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Abstract

We consider two notions of functions of bounded variation in complete metric measure
spaces, one due to Martio [M1, M2] and the other due to Miranda Jr. [Mi]. We show that
these two notions coincide, if the measure is doubling and supports a 1-Poincaré inequality. In
doing so, we also prove that if the measure is doubling and supports a 1-Poincaré inequality,
then the metric space supports a Semmes family of curves structure.
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1 Introduction

Given 1 < p < oo, a function u in LP(R") is in W1P(R") if and only if u has an LP-representative
that is absolutely continuous on almost every non-constant compact rectifiable curve in R™ with
derivative in LP(R"), see [Vi] for an in-depth discussion on this. Equivalently, u € W1P(R") if
and only if u € LP(R™) and there is a non-negative Borel function g € LP(R™) such that for all
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non-constant compact rectifiable curves v in R”,

b
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On the other hand, the class of BV functions on R" has a more complicated analog; there should
be a sequence f, € WHY(R"), with fx — u in L'(R"™) and function g associated with f; as
in the inequality above, such that liminfy_,o [pn gk do is finite. Thus to verify that a function
u belongs to the class BV(R™) we need a sequence of pairs of functions (fx, gr) satisfying (1),
where f;, approximates u in L!'(R™), whereas to define a function in WH!(R") we only need a
single energy function g that satisfies (1).

The above complication carries through from R” to more general metric measure spaces X,
and so while we need only the energy function g in order to know that u is in the Sobolev class,
to know that w is in the BV class we need both, the approximating sequence fi as well as the
corresponding energy functions gi. To avoid this discrepancy, the recent work of Martio [M1, M2]
proposed a new definition of BV functions in the Fuclidean and general metric measure setting,
denoted in the current paper by BV oy (X), see Definition 2.5. In this notion one needs a single
sequence of “energy” functions g associated with the function w in a specific manner in order to
determine whether u € BV ap(X). The backbone of the construction of BV sy (X) is the notion
of AM-modulus, and it appears that this modulus is better suited to the study of sets of finite
perimeter than the standard 1-modulus. It is shown in [HMM?2, Theorem 11] that Euclidean
Borel sets E are of finite perimeter if and only if the AM-modulus of the collection of all curves
that cross the measure-theoretic boundary 0,F of E is finite; and in this case the perimeter
measure of F is precisely the AM-modulus of that collection of curves. This is a variant of
the Federer characterization of sets of finite perimeter. Federer proved that a measurable set
E C R" is of finite perimeter if and only if H"~1(0,E) is finite; a new, potential-theoretic proof
of this characterization, valid even in the metric setting, can be found in [L].

The goal of this paper is to show that if the metric measure space X is of controlled geometry,
that is, if X is complete, the measure 1 is doubling and supports a 1-Poincaré inequality, then
the notion of BV oy (X) from [M1, M2] gives the same function space as the BV class BV(X)
as defined by Miranda Jr. in [Mi]. To do so we also prove that if x4 is doubling, then X supports
a 1-Poincaré inequality if and only if X supports a Semmes family of curves corresponding to
each pair z,y € X of points, that is, there is a family I';, of quasiconvex curves connecting z
to y and a probability measure o,, on I';, satisfying a Riesz-type inequality, see Definition 3.6
below. This auxiliary result is of independent interest. The notion of Semmes family of curves,
first proposed in [Se| (where clearly it was not termed a “Semmes family”), is known to imply
the support of a 1-Poincaré inequality, see the discussion in [He, page 29]. In this paper we
show that the converse also holds true, that is, if the measure is doubling and supports a 1-
Poincaré inequality, then it supports a Semmes family of curves structure. Thus, our paper
also characterizes the support of a 1-Poincaré inequality (in doubling complete metric measure
spaces) via the existence of a Semmes family of curves. A recent preprint [FO] gives another
characterization of the support of a 1-Poincaré inequality in terms of the existence of normal
1-currents for each pair of points z,y € X, in the sense of Ambrosio and Kirchcheim, such that
the mass of the current is controlled by the Riesz measure Ry, see (6) below. For the study



comparing BV-AM spaces with BV classes of functions, a Semmes family of curves seems to be
more useful.

The equality of BV(X) with BVaym(X) and the equivalence between the Semmes family
of curves structure and the 1-Poincaré inequality form the two main results in this paper, see
Theorem 3.10.

2 Two definitions of BV functions

In the rest of the paper, (X,d, u) is a metric measure space, where (X, d) is a complete metric
space and p is a Borel measure. We denote by B an open ball in X and by AB the ball with
the same center as B and radius A times the radius of B. Recall that the measure p is said to
be doubling if there is a constant C' > 1 such that p(2B) < C'u(B) for every ball B in X.

Given a compact interval I C R, a curve v : I — X is a continuous mapping. We only
consider curves that are non-constant and rectifiable. A curve «y, connecting two points z,y € X,
is C'-quasiconvez if its length is at most C'd(x,y).

2.1 p-Modulus and AM-modulus of a family of curves

Definition 2.1 Given a family I' of curves in X, set A(I") to be the family of all Borel measur-
able functions p : X — [0, o0] such that

/pdszl for all v €T,
.

and set Ageq(I") to be the family of all sequences (p;) of non-negative Borel measurable functions
p; on X such that

liminf/pid321 for all v €T
gl

11— 00

The integral f7 pds denotes the path-integral of v against the arc-length re-parametrization of
7, see for example the description in [He]. We define the co-modulus of T' by

Modo(T) = inf i
odeo (I') Lot o1l Lo (x)

and for 1 < p < oo the p-modulus of I is

Mod,(I') = inf dy.
ody(I') pelg(F)/pru

Following [M1, M2], we define the approzimate modulus (AM-modulus) of T" by

AM(T) = inf liminf/ i d }
( ) (i) EAseq(T) { i—00 Xp K



The notion of AM,(T') is defined analogously, with [y p; du replaced by [ pf du. If a property
holds for all except for a family I' of curves with Mod, I" = 0 (respectively with AM(I") = 0),
then we say that the property holds for p-a.e. curve (respectively for AM-a.e. curve).

Note that AM(T") < Mod;(T"). Thanks to Mazur’s lemma, it is a trivial consequence of the
reflexivity of LP(X) that AM,(I') = Mod,(I') when 1 < p < oo, see [HMM, Theorem 1]. It
is also easy to see that for any family of curves I' we have AM(I') = Mody(T"). Indeed, let
7 =AM (T"). If 7 = oo there is nothing to prove, so let us assume that 7 < co. By definition,
there is a sequence of non-negative Borel functions (g5) € Aseq(I") such that

liminf || g7 || po(x) <7 +¢ and liminf/gf ds > 1 for each y € I,
1—00 ~

1—00

Let p. :=sup, g;. As p. > g; for each i € N, it follows that

1< liminf/gfds < /pgds,
1—>00 ~y ~y

and s0 Mod(I') < [|p:]|z(x) < 7 + € and the result follows.

Note that if every curve in I' is contained in a fixed ball B, then
AM(I) < Mod, (T) < p(B)*YP Mod,(I')"? < 1u(B) Modu(T),

and therefore
lim sup [Mod,,(I")]"/? < Mod(T).

p—00

The next example shows that it is possible to have Mod; (I') = co but AM(I") = 1. Further
examples can be found in [HMM, Section 9]. The examples found there are families of curves
that tangentially approach a smooth co-dimension one sub-manifold of R".

Example 2.2 Let I' be the collection of all rectifiable curves of length at most 1 in the plane,
and start from the x-axis with 0 < x < 1 and are parallel to the y-axis. Then there is no
acceptable p € L'(X) for computing Mod; (I'), and hence Mod;(I') = co. On the other hand,
AM(T") is finite but positive. To see this, for each positive integer let p, = 1 X[0,1]x[0,1/n)- Then
fﬁ{ pnds > 1 whenever « is in I with length at least 1/n, and as every curve in I' has positive
length, we have that

lim [ p,ds > 1.
n—0o0 ~

So the sequence (p,,) is admissible for I', and thus

1
AM() < limsup/ pn dL? = limsupn <— X 1> =1.
R2 n

n—oo n— oo



To see that AM(T") > 0, we consider the sub-family I'; /5 of all line segments in I" with length
1/2, and let (p;) € Aseq(I'1/2). Then by Fubini’s theorem, for each i € N we have

1 ,1/2 1 1/2
/ p; AL 2/ / pi(z,y) dydw:/ (/ pi(z,y) dy) dx.
R2 0 JO 0 0

Now by Fatou’s lemma,

1 1/2
liminf/ pi dL? 2/ (hminf/ pi(x,y) dy) dr > 1.
1— 00 R2 0 12— 00 0

AM(T) > AM(T) 5) > 1.

It follows that

2.2 BV functions based on the notion of AM-modulus.

Definition 2.3 A nonnegative Borel function g on X is a 1-weak upper gradient of an extended
real-valued function u on X if for 1-a.e. curve 7 : [a,b] — X,

mww»—mwwnz/gw.

o

Given a function u that has a I-weak upper gradient in L'(X), there is a minimal 1-weak
upper gradient of u, denoted g¢,, in the sense that whenever g is a 1-weak upper gradient of wu,
we have g, < g almost everywhere in X.

The following notion of BV functions on X is due to Miranda Jr. [Mi].

Definition 2.4 (BV functions) For u € L. (X), we define the total variation of u as

loc

| Du||(X) := inf {liminfinf/ Gu;dp = u; € LIP1oe(X), u; — win L%OC(X)} ,
X

1—=00  Gu,

where the second infimum is over all 1-weak upper gradients g,, of u;. We say that a function
u € Li (X) is of bounded variation, u € BV(X) if | Dul|(X) < co. A measurable set E C X is
said of finite perimeter if | Dxg||(X) < oo.

The following definition of BV oy class is from [M1].

Definition 2.5 (BV-AM functions) A function v € L*(X) is in the BV Ay (X) class if there
is a family I" of rectifiable curves in X with AM(T") = 0, and a sequence (g;) of non-negative Borel
measurable functions in L!'(X) such that whenever v : [a,b] — X is a non-constant compact
rectifiable curve that does not belong to I', we have that

1—00
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for H'-a.e. s,t € [a,b] with s < ¢, and

liminf/ gi dp < oo.
X

1—00

Such a sequence (g;) is said to be a BV ani-upper bound of u. We set

IDanu]|(X) = %nfliminf/ gi du,
X

gi) 1—00

where the infimum is over all BV ayr-upper bounds of .

Notice that by [M2, Theorem 4.1], BV(X) C BVaum(X). This also follows from the next
lemma. The following lemma holds even if x is not doubling or does not support a 1-Poincaré
inequality.

Lemma 2.6 Assume that v € BV(X). Then there is a set N C X with p(N) = 0 and a
sequence (g;) of non-negative Borel measurable functions in L'(X) such that whenever vy is a
non-constant compact rectifiable curve with end-points x,y € X \ N,

lu(y) — u(x)| < liminf/gi ds
g

1—+00
(that is, (2) holds) and
liminf/ gi dp < o0.
X

11— 00

Note that the lemma gives a stronger control of w than allowed by the BV gp-control. For
functions in BV an(X), we know that given a path « there is a set N, with H!(y~*(N,)) = 0 so
that whenever x,y lie in the trajectory of v with x,y & N, inequality (2) holds. Here we show
that we can choose IV, to be independent of v and in addition with p-measure zero.

Proof. Given u € BV(X) there is a sequence u; € LIPj.(X) such that u; — u in L'(X) and
lim; o0 [  9i dp < M < oo for a choice of upper gradients g; of u;. By passing to a subsequence
if necessary, we may also assume that u; — w pointwise p-a.e. in X. Let N be the set of all
points z € X for which lim;_, oo u;(z) # u(z). Then p(N) = 0. Let v be a non-constant compact
rectifiable curve in X with end points z,y € X \ N. Then

lu(z) —u(y)| = lim |u;(z) — u;(y)| < liminf/gi ds.

1—00 1—00

O

The main focus of this paper is to show that BV Ay (X) = BV(X) when the measure on X
is doubling and supports a 1-Poincaré inequality.



2.3 The spaces N"'(X) and N,y (X)

Let ﬁl’l(X, d, ), where 1 < p < oo, be the class of all Ll—integrable Borel functions on X for
which there exists a 1-weak upper gradient in L'(X). For u € NY1(X,d, ) we define

el gy = Il gy + inf gl
where the infimum is taken over all 1-weak upper gradients g of u. As usual, we can now define
NYY(X,d, 1) equipped with the norm [ull i1 x) = Hu||ﬁl’1(x).

Once we have the new concept of AM-a.e. curve, it is natural to define an upper gradient
and a Sobolev class related to this notion.

Definition 2.7 (Weak AM-upper gradient) A nonnegative Borel function g on X is a weak
AM-upper gradient of v on X if |u(y(a)) — u(y(d))| < f,y gds for AM-a.e. curve v : [a,b] — X.

Definition 2.8 (Ni’l\l/[ functions) Let ]Vi’l\l/[(X, d, 1), be the class of all Borel functions in L'(X)
for which there exists a weak AM-upper gradient in L!(X). For u € Ni’l\l/[(X ) we define

Jall 733,y = lellza oy + inf gl o

where the infimum is taken over all weak AM-upper gradient g of u. We can now define Ni’l\l/[ (X)
1,1 . .
to be the class N, ;(X,d, 1), equipped with the norm HUHN;’;A(X) = Hu”ﬁi&\l/[(x).

The following lemma proves that the first definition implies the second one. In some sense,
the first definition is related to the Sobolev class N1 while the second is related to the BV
class.

Lemma 2.9 If a function u on X has g as a weak AM-upper gradient, then there exists a
BV an-upper bound of .

Proof. Assume that
utr(@) ~ a8 < [ gds g
g
for AM-a.e. curve v : [a,b] — X. Let I" be the collection of curves for which (3) does not hold.
By definition AM(I') = 0 and so by [HMM, Theorem 7] there is a sequence of non-negative
Borel functions g; such that

1—00

liminf ||g;[|;1 < oo and lim inf/ﬁi ds =00 forall vy eT.
11— 00 ~

Let T'g be the collection of all non-constant compact rectifiable curves v in X for which

11— 00

lim inf/ﬁi ds = 00;
2l
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then AM(I'g) = 0. Observe that if v is a non-constant compact rectifiable curve in X such that
v & T'g, then every sub-curve of v also does not belong to I'y. Now, for each € > 0 the sequence
of functions g; = g + £g; has the property that for v ¢ ',

mww»—wwmng/

gds < lim inf/(g + £g;) ds,
~ 11— 00

Y

and for v € Iy,

www-mww3m=/@+@m&
Y

so |u(vy(a)) — u(v(b))| < liminf; f,y g; ds holds for every curve ~. O

Note that we have more than just that the sequence (g;) forms a BV gy-upper bound of u;
the inequality holds for every subcurve of v, not merely for H'-almost every pair of points in
the domain of .

From the above we know that for 1 < p < co, NMH(X) C N}X’I\l/l(X) C BVam(X) and
LIP>®(X) C N'>*(X) C N'"?(X) € NV (X) € BV(X) € BVam(X).
In Section 3 we will show that if X supports a 1-Poincaré inequality then BV anm(X) = BV(X)
and that Ny (X) = NbL(X).

Remark 2.10 For u € BV (X) and a sequence (g;) such that lim; fX gi dp < oo, the
sequence of measures (g; du) is a bounded sequence. We can assume (by localizing the argument
if need be) that X is compact as well. Then there is a subsequence, also denoted (g; du), and a
Radon measure v on X such that the sequence of measures (g; du) converges weakly™ to dv in
X. As X is compact, we see that ||Dayul|(X) < v(X).

3 Equivalence of BV and AM-BYV classes under Poincaré in-
equality

The aim of this section is to show the equivalence of the functional spaces BV(X) and BV an(X),
under the additional hypothesis that the metric space supports a doubling measure and a 1-
Poincaré inequality.

Definition 3.1 The metric measure space X supports a 1-Poincaré inequality if there are pos-
itive constants C, A such that whenever B is a ball in X and ¢ is an upper gradient of wu,

][]u—ug\d,uSCrad(B)][ gdu.
B AB

Here up := p(B)™" [pudp = f udp is the average of u on the ball B.



With the notion of BVan class, one could even define a stronger version of 1-Poincaré
inequality.

Definition 3.2 We say that X supports an AM-Poincaré inequality if there exist constants
C > 0, A > 1 such that for each measurable function u on X, each BV-upper bound (g;) of u,
and each ball B C X, we have

][B|u —upldp < Crad(B) liminf ][)\Bgi dp.

1—00

This should imply that

[Damul|(AB)

— <
][B\u ug|dp < Crad(B) OB

On the other hand, notice that 1-Poincaré inequality implies
[ Dul|(B)

— <
][B\u ug|du < C'rad(B) (1B

As a first step, in the following proposition we prove the equivalence of BV(X) and BV pn(X)
under the hypotheses that the measure is doubling and the space supports an AM-Poincaré
inequality. We will see in Theorem 3.10 that the support of an AM-Poincaré inequality is
equivalent to the support of a 1-Poincaré inequality.

Proposition 3.3 If X supports a AM-Poincaré inequality and v is doubling, then the two
classes BV N (X) and BV(X) are equal, with comparable norms.

Proof. Note first that BV(X) C BVam(X), see Lemma 2.6.

Now let us prove that if u € BV (X), then v € BV(X). By the doubling property of p,
for e > 0 we can cover X by balls B; = B(x;,¢) such that the balls 5AB; have bounded overlap.
Let ¢ be a partition of unity subordinate to the cover 2B;. For u € BVam(X) let

§ £
A

Recall that we have bounded overlap of the collection 5B; with X = [ ; Bj, p1 is doubling, and
that if 2B; intersects B; then 5B; D 2B;. Then we have for x € B; C X,

Y lup, = u(@)]f (@) < Y Jup, — u(x)|f ()

7 7

< 3 fup, —u@)

i:x€E2B,;

< Y o)
i:2B;NB;#D

< CCY lusp, — ul)].

|u(z) — ue(z)] =



Therefore, by the AM-Poincaré inequality,

/|u—u€|d,u§2/ |u—u€|d,u§CZ/ |U5Bj—u|d,u
X = /B = /B;
SCZ/ lu — usp, | du

< Ce ) || Danull(5ABy).

J

Since ||Damul| is a Radon measure ([M1, Theorem 3.4]) and 5AB; have bounded overlap, we
have

/ lu — ue|dpu < Ce ||Dayul|(X) — 0as e — 0.
X

Thus u. — u in L'(X), and we also know from the definition of wu. that each wu. is locally
Lipschitz and hence in Nﬁ)’cl (X). Next, for z,y € Bj,

(o)~ el = | S unlgi(e) - i) | 3l v, 41(0) - =)

d(z,y)

1:2B;NB;#0

Cd(x,y)
< I/ E 71 — | dp.
€ ) 5Bj|u u5B]| H
i:2B;NB;#0D

It follows from the bounded overlap of 5B; that

) C
Lipu.(x) < —][ |u — usp; | du
9 5B,

whenever z € B;. Integrating the above inequality over X = ; Bj, we obtain

, C
/XLlpuE du < - Zu(Bj) ][5B.\u — usg,; | du

j J
M|
< — u— usp;| du

C
< — D B;
< - > ellDanul| (5AB))

< C || Danul|(X). (4)

Thus
timin [ g, dp < C[Davrul (X) < .
X

e—0t

and as u. — u in L*(X), it follows that v € BV(X) with || Dul|(X) < C||Damul|(X).

10



We also have || Dayvul[(X) < ||Dul/(X), as we now show. Suppose now that ||Dul|(X) is
finite, and let uj, € BV(X) be such that w, — v in L'(X) and limy_o0 [y Gu, dpv = || Dul|(X).
By passing to a subsequence if necessary, we may also assume that u; — u pointwise almost
everywhere in X as well. For each k € N we choose an upper gradient g, of u; such that
Jx 9k di < [y Gu, dpp+ /2%, We set N to be the collection of all points z € X at which uy(z)
does not converge to u(x). Then u(N) = 0, and so the 1-modulus of the collection f} of
non-constant compact rectifiable curves v in X for which H(y~*(N)) > 0 is zero. Using [He,
(7.8)], we know that the collection F} of all non-constant compact rectifiable curves in X with
a subcurve in f} is also of 1-modulus zero. Let v be a non-constant compact rectifiable curve
in X with v & I’}. By re-parametrizing if necessary, we now assume that v : [a,b] — X is
arc-length parametrized; then H!([a,b] \ v~1(N)) = 0. For s,t € [a,b] \ v~ 1(N) with s > t we
have that

—00 k—o0 00

lu(y(t)) — u(y(s))| = klim luk ((t)) — up(y(s))] < lim inf/| g ds < likrginf/gk ds.
Yt s] 0l

This verifies that (gx) is a BV ay-upper bound for u in the sense of Definition 2.5. U

Proposition 3.4 If X supports an AM-Poincaré inequality and p is doubling, then Ni’l\l/[ (X) =
NYY(X) with comparable norms.

Proof. Note that NM(X) C Ni’l\l/[(X ). Thus it suffices to prove the reverse inclusion. Let
u € Ni’l\lﬁ(X), and let g € L'(X) be a weak AM-upper gradient of u. Let I" be the corresponding
exceptional family; then AM(I") = 0. Then by the proof of Lemma 2.9 there is a sequence (p;)
of non-negative Borel functions in L'(X) such that [, p;dp < M < oo for each i € N and for
each v € I we have

lim [ p;ds = cc.
1—00 5

Then for each ¢ > 0 we have that (g + £p;) forms a BV ay-upper bound of u, and so as X
supports an AM-Poincaré inequality, whenever B is a ball in X we have

Crad(B
][ |lu —ugldu < Crad(B) liminf/ [g + epi] du.
5 WB) R,

As before, by passing to a subsequence if necessary, we may assume that p; du converges weakly
to a Radon measure v on X, and so the above turns into

]/Byu — up|du < C'rad(B) <][)\Bgdu+5:gi\\g;> ,

Letting ¢ — 0 we get

][]u—uB\d,uSCrad(B)][ gdu.
B AB

11



We now know from Proposition 3.3 that v € BV(X). Now an argument as in the proof of
Proposition 3.3, up to and including (4), applied to open sets U C X with u(0U) = 0, we obtain
that

|Dul|(U) < © / gdu = / gdu.
U U

Note that g € L'(X), and hence for each i > 0 there is some € > 0 such that whenever K C X
is measurable with ;(K) < e, we have [} gdp < 7. Since whenever E C X with u(E) = 0, for
each € > 0 we can find an open set U. D E such that u(U:) < ¢ and pu(0U:) = 0, it follows that
| Du|| < p, and hence u € N%'(X) by [HKLL, Theorem 4.6]. O

Note that if X does not support a 1-Poincaré inequality, we do not know the equivalence
of NLY(X) with Ni’l\l/[(X ). Similar difficulties show up in comparing other alternative notions
of N11(X) as well, see for example [ADiM, Section 8]. We will prove in Theorem 3.10 that X
supports a 1-Poincaré inequality if and only if it supports the a priori stronger AM-Poincaré
inequality.

The key point in the above proof is that if u € BV(X) and ||Du|| < p, then u € NM1(X);
the validity of this point requires a doubling measure supporting a 1-Poincaré inequality. The
following counterexample is from [ADiM, Example 7.4]. We do not have a counterexample for
the statement “||Dul|| < p implies u € N»'(X)” in the case p is doubling, but the measure
in the following example is asymptotically doubling.

Example 3.5 Let X = R? be equipped with the Euclidean metric and the measure u = £2 +
H'|c where C is the boundary of the unit disk D in R? centered at the origin. Let u = yp.
Then, by the approximations f.(x) = (1 — e ldist(x, D)), of u we see that u € BV(X) with
| Du|| = HYc. Tt follows that ||Dul| < pu. However, u ¢ N1(X): with I’ the collection of all
line segments v,, —1 < z < 1, given by 7, : [-2,2] — X where v,(t) = (x,t), we have that
u 0 7, is not absolutely continuous on [—2, 2], and furthermore, Mod;(I") > 0.

The existence of a Semmes family of curves provides a key tool for the proof that the AM-
Poincaré inequality and the standard 1-Poincaré inequality are equivalent, which in turn allows
us to prove equivalence of the two classes BV(X) and BV an(X) with just the assumption
of a 1-Poincaré inequality in addition to the doubling property of p. Thus we next prove
that the existence of 1-Poincaré inequality in the doubling complete metric measure space X is
equivalent to the existence of the following Semmes pencil of curves. See [FO] for a closely related
characterization of the 1-Poincaré inequality in terms of 1-currents in the sense of Ambrosio and
Kirchheim [AK].

If A is a Borel subset of X and v is a rectifiable curve, we define £(y N A) := H'(y N A).

Definition 3.6 ([Se, He|]) A space X supports a Semmes pencil of curves if there exists a
constant C' > 0 such that for each pair of points x,y € X with x # y there is a family I';, of
rectifiable curves in X equipped with a probability measure do = do,, so that each v € I'y is

12



a C-quasiconvex curve joining x to y, and for each Borel set A C X, the map v — £(yN A) is
o-measurable and satisfies

l(yNnA)do(y) <C Ryy(2) dp(z). (5)
P CB, yNA

In the previous inequality, for C' > 0, CB, , := B(z,Cd(z,y)) U B(y, Cd(z,y)) and

d(z, z) d(y, 2)

Fon) = B e dw 2) T (Bl dly, 2)

(6)

We next show that if the measure on X is doubling and supports a 1-Poincaré inequality,
then it supports a Semmes pencil of curves.

Denote
chy :={(v,I) : curve y:I — X is 1-Lipschitz, 7(0) = z,y(max(I)) = y}, (7)

where I are intervals contained in [0, C'd(z, y)] with left-hand end point 0. We equip I'S, with
the following metric. The elements of ng can be identified with their graphs

Iy={(t,~({@) :tel} CRxX.
We define a metric on chy by setting
d(v,7") ==du(l,,T.),

where dp is the Hausdorff metric. Thanks to the Arzela-Ascoli theorem, this metric makes ny
into a complete and compact metric space because X is complete and doubling and hence closed
bounded subsets of X are compact. For f € C(X), the functional ®; : ny — R given by

B4((1.1)) = / fondt,

is continuous on ng.

We denote the Riesz measure by

dﬁgy(Z) = RJ»‘y dlu‘CBx,y'

Theorem 3.7 If (X,d,u) satisfies a 1-Poincaré inequality, then there exists C' > 1 such that
for every x,y € X with x # y, there exist a compact family of curves 'y, and a Radon probability
measure Oy on L'y, which constitutes a Semmes family of curves, i.e. for every Borel set A,

J

[ xadsdas, ) <c Ruy(2) du(z) = 725, (4).

Sy CBgzynA
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The proof of the above statement could be derived by a careful application of the techniques
in [AMS] combined with the modulus estimates of [K]. However, the method in [AMS] directly
works only for p > 1, and some additional care is necessary for p = 1. Further, the following
proof is somewhat more direct than theirs. Our proof is more in line with the approaches in [B, S]
in combination with the estimates from [K] to construct probability measures on the space of
curve fragments. The papers [B, S] employ the Rainwater lemma from [R2, Theorem 9.4.3].
However, we are able to avoid this lemma by directly using the Min-Max theorem [R2, Theorem
9.4], restated below for the reader’s convenience.

Proposition 3.8 (Min-Max Theorem [R2, Theorem 9.4.2]) Suppose that

(i) G is a convex subset of some vector space,
(i) K is a compact convex subset of some topological vector space, and
(iii) F: G x K — R satisfies

(a) F(-,y) is convex on G for everyy € K,

(b) F(x,-) is concave and continuous on K for every x € G.

Then

sup inf F(z,y) = mf sup F(x,y).
yeK ©€G Gyek

Proof. [Proof of Theorem 3.7] Denote d(z,y) = r. By the 1-Poincaré inequality and [K, Theo-
rem 2|, there exists a C' such that we have

1
Mod —c( gy) inf/ pdﬁgy >
X

where the infimum is over non-negative Borel functions p with f p > 1 for every v € FC Note
that the estimates in [K]| give the modulus bound for the set of all rectifiable curves betvveen
x,y, but the collection of curves that are longer than 4C2d(z,y) has modulus less than 1/(2C),
and can be excluded using the subadditivity of the modulus.

Another way of stating this estimate is that if f is a non-negative continuous function, and
| xf dut y < 00, then for every € > 0 there exists a v € PC such that

Lfdsé(0+6)/)(fdﬁfy7

/ T would be admissible with a too small a norm. In particular,

for otherwise, ———+———
or otherwise, o7 i

1nfz /fds<C/ fdng,. (8)

(v,1)erg,
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Since f is continuous and ng is a compact family, the above infimum is a minimum. Parametriz-
ing the curves v by length we also get

° C
/( e /l for(t)dtds(y,T) < C /X f S, (9)

where (3 is the Dirac measure on FC based at any of the optimal choices (v, I) that achieves the
infimum in (8).

Let K be the set of probability measures a on I'C ; thus K is a compact and convex set of

measures with respect to weak™ convergence. Set

:By’

G={f:X—10,1] | fis continuous } C C(X).

Here C'(X) is the set of all continuous functions equipped with the uniform topology and G is
a closed convex subset thereof. Then define F': G x K — R by

C/f 7 / /f )) dt da(, ).

Clearly F is continuous in «, since ®f((7,1)) = [; f(7(t))dt is continuous in ~. Also, F(-, ) is
convex for every o € K, and F(f,-) is afﬁne and a fm’tzom concave for any f € G. Thus, we can
apply Proposition 3.8 to obtain

sup inf F(f,«) = inf sup F'(f. «
sup Inf (f,a) Jof sup (f,a).

Now, for f € G, by estimate (8) we have sup,cx F'(f,a) > 0. Thus, we get

sup 1nf F(f a) > 0.
ack feC

In particular, for every € > 0 and every f € GG there exists a a. € K, such that

F(f7a€) > -

Since for each f € G the map K 3 o — F(f, «) is continuous, we can extract a weakly convergent
sequence o, — Oy € K (with ¢, — 0 as ¢ — 00), such that for every f € G

F(fa amy) 2 0

Now, recalling the definition of F', for every f € G,

/PC /f ) dt dogy (v, 1) <C/f

Also, since the curves v are 1-Lipschitz, it follows that f fds< /[, f 7 )dt and oy, induces

a measure (which we denote by the same symbol) on I'y, = {v : (v, ) ¢, for some I}. With
respect to this measure, we have for every f € C(X) with 0 < f <1 that

/I‘Iy/yfds dovgy(v) < C/deﬁmcy-

15



By a limiting argument we obtain the same inequality for f = x4 corresponding to Borel sets

A C X, and thus the measure 0, = ag,, which is supported on the compact set I'y,, con-

stitutes a Semmes family of curves in the sense of Definition 3.6, and the proof is complete.
O

Each Borel function in L}OC(X ) can be approximated by simple Borel functions. Hence it
follows from (5) that

/ / gdsdo(y) <C [ g(=)Ruy(2) dpi(2), (10)
Poy Jy CBa,y

for Borel functions g : C B, , — R. Doubling metric measure spaces supporting a Semmes pencil
curves support a 1-Poincaré inequality (see e.g. the discussion following [Se, Definition 14.2.4]).
In what follows we prove that they also support the AM-Poincaré inequality. Recall that

L) = [ D)

A M(B(x’ d(x’ Z)))

denotes the Riesz potential of a non-negative function u defined on X on a subset A C X.

Proposition 3.9 If X supports a Semmes pencil of curves, then X supports the AM-Poincaré
mequality.

Proof. Let u € L} (X) and let (g;) be a BV-upper bound of u, and let N be the collection of

loc

all points € X for which
; B(m,r)| ( )|

r—0+
Then p(N) = 0. We focus on points x,y € X \ N. Then for each € > 0 we know that the sets
Ee(z):={2€ X : |u(z) —u(z)| > e},  Ec(y)={2€X : [u(z) —u(y)| >}

satisfy

im su p(B(,r) N0 Ee(x)) =0 =limsu w(B(y,r) N E:(y))
P By T (B

We can inductively choose a strictly decreasing sequence r; > 0 such that r < d(zx,y)/4,
rit1 < r;/4, and

p(B(z,ri) N Ee(z) 27 p(B(y,ri) N Ee(y)) _ 27"
w(B(z,ri)) 2Cy’ w(B(y,ri)) 2Cy

For each i let I';(x) denote the collection of all v € I'y,, such that

H (7 (B, i) \ Blx,13/2)] \ Be(2))) =0,
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and I';(y) the analogous family with y playing the role of z. By the fact that I';, is a Semmes

family and by the fact that u is doubling, we have that
r

o4 (Ti(2)) < LYNE-(x)NB(x,r)\B(x,71/2)) dozy (v) < Cqg ———— pu(E(x)NB(x, 1)),
o) < [ ONE B r)\BE.ri/2) dowy() < Cu s L) Blar)

and so by the choice of r; we have '
oay(Li(z)) <27

Hence for each positive integer n,

and so with

we have that o,,(I'(x)) = 0. Note that if v € I';,, \ I'(x), then whenever N, is a subset of the
domain of v with H!(NN,) = 0, we can find a sequence of points z; € v\ [Ez(z) Uy(N,)] such that
x; — x as i — o00. Let I'(y) be the analogous subfamily of curves with respect to the point y;
then o,y (I'(x) UL'(y)) = 0. Let (¢9;) be a BV am-upper bound for u. For v € I'yy \ [I'(xz) UT'(y)],
we set N, to be the set of points in the domain of v that forms the exceptional set in the
condition (2), and we select the sequences z;,y; as above. Then we have that

lu(z) — u(y)| — 26 < liminf |u(z;) — u(y;)| < liminf/gi ds.
1—00 1—r 00 ~

Therefore, for z,y € X \ N and for each v € I'y,, \ (I'(z) UT'(y)), we have

lu(z) —u(y)| —2e < liminf/gi ds.
gl

1—00

We then have by Fatou’s lemma and (10) that

() — uly)| — 2 < / lim inf /V gi ds dorsy ()

ny 1—00

gliminf/ /gi dsdogy(7)
1—00 ny 0

<C'lim inf/ 9i(2) Ry (2) dpu(2)
CBz.y

1—00

< /C . B2t

<C(¢s, v(r)+IcB,,V(Y)),

where v is the Radon measure as in Remark 2.10. The constant C' in the above does not depend
on ¢; hence, by letting ¢ — 0™ we obtain

u(z) = uy)| < CUces,,v(z) + Iob, v (1))
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whenever z,y € X \ N. For x,y € B with R the radius of B, setting B; = B(z,2~¢Cd(x,y)) for
i € NU {0}, we see that

d(z, z)

L@w@w#@@@@@mdﬂ)

w(B;)

o

Il
o

I, v(z) < c v(Bi)

7

< Cd(x,y) hp(x) > 27,
=0

where
~ s YB@T)
ha(@) = o<r§pcR w(B(z,r))

Thus hp is a Hajlasz gradient of u in B, that is,
lu(z) — u(y)| < Cd(z,y)[hp(z) + hp(y)]

for p-a.e. x,y € B, and we have the weak inequality

v(B)
t

for ¢t > 0.

w{x € B : hp(z)>t}) <C

Thus hp € LY(B) for 0 < ¢ < 1, and hence u € M'%(B) in the sense of [HajC], and so by [HajC,
Corollary 8.9 of page 202] or by [KLS, Proposition 2.4], we know that

v(B)
][B\u—ugldu < CRm.

The proof is then completed by taking a sequence of sequences (gi )i that are BV ay-upper
bound of u with corresponding measures v; such that lim; v;(2B) = || Damul|(2B). O

From Proposition 3.9, Theorem 3.7, and Proposition 3.3 we have the following.

Theorem 3.10 Let i be a doubling measure on X. Then the following are equivalent:

1. X supports a 1-Poincaré inequality.
2. X supports a Semmes pencil of curves.

3. X supports an AM-Poincaré inequality.

In any (and therefore all) of the above, we have BV(X) = BVay(X) and NVH(X) = Ni’l\l/[(X).
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