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1 Introduction

While classification of domains via conformal mappings gives a rich theory in the setting

of planar domains, domains in higher dimensional Euclidean spaces support no non-Mobius

conformal maps. The most suitable geometric classification in that setting is given by qua-

siconformal mappings. A homeomorphism f : Q — € between two domains 2, C R" is

quasiconformal if f € VV;:(Q, (V) and there is a constant K > 1 such that whenever = € ),
. SUD,B(ar |/ (¥) — f(@)]
lim sup

' < K.
r—0+ lnnyQ\B(:E,r) |f<y) - f(‘r)l
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The theory of quasiconformal mappings was extended by Heinonen and Koskela in [13] to the
setting of metric measure spaces, and in this non-smooth setting properties of quasiconformal
mappings have been studied extensively, see for example [12, 13, 14, 23, 6, 18]. In this paper
we continue this study by considering relationships between sets of finite perimeter and
quasiconformal mappings in the spirit of [17].

The traditional perspective on quasiconformal mappings between Euclidean domains is
that such a map is characterized by its ability to quasi-preserve the conformal modulus of
families of rectifiable curves in the respective domains. Thus a homeomorphism f :  — ¢/
for two domains €2, ) C R™ is quasiconformal if there is a constant C' > 1 such that whenever
I' is a family of non-constant compact rectifiable curves in €2,

éModn(F) < Mod, (fT) < C Mod,,(T).

Here fI' is the family of curves obtained as images of curves in I' under f. An excellent
discussion about Euclidean quasiconformal mappings can be found in [22], see also [17,
Theorem 2.6.1]. A less well-known fact is that quasiconformal mappings between two do-
mains 2,2 C R" quasi-preserve the —--modulus of certain families of surfaces obtained
as “essential boundaries” of sets of finite perimeter. This result is due to Kelly [17, The-
orem 6.6]. In [17] the families considered were the classes of sets E C Q C R" of finite
perimeter such that H""1(JF) is finite and satisfies a double-sided cone condition at every
point in OF, see [17, Definition 6.1]. Kelly calls the boundary of such a set E a surface.
Building upon the Federer theory of differential forms for sets of finite perimeter and the
associated Gauss-Green theorem (see [8]), in [17] it is shown that if f is a quasiconformal
mapping, then for Mod,, /(,—1)-almost every surface, there is a change of variables formula,
see [17, Theorem 4.7.1]. Moreover, there is a family ¥ of sets of finite perimeter in 2 with
Mod,,/(—1)(X0) = 0 such that whenever 0E C  is a surface with £ ¢ ¥, then f(F) is
of finite perimeter in €’ ([17, Theorem 6.3]). However, there is a gap in the proof of [17,
Theorem 6.3], where the actual object studied is the reduced boundary of E, denoted 5(F)
in [17, page 372], and this part of the boundary could be strictly smaller than the measure-
theoretic boundary of E. According to Federer’s characterization, a Euclicean set is of finite
perimeter if and only if the (n — 1)-dimensional Hausdorff measure of the measure-theoretic
boundary of E is finite. In [17] it is shown that for almost every E, S(f(F)) has finite
(n — 1)-dimensional Hausdorff measure, and this is not sufficient to conclude that f(FE) is of
finite perimeter.

The link between quasiconformal mappings and families of surfaces is natural also in
light of the link between quasiconformal mappings and moduli of families of curves, for in
the Euclidean setting it is known that there is a natural reciprocal connection between fami-
lies of surfaces separating two compacta and families of curves connecting the two compacta,
see [2]. This link was already portended in [1, Lemma 5] (in planar geometry, the separating
“surfaces” are also curves). Motivated by the results in [17, 2], the goal of this paper is to
prove a result similar to that of [17, Theorem 6.6] for quasiconformal mappings between two
complete metric measure spaces equipped with an Ahlfors Q-regular (with Q > 1) measure
and supporting a 1-Poincaré inequality in the sense of Heinonen and Koskela [13], and indeed,
we consider families of sets from the collection of all sets of finite perimeter without the addi-
tional geometric constraints considered in [17] (see Theorem 1.1). To do so, we use the tools
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developed in [13, 14] regarding first-order calculus on non-smooth spaces and the theory of
BV functions first constructed in [21], together with the result from [18] that quasiconformal
maps are characterized by quasi-preserving the measure density of measurable subsets of €.
This latter result is itself a generalization of the work of Gehring and Kelly [10]. Unlike in
the work of Kelly [17], the notions of the Gauss-Green theorem and differential forms are not
available in the metric setting, and instead, we adapt the geometric measure theory tools
developed in [6] in the metric setting to verify an analog of the change of variables formula
for sets of finite perimeter in the non-smooth setting. The results of [6] are not directly
applicable to our setting as neither the measure-theoretic boundary 0*E' (see Definition 2.8)
nor the essential boundary X F of a set E of finite perimeter is a (@ — 1)-set (that is, it is
not Ahlfors () — 1)-regular). Here X F is the subset of the boundary of E made up of points
that see both E and its complement as having positive lower density, see Definition 2.12
below. Therefore in this paper we combine some of the techniques of [6] with the current
technology on sets of finite perimeter to conduct a careful analysis of the images of X FE.
Note that for Euclidean sets of finite perimeter £ where the reduced boundary S(E) makes
sense, we have B(E) C ¥E C 0*E. The recent paper [19] indicates that in the Euclidean
setting as well as in more general metric measure space settings, the more useful boundary
of a set is its essential boundary. In the setting of Ahlfors Q-regular metric measure spaces
supporting a 1-Poincaré inequality, the result of [19] tells us that H?~1(9*E) is finite if and
only if HO (X E) is finite. Even in the Euclidean setting this improvement is new; we will
take advantage of this new tool here and so focus on X F for measurable sets E.

In what follows, both X and Y are complete metric spaces equipped with an Ahlfors Q-
regular measure for some ¢Q > 1, f : X — Y a quasiconformal homeomorphism, £ denotes
the collection of measures H9!| . corresponding to sets £ C X that are of finite perimeter
in X, and f£ is the corresponding collection of measures H9 |, F(B)-

The quantities Ly and [ represent the following:

infyeX\B(ac,r) dy(f(fl?), f(y))

Sup, ~g(. - d x),
r— r
(1.1)

with dy denoting the metric on the space Y, see Definition 3.1 below. Here, for 1 < p < oo,

Mod,(£) = inf {/ PP du : p non-negative Borel with / pdHP !t > 1 for each E € 5},
X SE

with p ~ H® denoting the measure on the space X, see Definition 2.4 below. Here £ has
a dual identity, one as a collection of sets £ C X of finite perimeter, and the other as the
collection of measures H9 ! y. In considering the quasiconformal images f£, the family f£
stands for both the collection f(E), E € £, and also for the measures H?7 !, (k). Thanks
to the result of [19] (see Theorem 4.2 below), we know that for each measurable set F' C Y,
HO Yy = HO Y 5, and so the above definition is tailor-made for sets of finite perimeter.
Whenever F is not of finite perimeter, H9 ! |5 p (Y) = 0.
The following is the main result of this paper.

Theorem 1.1. Let X,Y be two complete Ahlfors Q-reqular metric spaces, ) > 1, that
support a 1-Poincaré inequality, and let f : X — Y be a quasiconformal map. Then there
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exists C' > 0 depending only on the quasiconformality constant of f and the Ahlfors reqularity
constants of X and Y such that for every collection L of bounded sets of finite perimeter
measure in X we have that

1
& Modg/@-1)(f£) < Modg@-1)(£) < CModgy@-1(f£)- (1.2)

The above theorem gives new results even in the Euclidean setting, addressing the wider
class of all sets of finite perimeter rather than just those that satisfy a cone property at
each point of the topological boundary, with the topological boundary of finite Hausdorff
(n — 1)-dimensional measure as considered in [17, Definition 6.1].

In proving Theorem 1.1 we also show that for Modg/g—1)-almost every set £ C X of finite
perimeter the pull-back measure under f of H9 [, (k) 18 absolutely continuous with respect

to H? !y p, with its Radon-Nikodym derivative estimated by J }Q_l)/ Q, see Lemma 5.4 and
Proposition 5.2. We also address the question of whether images of sets of finite perimeter
are of finite perimeter. There are examples of planar quasiconformal mappings that map the
unit disk to the von Koch snowflake domain, and so map a set of finite perimeter to a set
that is not of finite perimeter. Hence we cannot expect images of all sets of finite perimeter
to be of finite perimeter, see also [6]. Recall from there also that both f and f~! satisfy
Lusin’s condition N, that is, for sets K C X, H?(f(K)) = 0 if and only if H?(K) = 0, or
equivalently, fuHY < HE < foHY (see [14, Theorem 8.12]). Following [14], the Radon-
Nikodym derivative of f#Hg with respect to ”H?( is denoted by J;. The quantities J, L?,

and l? are comparable to each other almost everywhere in X, see Lemma 4.6 below.

Theorem 1.2. Let X, Y be complete Ahlfors Q-regular metric spaces, QQ > 1, that support a
1-Poincaré inequality, and let f : X — Y be a quasiconformal map. Then for Modg/qg-1)-
almost every bounded set - C X of positive and finite perimeter in X, the set f(E) is of
finite perimeter in'Y and the pull-back measure satisfies

f#(,HQill.B*f(E)) <HY s < f#(HQ*lLa*f(E)) (1.3)

with Radon-Nikodym derwative Jy g = J}Qfl)/Q where the comparison constant depends only
on the quasiconformality constant of f and the Ahlfors reqularity constants of X and Y .

It is well-established that quasiconformal maps are characterized by their quasipreser-
vation of ()-modulus of families of curves. The above results indicate that quasiconformal
maps also quasipreserve the Q/(Q — 1)-modulus of families of sets of finite perimeter, and
are not as discordant with the established theory of quasiconformal mappings as it might
seem. The characterization of quasiconformal mappings by quasi-preservation of ()-modulus
of families of curves is too strong; one only needs the quasi-preservation of ()-modulus of
families of rectifiable curves that connect pairs of disjoint compact sets K, F'. Such classes
of curves are associated with the relative capacity capQ(K , F'), and the super-level sets of
the potential associated with this capacity give sets of finite perimeter whose perimeter sets
separate K from F', and it is the families of such sets that connect quasiconformal maps to
the BV theory. The converse of Theorem 1.1, characterizing quasiconformal maps as those
homeomorphisms that satisfy (1.2), is proven in [16].



We now consider the implications of the above Theorem 1.2 for the Euclidean setting
R™.  An analog of the above theorem found in [17] is Theorem 6.3, but the proof of [17,
Theorem 6.3] has a gap as explained above. However, in light of the restrictions placed on
the sets E considered in [17], we know that those sets E satisfy 0F = Y E, and for such
E it follows from Proposition 5.1(3) that except for a Mod,, /(,—1)-null family, we know that
H"Y(f(OF)) < oo, and therefore [17, Theorem 6.3] follows from Theorem 1.2, that is, the
gap in the proof found in [17] is filled by the above theorem.

The structure of the paper is as follows. In Section 2 we give the notations and definitions
related to function spaces and measure-theoretic aspects of sets used in this paper. In
Section 3 we give a brief background related to quasiconformal mappings between metric
measure spaces, and in Section 4 we list the needed background results related to the concepts
described in the previous two sections. Here we also give proofs and/or references to papers
where the interested reader can find proofs of these results. We give a proof of Theorem 1.1
in Section 5, and the last section deals with the proof of Theorem 1.2. In the last section
we also show that there are large families of sets of finite perimeter whose images under
quasiconformal mappings are also of finite perimeter.

2 Notations and definitions

In this section we gather together the basic definitions we need in this paper. The definitions
used here are extensions to the non-smooth setting of the natural notions in Euclidean setting
discussed in the introduction. In this section, (X, d, i) is a complete metric measure space
with @ a Radon measure.

Given z € X and r > 0, we denote an open ball by B(z,r) = {y € X : d(y,x) < r}.
Given that in a metric space a ball, as a set, could have more than one radius and more than
one center, we will consider a ball to be also equipped with a radius and center; thus two
different balls might correspond to the same set. We then denote rad(B) := r as the pre-
assigned radius of the ball B, and aB := B(z,ar). If X is connected (as it must be in order
to support a Poincaré inequality), and if X \ B is non-empty, then rad(B) < diam(B) <
2rad(B).

Definition 2.1. Let A C X. Then for d > 0, the d-dimensional Hausdorff measure of A is
given by

HY(A) = lim inf {Zrad(Bk)d

r—0+t
kel

AC U By, where rad(By) <r and I C N} )

kel

Definition 2.2. We say that (X, d, ) is Ahlfors Q-regular if X has at least two points and
there is a constant C'4 > 1 such that whenever x € X and 0 < r < 2diam(X), we have

/r*Q

I < u(Bla,)) < Car®.
Ca

As a consequence, we get
p(A)

5 < HAA) < CanlA).




Given an open set U C X, we write u € L}, (U) if u € L*(V) for every open V € U;
this expression means that V is a compact subset of U. Other local spaces are defined
analogously.

A curve is a continuous mapping from an interval into X, and a rectifiable curve is a
curve with finite length.

Definition 2.3. Let Y be a metric space with metric dy. Given a function v : X — Y,
a Borel function g, : X — [0, 00] is said to be an upper gradient of u if for every compact
rectifiable curve

mmeWS/%@

where x and y are the endpoints of 7. Let 1 < p < co. A function f: X — Y is said to be
in NP(X;Y)if f e L? (X;Y) and there is an upper gradient g of f such that g € L] (X).

loc

If Y =R and f,g € LP(X) then we say that f € N'?(X).
We refer the reader to [14, 15] for the details regarding mappings in Nl PX:Y).

Definition 2.4. Let M be a collection of measures on X. Then the admissible class of M,
denoted A(M), is the set of all positive Borel functions p : X — [0, oo such that

/pd)\21
X

for all A € M. Then the p-modulus of the family M is given by

Mod, (M) = pei‘ln(g\/l)/ o dp

Mod, is an outer measure on the class of all measures, see [9]. There are two types of
collections of measures associated with quasiconformal maps. Given a collection I' of curves
in X, we set I' to also denote the arc length measures restricted to each curve in I'; for this
collection of measures, the above notion of Mod,(I") agrees with the standard notion of the
p-modulus of the family I" of curves from [22, 13, 15]. For a collection £ of sets of finite
perimeter in X, we consider the measure H9 !y for each E € L£; it is known that this
measure is comparable to the perimeter measure associated with E as in Definition 2.10, see
Theorem 4.1.

Definition 2.5. The relative p-capacity of two sets E, F C X is given by
cap,(E, F) = inf/ gb du
X

where the infimum is over all upper gradients g, of all functions u € NZIOCQ(X ) such that
ulg <0 and ulp > 1.

Definition 2.6. We say that the space X supports a p-Poincaré inequality if there exist
constants C'p > 0 and A > 1 such that for all open balls B in X, all measurable functions u
on AB and all upper gradients g, of u,

1/p
][ lu —up|du < Cprad(B) (][ gﬁdu) .
B AB
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Here we denote the integral average of u over B by

1
ug ;=1 ud ::—/ud .
o ]{3 a M(B) B s

One of the consequences of a space being complete and Ahlfors regular and supporting
a Poincaré inequality is that such a metric space must necessarily be quasiconvex, that is,
there is some constant C; > 1 such that for every x,y € X there is a rectifiable curve ~
with end points x,y and length ¢(y) < C,d(x,y), see [11, Proposition 4.4] or [7, Theorem
4.32]. Thus a bi-Lipschitz change in the metric results in X being a geodesic space, that
is, a quasiconvex space with the quasiconvexity constant C;; = 1. Notions such as Poincaré
inequality, quasiconformality, upper gradients and functions of bounded variation (see be-
low), and Hausdorff measure are quasi-invariant under a bi-Lipschitz change in the metric,
hence we do not lose generality by assuming that X is a geodesic space. Geodesic spaces
that support a Poincaré inequality do so even with A = 1, see [11] or [7, Theorem 4.39].

Definition 2.7. For a measurable set £ C X and x € X, we define the upper density of E

at x by
D(E,x) = limsup
) = = (B, )

and the lower density of E at x by

= limin w(B(z,r) N E)
D(E,z) =liminf =575

Definition 2.8. For a set E, the measure-theoretic boundary is the set
OPE={reX : DE,z)>0and D(X \ E,x) > 0}.

Definition 2.9. For v € L} (X), the total variation of v on an open set U C X is given by

loc

|| Dul[(U) = inf {liminf/ Gu,, dpt
n—oo U

(un)HEN C Liploc(U)7un — u in Llloc(U)} :

In the above, g,, stands for an upper gradient of u, in U (here we consider U to be the
metric measure space with metric and measure inherited from X). We say u is of bounded
variation on X (denoted u € BV(X)) if ||[Dul|(X) < oco. We say that u € BVj,.(X) if
u € BV(U) for each open set U € X.

It is shown in [21] that || Du|| is a Radon measure for any u € BVj,.(X). We call || Dul|
the variation measure of wu.

Definition 2.10. A measurable set F C X has finite perimeter if x g is of bounded variation
on X. We call ||[Dxg|| the perimeter measure of E and we will denote it P(FE, ).

Definition 2.11. We say that X supports a relative isoperimetric inequality if there exist
constants C7 > 0 and A > 1 such that for all balls B(x,r) and for all measurable sets E, we
have

min{p(B(z,r) N E), w(B(x,r)\ E)} < CirP(E, B(z, Ar)).



Again, with X a geodesic space, we can choose A = 1. We know that if X is Ahlfors regu-
lar and supports a 1-Poincaré inequality, then it supports a relative isoperimetric inequality,
see for example [3, Theorem 4.3].

Definition 2.12. For g > 0, let
Ss3E = {2 €d'FE | D(E,z) > B and D(X \ E,z) > 8},

and set
SE= ) SE.
BE(0,1)

See [3], [19] or Theorem 4.1 below for connections between X3 E, 0*E, and the perimeter
measure P(E,-).
Standing assumptions on the metric spaces: Throughout this paper we will assume
that both (X, dy, pux) and (Y, dy, py) are complete metric spaces that are Ahlfors Q-regular
for some () > 1 and support a 1-Poincaré inequality. Often we will denote ux = u. We
will also, without loss of generality, assume that X and Y are geodesic spaces. We will use
the letter C' to denote various constants that depend, unless otherwise specified, only on the
Ahlfors regularity constants and the Poincaré inequality constants of X, and the value of C
could differ at each occurrence.

3 Quasiconformal mappings

In this section we gather together definitions related to the notion of quasiconformal map-
pings between two metric spaces. Here, (X, dx,uy) and (Y, dy, uy) are complete metric
measure spaces with px, sy Radon measures and @ > 1 such that uxy ~ H% = H?( and
py ~ HC = 7—[8 as in the standing assumptions from Section 2. Recall also the definitions
of Ly and [y from (1.1):

Definition 3.1. Define Ly : X — R by
- Ly(z,r)
Ly(z) =limsup ————= where L¢(z,r) = sup dy(f(z),f(y)).
r—0F r yeB(z,r)

Similarly, define [y : X — R by

l(x) = liminfM where lf(z,r) = inf dy(f(z), f(y)).

r—0t r yeX\B(z,r)

When f is a homeomorphism, we always have l¢(x,7) < Ly(z,7). When f is a quasi-
conformal homeomorphism, there is a constant Kp such that Ly(z,r) < Kpls(z,7), see for
example [13] or (4.2) below.

There are different geometric notions of quasiconformal maps on metric spaces.



Definition 3.2. The homeomorphism f is metric quasiconformal if there is a constant
Kp > 1 such that for all x € X we have

L
lim sup —L (z,7)

< Kp.
o+ lp(x,r) T b

When we need to emphasize the constant Kp we say that f is Kp-quasiconformal.
The map f is geometric quasiconformal if there is a constant K > 1 such that whenever
I' is a family of non-constant compact rectifiable curves in X, we have

%Mon( fT) < Modg(I') < K Modg(fT).

Definition 3.3. A homeomorphism f : X — Y is quasisymmetric if there is a homeo-
morphism 7 : [0,00) — [0,00) such that for every distinct triple of points x,y,z € X and

t >0,
de(@y) _, _, dU@I0) 0

dx(ﬂf,Z) o dY(f(x)af(z)) N

The notions of quasisymmetry, metric quasiconformality, and geometric quasiconformal-
ity are connected, see [13, 23] and Theorem 4.3 below.

Definition 3.4. A homeomorphism f : X — Y between Ahlfors Q-regular metric spaces
satisfies Lusin’s condition (N) if whenever A C X is such that H?(A) = 0 then HP(f(A)) =
0. We say that f satisfies condition (N~!) if its inverse satisfies condition (V).

Quasiconformal maps satisfy both Lusin’s condition (N) and (N~'), see Theorem 4.3
below.

Definition 3.5. If vy is a Radon measure on Y and f : X — Y is a homeomorphism, then
the pull-back of the measure vy is the measure on X given by

f#VY(D) = VY(f(D))

whenever D is a Borel subset of X. Note that since f is a homeomorphism, fxvy defines a
Borel measure.

Definition 3.6. We define the (generalized) Jacobian of f at the point x € X as follows:

o KO (Bl )
) =B e r))

Note that J; is the Radon-Nikodym derivative of the pull-back measure fu(H$) with
respect to ’H?( and H? is a doubling measure, and so the limit supremum in the definition
of J; is actually a limit at H?-almost every z.

Definition 3.7. For a set £ C X of finite perimeter, should f#(HQ’lLEf(E)) < HO Yy,
we define the (Q — 1)-Jacobian of f with respect to X F by

o HO! LEf(E) (f(B(x,1)))
r—0t  HO |5y (B(z,7))




Given that H?~1(0*E\ ©E) = 0 (see Theorem 4.1), we can equivalently consider J g to
be the Radon-Nikodym derivative on 0*F.

Further standing assumptions: In this paper, in addition to the standing assumptions
listed at the end of Section 2, we will also assume that f : X — Y is a quasiconformal

mapping.

4 Background results

In this section we will gather together some of the background results needed in the paper.
Recall that we assume the 1-Poincaré inequality to hold with the scaling constant A = 1.

Theorem 4.1 ([3, Theorem 5.3, Theorem 5.4], [5, Theorem 4.6]). There exists v > 0
(depending only on the Ahlfors regularity constant Cx of p and the Poincaré inequality
constant Cp) such that for any set of finite perimeter E, the perimeter measure P(E,-) is
concentrated on ¥, E. Furthermore, HO 1 (0*E \ £, E) = 0 and there exist constants & > 0
and C > 0 (again depending only on Cy and Cp) and a Borel function O : X — [&,C]
such that

P(E, B(z,r)) = /

B(z,r)No*E

Op dHO = / Op dH™,

B(z,r)NE,E

for any x € X and r > 0. Consequently we have that
aHe Y(B(z,r)NO*E) < P(E,B(z,r)) < CHY YB(z,r) N O*E) (4.1)

and
HOYO*E\ BE) = 0.

The results of [3] did not need the measure to be Ahlfors regular, only that the measure
be doubling, but as Ahlfors regularity is a stronger condition, the results of [3] hold here
as well. The next theorem is a strengthening of Federer’s characterization of sets of finite
perimeter as those sets £ with H?1(9*E) < oco. The Federer characterization in the metric
setting can be found in [20].

Theorem 4.2 ([19, Theorem 1.1]). There is some 0 < 8 < 1/2, depending only on Cy and
Cp, such that whenever EE C X is measurable, we have that E is of finite perimeter if and
only if HY 1(XsE) < oo.

Now we turn to preliminary results related to quasiconformal mappings needed in the
paper.

Theorem 4.3 ([14, Theorem 9.8]). Let f : X — Y be a homeomorphism between met-
ric spaces of locally Q-bounded geometry. Then the following conditions are quantitatively
equivalent:

1. f is H-quasiconformal for some H > 1,

2. There is a homeomorphism n such that f is locally n-quasisymmetric,
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3. feNLYYX 1Y) and Ly(2)? < KJg(x) for almost every x € X and a constant K > 0,

oc

4. There is some L > 0 such that for all curve families I' in X,

L™ "Modo(T) < Modg(fT) < L Modg(T).

Furthermore, if any one of these conditions holds, then both f and f~' are quasiconformal
and satisfy Lusin’s condition (N).

Remark 4.4. A metric space is said to be of locally ()-bounded geometry if X is separa-
ble, path connected, locally compact, locally uniformly Ahlfors @)-regular and satisfies the
Loewner condition locally uniformly. Since the support of 1-Poincaré inequality implies the
support of a ()-Poincaré inequality whenever () > 1, and since for Ahlfors Q)-regular spaces
the Loewner condition is equivalent to the support of a ()-Poincaré inequality (as shown
in [13]), we know that under our assumptions, X is locally (even globally) of @Q-bounded
geometry.

In fact, under our assumptions the quasiconformal mapping f is necessarily quasisym-
metric.

Proposition 4.5. The quasiconformal mapping f is quasisymmetric.

Proof. Whenever A C X is bounded, A is compact, and then since f is continuous, f(A) is
compact and thus bounded, that is, f maps bounded sets to bounded sets. Since f : X — Y
is a homeomorphism, f~! also maps bounded sets to bounded sets, and so X is bounded if
and only if Y is bounded. Now if X is unbounded, by [13, Corollary 4.8, Theorem 5.7] we
know that f is quasisymmetric; if X is bounded, we know this by [13, Theorem 4.9]. ]

The next lemma follows also from Theorem 4.3(3) together with the chain rule applied
to f and to f~!, but as the proof is simple we provide it here for the convenience of the
reader.

Lemma 4.6. If n is the homeomorphism of quasisymmetry for f, then there exists C' > 0,
depending only on the Ahlfors reqularity constant of the measures on X and Y and on n(1),
such that at every x € X,

)@
B < ) < 0Ly

Proof. Fix € X, and choose r > 0 small enough so that X \ B(z,r) is non-empty. Let
w € B(z,r) and z € X \ B(z,r). Then

dy (f(2), f(w)) dx(z,w)
w7 (e s) <

because d(z,w) < d(z, z). This holds for all w € B(z,r) and z € X \ B(x,r), and so

Ly(z,r)
Le(x,r)

<n(1). (4.2)

11



Now for y € Y\ f(B(z,r)) we have dx(f~*(y),z) > r, and so

L¢(z,r)
n(1) -

It follows that y ¢ B(f(z), Ly(z,r)/n(1)). Hence, B(f(z), L¢(x,r)/n(1)) C f(B(z,r)). Now

at every x € X, Jy(z) is given by
Q Lf(I,T)
H (B (1), 567))

dy (5, f(2)) > () >

HO(f(B(z,1)))

J¢(x) = lim sup > lim sup
= o B = T B )
1 (Lf((arsr)>Q
. Ca n(1
>1 _ 7
=T o

1 L @
= lim sup ( (o, r))

r—07t CA 77(1) r
1 Q
= e
" HO(B(f(2), Ly(r,7))
. x), Ly(z,r 5 0
< < .
Jrle) <l =0y = Gt
Letting C' = C% max{n(1)?, 1}, the conclusion follows. O

Lemma 4.7 ([6, Lemma 2.7]). For every ball B(f(x),s) CY there exists r > 0 such that

B(f(x),s) € f(B(x,r)) C f(B(x,10r)) € B(f(x),n(10)s).

Furthermore, if f=' is uniformly continuous with modulus of continuity w(-), then we can
choose r < w(s).

Proof. Since Y is proper and f~! is continuous, there exists r > 0 such that the first
inclusion holds. Let r = inf{s’| f(B(z,7")) D B(f(z),s)}; since f is a homeomorphism,
B(f(x),s) C f(B(x,r)). Then for any 0 < ¢ < 1, there exists a point z. € f~'(B(f(x),s)) \
B(z,cr). Then f(zc) € B(f(x),s)\ f(B(z,cr)) which implies that dy (f(z), f(z.) < s and
dx(x,z.) > cr. Let w € B(x,10r). Now f is quasisymmetric by Proposition 4.5, with an
associated homeomorphism 7, and so

(). £ < 0 () a7, ) <0 () s

(l’,Zc C

Letting ¢ tend to 1, we get that dy (f(z), f(w)) < n(10)s. Thus the last inclusion holds.
Now if w(t) is a modulus of continuity of f~!, then r < w(s) since we chose r minimally. [

Recall that BE = (Jsc (1) ZsE, see Definition 2.12.
Lemma 4.8. Let E C X be measurable. For each € (0,1) there exists By € (0,1) such
that L f(E) C f(Xp,E). Consequently, Xf(E) = f(XE). Also, 0*f(E) = f(0*E).

12



Proof. Let x € X. By [18, Theorem 6.2] we know that for all sufficiently small balls B;
centered at x, we have for some a,b > 0

py (f(E) N By) <b <MX(E N B1))a
py (B2) px (B1) 7

where By denotes the largest open ball in f(Bj) with center f(z).

Suppose 8 € (0,1) and f(z) € ¥g f(E), that is, both D(f(E), f(x)) and D(Y'\ f(E), f())

are at least as large as . As the radius of B; converges to 0, so does the radius of Bs, and

so it follows from (4.3) that
1/a
o = (%) < D(E,x).

By using the fact that D(Y \ f(E), f(z)) > 5, and (4.3) with E replaced by X \ E, we get
also By < D(X \ E,x). Thus x € ¥4,E, and so we have proved that X5f(F) C f(XE). It
follows that X f(F) C f(XFE). Since f~! is also quasiconformal, we also get

SIE) C fHEf(E)

and so f(XE) C ¥f(E). We therefore have f(XFE) = Xf(FE).
Next suppose that f(z) € 0* f(E). It follows from (4.3) that

(4.3)

- 1/a

From the fact that DY\ f(E), f(z)) > 0, and (4.3) with E replaced by X \ E, we get also
0 < D(X\ E,z). Thus x € 9*E, and so we have proved that 9*f(E) C f(0*E). Since f~!
is also quasiconformal, we also get

0" fHf(E)) C fHO"f(E))
and so f(0*E) C 0* f(F), whence we conclude that f(0*E) = 0*f(FE). O

Lemma 4.9. There exists a > 0 such that for every E C X of finite perimeter and for
HO 1 almost every x € O*E,
P(E,B
lim inf M > q.
r—0t rQ-1
Moreover, if 0 < < 1, then there is some () > 0 such that whenever E C X is a
measurable set and x € YgF, we have

.. P(E B(x,r))

hgé?fT > a(f).
Proof. By Ahlfors Q-regularity we know that r~1u(B(z, 7)) is comparable to r9~!. Recall
that C7 is the constant from the isoperimetric inequality and C}y is the Ahlfors regularity
constant. By Theorem 4.1, there exists v > 0 such that for H? !-almost every x € 9*E,

. (B(z,r) NE) . u(B(z,r) \ E)
Vs lmint = ey d s imE Ty

13



Then by the relative isoperimetric inequality,

 win{u(Bla,r) N E) (Bl )\ )}
7 < limint Bz, )
. . .rC/P(E,B(x,r))
Shm = )
< lim inf CrCaP(E, B(z, T))

r—0+t r@-1

Letting a = ﬁ concludes the proof of the first part of the lemma. The second part of
the lemma is proved in the same way as the first part, with
s
o = . O
(8) 2C.C

Definition 4.10. For a > 0, define

lim inf M > Oz}.

r—0t re@-1

OF — {:c cOE

Remark 4.11. By Lemma 4.9 above, we have that for each 0 < § < 1,
YsE Cc 0*VWE.

We need the following “continuity from below” for families of measures, with the families
not necessarily measurable with respect to the outer measure Mod,,.

Lemma 4.12 (Ziemer’s lemma [6, Lemma 3.1(3)]). Let {L;}ien be a sequence of families of
measures in X such that for each i, L; C L;11. Then for 1 < p < oo,

Mod, ( | £:) = lim Mod, (L))

1—00
ieN

5 Proof of Theorem 1.1

In this section we prove Theorem 1.1. To do so, we adapt the tools given in [6] to study
boundaries of sets of finite perimeter, which are not Ahlfors regular in general. The adapta-
tion of the tools to this setting is given in Proposition 5.1.

We remind the reader of the standard assumptions set forth at the end of Sections 2
and 3. Recall also the definition of 0“F from Definition 4.10. As noted in the introduction,
with a slight abuse in notation, we will use £ to denote both the family of sets E of finite
perimeter and the family of measures H9 |y .

If £ contains a set £ with P(E, X) = 0, i.e. H¢(9"E) = 0, then Modg/o-1)(£) = o0
as there can be no admissible test function p for the class £. In addition, by the fact that X
supports a 1-Poincaré inequality we will also have that H?(E) = 0 or HY(X\ E) = 0. It then
follows that HO(f(E)) = 0 or HO(f(X \ E)) = HO(Y \ f(E)) = 0, whence it follows that
f(E) is of finite perimeter with P(f(£),Y) = 0. We conclude that Modg /-1 (f£) = oo.
In this case Theorem 1.1 trivially holds true. So in the proof of the next proposition (and
in the next section) we will assume that every E € L satisfies 0 < P(F, X) < oc.

14



Proposition 5.1. Let L denote the given collection of bounded sets E C X of finite perimeter
measure. Then the following hold true:

1. for each o > 0 and Modg,(g—1)-almost every E € L we have HO™'(f(0°F)) < oo,

2. if Uy C X with H(f(Uy)) = 0 and o > 0, then we have that He *(f(0°ENUy)) =0
for Modg(q-1)-almost every £ € L,

3. if Uy € X with HO(f(Uy)) = 0, then with Ly the collection of all E € L with
HQ_l(Zf(E) N f(Uo)) > 0, we have MOdQ/(Q_l)(ﬁbad) =0= MOdQ/(Q_l)(fEbad).

Proof. Recall from Lemma 4.8 that f(0*E) = 0*f(E) and f(XE) = Xf(E).

Let U C X be a bounded measurable set. Then since f is a homeomorphism and closed
and bounded subsets of X are compact, f(U) is also bounded and f and f~! are uniformly
continuous on the sets U and f(U), respectively. Let w(-) be a modulus of continuity for
f~ton f(U). Let € > 0. By the definition of Hausdorff measure, there exist y; € f(U)
and 0 < s; < e such that {B(y;, s;) }ien covers f(U) and 3,52 < (HO(f(U)) +¢). By
Lemma 4.7, for every x; :== f~*(y;), there exists 0 < r; < w(e) such that

B(yi,si) C f(B(wi,ri)) C f(B(xi, 10r:)) C B(yi, n(10)s:).
Set B; = B(x;,r;) and B! = B(y;, s;) and define g : X — R by
s\ 97!
o) =sup (%) vano)
ieN \Ti
Fix a > 0 and define

P(E.B
(9?E—{x€8*E’w>afora110<r§5}
T

and note that 0°E = (J,cy 97 £ . For each M > 0, define
ci {Eeﬁ(HQ o (O ENU) > M}, (5.1)

We want to show that Cn(10)9~!aM] ' g is admissible for L}/.. Let E € L}}. and
set Iy = {i € N|B; N (9%,E NU) # 0}. Note that 9% ENU C Uy, 2Bi. Then
by the 5-Covering Lemma, there exists Jg C Ig such that {2B;},c,, is pairwise disjoint
and 95, ENU C Uje,, 10B;. Since B; N 95 ENU # 0 for each j € Jp, there exists

zj € B 08 oENU. So B(z;,r;) C 2B;. Moreover zj € 95 E and r; < w(e) imply that
T At 1)P(E’,J_S’(zj,rj)) > «, and hence P(E,2B;) > P(E,B(z],rj)) > Ozer*l. Then by the

15



pairwise disjointness property of {2B;};c s,

[
YE YE

s\ 9!
J) Yop, ) dHO!

(

J

sup
Jj€JE

Thus we have that

Because U N5, E C U 10B;,

J€JE

[, ENT) C f( U 103j) c

JEJE J

Since E € L{/,, we have that H 10)(f((9°‘ ENU))>M. Ass; <e, U

NCE!
J) Yon, ) dHO!

P(E,2B;) by (4.1)

(5.2)

U B(y;.n(10)s;).

cJg

n(10)B; is an

Jj€JE

admissible cover for computing ’H 10)( f ((93 ENVU)), and hence
M < HE 0 (FO5ENT)) < Y (n(10)s)%7 = 7(10)971 Y - 77
Jj€JE JEJE
So
< Y s (5.3)
Jj€JE
Combining (5.2) and (5.3), we get
M
dHO > — | ——— ).
Lo = 6 (e
Therefore
Cn(10)¢!
aM Y
is admissible for £{/.. Setting
~ Cn(10)9!
Cu="on
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where C' is the constant from (4.1), we obtain

MOdQ/(Q—l)(ﬁrAﬂ) < CA/(CMg)Q/(Q—l) peve.

X
N Q/(Q-1)
_ c¥@ng, sup<(i) X2Bi> e
X ieN T
1 Si 9
< cQ/a- )CA/ Z(‘) von. | dH@
X\ T
€N
Q/(Q-1) si\“ Q
<C - - .
<cfeeny (&) ween)
€N
Q/(Q-1) si\“ Q
<C - - )
< @Ve, Y (2) catn
€N
_ CAQJ/(Q*UCE@Q Z SZQ
ieN

< cY V290 HQ(F(U)) +€).

Recalling the definition of Lf, from (5.1), set L = Uy L1/~ Then
LY ={Ee L|HY(f(O“ENU)) > M}. (5.4)

Note that if m < k then E%l/m C E%l/k. Applying Lemma 4.12, we get that

. _ 1 1
Modgy-1)(£H) = lim Modgyig-1(£8,4) < Jim CF/ @522 (HO(F(V)) + 7 )
= CH@ICR2HO(F(U)).
To summarize, we have
HO((U) C(10)2~ 1\ @

Recall that Modg/(o-1) is an outer measure on the family of all curves in X, see [9, The-
orem 1]. We will make use of the corresponding monotonicity and subadditivity properties
in the following.

Proof of Claim 1: Set £L¥ = {E € L|HY Y(f(0*ENU)) = oo}. By the monotonicity
property of Modg,(g_1y, when M; > M, we have Modg,o_1)(£") < Modgq-1)(L?), and
80 lim /00 Modg (g-1)(L7) exists. Note that for each M > 0 we have £ D Ly, and so

HY (1)

WelCE 0.

Modg/-1)(£F) < lim Modg(q-1(Ly) < lim C,

17



Fixing 29 € X and considering U; = B(wo, i) for each i € N, we set £L* = J,.y £g. Then
as the sets in £ are bounded, £*® = {E € L|HY }(f(0°E)) = oo} and

Modg/(@-1)(£%) = Modg(@-1) ( U ﬁﬁ) <D Modgg-1)(£L7) = 0.
ieN 1€N

Therefore the set for which HY=(f(0“F)) is not finite has Q/(Q — 1)-modulus zero. This
proves Claim 1.

Proof of Claim 2: Let Uy C X such that H?(f(Up)) = 0. Then for any bounded U C Uy,
HO(f(U)) = 0. Recall LY from (5.4) for M > 0, and let £{; = U,,cn Ellj/m. Then

Lh={E € L|HY(f(O*ENU)) > 0},

and by (5.5) and by the subadditivity property of modulus,

Modgy(q-1) (£5) = Modgq-1 (| £™) <> Modgyq-n(L™) = 0.

meN meN
Define V; = B(xo,i) N Uy and set LT = |J,c £7,. Then
LY ={Ec L|HY(f(0"ENUy)) > 0},

and
Modg -1 (L") <Y Modgq-1(Ly,) = 0.

€N

Proof of Claim 3: Again, suppose H%(f(Uy)) = 0. By Lemma 4.9, for any 0 < 8 < 1
there exists a(8) > 0 such that SgE C §*® E. Then by Claim 2, for Modg/(g-1)-almost
every E

HO (f(SENUp)) = HO ! U FEENUy) | < HOH U F(“OENU,)

BE(0,1) BE(0,1)NQ
< 3 HONFOVEND)
B€(0,1)NQ
=0.
Finally, by considering the function ooy s, we see that Modg,g-1)(fLbaa) = 0. O]

Proposition 5.2. Let £ denote the given collection of bounded sets of finite perimeter in
X. For Modg/(g-1)-almost every E € L we have

FeMO spm) < HO g = HO M sp

Proof. The last equality follows from Theorem 4.1. To prove the absolute continuity, first
we set

P ={zeX|Ls(z) € {0,00}}.

18



For n,m € N, set

L 1
Anvm:{xeX‘Mgmfor0<T<—}. (5.6)
r n

Then U,,en Upen Anm 2 X\ P. If 2,y € A, ,, such that dx(z,y) < 1/n, then

dy (f(z), f(y)) < mdx(z,y), (5.7)

that is, f is locally m-Lipschitz on A,, ,,,. Note from Lemma 4.6 that J¢(x) = 0 for every x for
which L;(z) = 0. So by the fact that f and f~! satisfy condition (N) (from Theorem 4.3),
we know that the zero set of J; and hence the zero set of Ly is a null set. As J; € L}, (X), we

loc

know that H?(P) = 0 and thus H%(f(P)) = 0. So by Proposition 5.1(3), for Modg,qg-1)-
almost every E € £ we have HO (f(SEN P)) = 0. For such £ € L, fix N C ¥ E such that
HO1(N) = 0. Then for each m,n € N, by the local m-Lipschitz property of f on A, ,,, we
have

HO T (F(NNApy)) <m@ T HEH (NN A,y,) = 0.

Thus
HOL(f(N\ P)) <HO! (f(Nm U Amm)) <D mET RO (NN Ay =0,
n,meN n,meN
and therefore as N C X F, we have
HOH(F(N) SHOTHFIN\P) +HO(F(EENP)) = 0.
Combining this with the fact that X f(E) = f(XF) (see Lemma 4.8) completes the proof. [
Recall the definition of J; g from Definition 3.7, and note that it is a function on X F.

Proposition 5.3. For Modgg-1)-almost every E € L we have HY ' (Sf(E)) < co and
f(E) is of finite perimeter.

Proof. By Lemma 4.9 there exists g > 0 such that HO1(SE \ 0 F) = 0 for every E € L.
Then by Proposition 5.2 we know that H 1 (Sf(E) \ f(O™E)) = 0 for Modg(g_1)-almost
every F € L. Finally, by Proposition 5.1(1) we have H?~(f(0*°E)) < oo after eliminating
a further family of Modg,(—1)-zero from L.

The last claim now follows from Theorem 4.2. ]

Lemma 5.4. There exists C' > 0 such that for Modg/qg-1)-almost every E € L,
Jpe(x) < CJp(x) @@

for HO s -almost every .

Proof. From Proposition 5.2 we know that for Modg/g-1)-almost every F, f#HQ_ILEf( B)

is absolutely continuous with respect to H2 1| ,.; = H9 !|xp. Furthermore, from Proposi-
tion 5.3 we know that HY 1 (Zf(E)) < oo for Modg,(-1)-almost every E. We focus only
on such £ € £ now.
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Note that L; is a locally integrable function on X, so by Lusin’s Theorem, for each
k € N there is some open set U, C X such that pu(Uy) < 27% and Ly|x\p, is continuous. By
enlarging U, if necessary, we can also assume that for each k € N, P C Uy.. Let U = (o Us.
Then p(U) = 0. Let Lo = {E € L : HO(UNXE) > 0}. Then coxy is admissible for
computing Modgg-1)(Lo), and so Modg-1)(Lo) < [y coxu du = 0. We ignore such F
as well.

Observe that for every z € X \ U we have L;(x) > 0. For n € N we set

A, ={x € XE: Lg(x,r)/r <2Ls(x) for 0 <r < 1/n}.

It is not difficult to show that A, is a Borel set by writing it as an intersection of Borel
sets, one for each rational r € (0,1/n). Now by Proposition 5.2 and the Radon-Nikodym
Theorem,

/ Jig dHO = HOT(f(ZE)).
XFE

Since HOL(f(ZE)) = HOY(XZf(E)) is finite, J;p € LY(XE,HY™'). For k,n € N let E¥
denote the collection of all x € X I that are not Lebesgue points of xa,\v, Jy,z. Then for
each k € N we have H9 ™ (U,,cn EX) = 0. For x € SE\ (Ve (Uk U U, en EF), there is some

neN —n

k € N and n € N such that z € A, but = ¢ EF U Uy. Therefore

vaE(x) = lim XAn\Uk Jf’E dHQ_l
r=0% /B2 rnsE

= lim J@mnang, Jre AT
r—0t  HOY(B(x,r) NXE)

iy PO B 0 A\

Csor HO(B(z,r) N LE)

(5.8)

From an argument similar to (5.7) we know that f is 2supp, )\, Ly—Lipschitz continuous
on B(z,r)N A, \ Uy when 0 < r < 1/2n, and so

FeHOT (B, r) N A\ Up) = HOT (F(B(a, 1) N A\ Up))

- - Q_l
< |2 sup Ly HO Y B(z,r) N A, \ U
| B\ |
_ 1Q-1
<12 sup Ly HO Y (B(x,r) NSE),
| B\ |

and so by (5.8) and the continuity of Ly in X \ Uy,

Q-1
Jrp(r) <limsup |2 sup Ly =297 Lp(2)9 L.
r—0+ B(z,r)\Ug

Now by applying Lemma 4.6, we obtain

Jrp(z) < CJp(x) 99
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This holds for all z € SE\ (Men(UrUU, e E5)). As E ¢ Lo and HO (e Unen EX) = 0,

we have
HO! (zEm N (Uku U E,’j)) =0

keN neN
and so the claim holds. O

Proof of Theorem 1.1. Let Ly be the set of E € L for which the conclusion of either Propo-
sition 5.2 or Lemma 5.4 fails. Then by those results, we know that Modg,g-1)(£o) = 0. Let
E e L\ L.

From Proposition 5.2 and Lemma 4.8 we know that the pull-back measure fu(H? !y £(E)) =

f#(H9 ! j(np)) is absolutely continuous with respect to H? |y, Therefore, whenever ¢ is
a nonnegative Borel function on Y, we have

/ @dHO ! = / o fJigdHI .
f(ZE) SE

From Lemma 5.4 we know that the corresponding Radon-Nikodym derivative is dominated
by Cy J}Qfl)/Q. Suppose p: Y — [0, 00] is admissible for fL£. Define p: X — [0, c0] by

p=Colpo f)J; 4 V9.

Then p is admissible for calculating Modg/g-1)(£ \ £Lo) since by Proposition 5.2 and the
change of variables formula,

/ ,?)'dHQ‘lz/ Co(po f)J QD@ gyt z/ (po f)Jpp dHO
YE YE

It follows that
Modg/(g-1)(£) = Modgq-1)(£\ Lo) < Ca / P
CA/ (Co (po f)J, @D/
X
/ (po )@ Jp an?
X

_ C/ pQ/(Q—l) dH?.
Y

>

) Q/(Q-1) JH

IN
Q

Taking the infimum over admissible p, we obtain

1
EMon/(Q—l)(ﬁ) < Modg@-1)(f£).
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We cannot directly apply the argument to f~! to obtain a similar inequality for f£ as we do
not know that that family consists solely of sets of finite perimeter. However, note that if £*
is the set of all £ € £ such that f(F) is not of finite perimeter, then from Theorem 4.2 we
know that H9 (X f(F)) = co. Thus fixing yo € Y and setting the function h : Y — [0, 00)
to be ,
27’1/
h = i)
(y) ZI\:I %Q(B(yo,i))(Q_l)/Q XB(yo.%)
we see that for all E € £* there is i € N such that

9-in
hdHe™" = . HO N (Df(E)) = o,
/Zf(E) HO B i@t (BSE)

and so h is admissible for f(L£*). Moreover,

o1 )@ ;
RQ/(@D) gy ) <V 27 < 0,
(f >

and so Modg /-1 (f(£*)) = 0. We also know from Proposition 5.3 that Modg/g-1)(£*) = 0.
We can now apply the argument given for the first inequality to f~! to obtain a similar
inequality for f(L£ \ £*), and then the above argument with h shows that we obtain the
second inequality stated in the theorem. O]

6 Proof of Theorem 1.2

In this section we focus on the proof of Theorem 1.2. The proof uses the tools developed in
the previous section.

Proof of Theorem 1.2. Let L be the collection of all bounded sets £ C X of finite perimeter.
From Proposition 5.2, we know that for Modg/-1)-almost every E € L,

f#(rHQill.Ef(E)) <HO M pop -

Furthermore, by Proposition 5.3, we know that for Modg/g-1)-almost every such E, f(E)
is of finite perimeter, and hence HO1(0* f(E) \ f(E)) = 0. It follows that

Fae(HO o jmy) = fo(HO spm) < H  oor -

Let £* be the collection of all E € L for which f(FE) is not of finite perimeter; then we know
from Theorem 1.1 that

Modg(g-1)(£") = 0 = Modgq-1)(f(L")).

Applying the above argument to the family f(£\ £*), we also obtain that for Modg/g—1)-
almost every f(E) € f(L\ L),

HO g =HY e < f#(HQ_lLa*f(E))'
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Finally, note that the collection of all E for which f(E) € f(£*) is the collection L*,
which also satisfies Modg,g-1)(£*) = 0. Moreover, the collection £** of all E € L\ L*
for which the above absolute continuity fails satisfies Modg/-1)(f(£**)) = 0 and hence
Modg(g-1)(£L**) = 0 by Theorem 1.1.

An application of Lemma 5.4 tells us that J;p < C'J }Q_l)/ @ HO 1| p-almost everywhere
for Modg/(g—-1)-almost every E € £. Applying this lemma to f~1 also gives

Jikh =1 gm0 f < Ol o flQVQ =099

HQ’ll_Ef( py-almost everywhere for Modg,(g-1)-almost every such f(E). An application of
Theorem 1.1 concludes the proof. O

Remark 6.1. We now complete the discussion in this paper by considering the reasonableness
of the two main theorems of this paper. The results would not be useful if the collection of all
sets of finite perimeter was Modg,(g-1)-null. However, there is a large family of sets of finite
perimeter whose quasiconformal images are also sets of finite perimeter. Indeed, thanks to
the BV co-area formula (see [21, Proposition 4.2]) and the fact that N»?(X) C BV,.(X),
we know that if u € NY9(X) is compactly supported, then for H'-almost every ¢t € R we
have that the super-level set F; := {u > t} is of finite perimeter in X. Here, by N?(X) we
mean the function class N1¢(X; R) from Definition 2.3. By [14, Theorem 9.10] we know that
wo f~t € NM9(Y) since f is quasiconformal. Therefore for H!-almost every t € R we have
that f(E;) = {uo f~! > t} is also of finite perimeter, and so the collection of all ¢ € R for
which either E; is not of finite perimeter or f(E;) is not of finite perimeter is of H'-measure
zero. Hence there are plenty of sets of finite perimeter in X whose image under f is of finite
perimeter in Y. The remaining part of this section is devoted to making concrete the notion
of “plenty”, see Remark 6.4.

Proposition 6.2. Let u € NY9(X) be compactly supported such that fX g@du > 0, where
Gu 18 the minimal Q-weak upper gradient of u (see e.g. [14, Section 6]), and let L be the
collection of all sets By = {x € X : u(z) > t}, t € R, for which 0 < P(E;, X) < co. Then
Modg/(@-1)(£) > 0.

Proof. Since u € N“%(X) has compact support, as explained above we have that for almost
every t € R the set E; is of finite perimeter. By employing truncation of u and by adding
a constant to u if necessary, we may assume without loss of generality that 0 < u < 1 on
X, and by the monotonicity of Modg/g-1) we may replace £ with the collection of all £,
with 0 < P(E;, X) < 00, 0 <t < 1. If P(E}, X) = 0 for almost every ¢ € [0, 1], then by the
1-Poincaré inequality we know that E; is either almost all of X or is of measure zero, whence
we would have u is constant, violating that [ X g% du > 0. Therefore £ has many sets, one
for each t in a positive H'-measure subset of [0, 1].
Let p be admissible for £. Then for every ¢ € [0, 1] for which E; € L,

/ pdP(E,) > 1.
YE:
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Integrating over [0, 1] and applying the co-area formula and Holder’s inequality, we obtain

Hl({te[0,1]|Ete£})§/l/ pdP(E,,-)dt

~ [ pdiDul
X

<C / p gu dHC
X

1—% 5
<c (/ /(@) dHQ) (/ e decz) .
X X

Taking the infimum over all such p gives

0<

H ({t €[0,1]| E, € £})@/@D
e o=y < Modg/@-1(£). (6.1)
_ Q
C,CR/(Q-1) (fX o d;L[Q)

]

Suppose fX gff dp > 0 and that 0 < v < 1 on X. If there is some 0 < t, < 1 for
which P(FE:,, X) = 0, then either u > ¢, almost everywhere on X, or else u < t, almost
everywhere on X. In the former case we have P(E;, X) = 0 for all 0 < t < t;, and in the
latter case we have P(E;, X) = 0 for all {; < ¢ < 1. Thus the set D of all ¢t € (0, 1) for which
0 < P(E:, X) < oo is a full-measure subset of a subinterval of [0, 1].

Remark 6.3. If t; < ty and f{t1<u<t2} g2 dH? > 0, then for L(t1,t,), which consists of all
E; € £ as in the above proposition for t; <t < t5, we have

1 . —1 Q
HI({t <t <Ot2 BeL)) MonL(E(thh))% (/ 9 dHQ) .
—1 {

t1 <u<t2}

0<

Remark 6.4. As above, we consider the family of super-level sets F; of a given compactly
supported function v € NY@(X). Then, with f~!: Y — X quasiconformal, we must have
uwo f~1 € NH(Y), and so for almost every t € R we have that both E; and f(E;) are of
finite perimeter. Moreover, as noted at the beginning of Section 5, P(E;, X)) = 0 if and only
it P(f(E,),Y)=0.

Now the proof of the inequality (6.1) tells us that the @/(Q — 1)-modulus of the family
of all E; for which P(E;, X) < oo and P(f(FE;),Y) < oo is positive. Indeed, if £y is the
collection of all E; for which 0 < P(E;, X) < oo but P(f(E;),Y) = oo, then whenever
po is admissible for computing Modg/g-1)(£ \ Lo), we then have 1 < [i pdP(E;,-) for
almost every ¢ € [0,1] with E; € £; thus the computation that derives (6.1) also gives the
validity of (6.1) with the role of p played by py. That is, Modg/g-1)(£ \ Lo) > 0. Therefore
there are plenty of sets of positive and finite perimeter in X whose image under f is also of
positive and finite perimeter; that is, the collection £, of all £, for which 0 < P(E;, X) < oo
and P(f(£;),Y) < oo (and hence 0 < P(f(E:),Y) < oo) satisfies Modg/g-1)(£.) > 0 and
Modg/(g-1)(f(£L4)) > 0 provided [y g% dH%? > 0.
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