that a function u is a p-harmonic solution
to the Dirichlet problem in Q with boundary data f if u € N'"?(X), u
is p-harmonic in €2, and v = f in X \ Q.

>0 for H-a.e. x € 0. (2.21)

The direct method of the calculus of variation yields existence of
p-harmonic solutions to the Dirichlet problem (p > 1); see [33, 8| for
this fact and for more on p-harmonic functions. If f: 92 — R is a
Lipschitz function and €2 is bounded, we can extend f to a boundedly
supported Lipschitz function on X; such a function is necessarily in
NUYP(X) for all p > 1. Thus we can also talk about solutions to the
Dirichlet problem with Lipschitz boundary data f: 02 — R. In this
paper we will always assume that the boundary data is a boundedly
supported Lipschitz function on X.

We will often assume that Cap, (X \ 2) > 0, because then Cap,, (X \
Q1) > 0 for all p > 1. This follows from the fact that if Cap,(X \Q) = 0,
then ||Xx\alln1rx) = 0 by [8, Proposition 1.61], and so ||[Xx\al|nt1(x) =
0 by Remark 2.8.

Definition 2.23. Let 2 C X be a an open set. We say that a function
u € BV(Q) is a function of least gradient in 2 if whenever ¢ € BV .(Q2),
we have

[Dul[(2) < [ D(u + o)[I(€)-

The principal objects of study in this paper are functions of least
gradient as defined above.
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3. CONVERGENCE TO A FUNCTION OF LEAST GRADIENT

In this section we show that if there is an L!'-convergent sequence
(up) of p-harmonic functions with p — 17, then the limit is a function of
least gradient. In this section, g,, always denotes the minimal p-weak
upper gradient of u, € N'"7(X) on X. If g, is the minimal 1-weak
upper gradient of u, on X, then for any open set U C X, by the fact
that locally Lipschitz functions are dense in N*'(U) (see [8, Theorem
5.47]) and by Remark 2.8, we have

|Du | (V) < / gpdp < / Guy dp. (3.1)

For a Lipschitz function f, gy will denote the minimal p-weak upper
gradient of f for any p > 1. Observe from Remark 2.8 that g is indeed
independent of the choice of p.

First we note that while we do not know whether a sequence of
p-harmonic functions is L-convergent as p — 17, a convergent subse-
quence always exists.

Lemma 3.2. Let Q) C X be a nonempty bounded open set with Cap,(X'\
Q) >0, and let f € Lip(X) be boundedly supported. For each p > 1,
let u, € N'?(X) be a p-harmonic function in Q such that uy|x\q = f.
Then there exists a sequence p, — 17 such that u,, — u in L'(X) as
k — oo for some u € BV(X).

Proof. By the maximum principle for the Dirichlet problem for p-
harmonic functions, |u,||r=x) < ||f|lz~(x), and so for all p > 1

[upll ) < Nlupllzee o (€ + ([ fllr e
< 1 fllzee o m(€2) + [l 1) < oo
Let L be the global Lipschitz constant of f. Then

1/p 1/p
/qup dp < </Qgﬁp du) p(Q) P < (/ﬂgidﬂ) p(Q) e

< Lp(Q)!1r.

/ gupdu:/ gy dp,
X\Q X\Q

see [8, Lemma 2.19]. Thus by (3.1),

| Duy | (X) < Lu(Q)=7 + / gy dp.
X\Q

On the other hand,

We conclude that the sequence (u,), is a bounded sequence in BV (X),
and so by the compact embedding given in [30, Theorem 3.7|, a sub-

sequence converges in Ll (X) and hence in L'(X) to some function
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uw € L'(X), and by the lower semicontinuity of the total variation, we

have u € BV(X). O

Theorem 3.3. Let 2 C X be a nonempty bounded open set with
Cap (X \ Q) > 0, and let f € Lip(X) be boundedly supported. For
each p > 1 let u, € N"P(X) be a p-harmonic function in Q such that
up|x\o = f. Suppose that (u,)p>1 is a sequence of such p-harmonic
functions and that u, — w in L'(X) as p — 17. Then u is a function
of least gradient in Q.

Proof. By the proof of Lemma 3.2, we have v € BV(X). Let ¢ €
BV.(©2) and K := spt(¢). Clearly

/gﬁp dp < / g dp < LPu(9),
Q Q

where L is the global Lipschitz constant of f, and therefore (g5p>1<p<2 is

uniformly bounded in L'(€2). Consequently, there exists a subsequence,
still written as (g ),~1, and a positive Radon measure of finite mass v
on {2 such that

gy, dp — dv - weakly™ in Q as p — 1T,

We now choose K € 2 such that K ¢ K and v(0K) = 0. For small
enough ¢ > 0,

K® = U B(z,e) € Q.
$E[}
We fix n € Lip(X) such that 0 <n <1,
nzlin[?, n:OinX\[?E/Q, and g, < 2/e.

As u + 1 € BV(K?), there exists a sequence (¥),) C Lip,,.(K¢) such
that W), — u + ¢ in L'(K?) and
DG+ )RS =t [ gu, d (3.4
— 00 Ke

where gy, is the minimal p-weak upper gradient of ¥, in K* ,forp > 1,
see the discussion on page 7. We set

Yrp = Vs + (1 —n)uy.

Then ¢y, = u, in X'\ K¢/? and Vip = Vi in K. By the Leibniz rule
given in [8, Lemma 2.18],
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Since u, is p-harmonic, we have

1/p 1/p
(o) = (ot )
€ KS
1/p 1/p
() ([, )
Re/2 Ke\K

2 1/p

+ - </ |\I/k—up|pd,u> :
9 1?6/2\1’\(1

Therefore, by lower semicontinuity and (3.1) we get
| Dul|(K°) < liminf || Du, || (K°)
p—1+t

< liminf/~ Gu, At

p—1t

_ 1/p
< lim inf p(K*)' 71/ (/~ Ju, du)

p—1t

1/p
< [ owdut timsup ( / ~gzpcm)
Re/? pol+ Ke\K

2
w2 - aldn
e [N(E/Q\I?

which in turn leads to

- - -~ 2
| Dull(R) < / gun dp - v(Re\ ) + 2 /
Ke/2 € KE/2\K

Letting k — oo, we get by (3.4)
| Dull(K) < 1D(u + )| (K°) + v(Ke\ K).

Then letting € — 0, by the fact that V(@I?) =0 we get
[Dull(K) < [|D(u+ )| (K).

The claim follows from this.

4. DEFINITIONS OF THE DIRICHLET PROBLEM FOR p =1

Wy —ufdp.

13

The focus of this paper is to show that the limit of p-harmonic func-
tions with Lipschitz boundary data f, as p — 17, solves a reasonable
notion of a Dirichlet problem with boundary data f. The issue is to
give such a notion. In the case of the p-energy, there is no ambiguity in
the sense in which we want to fix the boundary values of the function,
if the boundary values are themselves restrictions of Newton-Sobolev
functions. In the case p = 1, we propose the following two ways of

defining solutions to the Dirichlet problem.



14 KORTE, LAHTI, LI, SHANMUGALINGAM

Definition 4.1. Let 2 C X be a nonempty bounded open set with
Cap;(X\Q) > 0, and let f € Lip(X) be boundedly supported. We say
that a function u is a solution to the Dirichlet problem for functions of
least gradient with boundary data f in the sense of (B) (respectively
in the sense of (T)) if it is a solution to the following minimization
problem:
(B) Minimize ||Dvl[|(Q) over all functions v € BV(X) with v = f
on X \ 9,
(T) Minimize ||Dv||(Q) + [, |Thv — fl(x) dPL(Q, ) over all func-
tions v € BV(Q).

Note that in definition (T), we need to make extra assumptions on
() to ensure that the boundary integral is well defined. In both defi-
nitions, the solution is allowed to have jumps on the boundary of €.
In definition (B), this is taken into account by including the variation
measure from the boundary 0f) as well. The advantage of this ap-
proach is that its energy is more straightforward to calculate, and we
need fewer assumptions on 2. The drawback is that contrary to the
formulation (T), the structure of the underlying space X close to the
boundary but outside €) also affects the minimization problem. For in-
stance, let X be the Euclidean space R" equipped with the Euclidean
metric, and let 2 be the unit ball centered at the origin. Let o € (0, 1]
and equip X with the measure

dite = (Xa + OéXRn\Q) ac",

where L£" is the n-dimensional Lebesgue measure. It can be shown
that for u € BV(X), || Dul[(Q) = || Dgucu||(2) + || Deucul (982), where
| Deycul| is the total variation with respect to £". Similarly, in this
setting we have P, (2, X)) = 27 but P(Q, X) = 2am.

5. DISCRETE CONVOLUTIONS

A tool that is commonly used in analysis on metric spaces is the
discrete convolution. Given any open set U C X and a scale R > 0,
we can choose a Whitney-type covering {B; = B(x;,1;)}52, of U such
that (see e.g. [9, Theorem 3.1])

(1) for each j € N,

. [dist(z;, X \ U)
'r’j:mm{ 4]10)\ ,R},

(2) for each k € N, the ball 10\ By, intersects at most Cyp = Co(Cy, \)
balls 10AB; (that is, a bounded overlap property holds),
(3) if 10AB; intersects 10ABy, then r; < 2ry.
Given such a covering of U, we can take a partition of unity {¢; 2
subordinate to the covering, such that 0 < ¢; < 1, each ¢; is a C/r;-
Lipschitz function, and supp(¢;) C 2B; for each j € N (see e.g. [9,
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Theorem 3.4]). Finally, we can define the discrete convolution v of any
u € Li (U) with respect to the Whitney-type covering by

loc
00
V= E U5B].(bj.
j=1

In general, v € Lip,.(U), and hence v € Li. . (U).

loc

Let v be the discrete convolution of u € L. (U) with || Dul|(U) < oo,

with respect to a Whitney-type covering {B;}en of U at scale R. Then
v has a local Lipschitz constant

, - Dul|(10\B;
Lipv < C’lipZXBj%a (5.1)
J

with Cy, depending only on the doubling constant of the measure and
the constants in the Poincaré inequality, see e.g. the proof of [26,
Proposition 4.1]. From this it follows by the bounded overlap property
(2) that

J=1

/ Lipvdp < CoCup || Dul|(U). (5.2)
U
Moreover (noting that v depends on the scale R),

v — |1y =0 as R—0, (5.3)

see the proof of [26, Proposition 4.1]; note that u does not need to be
in L'(U), only in L (U).

Now let (v;) be a sequence of discrete convolutions of u € BV),.(U)
with respect to Whitney-type coverings at scales R; ~\, 0. According
to [26, Proposition 4.1], we have for some constant 7 € (0,1/2]

(1=’ (y) +Fu’(y) < liminf v;(y)
< limsup v;(y) < Fu'(y) + (1 = F)u"(y)

1—>00

(5.4)

for H-a.e. y € U; recall the definitions of the lower and upper approx-
imate limits from (2.15) and (2.16).

By applying discrete convolutions, we can show that in the defini-
tion of the total variation, we can replace convergence in Li (Q) with
convergence in L'(£2).

Lemma 5.5. Let @ C X be an open set and let u € L () with
| Dul|(Q) < oo. Then there exists a sequence of functions (w;) C
Lipy,.(Q) with w; —u — 0 in L'(Q) and [, gw, dp — || Dul[(Q2), where
each g, is the minimal 1-weak upper gradient of w;.

Note that we cannot write w; — u in L*(Q), if we do not have
ue L'(Q).

Proof. For every § > 0, let
Qs :={y € Q: dist(y, X \ Q) > d}.
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Fix ¢ > 0 and = € X, and choose ¢ € (0, 1) such that
| Dul[(2\ (s N B(x,1/6))) < e.
Let
n(y) := max {0, 1— %dist(y, Q52 N Bz, 2/5))} ,

which is a 4/§-Lipschitz function.

Let each v; € Lip,,.(€2) be a discrete convolution of u in €2, at scale
1/i. From the definition of the total variation we get a sequence of
functions u; € Lip,.(Q) with u; — u in Ll _(2) and

loc

légwﬁr+HDUMQ)

Now define

w; = nu; + (1 —n)u;,
so that w; —u — 0 in L'(Q) by (5.3), and by the Leibniz rule of [8,
Lemma 2.18],

Gui < Gui) + Goi (L= 1) + gylui — vil.
Here gw,, Gu;» 9v;» and g, all denote minimal 1-weak upper gradients.
Since g,, = 0 outside Q5,4 N B(x,4/0) € €2, we have g,|u; —v;| = 0 in
L'(2), and by also using (5.1), we get

lim sup/ Gu,; dpp < lim sup/ Gu,; djt + lim sup G, dpL
Q Q

1—00 1—00 1—00 L\(95/203(172/5))
< [ Dull(2) + ClIDul[ 2\ (25 N B(z,1/9)))
< || Dull(@) + Ce.

By a diagonalization argument, where we also let ¢ — 0 (and hence
9 — 0), we complete the proof. O

6. COMPARABILITY OF P, AND P

Recall the definition of Py (£2,-) from Definition 2.20. As shown by
the example found in the discussion following Definition 4.1, P, (€2,-)
does not necessarily agree with P(€2,-). In light of this, the current
section aims to compare Py (€2,-) and P(f2,-). The main result of this
section is Theorem 6.9.

An analog of P, (9, X) was studied in [32], where it was shown that
for certain open sets 2 C R™, one has P, (Q2,R") = P(£2,R"). More
precisely, it was shown that in the Euclidean setting, if an open set
Q C R™ satisfies H"1(9Q \ 9*Q) = 0, then it is possible to find open
sets ; € Q with Q = [,y Q and H"1(0Q;) — P(Q,R"), where
H" ! is the (n — 1)-dimensional Hausdorff measure. We obtain in
Corollary 6.11 a weak analog of this result. In fact, our corollary is
applicable to a wider class of Euclidean domains than the result of [32],



DIRICHLET PROBLEM FOR LEAST GRADIENT 17

since we can permit the part of the boundary in which €2 is “thin” to
be very large.

In the following lemma, we essentially follow an argument that can
be found e.g. in [31, p. 67].

Lemma 6.1. Let K C X be compact, and let a € [0,1) and € > 0.
Take a sequence (v;) C C(K) with 0 < wv; <1 for every i € N, and

limsup v;(z) < «
1—00
for every x € K. Then there exists a convex combination of v;, denoted
by v, such that v(x) < o+ ¢ for every x € K.

Proof. We have

lim max{v;(z),a} = «
1—00

for every x € K. Note that the functions max{v;(x),a}, and the
constant function «, are continuous and take values between 0 and 1.
Thus for any signed Radon measure v on K we have by Lebesgue’s
dominated convergence theorem that

/maux{vZ Oz}dV—)/ adv.

Since K is compact, we have C(K) = C.(K) and then by the Riesz
representation theorem we conclude that max{v;(z), a} — « weakly in
the space C(K). By Mazur’s lemma, see [31, Theorem 3.13|, we can
find convex combinations of the functions w; := max{v;, a}, denoted
by w;, which converge strongly in the space C'(K) to a. In other words,
w; — « uniformly in K. Thus for a sufficiently large choice of ¢ € N,
we have w;(z) < a+¢ for all z € K. With w; = Zjvzl Ai jw; for some
N € N and the appropriate choice of numbers \;; € [0, 1] such that
Z;'V:I )\i,j = 1, we set 6 = E;\le )\i,jvj- O
Proposition 6.2. Let Q, U C X be open sets with P(2,U) < oo, and
suppose that there exists A C 0QNU with H(A) < oo such that

B Q
lim sup B r)\Q) _
r—0+ M(B("L‘a T))
for every x € 0QNU\ A. Let U € U. Then there exists a sequence

(wg) C Lipy.(U) such that for each k € N, wy = 0 in U"\ Q, wy — Xq
in L*(U) and

(6.3)

fimsup [ Lipurdu < Co(PU) + H(4)
U

k—o0

for a constant Cy, = Ciy,(Cy, Cp, N).



18 KORTE, LAHTI, LI, SHANMUGALINGAM

Remark 6.4. If X = R? (unweighted) and € is the slit disk
Q={(z,y) eR*: 2” +y* <1} \[-1,0] x {0},

and U is the unit disk, we have P(Q2,U) = 0 and the set A can be
taken to be the slit. If we add countably many slits, see Example 6.14
below, we still have P(£2,U) = 0 but H(A) = oo and the conclusion of
the proposition becomes meaningless.

Proof of Proposition 6.2. Let each v;, ¢ € N, be the discrete convolu-
tion of X with respect to a Whitney-type covering of U at scale 1/1.
We can add to the set A the H-negligible set where (5.4) fails with
u = Xq. Fix e > 0. We can pick balls B(z;,s;) intersecting A with
Sj S g,
Ac | JB(z,s;),
jEN
and

Furthermore, we can choose radii 7; € [s;, 2s;] such that

P(B(z;,r;), X) < ¢ B3 73))

T

for each j € N, see [24, Lemma 6.2].
For brevity, let us write B; := B(z;,7;), j € N. Then by the subad-
ditivity (2.11) and the lower semicontinuity of perimeter, we have

P (Q\ U Bj,U> <P(QU)+ ) P(B;,X)
< P(Q,U)+CZ@ (6.5)

< P(Q,U)+ CH(A) + Ce.

Let each v;, i € N, be the discrete convolution of XO\U, en By with re-

spect to the same Whitney-type covering of U at scale 1/i used also in
defining the functions v;. By the properties (5.2) and (5.3) of discrete
convolutions, we have v; — Xo\Uen By — 0 in Ll(U ) and

|| Llp 'lv}iHLl(U) S COC]ipP (Q \ U Bj, U) (66)
jeN
for each i € N. Note that v;(z) < v;(x) for every z € U. Thus for
every x € 02N U \ A we have by (5.4)

limsup v;(z) < limsup v;(z) < xg(z) + (1 = F)XH(x) < 1-7;

1—00 1—00
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note that x§(z) = 0 for every x € 00N U \ A by (6.3). Moreover,
lim; . v;(z) = 0 for every x € A, since Xo\U,en B, = 0in a neigh-
borhood of every z € A. Note that U’ \ Q is a compact set. Using

Lemma 6.1, we find for every ¢ € N a convex combination of the func-
tions {0 }72,, denoted by ©;, such that

Ui(x) <1—-7/2 for every x € U’ \ ). (6.7)

Clearly we still have v; € Lipy, (U) with v; — Xo\, ., 5, — 0 In LY(U),
and by (6.6) and the subadditivity (2.6),

|| Llpi}\zHLl(U) S COCHPP (Q\ U Bj, U) . (68)
JjeN
Next, let
. max{0,v; — 1 +7/2}
Ww; = — s
/2
Then by (6.7), w; = 0 in U’ \ Q. Again, we still have w; € Lip,,.(U)
with @; — Xa\y,., 5, = 0 in LY(U), and by (6.5) and (6.8),

1€ N.

|| Llp UVJZ'HLl(U) S 2:7_1COCHpP <Q \ U Bj, U)
jeN
< C(P(Q,U)+H(A) +¢).
We can do the above for each ¢ = 1/k, kK € N. Denote Q5 := Q\
Ujen By, with the balls B; picked corresponding to the choice e = 1/k.
Thus we obtain sequences Wy, ; with W ; — Xq, — 0in L' (U) as i — oco.
Then for each k£ € N we can pick a sufficiently large ¢;, > k such that

|0k, — X o1y < 1/k,
| Lip Wi [y < C(P(Q,U) + H(A) +1/k),

and wy,;, = 0 in U\ Q. Since furthermore Xq, — Xo — 0 in L'(U)
as k — oo, we have wy;, — Xo — 0 in L'(U). Finally, we can define
Wy 1= lf)]m‘k, k € N. [l

Note that we always have P(2,U) < P, (Q,U), since the definition
of the latter involves a more restricted class of approximating functions.
Now we can show the following.

Theorem 6.9. Let Q C X be a bounded open set with P(2, X) < oo,
and suppose that

: u(B(z, )\ Q)
lim sup
r—0+t M(B(l’,’l"))
for H-a.e. x € OQ. Then P, (2, X) < 0o, and for any open set U C X,
we have P(Q,U) < P.(Q,U) < CP(Q,U).

>0
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Proof. Take a bounded open set U' € X with Q € U’. Let wy, €
Lipy..(X) be the sequence given by Proposition 6.2 with the choice
U = X (note that now H(A) =0). Then wy =0 in U’ \ €2, and in fact
from the proof of Proposition 6.2 it is easy to see that wy = 0 in X \ Q.
Then by the definition of P, (€2,-) and the fact that the local Lipschitz
constant is an upper gradient,

P (2, X) < liminf/ Gu,, dpr < liminf/ Lipwy dp < CP(, X) < o0.
k—oo  [x k—oo  [x

Therefore Py (£2,-) is a Radon measure on X, see Appendix. For an
open set U C X, the first inequality of the second claim is clear. To
prove the second inequality, fix ¢ > 0. For some U € U we have
P (QU) < P.(QU")+e. Let (wy) C Lip,,.(U) be the sequence given
by Proposition 6.2. Then

P (QU)< P (QU)+e< liminf/ Gu, At + €
U/

k—o0

k—00

< lim inf/ Lipwy du + ¢
<CPQU) +e.
By letting ¢ — 0, we obtain the result. O

To conclude this section, we prove two corollaries of Proposition 6.2
that will not be needed in the sequel, but may be of independent in-
terest. First we need a lemma.

Lemma 6.10. For any w € Lip.(X),

/ H(H{w > t})dt < Cco/ Lip w dp,
s X

where C,, only depends on the doubling constant of the measure.

Proof. By [27, Proposition 3.5] (which is based on [11]) the following
coarea inequality holds: for any w € Lip.(X),

/ pt(0f{w > t})dt g/ Lip w dp.
—00 X

Since H(A) < C3ut(A) for any A C X (see e.g. [27, Proposition 3.12]),
we obtain the result. O

Corollary 6.11. Let Q2 C X be a bounded open set with P(Q, X) < oo,
and suppose that there exists A C 02 with H(A) < oo such that

o ABE. )\ ©)

M B
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for every x € OQ\ A. Then there ezists a sequence of open sets §); €
with Xq,(x) — 1 for every x € {2 and

H(0Q;) < C(P(Q,X) + H(A))
for each j € N.

Proof. Choose an open set U’ with Q € U’ € X. Apply Proposition 6.2

with U = X to obtain a sequence wy € Lip,,.(X) with w, — Xq in
LY(X),

/ Lipwy dpu < Cipy(P(Q, X) + H(A)),

and w,, = 0 in U’ \ . From the proof of Proposition 6.2 it is easy to
see that in fact wy = 0 in X \ 2, so that wy € Lip.(X) for each k € N.
From the proof of Proposition 6.2 we can also see that wy(z) — 1 for
every x € €, so that for any ¢ € (0, 1), X{uw,>t () — 1 for every z € Q.
By Lemma 6.10,

1
/ H(O{wy, > t})dt < C’CO/ Lipwg dip < CooCin(P(2, X) + H(A))
0 X

for all k£ € N. Thus for any fixed £ € N we find a set T}, C (0,1) with
LY(Ty) > 1/2 such that for all ¢t € Ty,

H(O{wy, > t}) < 2C,Cin(P(2, X) + H(A)).

Now, if for every ¢ € (0, 1) there were an index N; € N such that t ¢ T,
for all & > N,;, then by the Lebesgue dominated convergence theorem
we would have

1
/ XT3, d£1 — 0,
0

which is a contradiction. Thus there exists ¢ € (0, 1) such that for some
subsequence kj, we have t € Ty, for all j € N.
Thus we can define Q; := {wy, > t}. O

We know the following fact about the extension of sets of finite
perimeter: if Q C X is an open set with H(02) < oo and E C
is a p-measurable set with P(F,Q) < oo, then P(E, X) < oo and in
fact

P(E, X) < P(E,Q)+ CH(09), (6.12)
see [24, Proposition 6.3]. Now we can show a partially more general
result.

Corollary 6.13. Let 2 C X be a bounded open set with P(Q, X) < oo,
and suppose that there exists A C 0Q with H(A) < oo such that

B\ Q)
e = B )

for every x € OQ\ A. Let E C Q be a p-measurable set with P(E, Q) <
o0o. Then P(E,X) < co.

>0
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Proof. Take the sequence of sets {}; € ) given by Corollary 6.11. By
Lebesgue’s dominated convergence theorem, we have p(£2\ ©;) — 0,
and so by the lower semicontinuity of perimeter and (6.12), we have

P(E,X) < liminf P(E Ny, X)
Jj—00
< liminf(P(E, ;) + CH(89;))
j—o00

< P(E,Q) + C(P(Q, X) + H(A)) < co.
]

Example 6.14. Without the requirement of the measure density con-
dition for X \ Q given in the hypothesis of the above corollary, the
conclusion of the corollary fails. For example, with D C R? the unit
disk in X = R? = C centered at 0, set 6, = >."_, Z and let

7=1 27

Q:=D\{z€C: Arg(z) =0, for some n € N}.
Then P(Q, X) = P(D,R?) < co. Now with

E = U{z eD: by, <Arg(z) < b1},
neN
we see that P(E,Q) = 0, but as H(0*E) = oo (note that H is now
comparable to the one-dimensional Hausdorff measure), it follows that

P(E,X) = P(E,R?) = .
7. DIRICHLET PROBLEM (T'): TRACE DEFINITION

In this section we consider the Dirichlet problem (T') given in Defini-
tion 4.1. We show that the limit of p-harmonic functions with boundary
data f is a solution to this problem.

In the Euclidean setting, it is known that if a bounded domain €2 has
a Lipschitz boundary, the trace operator T, : BV(Q) — LY(9Q,H) is
continuous under strict convergence, see e.g. [4, Theorem 3.88]. In the
following proposition we give a generalization of this fact to the metric
setting.

Proposition 7.1. Let Q C X be an open set such that the trace oper-
ator Ty : BV(Q) — LY (0O, H) is linear and bounded. Let u € BV(S),
and let u, € BV(QQ), k € N, such that

up —u in LNQ)  and || Dug|(Q) — || Dul|(£2).
Then Tyuy — Tyu in LY(0Q, H).
Proof. For t > 0, let
Q= {x e Q: dist(z, X \ Q) > t}.

Fix ¢ > 0. Choose 1 € Lip.(€2) such that 0 < n < 1, n = 1 in Q,,
n=01in X \ Q. and g, < 1/e. Let

vp i=nu+ (1 —n)ug, keN.
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Note that by lower semicontinuity of the total variation with respect
to L!-convergence,

1Dul|(€2e2) < Timinf || Duy[(22-)-

Since also ||Duyg||(€2) — || Du|[(€2) by assumption, necessarily
IDul[(2 $22c) = Tim sup | Duug [ (21 Qac). (7.2)
—00

We have vy —u = (1 —n)(ux — u), and so by the Leibniz rule from [19,
Lemma 3.2], and (2.11),

limsup || D(ve — u)||(2)

k—o0

< timsup | Dux — ) (2 0ac) + limsup [ gyl — ul dy
k—o0 95\925

k—o00

< limsup [| Dug[[(2\ Q) + [[ Dul[(2\ Q22) +0

k—o0

< 2[[ Dul| (2 )
by (7.2). Moreover, limy_,o ||vx, — ul[ 1) = 0, so in total

lim sup [[og — ullpv(ey < 2/ Dull(Q\ e).

k—o0

Since T, is assumed to be linear and bounded, for some constant C >
0 and for any v € BV(£2) we have

L/ ITv] dH < Collvllsvi).
o0

Note that T vy = T\, uy since vy, = uy in a neighborhood of 9€2. Thus

k—ro0 o0 k—o00

lim sup |T up — Thul dH = lim sup/ | T v — Tyu| dH
o

< limsup Col|vr, — ul|Bv(0)
k—o0

< 2Co || Dull(Q\ a.).
By letting € — 0, we obtain the result. U

Lemma 7.3. Let Q) C X be a bounded open set such that €) satisfies the
exterior measure density condition (2.21), Q supports a (1,1)-Poincaré
inequality, and there is a constant C' > 1 such that whenever x € OS2
and 0 < r < diam(52), we have

B
p(Ble,r) @) > HEET),
Assume also that for all x € 0 and 0 < r < diam(£2),

H&ﬂB@JﬁgCﬂg%ﬁl
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Let f € Lip(X) be boundedly supported, and let u € BV(Q). Then
there exists a sequence (1) C Lip(X) converging to u in L'(Q) such
that ¥ = f in X \ Q and

limsup | D6 (©) < Dl @)+ [ [Tou = F1dPyS.),
k—o0 o*Q
Remark 7.4. Note that some requirement similar to the exterior mea-
sure density condition in the above lemma is needed, for without such
a requirement we cannot talk about the trace T, u of a function u €
BV(Q). This difficulty is illustrated by the example of the slit disk,
see [28, Example 3.2].

Proof. The assumptions on () guarantee that the trace operator T :
BV(Q) — LY(99Q,H) is linear and bounded, see [28, Theorem 5.5]. The
assumptions also together imply that H (002 \ 0*Q) = 0.

Let (1) C Lipyye(X) such that 0 <n,, <1lon X, n, =0on X \Q,
Nm — Xo in L'(X), and

m—0o0

P (,X)= lim [ g,,du.
Q

Clearly we have in fact n,, € Lip(X) for every m € N. It is straightfor-
ward to check that then also g,,, diu — dP.(€2,-) weakly® in the sense
of measures on X. Since €) supports a (1, 1)-Poincaré inequality, Lip-
schitz functions are dense in N'1(Q), see [8, Theorem 5.1]. It follows
that there exists a sequence (¢y) C Lip(Q2) such that ¢y — u in L'(Q)
and

lim | go, dye = | Dul(9).

k—o0

By lower semicontinuity of the total variation with respect to L!-
convergence, necessarily also

lim | Do[(©) = [ Dul (@),

Now we set

wk,m = nm(bk + (1 - 7]m)f
Then 9y, € Lip(X) and

Yk — u in Ll(Q)

as m — oo and then & — oco. Furthermore, 1y, = f on X \ 2. By
the Leibniz rule of [8, Lemma 2.18],

Iim < GoiTIm +gf(l - nm) + gnm|¢k - f|

Here gy, .., 94,» 91, and gy, all denote minimal 1-weak upper gradients.
It follows that

/ G i < / g, dji + / gy(1 = ) dp + / gun 66 — 1.
(9] (9] (9] (9]
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As f is a Lipschitz function and 7,, — 1 in L*(2), we have

lim [ gp(1 —nm)dp = 0.
m—r00 0

Note that the Lipschitz functions ¢, have Lipschitz extensions to X,
which we still denote by ¢, and that necessarily Ty ¢ = ¢ on 0f).

Since g, dp — dP (£, ) weakly™ in the sense of measures,

Jin [ o= o da = | (T flapy@.)

It follows from Lemma 7.1 that T, ¢y — T\ u in L'(9Q, H), and then
by (2.14) and Theorem 6.9, also T, ¢p — T.u in L'(0Q, PL(%,)).
Thus, recalling also that H (02 \ 0*Q) = 0,

it [ fo— flgn, di = [ [Tu—fldP. (@20,
Q 0*Q

k—00 m—o0

and now we can choose a diagonal sequence {1, }r to satisfy the
conclusion of the lemma. O

In what follows, we denote by T_w the outer trace (if it exists) of
a BV function v € BV(X), namely, 7_u is the interior trace of u
considered with respect to X \ Q as given in Definition 2.18. We will
only need the following proposition for the case where u = f on X \ Q
for some Lipschitz function f; in this case, we always have T_u = f on
00\ Nx\q, in particular, T_u = f on 9*C).

Proposition 7.5. Let Q C X be a u-measurable set with P(Q, X) < oo
and let uw € BV(X) such that for H-almost every x € 0*Q, T u(z) and
T_u(x) exist. Then

[Dul[(X) = | Dul|(X \ 0°2) +/

Tou — Tou| dP(2, ).
0*Q)

Proof. We only need to prove that

IDul|@9) = | [Teu=T-uldP(.)
0*Q

By [6, Theorem 5.3], we have || Du|°(0*Q) = 0, and then by the de-
composition (2.17),

uY (x)
IDul@) = [ [ b dedn(a).
0*Q Ju' ()

It is fairly easy to check that {u"(z),u"(z)} = {T_u(z), T u(x)},
whenever both traces exist. This is also proved in [18, Proposition
5.8(v)]. Suppose that u"(z) = T_u(x) and u¥(x) = Ty u(x), the other
case being analogous. In the proof of [18, Proposition 5.8(v)] it is also

shown that
L (Bl r) N ({u > A9))
r—0F M(B(l‘, ’I"))

=0
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for all ¢t € (u"(x),u"(x)). We also have x € 0*{u > t} for all ¢
(u™(z),u"(x)). According to [6, Proposition 6.2], we have O, ()
Oq(x) for H-almost every such x. Hence we have

/ / 9{u>t} dt dH(ZE)
* u(x)

X{(wh (@)u (@)} (D) Opusey (x) dt dH ()

S

—

85
\
8

3
— o

X{(—o0,0 (U (2))X{ (1,000} (0 (2)) O sty () dH () it

¥
2

\
8

. X (o0t} (U (2)) X (1,000} (0 (7)) () dH () dt

[e.9]

\
g

X{(wA (@)u ()} (1) dt Oa(x) dH ()

—00

(u'(z) — v (z))0a(r) dH(z)

e}

*Q(uv —u’)dP(Q,")

Il
{Q

T u— T u|dP(€,-).
0*Q)
U

For p-measurable 2 C X and any x > 0, define the weighted measure
dp. == (Xa + K Xx\q) dpt. (7.6)

Consider then the space (X, d, ). It is easy to show that this is still a
complete metric space such that p, is doubling and supports a (1, 1)-
Poincaré inequality. We use the subscript x to signify that a perimeter
or some other quantity is taken with respect to the measure .

Theorem 7.7. Let Q) C X be a nonempty bounded open set of finite
perimeter such that Cap, (X \ Q) > 0, Q satisfies the exterior measure
density condition (2.21), and Q supports a (1,1)-Poincaré inequality.
Suppose also that there is a constant C' > 1 such that whenever x € 02
and 0 < r < diam(52), we have

p(B(z,r))
C :
Finally, assume that for all x € 092 and 0 < r < diam((2),

u(Bla,r) N Q) >

H(QN Blx,r) < C M.

Let f € Lip(X) be boundedly supported. For each p > 1 let u, be a
p-harmonic function in 0 such that uy|x\o = f. Suppose that (up)p>1
is a sequence of such p-harmonic functions and that u, — u in L'(Q)



DIRICHLET PROBLEM FOR LEAST GRADIENT 27

as p — 17. Then u is a solution to the minimization problem (T) of
Definition 4.1.

Beginning of the proof of Theorem 7.7. Note that by combining the ex-
terior measure density condition (2.21) and (2.13), we obtain that

(B(z,7) \ ©)
r—0t  p(B(x,r))

>y for H-a.e. = € 9. (7.8)

Note also again that the assumptions on 2 guarantee that the trace
operator T’ : BV(Q) — L'(09, H) is linear and bounded, see [28, The-
orem 5.5].

Let v € BV(Q2). By combining (2.14) and Theorem 6.9, we know
that P, (€2,-) is concentrated on 9*Q2. Thus we need to show that

IDell@)+ [ [Teo-flapu() < IDol@)+ [ [Teo-flapu@,).

By Lemma 7.3, there is a sequence (¢) C Lip(X) with ¢ = fin X'\
such that

fimsup [ go,du < [Dol(@+ [ [Te0— flaP(@.)
k—o0 Q 0*Q

Observe that each v can act as a test function for testing the p-
harmonicity of u,. Therefore by (3.1)

1/p 1/p
D0l < @ ( [ atydn) <o ([ g an)

Letting p — 17, we see that

imasup | D2, (©) < [ g, di
Q

p—1t

Therefore by now letting k — co, we have

limsup || D, | (2) < [ Doll(€2) + /a o= fldPyQ.). (79)

p—1t

Thus we need to prove that

limsup | Duy () = |Dull(@ + [ |Teu fldPa@)  (720)
p—1+ 0*Q)
in order to complete the proof.

Recall the definitions of Og and Ig from Definition 2.2. By the
exterior measure density condition (2.21), we know that H(0QN I) =
0. Recall the definition of (X, d, pu,) from (7.6). We note that || D, ul|
is absolutely continuous with respect to H, which follows from the BV
coarea formula (2.12) and (2.14). Thus || D,ul|(Iq \ ©2) = 0. Note also
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that since u = f on X \ Q, 0*{u— f >t} NOq =0 for all t € R, and
so by the coarea formula and (2.14)

(e 9]

IDo(u— )(Oa) = / Pu(0™{u— f > 1},0q) di

< C(Cyor) /OO Ho (0 {u— f > 1} 0 Og) dt
=0.

Then by the lower semicontinuity of the total variation and Proposi-
tion 7.5, we have

tin inf {| Dy || (X) = | Dul| (X)
= [[Drul|(Io) + || Dxull (O) + [[ Deul[(5742)

= [[Dxul[(2) + [ Deul|(Oq) + /aQ [ Tyu— fldP(S,-)

= [[Dul[ () + | Dx f[[(Oa) + /BQ Thu— fldP(%,-).

Similarly, on the left-hand side we have

[Dwup||(X) = [[Dup|(€2) + [| Dxup | (57Q) + || Dy [ (Oc)
= [[Dup| () + [[ D f1(Oa);

note that || D, u,|(0*Q) = 0 since p(0*Q2) = 0. In total, we have
liminf || Du,||(€2) > || Du||(£2) +/ |Tou— fldP:(Q,-).  (7.11)
p—1t 9*Q

The inequality (7.10) will follow from the above inequality if we know
that

lim T u— fldP.(Q,") = / |Tyu— fldP (€, ). (7.12)
"0 JoxQ 9*Q

This is the focus of the rest of this section, and we will complete the

proof at the end of the section. O

We will need the following approximation of a set of finite perime-
ter by "regular” sets. This is inspired by a similar result in [3], but
note that we use a somewhat different, “two-sided” definition of the
Minkowski content, as given in (2.1). First recall that by [27, Proposi-
tion 3.5] (which is based on [11]) the following coarea inequality holds:
for any w € Lip.(X),

/Oo vH(0{w > t})dt < / Lip w dv,

0o X
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where v is any positive Radon measure. From this it follows in a
straightforward manner that for any w € Lip,,.(X),

/oo pt(0f{w > t})dt < / Lip w dp. (7.13)

o X

Lemma 7.14. Let E C X be a set of finite perimeter. Fiz 0 < 6 < 1.
Then there exists a sequence of open sets of finite perimeter E; C X
with Xg, — Xg — 0 in LY(X), u(0E;) = 0 for each i € N,

limsup P(E;, X) < (1 — §)'P(E, X),

71— 00

and
P(E, X
limsup u* (0F;) < M

Proof. By Lemma 5.5, we can pick a sequence (v;) C Lip,.(X) with
v; —Xg — 0 in L'(X) and [ g,, du — P(E, X), where each g,, is the
minimal 1-weak upper gradient of v;. We may also choose the functions
so that v; > 0. Furthermore, Lipv; < Cg,, p-almost everywhere,
see [12, Proposition 4.26] or [22, Proposition 13.5.2]. According to the
coarea formula for BV functions, see (2.12), for every i € N we have

1
/P({vi>t},X)dt§/gwdu.
0 X

Now by Chebyshev’s inequality,

c <{t€ 0,1]: P({v; > t}, X) > (1—5)1/ng2. du}) <1-4;

note that this holds also if [} g, du = 0, as then P({v; > t}, X) = 0 for
a.e. t € [0,1]. Therefore there is a measurable set A; C [6/4,1 — 6/4]
with £1(A;) > §/2 and

1
HM>&M§——/%W
1-0 /s

for all t € A;. Moreover, since the sets 0{v; > t} C {v; =t} are disjoint
for distinct values of ¢, we have p(9{v; > t}) =0 for a.e. t € [0,1]. By
the version of the coarea formula found in (7.13), we have

1
/ pt(0fv; > t}) dt < / Lip v; dp.
0 X
Thus for each 7 € N, there exists t; € A; with
2 C
ph(0{v; > t;}) < —/ Lipv; dp < —/ G, djt
0 Jx 0 Jx

and p(0{v; > t;}) = 0. Define F; := {v; > t;}. Then
limsup P(E;, X) < (1 —-6)'P(E, X),

i—00
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and

limsup u* (0F;) < %P(E, X).

1—00

Now we need to show that Xg,,~¢1 — Xg — 0 in L'(X). Note that for
any t € [0/4,1 — 0/4], for any z such that

ref{vy,>t}NE o xze€X\({v>t}UE),
we have
N>ty (#) = Xp ()| = 0 < 4vi(z) — Xp(2)|/0.
If 2 € {v; >t} but # ¢ E, then
N>ty (2) = Xp ()| =1 < i)/t < 4lvi(z) — Xe(2)]/0.

On the other hand, if # € {v; >t} but z € E, then v;(z) <t <1-4/4
and it follows that

X(wi>t1 (%) = Xp(z)| =1 < 4fvi(z) — Xp(2)|/0.
Thus

4
/|X{w>ti}—XE|d/~t§5/ [vi — Xp|dp — 0
X X

so that X{y;>t1 — Xg — 0 in L' (X) (even though ¢; depends on ). [

The reason for utilizing the Minkowski content is that it scales nicely
according to the parameter x in p,, in the following sense.

Lemma 7.15. Let Q C X be p-measurable, let A C X\ Q, let >0,
and suppose that there is some R > 0 for which

pBE\Y) _ f

0dr<R wu(B(x,r)) 2 (7.16)

for every x € A. Then we have
Cpy (A) > kBu™(A).
Proof. For any x € A and radii r € (0, R),

pel(B(z.1) > (Bl )\ Q) = su(Bla, )\ Q) = " (Bl ).

Fix 0 < r < R/5 and consider the collection of balls { B(x,r)},ca. By
the 5-covering theorem we can pick a countable collection of disjoint
balls B(x;,7) such that the balls B(x;,5r) cover |J, ., B(z,7). We
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have

(Ua:eAB z,7) ZN 5’71757’ < Cdzlu va

JEN jEN
2Cd Z (B x]a
a jeN
< 203 p (Upea Bla, 1))
~ kp 2r '
By taking the limit infimum as » — 0 on both sides, we obtain
203
pr(A) < ; 1 (A).

O

Moreover, we have the following simple estimate for the Minkowski
content and Hausdorff measure that we will need in the proof of Propo-
sition 7.19. The estimate can be proved by a simple covering argument,
see [27, Proposition 3.12].

Lemma 7.17. For any A C X, we have H(A) < C3ut(A).

It is less clear that this estimate would hold if we used a “one-sided”
definition of the Minkowski content, as for example in [3].

Lemma 7.18. Let Q) C X be an open set. If K; C ), i € N, are
compact sets with Xx, — Xo — 0 in L' (X), then

P, (Q, X) <liminf P(K;, X).

11— 00

Proof. By [20, Lemma 2.6], for each ¢ € N we can find a function
v; € Lip,.(€2) such that ||v; — Xal[1@) < 1/i and

/ Gu; A < P(K;, Q) + 1/i.
Q

The conclusion follows by the definition of P, (£2,-). O

Proposition 7.19. Let Q2 C X be a bounded open set with P(§2, X) <
00, and assume that for some constant § > 0, we have

lim inf B, )\ Q)
r—ot  u(B(x,r))

for H-a.e. x € 92. Then we have
P, (Q,X) = lim P,(Q, X).
KR—> 00

>3 (7.20)
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Proof. By Theorem 6.9 we have P,(Q, X) < oco. Note that for any
k > 0 we have P,(,X) > P.(Q,X), so only the other inequality
needs to be proved. Fix 0 < § < 1, and fix k > 0. By Lemma 7.14 we
can find a sequence of open sets (2; C X of finite perimeter such that
Xo, — Xq in LX), p(0Q;) =0 for all i € N,

lim sup P, (€, X) < (1 —6) ' P.(Q, X), (7.21)
1—+00
and o o
lim sup p,} (9€2;) < gPH(Q,X) < gPJr(Q,X). (7.22)
1—00

In the following, we will repeatedly use the measure property and the
subadditivity property (2.11) of sets of finite perimeter. Since xq, —
Xo in L'Y(X), it follows that Xquo, — Xq in L'(X) as well. By the
lower semicontinuity of perimeter and the fact that the perimeter of a
set is concentrated on its measure theoretic boundary, we estimate

P(Q, X) <liminf P(QU Q;, X)
1—r 00

i—00

< lim inf <P(Q, X\ (Ig, UIg)) + P(Q%, X \ (I, U Ia)))

1—00
< lim inf <P(Q, X\ Io,) + P(, X\ IQ)).
21— 00
It follows that
P(Q,Ig,) < P(2;, X\ Q)+ ¢, (7.23)

where ¢; — 0 as i — oo. For any sets A, B C X, we have
O(ANB)C("ANI*B)U(0"ANIp)U(0"BNI1y).
Thus we have
(2, \ Q) C (0" NI Q) U (0" N Og) U ("N Ig,)
C ("% \ QU0 QN Iy,).
By (2.11), P(€%; \ ©, X) < oo, and then by using (2.14), we obtain
P(Q:\ Q,X) < CH(O*(2:\ Q)
S CH(O*Q\ Q) + CH(O" QN Ig,)
< CP(Q;, X\ Q)+ CP(Q,Ig,).
Combining this with (7.23), we obtain that for all i € N
P\ QX)) <CP(Q;, X\ Q)+ Ce;. (7.24)
Note that H|sq, is a Borel measure of finite mass, since by Lemma 7.17,
H(0Q:) < Op'(09:) < Ot (9) < 0.
Note that for any fixed r > 0, the map
p(B(z,r)\ Q)
u(B(z,r))

€T —r
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is a Borel map as the ratio of two lower semicontinuous functions.
Hence for each 7 > 0 the function f, given by

i MBE\Y)

Jr(z) = re@n(0,7)  p(B(x, 1))

is also Borel measurable, and so is

Frote) = it S < i (),

So for each 7 € N, by Egorov’s theorem we can choose a set A; C
0Q; with H(09Q; \ A;) < &; and such that f, — f, uniformly in A;.
Thus (7.16) is satisfied for A = A;\ Q and some R > 0. By Lemma 7.17
and Lemma 7.15, we get

HOL\ Q) <H(AN\Q) +¢;
¢ .

@MH (Ai\ Q) +e& (7.25)

<

IN

¢ o4
I{,B lLLIi (a Z) + El
Then by (2.14)
P, X\ Q) < CH(0Q\ Q) < %u:@@i) + Ce;,
so by combining with (7.24), we have

PO\ 2, X) < %mmi) + e

Recall that u(€; \ ;) = u(99;) = 0 for all i € N. Thus by (7.22),
limsup P(Q; \ Q, X) = limsup P(; \ Q, X)

. S

< lu;risogp ﬁ,u,@ (082;) (7.26)
C

< —P. (0, X).

For A C X, we set
B A
AP = {x € X: limsup'LL( (z.r) N A) > B}
r—0+ M(B(l‘, ’I"))

Let us denote by D C 052 the H-negligible set where (7.20) fails. Note
that u(X) > 0, and so we can assume that p(£2; \ Q) < p(X)/2 for all
i € N. Now by the boxing inequality, see [25, Remark 3.3(1)], we can
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find a collection of balls { B(z"
balls B(z},7%/5) are disjoint,

(B, r;/5) N4\ Q)
p(B(xj, 75/5))

, on covering (€; \ )7 such that the
] j J

5}
> — 2
- (7.27)
and

2
J

3 B ) CBP(2\ 2, X).

Note that in [25] it is assumed that p(X) = oo, but the condition
(€2 \ ) < p(X)/2 is sufficient for the proof to work. Then by (7.26),

p(B) _ C
rt - 5625

jEN J

lim sup P.(Q,X). (7.28)

i—00
Note that if z € I, \ (QU D), then z € (Q; \ Q)”. Thus we have
QA\D\ (Q\Q) c DU\ Q.
But by (7.25),

Thus we can pick another collection {B(y., st)}ren of balls covering

L\ N\ (% \ Q) with s}; < 1/2’ and

L
keN

and so by (7.22),

w(Byi,si) . C
S{ k Smb"é (0, X). (7.29)

lim supz
1—00 keN
Note that the collections {B(x%,7%)};en and {B(y}, s}.) bken together

cover all of Q; \ Q. By [24, Lemma 6.2] we can pick radii 7€ [rh, 2]
such that

o B(xt. 7 Bzt ri
L p(p(a, ), x) < PEET) o pBlE 1)
C YRR r} T;

and similarly we find radii s} € [s},2st]. Define for each i € N

(UB;« UByk,sk>.

JEN keN
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Note that these are closed sets contained in €2, and thus compact.
By (7.28) and (7.29), we have

lim sup P(K;, X)

< lim sup (P@X) +Y  P(B(,7),X) + ZP (Yh» 1) >)
oo jEN keN

:limsupP,.i(Qi,X)JrﬁP (92, X) + P P, (Q, X)

< (1-6) P, X) + 52 SP(,X),

where we used (7.21) in the last step (and absorbed a factor 2 into the
constant C'). By (7.27) we have

| Xk, —XQHLl(X) < ZM(B Ty, ] +ZN ykask
JjeN keN

<CZN 5, ]/5 +CdZM )

JjeEN keN
C Z 1(B (Y3 4
§E§ M( (.T],TJ/E))QQ \Q k k
JjEN keN

CM(Q \ Q) Cd Z n(B ykv St))

keN

since the balls B(z},7?/5) are disjoint. Now by the fact that xo, —
Xo in L'(X) and (7.29), we obtain Xg, — Xq in L'(X). Thus by
Lemma 7.18

P, (2, X) <liminf P(K;, X)

11— 00
C
<(1=0)"'P(Q, X) + Q,X
< (1= 8) P X) + P X).
Letting Kk — oo and then § — 0, we obtain the result. 0

Corollary 7.30. Under the assumptions of Proposition 7.19, for any
Borel set D C X we have

P.(Q, D) = lim P.(Q,D).

R—00

Proof. For any Borel set A C X and any x > 0, we have P, (Q,A) >
P.(Q, A). Thus by the measure property of P.(€2,:) proved in the
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Appendix, and by Proposition 7.19,
P+(Q7D) = PJr(QvX) _P+(Q7X\D)
= lim P, (2, X)— P, (2, X\ D)
K—00

< limsup (P(, X) — P.(, X \ D))

KR—00

= lim P.(Q, D).

KR—00

0

End of the proof of Theorem 7.7. Note that by (7.8), 2 satisfies the
assumptions of Proposition 7.19 (and thus Corollary 7.30) with § =
k. By Cavalieri’s principle, Corollary 7.30, and Lebesgue’s monotone
convergence theorem, we have

/ Ty — f|dPL(Q, )
0*Q2
_ / P(Q,0'Q N {|Tu— f| > t}) dt
0

—>/ P.(Qo0QN{|Tyu— f| > t})dt as K — 00
0

— [ [T flapa@.)
0*Q)

This proves (7.12), thus completing the proof of Theorem 7.7.

O

Corollary 7.31. Let Q C X satisfy the assumptions of Theorem 7.7,
and let f € Lip(X) be boundedly supported. Then the minimization
problem (T) of Definition 4.1 has a solution.

Proof. For every p > 1, there exists a p-harmonic function u, in 2 such
that upy|x\o = f. Then the result follows by combining Lemma 3.2 and
Theorem 7.7. U

8. DIRICHLET PROBLEMS (T'), (B) AND PERTURBATION OF THE
DOMAIN

From the definition of P, (€2,-) it is clear that Problem (T) of Def-
inition 4.1 is associated with approximating the bounded open set €2
from inside. Moreover, if for each k& € N we have 0 €  such that
Q = Ugen %, and vy, is the pp-harmonic solution to the Dirichlet prob-
lem on €2 with boundary data f, then under reasonable hypotheses on
2 we have v,, — u with u a solution to Problem (T in 2 with bound-
ary data f. Indeed, suppose that for each p > 1 there are constants
Cp, > 1 and S, > 0 such that €2 satisfies the condition that whenever wu,
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is a p-harmonic solution to the Dirichlet problem on €2 with boundary
data f we have

A

ﬁm%s(ip) U S Bﬂgg?m,r) f + Cp (T’) (81)
for all x € 92 and 0 < p < r/2. Let py be any sequence as obtained
in Lemma 3.2. Take a sequence ¢, — 0 as k — oo, and let L > 0
such that f is L-Lipschitz continuous. For each & € N we can fix
0 < 7, < diam(€2)/2 such that 4Lr; < e. Then by (8.1), whenever
rx e and 0 < p<r,/2and y € Bz, p) NS,

lup,, (1) = FW)] < up, () — up, ()| + [ f(2) = f(y)]
S 2L7’k—|—Cpk (Tﬁ)ﬁpk +L7’k-

We can then choose 0 < py < 71/2 such that

Bpk
Cpk (@) < L’I“k,

Tk
in which case for y € B(x, pr) N2 we have

up, (y) — f(y)| < 4Lry < .

Now if we choose Q) € € such that 0 < dist(0Q,00) < pg, we
have by the comparison principle for p-harmonic functions (see [8])
that |vg — u,, | < ex on Q. It then follows that v, — w in L'(X)
as k — oo, where we know from the previous section that u satisfies
the Dirichlet problem (T) on 2 with boundary data f. Examples of
domains where (8.1) hold include the domains whose complements are
uniformly 1-fat, see [10]; in particular, domains whose complements are
porous satisfy this requirement.

In contrast to problem (T), the Dirichlet problem (B) of Defini-
tion 4.1 is associated with approximation of €2 from outside, as we will
see next.

Let Q C X be a nonempty bounded open set with X \ Q # 0.
Let x C X, k € N, be a sequence of bounded open sets such that
Q= Mien 2 and Q411 € €, for each k € N. Note that since X\Q#0
is open, we have ;(X\) > 0. Thus also Cap, (X \ Q) > u(X\Q) >0
for all sufficiently large k, and so we may as well assume that this is
true for all £ € N. For each k € N, fix a decreasing sequence (g m)m
such that py,, > 1 and

lim pgm = 1.

m—r00
Let f € Lip(X) be boundedly supported, and let uy,, € N'Prm(X)
be the pj ,,-harmonic function solving the Dirichlet problem on (2
with boundary data f. According to Lemma 3.2, by passing to a
subsequence of (pg m)m (n0t relabeled), we find a function u, € BV(X)
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with uy = f on X \ Q4 such that uy,, — ug in L'(X) as m — co. We

have
1/pk:,m
/ G At < ( / Gurm du) pu(Qu) P
Qp ’ Qp,

1/pk,m
< ( / g?’“mdp&) p( €)',
Qp

As in Section 3, gy, ,, always denotes the minimal p-weak upper gra-
dient of uy,,, and for a Lipschitz function f, gy denotes the minimal
p-weak upper gradient of f for any p > 1. By (3.1),

| Dl (X) < / G, A = / Guu, i+ / g7 dis.
X Qp X\Qk

By the lower semicontinuity of the total variation,
D) < limint | Dl (X) < [ g7 d
m—00 X

We have | f| < M on X for some M > 0. By the comparison principle,
we also have |uy,,| < M, and then |u;| < M. Thus for all k£ € N,

lukll ey < oo () + 1 Fll 1 oveny € Mp(0) + 1o ) < oo

Then by the compact embedding given in [30, Theorem 3.7|, by passing
to a subsequence of k (not relabeled), we obtain u; — u in L'(X) as
k — oo, for u € BV(X). By passing to a further subsequence (not
relabeled), we can assume that

/X lup — uldp < 1/k. (8.2)

Theorem 8.3. Let 2 C X be a nonempty bounded open set such that
X\ Q # 0, and suppose that f € Lip(X) is boundedly supported. Let
u be the function constructed above. Then u solves Problem (B) of
Definition 4.1.

Note that in this section we do not need €2 to satisfy the extra con-
ditions imposed in Section 7.

Proof. Take a test function ¢ € BV(X) such that v = 0 on X \ Q.
We can choose a sequence (¥;) C Lip,,.(X) such that ¥; — v+ in
L'(X) as j — oo and

tim [ o, diu = |D(u+ 0)](X).

where gy, is the minimal p-weak upper gradient of W; in X, for any
p > 1, see the discussion on page 7. Then also gy, du — d||D(u + ¥)||
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weakly™® in the sense of measures (see e.g. [18, Proposition 3.8]), so that

for each k € N,
lim sup / gw, dp < | D+ )] ()
Q

j—o00
= [ID(u+9)[[(2) + ([ D(u+)[| (% \ Q)
= [[D(u+ ¥)[|(€2) + | DfI[ (€% \ ©2)
since u-+1) = f in Q; \ Q. For each k € N, let ¢, ::_dist(ﬁ, X\ Q) >0,
and let 7., € Lip,(X) with 0 <., <1,7n., =1inQ, 7., =0in X\ Q,
and g,., < 1/eg. We set
'QZ)j}k = nEk\IIj + (1 - nEk)f-
By the Leibniz rule of [8, Lemma 2.18],
gd)j,k < Q\I/jnsk + gf<1 - n€k> + gnsk \I,] - f‘
< gu,Xe, + 9rXana + (1/ee) |V — flXo,\a-

Note that this function agrees with f in X \ €.

As noted above, |ug| < M for all £ € N, and so |u] < M. As
truncation decreases total variation, we can also assume that |u + | <
M and that the approximating functions V¥; also satisty |V, < M.
Then we have (assuming py,,, < 2 and M > 1)

J R T e e W L JE
X\0 X\Q

(8.4)

(8.5)

< 2M U, — f|dp.
X\Q

For each k € N, by (8.4) we can choose j; € N large enough so that
/Q gu,, di < D+ )| + [DFIND + 1k (86)
k

and
2

9
U, — fldu < =2

and then it follows that for all m

/ g du << (8.7)

Then we choose my, € N large enough so that 1 < pg,,, <1+ 1/k,

/ Uk, m,, — wi| dpe < 1/k, (8.8)
b

Pr 1/pk,mk
(/ gqu;k’“du) S/ g, dp+1/k.
Qk Qk

and
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It then follows by (8.6) that

1/pk,my, o _
([ ) ™ < 1D+ 0IE) 4 IDAIGAD) + 275 (89

Combining (8.8) with (8.2), we have uy,,, — u in L'(X) as k — oc.
By lower semicontinuity of the total variation, Holder’s inequality, and
the fact that 1j, , can be used to test the pj ,,-harmonicity of wy pm, ,
we get

|Dul|(Q) < liminf [ g, du
k—oco Qk
1/pk:,mk
< liminf ( / Gug ok du)
k—o0 Qk
l/pk,mk
< lim inf (/ gi’f’mk d,u)
k—oco Qk Ik

1/pk:,mk 1/pk,mk
< lim sup </ gg’?kmk d,u) + lim sup (/ 7g?k,mk d,u)
k—o0 Qp k—o0 Q\Q

1 1/pk:,mk
+ limsup — </ W, — f|Poms d,u)
.

k—oo €k &\
< | D(u+ )| () + 0+ lim inf g/ P!
—00
= [ D(u+¥)[[().
In the above, we used (8.5) to arrive at the fourth inequality, and
(8.9), (8.7) in obtaining the penultimate inequality. O

9. ALTERNATE DEFINITIONS OF FUNCTIONS OF LEAST GRADIENT

In this section we consider possible definitions of what it means for a
function v € BV(Q2) to be of least gradient in an open set 2 C X. This
is not to be conflated with the notions of solutions to the Dirichlet
problems studied in the previous sections, as such solutions must in
addition satisfy a boundary condition.

Recall that by BV.(€2) we mean the collection of functions ¢ €
BV(Q) such that supp(¢) C Q, and by BV(£2) we mean the collection
of functions ¥ € BV(Q) for which T',v exists and Ty ¢ = 0 H-a.e. in
o09.

In addition to the class BV(£2), in this section we also consider
a larger class of test functions, the class wk — BVy(Q2) of functions

1 € BV(Q) such that

1
lim 7/ Y|dp =0
A B ) Jatorn
for H-a.e. z € Of).
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Note that BVy(2) C wk — BVy(Q2). If P(Q2,X) < oo, recall that
H(0*Q\ £,Q) = 0, where £,Q was defined after (2.13). Note that if
[ € wk — BV(Q), then for H-a.e. z € (Io NIN) UL, Q we have

! Sear ) laldn=o
im ufap =1,
r=0t u(B(z,7) N Q) Jperne

that is, Tyu(z) = 0. The philosophy here is that the trace of test
functions in Oq, from the point of view of solving a Dirichlet problem
for BV functions, should not affect the solution to the problem.

Recall that || Dul|* denotes the singular part of the variation measure
with respect to p.

Definition 9.1. We have the following alternative notions of functions
of least gradient. Let u € BV(Q).

(1) We say that wu is of least gradient in ) if whenever 1) € BV (),
we have || Dul|(€2) < || D(u+ )| (€2).

(2) We say that u is globally of least gradient in € if whenever
1 € BVy(Q2), we have ||Dul|(2) < || D(u+ )[|().

(3) We say that w is globally of least gradient in the wider sense in
Q if whenever ¢ € wk — BVy(2), we have || Dul[(Q2) < ||D(u +
)[I(€).

(4) We say that wu is of least gradient in the sense of Anzellotti in €2
if whenever ¢ € wk — BV(Q2) with || Dy||* < || Dul]®, we have
| Dul|(€2) < |D(u+)[|(2).

(5) We say that u is of least gradient relative to Lipschitz functions
in Q if whenever ¢ € Lip,,.(©2) with ¢ — u € wk — BV(Q), we
have [ Dul|(©2) < [| Del|(£2).

Lemma 9.2. Let Q C X be an open set with H(0Q) < co. Let u be of
least gradient relative to Lipschitz functions in ). Then u is globally
of least gradient in the wider sense in ).

Proof. Let ¢ € wk—BV,(Q2). By [28, Corollary 6.8], we find a sequence
(¢;) C Lipj.(2) such that ¢; — (u+ 1) € wk —BVy(Q), ¢; = u+ ¢
in LY(Q), and ||Dg;[|(2) — [|D(u + ¥)||(Q) as j — oo. Then also
p; —u € wk — BVy(Q). Thus by the fact that u is of least gradient
relative to Lipschitz functions,

1D (€2) < lim [|Depy|($2) = [ D(u + )][(£2)-
O
Proposition 9.3. Let Q C X be an open set with H(0S) < oo, and

let w € BV(Q). Then the alternative definitions (1)-(5) of u being of
least gradient in ) are equivalent.

Proof.
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e (1) = (3): This follows from the fact that for any ¢ €
wk —BV(Q) we find a sequence of functions ¢, € BV.(£2) such
that 1 — ¢ in BV(Q), by [28, Theorem 6.10].

e (3) = (2) = (1): These implications are trivial.

e (3) = (4): This is trivial.

o (4) = (5): Let ¢ € Lip;.(2) with ¢ —u € wk — BVy(Q).
Then clearly || D(p — u)||* = || Dul|*, so we have

[Dull(2) < [D(u+ (¢ —w)|(€2) = [|De|(£2).

e (5) = (3): This is Lemma 9.2.

t

Consider again the Dirichlet problem (T) of Definition 4.1. We say
that u € BV(2) solves the Dirichlet problem (T) relative to Lipschitz
functions if

[Dull(€2) + /M Thu — fldPL (€, ) < |[Do][(2)

for all v € Lip(X) with v = f in X \ 2. Note that the boundary term
vanishes for v.

Proposition 9.4. Let 2 C X satisfy the assumptions of Lemma 7.3,
and let f € Lip(X) be boundedly supported. If u € BV(Q) solves the
Dirichlet problem (T) relative to Lipschitz functions, then u solves the
Dirichlet problem (T).

Proof. Pick a sequence of functions v, € Lip(X) given by Lemma 7.3.
Then

D@ + [ [Tyu=flaPi@.) < Jim [D](@)

—1Dul(@) + [ [T = flaPi@. ),

APPENDIX: PROOF THAT P, (£, ) IS A RADON MEASURE

Let © C X be an open set with P, (£, X) < oco. In showing that
P, (9,-) is a Radon measure on X, we rely on the following theorem,
due to De Giorgi and Letta [13, Theorem 5.1(3,5)], whose proof can
also be found in e.g. [4, Theorem 1.53].

Theorem A.1. Let v be a function defined on the open sets of X taking
values in [0,00] such that v(0) = 0, v(Uy) < v(Us) for any open sets
U, C Us, and such that the following properties hold:

(1) If Uy, Uy C X are open sets, then v(Uy UUs) < v(Uy) + v(Us).
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(2) If Uy, Uy C X are disjoint open sets, then
v(Uy UUsy) > v(Uy) + v(Us).
(3) For any open set U C X, v(U) = sup{v(V), V open, V € U}.
Then the extension of v to all sets in X, defined by
v(A) =inf{v(U) : U open, U D A}, ACX,
is a Borel outer measure.
Clearly we have P (Q2,0) = 0 and P.(Q,U;) < P.(Q,Us) for any

open sets U; C Uy. We also note that if U;,Us C X are two disjoint
open sets, then

P+(Q,U1UU2) :P+(Q7U1)+P+<Q,U2), (A2)

verifying property (2). Next we prove two “pasting” lemmas, which
are analogs of [30, Lemma 3.3]. In this section, g, always denotes the
minimal 1-weak upper gradient of w.

Lemma A.3. Let U;,Uy C X be open sets such that Uy is bounded
and OU; N OUy = (. Then there exists a function n € Lip.(X) with
0 < n <1 such that whenever u € Lip,,.(Uy) and v € Lip,,.(Us), the
function w :=nu+ (1 —n)v € Lip,,.(U; UUs) satisfies

/ gwdué/ gudu+/ gvdu+C(U1,Uz)/ lu —vldpu,
U1UU2 Uy Usz U1NU2

and whenever h € L (U; U U,),

loc

[ wenldas [ u=nldus [ o blde
U,UU2 U, Uz

where C(Uy, Us) depends solely on dist(OUy, 0Us) and is independent
of u,v.

Proof. Let n be a Lipschitz map from U; U U; to [0, 1] such that n =1
on Uy \ Uy and n =0 on Uy \ Uy. Then the desired results follow from
the Leibniz rule [8, Lemma 2.18]. O

Lemma A.4. Let Uy € Uy and U, € Uy be open sets. Then there
exists a function n € Lip,(Uy) with 0 < n < 1 such that whenever
u € Lip,,.(U1) and v € Lip,.(Us), the function w = nu + (1 —n)v €
Lip(U; U U3) satisfies

/ gwduﬁ/ gudu+/ gvdu+C(U{,U1)/ lu — vl dp.
Uluy U Uz UinUz

Proof. Let n € Lip.(X) such that 0 <n<1,n=1in U], and n =0 in
X \ Uy. Then the desired result again follows from the Leibniz rule.
O
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For an open set W C X and § > 0, let
Ws:={z e W dist(z, X \ W) > d}.
Lemma A.5. Let W C X be open and 0 < 0; < do. Then
P (QW) < P(Q,Ws,) + P(Q W\ Ws,).

Proof. We set U; = W5, and Uy, = W \ Ws,. We can find sequences
(u;) C Lipy,.(U1) and (v;) C Lipy,.(Us) such that u; vanishes in U; \ ©,
v; vanishes in Uy \ Q, u; — Xq — 0 in LY(Uy), v; — Xq — 0 in LY(T5),
and
lim [ gy, du= P.(Q,Uy), lim G, A = Py (2, Us).
Us

11— 00 U1 1—00

Applying Lemma A.3 with v = w; and v = v;, we obtain functions
w; € Lip,.(U; UUsy) = Lip,,. (W) such that w; = u; in Uy \ Uy, w; = v;
in U2 \ Ul,

/\wi—xgwdus s — Yol du+ | |o; — xal d,
w Uy Us

and

/gwidNS/ guid,qu/ gvidﬂ+C(UlaU2)/ |u; — v;| dpe.
w Uy Us UiNU2

Furthermore, by the construction of w;, we see that w; vanishes in
WA\, From the first of the above two inequalities we see that w; —Xq —
0 in L'(WW), and hence by the second of the above two inequalities,

P.(QW) < liminf/ Guw,; dp
w

i—00

<P (QUy) + P(Q,Us) + limsup/ |u; — v;| dp.
U1NU2

1—>00
Note that
/ \ui—vi\dug/ |u; — Xal| + |vi — Xa| dp — 0
U1NU2 U1NUs
as 7 — 0o. The desired conclusion now follows. O

Lemma A.6. Let W C X be an open set and let ¢ > 0. Then for
some § > 0 we have

P (QW\W;) <e.
Proof. Let (0)) be a strictly decreasing sequence of positive numbers

such that limj_,o 0y = 0. For integers k > 2, let V}, := W, \W(;%%.
Note then that {Vax}ren is a collection of pairwise disjoint open sets,
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{Vag+1 bren is a collection of pairwise disjoint open sets, and Vi, NV} is
non-empty if and only if |k — 7| < 1. From (A.2) we see that

ZP‘F(Q?%]{)) §P+ (Qvu‘/?k> §P+(Q7W> < 00,

k=1 k=1
and so we can find k; € N such that

> P, V) <

k=k1

<
5
Analogously, we can find ks € N such that

> €
Z P+(Q, V2k+1) < 5
k=ks

Thus by choosing k. = 2max{ky, k2} + 1, we obtain

i P V) < e (A7)

k=ke

For each k > k. we can choose a sequence (uy;) C Lip,,.(Vj) such that
uy,; vanishes in Vj \ €,

1
C (U?:ks Vi, Vk+1>

9

/ ks — Xol dp < 27 min { 1,
Vi

and
/ guk,i d:u < P+<Qa Vk) + 27iik'
Vi

Fix 7 € N. We construct a function w; inductively as follows. For k = k.
we set w;; = ug,;. We apply Lemma A.3 with U; = Vi, Uy = Vi1,
U= Wik, and v = Uy, to obtain w; k41 € Lipyge (Vi U Vi41). Note
that w; 11 vanishes in (V. U Vj41) \ ©Q,

/ |Wi k.1 — Xa| dpp < 97i(2 ke 4 k1),
VksUVk5+1

and

/ G, goosr At < P(Q, Vi )+ P(, Vies1) 27 (27 e o7k,
ngUVk:5+1

Now we inductively apply Lemma A.3 with U; = ijg Vi and Uy =V,
and u = w; 1 and v = uy,;, with £ > k. + 1, to obtain a sequence of

functions (w; ), with w;, € Lip, (Uf;:kE Vk> such that w;, vanishes
e
in Uk:kE Vi \ Q,

/ Wi — Xo| dp < 27 Z 27k,
ﬁ:ks Vi

k=ke
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and

[ gy @2y 2k
Us—r: Vi k=ke f—ke

Note in addition that w;, = w; n4+1 in V,, for £ > n + 1. It follows that
w; = limy_,o w; ¢ exists, belongs to Lipy,, (Uzozkg Vk), and vanishes in

Uner. Vi \ ©. Moreover,
/ lw; — Xo| dp < 270k
UrZke Ve

and

/ Gurdp < 3 Pu(Q V) + 274k,
Ur=k. Vi k—k.
From the first of the above two inequalities it follows that w; —Xq — 0
in L (UzozkE Vk), and so by the second of the above two inequalities,

P, <Q U Vk> < hixgglf/um na dp <) P Vi) <e

k=ke k=k:

by (A.7), as desired. Moreover, (J;2, Vi = W \ Wy for 0 := Ga._s.
UJ

By combining Lemma A.6 and Lemma A.5, we obtain property (3)
of Theorem A.1, that is, for any open set U C X,

P (Q,U) =sup{P.(Q2,V), V open, V € U}. (A.8)
Finally, we prove property (1) of Theorem A.1.
Lemma A.9. Let U;,Uy C X be open sets. Then
P.(Q,U;UlU,) < P (Q,Up) + P(Q,Uy).
Proof. Take V' € U; U U, and note that V = U] U U}, for some U] € U;
and U) € U;. We can find sequences (u;) C Lip,.(U;) and (v;) C

Lipy..(Us) such that u; vanishes in Uy \ (2, v; vanishes in U\, u;—Xq —
0in LY(U4), v; — Xq — 0 in LY(Uy), and

lim Yu; d:u = PJr(Qa U1)7 hm Gu; d:u = PJr(Qa UQ)
i Uy

11— 00 U1 —00

By Lemma A .4, we then find functions w; € Lip,,.(U; U Uj) satisfying
w; — Xo in LYU] UUS) and

/ gwidﬁé/ guidlw/ guidM+C(U{,U1)/ lu; — v;| dpu.
U{UUé U1 Us UiNU2

Note also that by the construction of w; in Lemma A.4, w; vanishes in
Uy U U\ Q. Letting i — oo, we obtain

P.(Q,U; UU)) < lim inf/ Guw; A = Py (Q,Uy) + Py (Q,Us).
UjuU}

1—00
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By (A.8), we obtain the desired conclusion. O

Thus we have proved that P, (€2,-) satisfies the conditions of The-
orem A.l, so that P, (€,-) is a Borel outer measure. Borel regularity
follows easily from the definition

P (Q,A) :=inf{P.(QU): Uopen, U DA}, ACX.

In conclusion, P, (£2,-) is a Radon measure.
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