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and Gaussian heat kernel estimates
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Abstract

We introduce the class of bounded variation (BV) functions in a general framework of strictly
local Dirichlet spaces with doubling measure. Under the 2-Poincaré inequality and a weak
Bakry-Émery curvature type condition, this BV class is identified with the heat semigroup
based Besov class B1,1/2(X) that was introduced in our previous paper. Assuming furthermore
a strong Bakry-Émery curvature type condition, we prove that for p > 1, the Sobolev class
W 1,p(X) can be identified with Bp,1/2(X). Consequences of those identifications in terms of
isoperimetric and Sobolev inequalities with sharp exponents are given.
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1 Introduction

In metric measure spaces X that are highly path-connected, the theory of Sobolev classes based
on upper gradients provides an approach to calculus using a derivative structure that is strongly
local. One can construct an analog of |∇f | (called a weak upper gradient) when f is a measurable
function on the metric space; |∇f | satisfies a variant of the fundamental theorem of calculus along
most rectifiable curves in X, and has the property that if f is constant on a Borel set E ⊂ X,
then |∇f | = 0 almost everywhere in E, see [39]. Should the measure on X be doubling and X
be sufficiently well-connected by paths that X supports a 1-Poincaré inequality controlling f by
|∇f |, the notion of functions of bounded variation (BV) as constructed by [72] leads to a fruitful
exploration of geometry of X in terms of BV functions and sets of finite perimeter (sets whose
characteristic functions are BV functions).

However, there are doubling metric measure spaces that are well-connected enough to support
a p-Poincaré inequality for some p > 1 but not a 1-Poincaré inequality, see for example [68].
Moreover, there are many metric measure spaces, including fractals like the Sierpiński gasket, that
have a doubling measure but support no Poincaré inequality of this type; some of these spaces
are even quasiconvex. In such settings, the theory of BV functions based on upper gradients as
in [6,72] is not very productive. On the other hand, the theory of Dirichlet forms is well-developed
in many such spaces, including both certain types of fractal spaces and some general settings
like connected metric measure spaces supporting a p-Poincaré inequality for some p > 1, see for
example [23,48,54,55,57,60,61,74,76,79–81], which is far from an exhaustive list of the literature.
In such situations, the theory of BV functions has not been well-explored. In [61] the Sobolev
type spaces constructed using Dirichlet forms were shown to be the same as those constructed
using upper gradients if the metric space supports a 2-Poincaré inequality. From [23] it follows
that in a doubling metric measure space supporting a p-Poincaré inequality for some 1 ≤ p ≤ 2,
there is a Dirichlet form that is compatible with the upper gradient Sobolev class structure, see for
example [60].

The goal of this paper is to develop a theory of a BV class of functions from Dirichlet forms
in a specific setting: that of a locally compact metric space X, equipped with a doubling Radon
measure µ and a strictly local Dirichlet form E on L2(X). We propose a notion of BV functions and
prove fundamental properties, including the Radon measure property of the BV energy seminorm,
the notion of sets of finite perimeter, and a co-area formula (see Theorem 3.11) connecting sets of
finite perimeter to BV energy.

In this paper we will also compare the notion of BV functions developed here to Besov classes
derived from the heat semigroup and from purely metric notions. The heat-semigroup based Besov
classes have already been considered in some specific settings, for example in [75], and are investi-
gated in a very general setting in the first paper in this series [3]. The paper [75] also considered a
notion of metric-based Besov classes under the assumption that the measure is Ahlfors regular; our
metric notion of Besov classes will not assume that the underlying measure µ is Ahlfors regular,
but we will assume that it is doubling with respect to the intrinsic metric dE of the Dirichlet form,
see (1), which is well-defined as E is regular. We prove that under a weak Bakry-Émery curvature
condition, the heat semigroup BV class we construct is the same as the metric-based Besov class
B1,1/2(X). One of the key tools used there is the co-area formula Theorem 3.11. Finally, we will
establish Sobolev-type and isoperimetric inequalities that parallel the classical Sobolev embedding
theorems associated with the classical Sobolev and BV classes as in [1, 70].

The tools of heat semigroup based Besov spaces needed in this paper were developed in the
first paper in this series [3], but the present paper can largely be read independently from [3]. The
results of this paper depend heavily on the assumption that E be not strictly local, but in the third
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paper [4] in this series we develop two types of Besov classes (one based on the heat semigroup and
the other based on a metric) as possible substitutes for BV functions.

The structure of this paper is as follows. In Section 2 we give a description of the background
notions and discuss related results from some of the existing literature on Dirichlet forms, though
in the interests of brevity our discussion is far from exhaustive.

The definition of BV class of functions is given in Section 3, where we also give a proof that
the BV energy density ‖Du‖ of u ∈ BV (X) is a Radon measure on X, see Theorem 3.7. The main
tool used in the proof of this theorem is a characterization of Radon measures due to De Giorgi
and Letta. We then establish a co-area formula for BV functions.

Section 4 is the heart of the paper. We begin by comparing the heat semigroup-based Besov
class Bp,α/2(X) introduced in [3] with a more classical Besov class Bα

p,∞(X) that was defined in [34]
and is based on the intrinsic metric d = dE rather than the heat semigroup Pt. Under our standing
hypotheses (µ is doubling and supports a 2-Poincaré inequality) we show that Bp,α/2(X) coincides
with Bα

p,∞(X). It should be noted that this differs from the correspondence of metric and heat
semigroup based Besov class established in [75] in that the latter assumes µ is Ahlfors regular.
We then compare the class BV (X) to the heat semi-group Besov class B1,1/2(X) and show these
coincide under the additional hypothesis that E supports a weak Bakry-Émery curvature condition,
see Theorem 4.4. We also explore a connection between the co-dimension 1 Hausdorff measure of
the regular boundary ∂r0α E of a set E of finite perimeter (meaning 1E ∈ BV (X)) to its perimeter
measure ‖D1E‖(X) =: P (E,X), see Proposition 4.7. In the last part of Section 4 we show that if
X supports a strong Bakry-Émery curvature condition and p > 1, then the heat semigroup-based
Besov class Bp,1/2(X) coincides with the Sobolev space W 1,p(X), see Theorems 4.9, 4.11 and 4.17.

We conclude the paper in Section 5 with a discussion of Sobolev type embedding theorems for
Besov and BV spaces in the context of strictly local Dirichlet forms satisfying the weak Bakry-
Émery estimate.

2 Preliminaries

2.1 Strictly local Dirichlet spaces, doubling measures, and our standing as-

sumptions

Throughout the paper, let X be a locally compact metric space equipped with a Radon measure µ
supported on X. Let (E ,F = dom(E)) be a Dirichlet form on X, meaning it is a densely defined,
closed, symmetric and Markovian form on L2(X). The book [32] is a classical reference on the
theory of Dirichlet forms. We also refer to the foundational papers by K.T. Sturm [82–84].

We denote by Cc(X) the vector space of all continuous functions with compact support in X
and C0(X) its closure with respect to the supremum norm. A core for (X,µ, E ,F) is a subset C of
Cc(X) ∩ F which is dense in Cc(X) in the supremum norm and dense in F in the norm

(

‖f‖2L2(X) + E(f, f)
)1/2

.

The Dirichlet form E is called regular if it admits a core. It is called strongly local if for any two
functions u, v ∈ F with compact supports such that u is constant in a neighborhood of the support
of v, we have E(u, v) = 0 (see Page 6 of [32]).

Throughout this paper, we assume that (E ,F) is a strongly local regular Dirichlet form on
L2(X). Since E is regular, for every u, v ∈ F ∩ L∞(X), we can define the energy measure Γ(u, v)
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through the formula
∫

X
φdΓ(u, v) =

1

2
[E(φu, v) + E(φv, u) − E(φ, uv)], φ ∈ F ∩ Cc(X).

Then Γ(u, v) can be extended to all u, v ∈ F by truncation (see [24, Theorem 4.3.11]). According
to Beurling and Deny [19], one has then for u, v ∈ F

E(u, v) =
∫

X
dΓ(u, v)

and Γ(u, v) is a signed Radon measure.

Definition 2.1. Observe that the energy measures Γ(u, v) inherit a strong locality property from
E, namely that 1UdΓ(u, v) = 0 for any open subset U ⊂ X and u, v ∈ F such that u is a constant
on U . One can then extend Γ to Floc(X) defined as

Floc(X) = {u ∈ L2
loc(X) : ∀ compact K ⊂ X,∃v ∈ F such that u = v|K a.e.}.

We will still denote this extension by Γ. For later use we collect some properties of this extension
(see for instance [32, Section 3.2] and also [83, Section 4]).

• Strong locality. For all u, v ∈ Floc(X) and all open subset U ⊂ X on which u is a constant

1UdΓ(u, v) = 0.

• Leibniz and chain rules. For all u ∈ Floc(X), v ∈ Floc(X) ∩ L∞
loc(X), w ∈ Floc(X) and

η ∈ C1(R),

dΓ(uv,w) = udΓ(v,w) + vdΓ(u,w),

dΓ(η(u), v) = η′(u)dΓ(u, v).

With respect to E we can define the following intrinsic metric dE on X by

dE (x, y) = sup{u(x)− u(y) : u ∈ F ∩ C0(X) and dΓ(u, u) ≤ dµ}. (1)

Here the condition dΓ(u, u) ≤ dµ means that Γ(u, u) is absolutely continuous with respect to µ with
Radon-Nikodym derivative bounded by 1. The term “intrinsic metric” is potentially misleading
because in general there is no reason why dE is a metric on X (it could be infinite for a given pair of
points x, y or zero for some distinct pair of points), however in this paper we will work in a standard
setting in which it is a metric. The following definition is from [67, and references therein], which
is based on the classical papers [20–22,82–84]).

Definition 2.2. A strongly local regular Dirichlet space is called strictly local if dE is a metric on
X and the topology induced by dE coincides with the topology on X.

We will assume strict locality throughout the paper.

Example 2.3. In the context of a complete metric measure space (X, d, µ) supporting a 2-Poincaré
inequality and where µ is doubling, one can construct a Dirichlet form E with domain N1,2(X) by
using a choice of a Cheeger differential structure as in [23]. This Dirichlet form is then strictly local
and the intrinsic distance dE is bi-Lipschitz equivalent to the original metric d. We refer to [69]
and the references therein for further details. This framework encompasses for instance the one of
Riemannian manifolds with non-negative Ricci curvature and the one of doubling sub-Riemannian
spaces supporting a 2-Poincaré inequality.
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Example 2.4. In the context of fractals, strictly local Dirichlet forms appear in [5, 21, 22, 31, 42,
49,50,53,56,63,71, 85,86] and play an important role in analysis of first-order derivatives in these
settings. Whether every local Dirichlet form admits a change of measure under which it becomes
strictly local is an open question, though some natural conditions for this are discussed in [40,43],
where it is also proved that Γ is the norm of a well defined gradient that may be extended to
measurable 1-forms, see [41]. Without giving details of this analysis, we mention that existence
of a suitable collection of finite (Dirichlet) energy coordinate functions, which depend only on the
Dirichlet form E , is essentially equivalent to the existence of a measure which is compatible with
an intrinsic distance. In particular, [40] proves existence of a measure which is compatible with
an intrinsic distance for any local resistance form in the sense of Kigami [53,55,57,58]. Thus, any
fractal space with a local resistance form has an intrinsic metric and is a strictly local Dirichlet
form for an appropriate choice of the measure.

Now suppose in addition to strict locality we know that open balls have compact closures and
that (X, dE ) is complete. In this setting we may apply [83, Lemma 1, Lemma 1′] to obtain that
the distance function ϕx : y 7→ dE(x, y) on X is in Floc(X) ∩ C and dΓ(ϕx, ϕx) ≤ dµ. Then cut-off
functions on intrinsic balls B(x, r) of the form

ϕx,r : y 7→ (r − dE(x, y))+

are also in Floc(X) ∩ C and dΓ(ϕx,r, ϕx,r) ≤ dµ (for all r > 0 and x ∈ X). The following lemma
will be useful.

Lemma 2.5. Let f : X → R be locally Lipschitz continuous with respect to dE . Then f ∈ Floc(X)
with Γ(f, f) ≪ µ. If f is locally K-Lipschitz, then Γ(f, f) ≤ K2 µ.

Proof. Let Q be a countable dense subset of X. Let U ⊂ X be a bounded open set and let {qi}i∈I⊂N

be an enumeration of Q ∩ U . Note that Q ∩ U is dense in U . For each i ∈ I let ψi(x) = dE (x, qi).
Then as explained above, ψi ∈ F(U) with Γ(ψi, ψi) ≤ µ. For j ∈ I set

fj(x) := inf{f(qi) +K ψi(x) : i ∈ I with i ≤ j},
where K ≥ 0 is the Lipschitz constant of f in U . The above functions are inspired by the proof
of the McShane extension theorem (see for example [38]). By the lattice properties of Dirichlet
forms, it is seen that each fj ∈ F(U) with dΓ(fj , fj) ≤ K2 dµ. Here, by the lattice property, we
mean that if u, v ∈ F , then w1 = min{u, v} and w2 = max{u, v} are also in F with Γ(w1, w1) =
1{u>v}Γ(v, v) + 1{u≤v}Γ(u, u). Furthermore, fj are K-Lipschitz in U with fj(qi) = f(qi) for i ∈ I
with i ≤ j. We can see that fj → f monotonically and hence (as f and fj are bounded in U
because U is bounded) fj → f in L2(U), with dΓ(f, f)/dµ ≤ K2 on U .

At many places in the paper we will need to approximate using locally Lipschitz functions and
use locally Lipschitz cutoffs, so will assume density of these functions in L1(X). Now we come to
the final assumption which will be made throughout the paper, namely that µ is volume doubling.

Definition 2.6. We say that the metric measure space (X, dE , µ) satisfies the volume doubling
property if there exists a constant C > 0 such that for every x ∈ X and r > 0,

µ(B(x, 2r)) ≤ C µ(B(x, r)).

It follows from the doubling property of µ (see [38]) that there is a constant 0 < Q < ∞ and
C ≥ 1 such that whenever 0 < r ≤ R and x ∈ X, we have

µ(B(x,R))

µ(B(x, r))
≤ C

(

R

r

)Q

. (2)
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Another well-known consequence of the doubling property is the availability of a maximal ε-
separated covering. Let U ⊂ X be a non-empty subset and let ε > 0. Then there exists a family of
balls {Bε

i = B(xεi , ε)}i such that

• The collection {1
2B

ε
i }i is a maximal pairwise disjoint family of balls with radius ε/2;

• The collection {Bε
i }i covers U , that is, U =

⋃

iB
ε
i ;

• There exists K ∈ N such that each point x ∈ X is contained in at most K balls from the
family {2Bε

i }i.

Moreover if µ has the volume doubling property and (X, dE ) is complete then it also follows
that closed and bounded subsets of X are compact.

We now summarize the assumptions that will be in force throughout the paper, some of the
above conclusions that will be used without further comment, and the notation for the upper
gradient we frequently use.

Assumption 2.7.

• The Dirichlet space (X,µ, E ,F) is strictly local, so E is strongly local and regular and dE is a
metric on X that induces the topology on X;

• the metric space (X, dE ) is complete;

• µ is volume doubling;

• closed bounded subsets of (X, dE ) are compact (this is a consequence of the preceeding two
assumptions);

• locally Lipschitz functions are dense in L1(X);

• if Γ(f, f) is absolutely continuous with respect to µ, as is the case for locally Lipschitz func-
tions, then |∇f | is the square root of its Radon-Nikodym derivative, so Γ(f, f) = |∇f |2dµ.

It should be noted that with the exception of some parts of Section 3, we will typically also
assume existence of a 2-Poincaré inequality, which is discussed next.

2.2 The 2-Poincaré inequality

Let (X,µ, E ,F) be a strictly local regular Dirichlet space as in Section 2.1.

Definition 2.8. We say that (X,µ, E ,F) supports the 2-Poincaré inequality if there are constants
C > 0 and λ ≥ 1 such that whenever B is a ball in X (with respect to the metric dE) and u ∈ F ,
we have

1

µ(B)

∫

B
|u− uB| dµ ≤ C rad (B)

(

1

µ(λB)

∫

λB
dΓ(u, u)

)1/2

.

Remark 2.9. The 2-Poincaré inequality does not need E to be strictly local, but it does need it
to be regular, in order for the measure Γ(u, u) representing the Dirichlet energy of u ∈ F to exist,
see [32] for more details. However we will always be considering strictly local forms.

Example 2.10. Examples of strictly local Dirichlet spaces (X,µ, E ,F) that satisfy the volume
doubling property and support the 2-Poincaré inequality include:
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• Complete Riemannian manifolds with non-negative Ricci curvature or more generally RCD(0,∞)
spaces in the sense of Ambrosio-Gigli-Savaré [8],

• Carnot groups and other complete sub-Riemannian manifolds satisfying a generalized curva-
ture dimension inequality (see [12,17]),

• Doubling metric measure spaces that support a 2-Poincaré inequality with respect to the
upper gradient structure of Heinonen and Koskela (see [39,62,63]).

• Metric graphs with bounded geometry (see [36]).

When the 2-Poincaré inequality is satisfied, a standard argument due to Semmes tells us that
locally Lipschitz continuous functions form a dense subclass of F , where F is equipped with the
norm

‖u‖F := ‖u‖L2(X) +
√

E(u, u),
see for example [39, Theorem 8.2.1]. Moreover, by [61], we know that if the 2-Poincaré inequality
is satisfied and µ is doubling then the Newton-Sobolev class (based on upper gradients, see [39]) is
the same as the class F , with comparable energy seminorms.

The next lemma is used to define a length of the gradient in the current setting and shows that
the Dirichlet form admits a carré du champ operator.

Lemma 2.11. Suppose that (X,µ, E ,F) satisfies the doubling property and supports the 2-Poincaré
inequality. Then for all u ∈ F , we have dΓ(u, u) ≪ µ and we set |∇u|2 to be the Radon-Nikodym

derivative dΓ(u,u)
dµ .

Proof. Let u ∈ F . Fix ε > 0. Let {Bε
i = B(xεi , ε)}i be a maximal ε-separated covering of X such

that the family {2Bε
i }i has bounded overlap property. Let ϕε

i be a (C/ε)-Lipschitz partition of
unity subordinated to this cover: that is, 0 ≤ ϕε

i ≤ 1 on X,
∑

i ϕ
ε
i = 1 on X, and ϕε

i = 0 in X \Bε
i .

We then set
uε :=

∑

i

uBε
i
ϕε
i ,

where uBε
i
=

∫

Bε
i
udµ. Then as each ϕε

i is Lipschitz, we know that uε is locally Lipschitz and hence

is in Floc(X). Indeed, for x, y ∈ Bε
j we see that from the 2-Poincaré inequality

|uε(x)− uε(y)| ≤
∑

i:2Bε
i∩2Bε

j 6=∅
|uBε

i
− uBε

j
||ϕε

i (x)− ϕε
i (y)|

≤ C d(x, y)

ε

∑

i:2Bε
i∩2Bε

j 6=∅

(

∫

Bε
i

∫

B(x,2ε)
|u(y)− u(x)|2 dµ(y) dµ(x)

)1/2

≤ C d(x, y)

ε

(

∫

6Bε
j

|u(y)− u6Bε
j
|2 dµ(y)

)1/2

≤ C d(x, y)

(

∫

6λBε
j

dΓ(u, u)

)1/2

.

It follows from Lemma 2.5 that Γ(uε, uε) ≪ µ and the Radon-Nikodym measure is denoted by
|∇uε|2. Moreover, we also have on Bε

i that

dΓ(uε, uε) ≤ C

(

∫

6λBε
i

dΓ(u, u)

)

dµ.
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This yields
∫

X
|∇uε|2dµ = E(uε, uε) ≤

∑

i

∫

Bi

dΓ(uε, uε) ≤ C
∑

i

µ(Bi)

∫

6λBε
i

dΓ(u, u) ≤ CE(u, u). (3)

In the last inequality above we used the fact that µ is a doubling measure.
In a similar manner,

|u(x)− uε(x)| ≤
∑

i

|u(x)− uBε
i
| |ϕε

i (x)| ≤
∑

i

|u(x)− uBε
i
|1Bε

i
(x).

Notice that the above sum has at most K terms due to the finite overlap property. Hence by the
2-Poincaré inequality
∫

X
|u(x)− uε(x)|2 dµ(x) ≤ C

∑

i

∫

Bε
i

|u(x)− uBε
i
|2dµ ≤ C

∑

i

ε2
∫

λBε
i

dΓ(u, u) ≤ Cε2
∫

X
dΓ(u, u).

that is, uε → u in L2(X) as ε→ 0+.
Take a sequence εn → 0+. From (3) and the reflexivity of L2(X), there exists a subsequence

of {|∇uεn |}n that is weakly convergent in L2(X). By Mazur’s lemma, a sequence of convex com-
binations of uεn (still denoted by {uεn}) converges in the norm ‖ · ‖F . Since uεn converges to u
in L2(X) we see that |∇uεn | converges in L2(X) and denote the limit by |∇u|. At the same time,

E(uε, uε) converges to E(u, u). We conclude that dΓ(u,u)
dµ = |∇u|2.

Definition 2.12. Let 1 ≤ p < ∞. We say that (X,µ, E ,F) supports a p-Poincaré inequality if
there are constants C > 0 and λ ≥ 1 such that whenever B is a ball in X (with respect to the metric
dE) and u ∈ F , we have

1

µ(B)

∫

B
|u− uB | dµ ≤ C rad(B)

(

1

µ(λB)

∫

λB
|∇u|p dµ

)1/p

.

Of course, the p-Poincaré inequality for any p 6= 2 does not make sense if E does not satisfy
the condition of strict locality. The requirement that E supports a 1-Poincaré inequality is a
significantly stronger requirement than supporting a 2-Poincaré inequality.

Much of the current theory on functions of bounded variation in the metric setting requires
a 1-Poincaré inequality. In this paper we will not require that (X,µ, E ,F) supports a 1-Poincaré
inequality but only the weaker 2-Poincaré inequality. However in some of our analysis we will need
an additional requirement called the weak Bakry-Émery curvature condition.

2.3 Sobolev classes W 1,p(X)

The theory of Sobolev spaces was first advanced in order to prove solvability of certain PDEs,
see for example [30, 70]. When X is a Riemannian manifold, a function f ∈ Lp(X) is said to be
in the Sobolev class W 1,p(X) if its distributional derivative is given by a vector-valued function
∇f ∈ Lp(X : Rn). Extensions of this idea to sub-Riemannian spaces have been considered in [33].
However, in more general metric spaces where the distributional theory of derivatives (which relies
on integration by parts) is unavailable, an alternate notion of derivatives needs to be found. Indeed,
we do not need an alternative to ∇f , as long as we have a substitute for |∇f |. For metric spaces
X, Lipschitz functions f : X → R have a natural such alternative, Lipf , given by

Lipf(x) := lim sup
r→0+

sup
y∈B(x,r)

|f(y)− f(x)|
r

.
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Other notions such as upper gradients and Haj lasz gradients play this substitute role well, see for
example [39]. In the current paper we consider another possible notion of |∇f | which has a more
natural affinity to the heat semigroup and the Dirichlet form, as in Lemma 2.11. So, in this paper,
our definition of W 1,p(X), p ≥ 1 is the following:

W 1,p(X) = {u ∈ Lp(X) ∩ Floc(X) : Γ(u, u) ≪ µ, |∇u| ∈ Lp(X)} . (4)

The norm on W 1,p(X) is then given by

‖u‖W 1,p(X) = ‖u‖Lp(X) + ‖|∇u|‖Lp(X).

Note, in particular, that W 1,2(X) = F . In the context of Sobolev spaces, Besov function classes
arise naturally in two ways. Given a Sobolev class W 1,p(Rn+1) and a bi-Lipschitz embedding of Rn

into Rn+1, there is a natural trace of functions in W 1,p(Rn+1) to the embedded surface, and this
trace belongs to a Besov class, see for example [46,47]. Besov classes also arise via real interpolations
of Lp(Rn) andW 1,p(Rn), see for example [18,87]. In the present paper we will relate Sobolev classes
W 1,p(X) to two types of Besov classes defined in our previous paper [3], see Theorems 4.11, 4.17,
and 4.9. One of these types of Besov classes is defined from the heat semigroup, while the other
uses only the metric structure of X. We note that previous metric characterizations of Sobolev
spaces in the presence of doubling and 2-Poincaré have been studied in [27].

2.4 Bakry-Émery curvature conditions

Let {Pt}t∈[0,∞) denote the self-adjoint semigroup of contractions on L2(X,µ) associated with
the Dirichlet space (X,µ, E ,F) and L the infinitesimal generator of {Pt}t∈[0,∞). The semigroup
{Pt}t∈[0,∞) is referred to as the heat semigroup on (X,µ, E ,F). For classical properties of {Pt}t∈[0,∞),
we refer to Section 2.2 in [3]. It is known that that doubling property together with the 2-Poincaré
inequality imply that the semigroup {Pt} is conservative, i.e. Pt1 = 1.

The work of Sturm [82, 84] (see Saloff-Coste [77] and Grigor’yan [35] for earlier results on
Riemannian manifolds) tells us that doubling property together with the 2-Poincaré inequality are
equivalent to the property that the heat semigroup Pt admits a heat kernel function pt(x, y) on
[0,∞)×X ×X for which there are constants c1, c2, C > 0 such that whenever t > 0 and x, y ∈ X,

1

C

e−c1d(x,y)2/t

√

µ(B(x,
√
t))µ(B(y,

√
t))

≤ pt(x, y) ≤ C
e−c2d(x,y)2/t

√

µ(B(x,
√
t))µ(B(y,

√
t))
. (5)

The above inequalities are called Gaussian bounds for the heat kernel. Due to the doubling property,
one can equivalently rewrite the Gaussian bounds as:

1

C

e−c1d(x,y)2/t

µ(B(x,
√
t))

≤ pt(x, y) ≤ C
e−c2d(x,y)2/t

µ(B(x,
√
t))
, (6)

for some different constants c1, c2, C > 0. The combination of the doubling property and the
2-Poincaré inequality also implies the following Hölder regularity of the heat kernel

|pt(x, y) − pt(z, y)| ≤
(

d(x, z)√
t

)α C

µ(B(y,
√
t))
,

for some C > 0, α ∈ (0, 1), and all x, y, z ∈ X (see for instance [78]). In some parts of this paper,
we need a stronger condition than Hölder regularity for the heat kernel, in which case we will use
the following uniform Lipschitz continuity property.
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Definition 2.13. We say that the Dirichlet metric space (X, E , dE , µ) satisfies a weak Bakry-Émery
curvature condition if, whenever u ∈ F ∩ L∞(X) and t > 0,

‖|∇Ptu|‖2L∞(X) ≤
C

t
‖u‖2L∞(X). (7)

We refer to (7) as a weak Bakry-Émery curvature condition because, in many settings, its
validity is related to the existence of curvature lower bounds on the underlying space.

Example 2.14. The weak Bakry-Émery curvature condition is satisfied in the following examples:

• Complete Riemannian manifolds with non-negative Ricci curvature and more generally, the
RCD(0,+∞) spaces (see [45]).

• Carnot groups (see [13])

• Complete sub-Riemannian manifolds with generalized non-negative Ricci curvature (see [12,
17])

• On non-compact metric graphs with finite number of edges, the weak weak Bakry-Émery
curvature condition has been proved to hold for t ∈ (0, 1] (see [16, Theorem 5.4]), and is
conjectured to be true for all t. If the graph is moreover compact, the weak Bakry-Émery
estimate holds for every t > 0 [16, Theorem 5.4]) .

Several statements equivalent to the weak Bakry-Émery curvature condition are given in [25, The-
orem 1.2]. There are some metric measure spaces equipped with a doubling measure supporting
a 2-Poincaré inequality but without the above weak Bakry-Émery condition, see for example [60].
For instance, it should be noted, that in the setting of complete sub-Riemannian manifolds with
generalized non-negative Ricci curvature in the sense of [15], while the weak Bakry-Émery curva-
ture condition is known to be satisfied (see [12,17]), the 1-Poincaré inequality is so far not known
to hold, though the 2-Poincaré inequality is known to be always satisfied, see [14].

We will also sometimes need a stronger condition than (7).

Definition 2.15. We say that the Dirichlet metric space (X, E , dE , µ) satisfies a strong Bakry-
Émery curvature condition if there exists a constant C > 0 such that for every u ∈ F and t ≥ 0 we
have µ a.e.

|∇Ptu| ≤ CPt|∇u|. (8)

The strong Bakry-Émery curvature condition implies the weak one, as is demonstrated in the
proof of Theorem 3.3 in [16]. Examples where the strong Bakry-Émery estimate is satisfied include:
Riemannian manifolds with non negative Ricci curvature and more generally RCD(0,+∞) spaces
(in that case C = 1, see [29]), some metric graphs like the Walsh spider (see [16, Example 5.1] and
also [16, Theorem 5.4])), the Heisenberg group and more generally H-type groups (see [10,28]).

3 BV class and co-area formula

In this section we use the Dirichlet form and the associated family Γ(·, ·) of measures to construct
a BV class of functions on X. To do so, we only need µ to be a doubling measure on X for dE and
the class of locally Lipschitz functions to be dense in L1(X). So in this section we do not need the
2-Poincaré inequality nor do we need the weak Bakry-Émery curvature condition. In the second
part of the section we prove a co-area formula for BV functions; such a co-area formula is highly
useful in understanding the structure of BV functions, and underscores the importance of studying
sets of finite perimeter (sets whose characteristic functions are BV functions).
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3.1 BV class

We set the core of the Dirichlet form, C(X), to be the class of all f ∈ Floc(X) ∩ C(X) such that
Γ(f, f) ≪ µ and recall that the Sobolev class W 1,1(X) is the class of all f ∈ Floc(X) ∩ L1(X) for
which Γ(f, f) ≪ µ and |∇f | ∈ L1(X) (see Definition (4)).

Definition 3.1. We say that u ∈ L1(X) is in BV (X) if there is a sequence of local Lipschitz
functions uk ∈ L1(X) such that uk → u in L1(X) and

lim inf
k→∞

∫

X
|∇uk| dµ <∞.

We note that if the Dirichlet form supports a 1-Poincaré inequality, then the Sobolev space
W 1,1(X) is a subspace of BV (X).

Definition 3.2. For u ∈ BV (X) and open sets U ⊂ X, we set

‖Du‖(U) = inf
uk∈C(U),uk→u in L1(U)

lim inf
k→∞

∫

U
|∇uk| dµ.

We will see in the next part of this section that ‖Du‖ can be extended from the collection of
open sets to the collection of all Borel sets as a Radon measure, see Definition 3.5.

Lemma 3.3. If u, v ∈ BV (X) and η is a Lipschitz continuous function on X with 0 ≤ η ≤ 1 on
X, then ηu+ (1− η)v ∈ BV (X) with

‖D(ηu+ (1− η)v)‖(X) ≤ ‖Du‖(X) + ‖Dv‖(X) +

∫

X
|u− v| |∇η| dµ.

Proof. From Lemma 2.5 we already know that such η are in Floc(X) with |∇η| ∈ L∞(X). From
the definition, we can choose sequences uk, vk ∈ L1(X) of locally Lipschitz functions on X such
that uk → u and vk → v in L1(X) and

∫

X |∇uk| dµ → ‖Du‖(X) and
∫

X |∇vk| dµ → ‖Dv‖(X) as
k → ∞. Now an application of the Leibniz rule to the functions ηuk + (1− η)vk tells us that

‖D(ηu+ (1− η)v)‖(X) ≤ lim inf
k→∞

∫

X
|∇[ηuk + (1− η)vk]| dµ

≤ lim inf
k→∞

(∫

X
η|∇uk| dµ +

∫

X
(1− η)|∇vk| dµ +

∫

X
|uk − vk| |∇η| dµ

)

.

Now using 0 ≤ η ≤ 1 and uk − vk → u− v in L1(X) we obtain the required inequality.

We now establish some elementary properties of ‖Du‖.

Lemma 3.4. Let U and V be two open subsets of X. If u ∈ BV (X), then

1. ‖Du‖(∅) = 0,

2. ‖Du‖(U) ≤ ‖Du‖(V ) if U ⊂ V ,

3. ‖Du‖(⋃i Ui) =
∑

i ‖Du‖(Ui) if {Ui}i is a pairwise disjoint subfamily of open subsets of X.
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Proof. We will only prove the third property here, as the other two are quite direct consequences
of the definition of ‖Du‖. Since any function f ∈ F(

⋃

i Ui) has restrictions ui = f |Ui ∈ F(Ui) with
∫

⋃
i Ui

|∇f | dµ =
∑

i

∫

Ui
|∇ui| dµ, it follows that

‖Du‖(
⋃

i

Ui) ≥
∑

i

‖Du‖(Ui).

In the above we also used the fact that as f gets closer to u in the L1(
⋃

i Ui) sense, ui gets closer
to u in the L1(Ui) sense.

To prove the reverse inequality, for ε > 0 we can choose locally Lipschitz continuous ui ∈ F(Ui)
for each i such that

∫

Ui

|u− ui| dµ < 2−i−2ε

and
∫

Ui

|∇ui| dµ < ‖Du‖(Ui) + 2−i−2ε.

Now the function fε =
∑

i ui1Ui is in F(
⋃

i Ui) because the Ui are pairwise disjoint open sets, and
E is local. Therefore

∫

⋃
i Ui

|u− fε| dµ ≤
∑

i

∫

Ui

|u− ui| dµ ≤ ε

2

and
∫

⋃
i Ui

|∇fε| dµ =
∑

i

∫

Ui

|∇ui| dµ ≤ ε

2
+
∑

i

‖Df‖(Ui).

From the first of the above two inequalities it follows that limε→0+ fε = u in L1(
⋃

i Ui), and therefore

‖Du‖(
⋃

i

Ui) ≤ lim inf
ε→0+

(

ε

2
+

∑

i

‖Du‖(Ui)

)

=
∑

i

‖Du‖(Ui).

We use the above definition of ‖Du‖ on open sets to consider the following Caratheodory
construction.

Definition 3.5. For A ⊂ X, we set

‖Du‖∗(A) := inf{‖Du‖(O) : O is an open subset of X,A ⊂ O}.

By the second property listed in the above lemma, we note that if A is an open subset of X,
then ‖Du‖∗(A) = ‖Du‖(A). With this observation, we re-name ‖Du‖∗(A) as ‖Du‖(A) even when
A is not open.

We end this section by proving that ‖Du‖, as constructed above, is a Radon measure on X.
The idea of the proof is from [72]. The principal tool used in the proof is the following lemma due
to De Giorgi and Letta [26, Theorem 5.1], see also [7, Theorem 1.53].

Lemma 3.6 ( [26, Theorem 5.1]). If ν is a non-negative function on the class of all open subsets
of X such that for open sets U1, U2

1. ν(∅) = 0,

2. if U1 ⊂ U2 then ν(U1) ≤ ν(U2),

3. ν(U1 ∪ U2) ≤ ν(U1) + ν(U2),
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4. if U1 ∩ U2 is empty then ν(U1 ∪ U2) = ν(U1) + ν(U2),

5. ν(U1) = sup{ν(V ) : V is bounded and open in X with V ⊂ U1}.

Then the Carathéodory extension of ν to all subsets of X is a Borel regular outer measure on X.

Theorem 3.7. If f ∈ BV (X), then ‖Df‖ is a Radon outer measure on X and the restriction of
‖Df‖ to the Borel sigma algebra is a Radon measure which is the weak limit of ‖Duk‖ for some
sequence uk of locally Lipschitz functions in L1(X) such that uk → f in L1(X).

Proof. For simplicity of notation we will assume that X is itself bounded. Thanks to the lemma
of De Giorgi and Letta (Lemma 3.6), it suffices to verify that ‖Du‖ satisfies the five conditions set
forth in Lemma 3.6. By Lemma 3.4, we know that ‖Du‖ satisfies Conditions 1, 2 and 4. Thus it
suffices for us to verify Condition 3 and Condition 5. We will first show the validity of Condition 5,
and use it (or rather, its proof) to show that Condition 3 holds. We will do so for bounded open
subsets of X. A simple modification (by truncating Uδ by balls) would complete the proof for
unbounded sets and we leave this part of the extension to the interested reader.

Proof of Condition 5: From the monotonicity condition 2, it suffices to prove that

‖Df‖(U) ≤ sup{‖Df‖(V ) : V is open in X,V is a compact subset of U}.

For δ > 0 we set
Uδ = {x ∈ U : dist(x,X \ U) > δ}.

For 0 < δ1 < δ2 < diam(U)/2, let V = Uδ1 and W = U \ Uδ2 . Then V and W are open subsets of
U , and the closure of V is a compact subset of U (recall that we assume from Assumption 2.7 that
X is complete, and hence as µ is doubling with respect to dE we know that closed and bounded
subsets of X are compact). Note also that U = V ∪W and that ∂V ∩ ∂W is empty. Thus we
can find a Lipschitz function η on U that can be used as a “needle and thread” to stitch Sobolev
functions on V to Sobolev functions on W to obtain a Sobolev function on U as follows: take η
with 0 ≤ η ≤ 1 on U , η = 1 on V \W = Uδ2 , η = 0 on W \ V = U \ Uδ1 , and

Lip η ≤ 2

δ2 − δ1
1V ∩W .

Now, for v ∈ F(V ) and w ∈ F(W ) we set u = ηv+(1−η)w. As we have the Leibniz rule (see [83]),
we can see that u ∈ F(U) and

∫

U
|∇u| dµ ≤

∫

V
|∇v| dµ +

∫

W
|∇w| dµ +

2

δ2 − δ1

∫

V ∩W
|v − w| dµ. (9)

Furthermore, whenever h ∈ L1(U), we can write h = ηh+ (1− η)h to see that

∫

U
|u− h| dµ ≤

∫

V
|v − h| dµ +

∫

W
|w − h| dµ. (10)

Now, we take vk from F(V ) such that vk → f in L1(V ) and limk→∞
∫

V |∇vk| dµ = ‖Df‖(V ), and
take wk ∈ F(W ) analogously. We then follow through by stitching together vk and wk into the
function uk as prescribed above. By (10) with h = f , we have that

∫

U
|f − uk| dµ ≤

∫

V
|vk − f | dµ+

∫

W
|wk − f | dµ→ 0 as k → ∞.
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It follows from (9) and the fact
∫

V ∩W |vk −wk| dµ → 0 as k → ∞ that

‖Df‖(U) ≤ lim inf
k→∞

∫

U
|∇uk| dµ ≤ ‖Df‖(V ) + ‖Df‖(W ).

Remembering again that the closure of V is a compact subset of U , we see that

‖Df‖(U) ≤ sup{‖Df‖(V ) : V is open in X,V is compact subset of U}+ ‖Df‖(U \ Uδ2).

So now it suffices to prove that
lim
δ→0+

‖Df‖(U \ Uδ) = 0. (11)

To prove this, we note first that the above limit exists as ‖Df‖(U \ Uδ) decreases as δ decreases.
We fix a strictly monotone decreasing sequence of real numbers δk with limk→∞ δk = 0, and for
k ≥ 2 we set Vk := Uδ2k+3

\ Uδ2k . Observe that each of {V2k}k and {V2k+1}k is a pairwise disjoint
families open subsets of X

By Lemma 3.4, we know that

∞
∑

k=1

‖Df‖(V2k) = ‖Df‖(
⋃

k≥1

V2k) ≤ ‖Df‖(U) <∞,

and ∞
∑

k=1

‖Df‖(V2k+1) = ‖Df‖(
⋃

k≥1

V2k+1) ≤ ‖Df‖(U) <∞.

It follows that for ε > 0 there is some positive integer kε ≥ 2 such that

∞
∑

k=kε

‖Df‖(V2k) +
∞
∑

k=kε

‖Df‖(V2k+1) < ε.

Now we stitch together approximations on V2k to approximations on V2k+1, and from there to V2k+2

and so on. For each k we choose a “stitching function” ηk as a Lipschitz function on
⋃k+1

j=kε
Vj such

that 0 ≤ ηk ≤ 1, with ηk = 1 on Vk \ Vk−1, ηk = 0 on
⋃k−1

j=kε
Vj \ Vk, and |∇ηk| ≤ Ck1Vk∩Vk−1

.
Next, for each k we can find vk,j ∈ F(Vk) such that

∫

Vk

|vk,j − f | dµ ≤ 2−k−j

3(1 + Ck)

and
∫

Vk

|∇vk,j| dµ ≤ ‖Df‖(Vk) + 2−j−k.

We now inductively stitch the functions together. To do so, we first fix i ∈ N.
Starting with k = kε, we stitch uk,i to uk+1,i using ηk+1 = ηkε+1 to obtain wi,k ∈ F(Vkε ∪Vkε+1)

so that we have
∫

Vkε∪Vkε+1

|wi,k − f | dµ ≤ 2−i−kε

1 + Ckε+1

and
∫

Vkε∪Vkε+1

|∇wi,k| dµ ≤
kε+1
∑

j=kε

‖Df‖(Vj) + 21−i−kε .
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Suppose now that for some k ∈ N with k ≥ kε + 1 we have constructed wi,k ∈ F(
⋃k

j=kε
Vj) such

that
∫

⋃k
j=kε

Vj

|wi,k − f | dµ ≤
k

∑

k=kε

2−i−j

1 +Cj

and
∫

⋃k
j=kε

Vj

|∇wi,k| dµ ≤
k

∑

j=kε

(

‖Df‖(Vj) + 21−i−j
)

.

Then we stitch uk+1,i to wi,k using ηk+1 to obtain wi,k+1 satisfying inequalities analogous to the
above two. Note that wi,k+1 = wi,k−1 on Vk−1 for k ≥ kε + 2. Thus, in the limit, we obtain a
function wi = limk→∞wi,k ∈ F(

⋃∞
k=kε

Vk) satisfying

∫

⋃∞
j=kε

Vj

|wi − f | dµ ≤
k

∑

k=kε

2−i−j

1 + Cj
< 21−i,

∫

⋃∞
j=kε

Vj

|∇wi| dµ ≤
∞
∑

j=kε

‖Df‖(Vj) + 22−i < ε+ 22−i.

From the first of the above two inequalities, we see that wi → f in L1(
⋃∞

j=kε
Vj) as i→ ∞, and so

from the second of the above two inequalities we obtain

‖Df‖(
∞
⋃

j=kε

Vj) = ‖Df‖(U \ Uδkε
) ≤ lim inf

i→∞

∫

⋃∞
j=kε

Vj

|∇wi| dµ ≤ ε.

The last inequality above tells us that the claim we set out to prove, namely

lim
δ→0+

‖Df‖(U \ Uδ) = 0.

This completes the proof of Condition 5.

Proof of Condition 3: By Condition 5, which was proved above, for each ε > 0 we can find
relatively compact open subsets U ′

1 ⋐ U1 and U
′
2 ⋐ U2 such that ‖Df‖(U1∪U2) ≤ ‖Df‖(U ′

1∪U ′
2)+ε.

We then choose a Lipschitz “stitching function” η on X such that 0 ≤ η ≤ 1 on X, η = 1 on U ′
1,

η = 0 on X \ U1, and

|∇η| ≤ 1

CU1,U ′
1

1U1\U ′
1
.

For u1 ∈ F(U1) and u2 ∈ F(U2), we obtain the stitched function w = ηu1 + (1 − η)u2 and note
that w ∈ F(U ′

1 ∪U ′
2). Observe that we cannot in general have w ∈ F(U1 ∪U2), as w is not defined

in U1 \ (U ′
1 ∪ U2) because 1− η is non-vanishing and u2 is not defined there. Then we have

∫

U ′
1
∪U ′

2

|∇w| dµ ≤
∫

U1

|∇u1| dµ +

∫

U2

|∇u2 dµ+
1

CU1,U ′
1

∫

U1∩U2

|u1 − u2| dµ

and
∫

U ′
1
∪U ′

2

|w − f | dµ ≤
∫

U1

|u1 − f | dµ+

∫

U2

|u2 − f | dµ.
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As before, choosing u1,k to be the optimal approximating sequence for f on U1 and u2,k correspond-
ingly for f on U2, we see from the first of the above two inequalities that the stitched sequence wk

approximates f on U ′
1 ∪ U ′

2. Therefore we obtain

‖Df‖(U1 ∪ U2) ≤ ε+ ‖Df‖(U ′
1 ∪ U ′

2) ≤ ε+ lim inf
k→∞

∫

U1∪U2

|∇wk| dµ ≤ ‖Df‖(U1) + ‖Df‖(U2) + ε.

Letting ε→ 0 now gives the desired Condition 3.

Proof of weak convergence: Consider an optimal sequence for the convergence from Def-
inition 3.2, that is, uk is a sequence of locally Lipschitz functions on X such that uk → u
in L1(X) and limk

∫

X |∇uk| dµ = ‖Du‖(X). Then for each open set U ⊂ X we have that
‖Du‖(U) ≤ lim infk

∫

U |∇uk| dµ. We can choose a subsequence of uk so that |∇uk| dµ has a weak
limit, say ν, on X.

Now by weak limits, we have that ν(X) = ‖Du‖(X) and for open sets U ⊂ X for which
ν(∂U) = 0 we have that ν(U) = limk

∫

U |∇uk| dµ ≥ ‖Du‖(U). Then

‖Du‖(X \ U) = ‖Du‖(X) − ‖Du‖(U) ≥ ν(X \ U).

On the other hand, we can approximate X \U by open sets Wj with ν(∂Wj) = 0 and X \U ⊂Wj ,
that is, ‖Du‖(X \ U) = limj ‖Du‖(Wj); the above then tell us that ν(Wj) ≥ ‖Du‖(Wj), and
hence ν(X \ U) ≥ ‖Du‖(X \ U). Thus we obtain ‖Du‖(X \ U) = ν(X \ U), and therefore
‖Du‖(U) = ν(U) because ‖Du‖(X) = ν(X). Thus we conclude that whenever U ⊂ X is an open
set with ν(∂U) = 0, we have ‖Du‖(U) = ν(U). Since every open set can be approximated by open
sets O with ν(∂O) = 0, we have ‖Du‖ = ν.

Example 3.8. In the context of a doubling metric measure space (X, d, µ) supporting a 2-Poincaré
inequality, where the Dirichlet form is given in terms of a Cheeger differential structure (see Ex-
ample 2.3), the construction of BV (X) and ‖Df‖ is due to M. Miranda [72]. When applied to
Riemannian or sub-Riemannian spaces, it yields the usual notion of variation (see [72]).

Example 3.9. There is a large class of fractal examples [54, 55, 65, 86] with resistance forms
E , a so-called Kusuoka measure µ, and a base of open sets O with finite boundaries, such that
1O ∈ BV (X) and ‖D1O‖ is absolutely continuous with respect to the counting measure on ∂O.
Among these examples, the most notable are the Sierpinski gasket in harmonic coordinates [31,49,
50, 56, 63, 71, 85], fractal quantum graphs [5] and diamond fractals [2, and references therein]. In
particular, on diamond fractals [2] provides explicit formulas for the heat kernel, which allow for
many computations relevant to our paper. On the Sierpinski gasket [85, Proposition 4.14] shows
how to make computations at the dense set of junction points. One might expect that if u ∈ BV (X)
then, following [41,42], Du could be defined as a vector valued Borel measure, however the details
of this construction are outside of the scope of this article. The long term motivation for this type
of analysis comes from stochastic PDEs, see [11,44,51,52,73] and the references therein.

3.2 Co-area formula

The goal of this subsection is to prove a co-area formula that connects the BV energy seminorm of
a BV function with the perimeter measure of its super-level sets.

Definition 3.10. A function u is said to be in BVloc(X) if for each bounded open set U ⊂ X there
is a compactly supported Lipschitz function ηU on X such that ηU = 1 on U and ηU u ∈ BV (X).
We say that a measurable set E ⊂ X is of finite perimeter if 1E ∈ BVloc(X) with ‖D1E‖(X) <∞.
For any Borel set A ⊂ X, we denote by P (E,A) := ‖D1E‖(A) the perimeter measure of E.
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Theorem 3.11. The co-area formula holds true, that is, for Borel sets A ⊂ X and u ∈ L1
loc(X),

‖Du‖(A) =
∫

R

P ({u > s}, A) ds.

Proof. We first prove the formula for open sets A.
Suppose u ∈ BVloc(X) with ‖Du‖(A) <∞. For s ∈ R let

Es := {x ∈ X : u(x) > s}.

The set Es is denoted by the abbreviation {u > s} in the statement of the theorem. Consider the
function m : R → R given by

m(t) = ‖Du‖(A ∩ Et).

Then m is a monotone decreasing function, and hence is differentiable almost everywhere. Let
t ∈ R such that m′(t) exists. Then

m′(t) = lim
h→0+

‖Du‖(A ∩ Et \ Et+h)

h
.

Note that the functions

ut,h :=
max{t,min{t+ h, u}} − t

h

converge in L1(X) to 1Et as h→ 0+. Using the fact that A is open, it follows that

P (Et, A) ≤ lim inf
h→0+

‖Dut,h‖(A) = lim inf
h→0+

‖Du‖(A ∩ Et \Et+h)

h
= m′(t).

Note also that by this lower semicontinuity of BV energy, t 7→ P (Et, A) is a lower semicontinuous
function, and hence is measurable; and as it is non-negative, we can talk about its integral, whether
that integral is finite or not. Therefore, by the fundamental theorem of calculus for monotone
functions,

∫

R

P (Et, A) dt ≤
∫

R

m′(t) dt ≤ lim
s,τ→∞

(m(s)−m(−τ)) = ‖Du‖(A).

The above in particular tells us that if u ∈ BVloc(X) then almost all of its superlevel sets Et have
finite perimeter. If u is not a BV function on A, then ‖Du‖(A) = ∞, and hence we also have

∫

R

P (Et, A) dt ≤ ‖Du‖(A). (12)

In particular, it also follows that
∫

R
P (Et, A) dt <∞ if u ∈ BV (X).

We continue to assume that A is open, and prove the reverse of the above inequality. If
∫

R
P (Et, A) dt = ∞, then trivially

‖Du‖(A) ≤
∫

R

P (Et, A) dt.

So we may assume without loss of generality that
∫

R
P (Et, A) dt is finite. Note also by the Markovian

property of Dirichlet forms, filtered down to the level of the measure |∇f |, we have that

‖Du‖(A) = lim
s,τ→∞

‖Dus,τ‖(A),
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where us,τ = max{−τ,min{u, s}}. So without loss of generality we may assume that a ≤ u ≤ b for
some finite a, b ∈ R. For positive integers k we can divide [0, 1] into k equal sub-intervals [ti, ti+1],
i = 0, · · · , k − 1 with ti+1 − ti = 1/k. Then we can find ρk,i ∈ (ti, ti+1) such that

1

k
P (Eρk,i , A) ≤

∫ ti+1

ti

P (Es, A) ds.

We set

uk =
1

k

k
∑

j=1

1Eρk,i
.

Then as |uk − u| ≤ 1/k on X, we have that uk → u in L1(A) as k → ∞, and so

‖Du‖(A) ≤ lim inf
k→∞

‖Duk‖(A) = lim inf
k→∞

k
∑

j=1

1

k
P (Eρk,i , A) ≤

∫ 1

0
P (Es, A) ds. (13)

Note now that by the proofs of inequalities (12) and (13), if A is an open set then u ∈ BV (A)
if and only if

∫

R
P (Et, A) dt is finite.

Finally, we remove the requirement that A be open. By the above comment, it suffices to prove
this for the case that u ∈ BV (X). In this case, the maps A 7→ ‖Du‖(A) and A 7→

∫

R
P (Et, A) dt

are both Radon measures on X that agree on open subsets of X (that is, they are equal for open
A). Hence it follows that they agree on Borel subsets of X. This completes the proof of the coarea
formula.

4 BV, Sobolev and heat semigroup-based Besov classes

Throughout the section, let (X,µ, E , dE ,F) be a strictly local regular Dirichlet space that satisfies
the general assumptions of Section 2, the doubling property and the 2-Poincaré inequality. We
stress that the 1-Poincaré inequality is not assumed.

4.1 Heat semigroup-based Besov classes

We first turn our attention to the study of Besov classes. In [3], we defined the heat semigroup-based
Besov classes. Our basic definition of the Besov seminorm is the following:

Definition 4.1 ( [3]). Let p ≥ 1 and α ≥ 0. For f ∈ Lp(X), we define the Besov seminorm:

‖f‖p,α = sup
t>0

t−α

(
∫

X

∫

X
pt(x, y)|f(x) − f(y)|pdµ(x)dµ(y)

)1/p

,

and the Besov spaces

Bp,α(X) = {f ∈ Lp(X) : ‖f‖p,α < +∞}. (14)

The norm on Bp,α(X) is defined as:

‖f‖Bp,α(X) = ‖f‖Lp(X) + ‖f‖p,α.

It is proved in Proposition 4.14 and Corollary 4.16 of [3] that Bp,α(X) is a Banach space for p ≥ 1
and that it is reflexive for p > 1. In this section, we compare the spaces Bp,α(X) to more classical
notions of Besov classes that have previously been considered in the metric setting.
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We recall the following definition from [34]. For 0 ≤ α < ∞, 1 ≤ p < ∞ and p < q ≤ ∞, let
Bα

p,q(X) be the collection of functions u ∈ Lp(X) for which, if q <∞

‖u‖Bα
p,q(X) :=





∫ ∞

0

(

∫

X

∫

B(x,t)

|u(y)− u(x)|p
tαpµ(B(x, t))

dµ(y) dµ(x)

)q/p
dt

t





1/q

<∞ (15)

and in the case q = ∞

‖u‖Bα
p,∞(X) := sup

t>0

(

∫

X

∫

B(x,t)

|u(y)− u(x)|p
tαpµ(B(x, t))

dµ(y) dµ(x)

)1/p

<∞. (16)

Proposition 4.2. For 1 ≤ p <∞ and 0 < α <∞ we have

Bp,α/2(X) = Bα
p,∞(X),

with equivalent seminorms.

Proof. Since µ is doubling and supports a 2-Poincaré inequality, we have the Gaussian double
bound (6) for pt(x, y). Hence if u ∈ Bp,α(X), we then must have

‖u‖pp,α/2 ≥ C−1 sup
t>0

∫

X

∫

X

|u(y) − u(x)|p
tαp/2

e−c d(x,y)2/t

µ(B(x,
√
t))

dµ(y) dµ(x)

≥ C−1 sup√
t>0

∫

X

∫

B(x,
√
t)

|u(y)− u(x)|p
tαp/2

e−c d(x,y)2/t

µ(B(x,
√
t))

dµ(y) dµ(x)

≥ C−1 sup√
t>0

∫

X

∫

B(x,
√
t)

|u(y)− u(x)|p
tαp/2 µ(B(x,

√
t))

dµ(y) dµ(x)

= C−1‖u‖pBα
p,∞(X),

and from this it follows that Bp,α/2(X) embeds boundedly into Bα
p,∞(X).

Now we focus on proving the converse embedding. From (2) and (6), we have

1

tαp/2

∫

X

∫

X
|u(y)− u(x)|p pt(x, y) dµ(y) dµ(x)

≤ C

tαp/2

∫

X

∞
∑

i=−∞

∫

B(x,2i
√
t)\B(x,2i−1

√
t)

|u(y) − u(x)|p e−c4i

µ(B(x,
√
t))

dµ(y) dµ(x)

≤ C

tαp/2

∫

X

∞
∑

i=−∞

∫

B(x,2i
√
t)

|u(y)− u(x)|p e−c4i

µ(B(x, 2i
√
t))

µ(B(x, 2i
√
t))

µ(B(x,
√
t))

dµ(y) dµ(x)

≤ C

tαp/2

∞
∑

i=−∞
e−c4i max{1, 2iQ} (2i

√
t)αp

∫

X

∫

B(x,2i
√
t)

|u(y)− u(x)|p
(2i

√
t)αp µ(B(x, 2i

√
t))

dµ(y) dµ(x)

≤ C ‖u‖pBα
p,∞(X)

∞
∑

i=−∞
e−c4i 2iαp max{1, 2iQ}.

Since ∞
∑

i=−∞
e−c4i 2iαp max{1, 2iQ} ≤

∑

i∈N
e−c4i 2i(αp+Q) +

∞
∑

i=0

2−iαp <∞,

the desired bound follows.
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4.2 Under the weak Bakry-Émery condition, B1,1/2(X) = BV (X)

Recall from Definition 2.1 that u ∈ Floc(X) if for each ball B in X there is a compactly supported
Lipschitz function ϕ with ϕ = 1 on B such that uϕ ∈ F ; in this case we can set |∇u| = |∇(uϕ)| in
B, thanks to the strict locality property of E .

Lemma 4.3. Suppose that the weak Bakry-Émery condition (7) holds. Then for u ∈ F ∩W 1,1(X),
we have that

‖Ptu− u‖L1(X) ≤ C
√
t

∫

X
|∇u| dµ.

Hence, if u ∈ BV (X), then
‖Ptu− u‖L1(X) ≤ C

√
t ‖Du‖(X).

Proof. To see the first part of the claim, we note that for each x ∈ X and s > 0, ∂
∂sPsu(x) exists,

and so by the fundamental theorem of calculus, for 0 < τ < t and x ∈ X,

Ptu(x)− Pτu(x) =

∫ t

τ

∂

∂s
Psu(x) ds.

Thus for each compactly supported function ϕ ∈ F ∩ L∞(X), by the facts that Ptu satisfies the
heat equation and that Ps is a symmetric operator for each s > 0,

∣

∣

∣

∣

∫

X
ϕ(x)[Ptu(x)− Pτu(x)] dµ(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫

X

∫ t

τ
ϕ(x)

∂

∂s
Psu(x) ds dµ(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

τ

∫

X
dΓ(ϕ,Psu)(x) ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

τ

∫

X
dΓ(Psϕ, u)(x) ds

∣

∣

∣

∣

≤
∫ t

τ

∫

X
|∇Psϕ| |∇u| dµ ds

≤ ‖|∇Psϕ|‖L∞(X)

∫ t

τ

∫

X
|∇u| ds dµ.

An application of (7) gives

∣

∣

∣

∣

∫

X
ϕ(x)[Ptu(x)− Pτu(x)] dµ(x)

∣

∣

∣

∣

≤ C√
t
‖ϕ‖L∞(X)

∫

X

∫ t

τ
|∇u| ds dµ

= C
t− τ√
t

‖ϕ‖L∞(X)

∫

X
|∇u| dµ.

As the above holds for all compactly supported ϕ ∈ F ∩ L∞(X), we obtain

‖Ptu− Pτu‖L1(X) ≤ C
t− τ√

t

∫

X
|∇u| dµ.

Now by the fact that by the fact that {Pt}t>0 has an extension as a contraction semigroup to L1(X)
such that Pτu→ u as τ → 0+ in L1(X), (see [3, Section 2.2]), we have

‖Ptu− u‖L1(X) ≤ C
√
t

∫

X
|∇u| dµ.
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Finally, if u ∈ BV (X), then we can find a sequence uk ∈ F ∩W 1,1(X) such that uk → u in
L1(X) and limk→∞

∫

X |∇uk| dµ = ‖Du‖(X). By the contraction property of Pt on L
1(X), we have

‖Ptu− u‖L1(X) ≤ ‖Pt(u− uk)‖L1(X) + ‖Ptuk − uk‖L1(X) + ‖uk − u‖L1(X)

≤ C‖u− uk‖L1(X) + C
√
t

∫

X
|∇uk| dµ + ‖u− uk‖L1(X).

Letting k → ∞ concludes the proof.

Note from the results of [69, Theorem 4.1] that if the measure µ is doubling and supports a
1-Poincaré inequality, then a measurable set E ⊂ X is in the BV class if

lim inf
t→0+

1√
t

∫

E
√
t\E

Pt1E dµ <∞.

Here Eε =
⋃

x∈E B(x, ε). Note that by the symmetry and conservativeness of the operator Pt,

∫

X
|Pt1E − 1E | dµ =

∫

E
(1− Pt1E) dµ +

∫

X\E
Pt1E dµ

=

∫

X
1E(1− Pt1E) dµ+

∫

X\E
Pt1E dµ

=

∫

X
(Pt1E)1X\E dµ+

∫

X\E
Pt1E dµ = 2

∫

X\E
Pt1E dµ.

Therefore,
∫

E
√
t\E

Pt1E dµ ≤
∫

X\E
Pt1E dµ =

1

2
‖Pt1E − 1E‖L1(X).

Thus if µ is doubling and supports a 1-Poincaré inequality, and in addition

sup
t>0

1√
t
‖Pt1E − 1E‖L1(X) <∞,

then E is of finite perimeter. In our framework, those results coming from [69] can not be used,
since we do not assume the 1-Poincaré inequality. Instead we prove the following theorem, which
is the main result of the section.

Theorem 4.4. If the weak Bakry-Émery condition (7) holds, then B1,1/2(X) = BV (X) with
comparable seminorms. Moreover, there exist constants c, C > 0 such that for every u ∈ BV (X),

c lim sup
s→0

s−1/2

∫

X
Ps(|u− u(y)|)(y)dµ(y) ≤ ‖Du‖(X) ≤ C lim inf

s→0
s−1/2

∫

X
Ps(|u− u(y)|)(y)dµ(y).

Proof. First we assume that u ∈ BV (X). Then we know that for almost every t ∈ R the set Et is
of finite perimeter, where

Et = {x ∈ X : u(x) > t},
and by the co-area formula for BV functions (see Theorem 3.11),

‖Du‖(X) =

∫

R

‖D1Et‖(X) dt.
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For such t, by Lemma 4.3 we know that

sup
s>0

1√
s

∫

X
|Ps1Et(x)− 1Et(x)| dµ(x) ≤ C ‖D1Et‖(X).

Now, setting A = {(x, y) ∈ X ×X : u(x) < u(y)}, we have for s > 0,
∫

X

∫

X
ps(x, y)|u(x) − u(y)| dµ(x)dµ(y)

= 2

∫

A
ps(x, y)|u(x) − u(y)| dµ(x)dµ(y)

= 2

∫

A

∫ u(y)

u(x)
ps(x, y) dt dµ(x)dµ(y)

= 2

∫

X

∫

X

∫

R

1[u(x),u(y))(t)1A(x, y) ps(x, y) dt dµ(x)dµ(y)

= 2

∫

R

∫

X

∫

X
1Et(y)[1− 1Et(x)] ps(x, y) dµ(x)dµ(y) dt

= 2

∫

R

∫

X
Ps1Et(x)[1− 1Et(x)] dµ(x) dt

= 2

∫

R

∫

X\Et

Ps1Et(x) dµ(x) dt.

Observe that
∫

X\Et

Ps1Et(x) dµ(x) =

∫

X\Et

|Ps1Et(x)− 1Et(x)| dµ(x) ≤
∫

X
|Ps1Et(x)− 1Et(x)| dµ(x).

Therefore we obtain
∫

X

∫

X
ps(x, y) |u(x)− u(y)| dµ(x)dµ(y) ≤ 2

∫

R

‖Ps1Et − 1Et‖L1(X) dt.

An application of Lemma 4.3 now gives
∫

X

∫

X
ps(x, y) |u(x) − u(y)| dµ(x)dµ(y) ≤ C

√
s

∫

R

‖D1Et‖(X) dt,

whence with the help of the co-area formula we obtain

‖u‖1,1/2 ≤ C ‖Du‖(X),

that is, u ∈ B1,1/2(X). Thus BV (X) ⊂ B1,1/2(X) boundedly.

Now we show that B1,1/2(X) ⊂ BV (X). This inclusion holds even when E does not support
a Bakry-Émery curvature condition; only a 2-Poincaré inequality and the doubling condition on µ
are needed. Suppose that u ∈ B1,1/2(X). Then there is some C ≥ 0 such that for each t > 0,

∫

X

∫

X
pt(x, y)|u(y) − u(x)| dµ(y) dµ(x) ≤ C

√
t.

By (6), we have a Gaussian lower bound for the heat kernel:

pt(x, y) ≥
e−c d(x,y)2/t

Cµ(B(x,
√
t))
.
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Let C0 = ‖u‖1,1/2. Therefore, setting ∆ε = {(x, y) ∈ X : d(x, y) < ε} for some ε > 0, we get

C0

√
t ≥

∫

X

∫

X

e−c d(x,y)2/t

Cµ(B(x,
√
t))

|u(y)− u(x)| dµ(y) dµ(x)

≥
∫∫

∆ε

e−c d(x,y)2/t

Cµ(B(x,
√
t))

|u(y)− u(x)| dµ(x)dµ(y)

≥ e−cε2/t

C

∫∫

∆ε

|u(y)− u(x)|
µ(B(x,

√
t))

dµ(x)dµ(y).

With the choice of ε =
√
t, we now get

C0 ε ≥
1

C

∫∫

∆ε

|u(y)− u(x)|
µ(B(x, ε))

dµ(x)dµ(y).

It follows that

lim inf
ε→0+

1

ε

∫∫

∆ε

|u(y)− u(x)|
µ(B(x, ε))

dµ(x)dµ(y) ≤ C C0 <∞. (17)

Now an argument as in the second half of the proof of [69, Theorem 3.1] tells us that u ∈ BV (X). We
point out here that although Theorem 3.1 in [69] assumes that X supports a 1-Poincaré inequality,
the second part of the proof there does not need this assumption. In fact, the argument using
discrete convolution there is valid also in our setting. It is this second part of the proof that we
referred to above. We then obtain

‖Du‖(X) ≤ lim inf
ε→0+

1

ε

∫∫

∆ε

|u(y)− u(x)|
µ(B(x, ε))

dµ(x)dµ(y) ≤ ‖u‖1,1/2.

Remark 4.5. As a byproduct of this proof, we also obtain that there exists a constant C > 0 such
that for every u ∈ BV (X),

sup
ε>0

1

ε

∫∫

∆ε

|u(y)− u(x)|
µ(B(x, ε))

dµ(x)dµ(y) ≤ lim inf
ε→0+

C

ε

∫∫

∆ε

|u(y)− u(x)|
µ(B(x, ε))

dµ(x)dµ(y)

because both sides are comparable to ‖Du‖(X). Indeed, the fact that ‖Du‖(X) is dominated by
the right hand side is directly from Theorem 4.4, which, together with Proposition 4.2 (the metric
characterization of Besov spaces), implies that the left hand side can be bounded by ‖Du‖(X). This
property of the metric measure space (X, d, µ) can be viewed as an interesting consequence of the
weak Bakry-Émery estimate.

Remark 4.6. Another application of Proposition 4.2 is the following. It is in general not true
that if ‖Du‖(X) = 0 then u is constant almost everywhere in X, even if X is connected. Should
X support a 1-Poincaré inequality, it follows immediately that if ‖Du‖(X) = 0 then u is constant.
We can use the above proposition to show that even if we do not have 1-Poincaré inequality, if X
supports the Bakry-Émery curvature condition (7), then

sup
t>0

∫

X

∫

B(x,t)

|u(x)− u(y)|
tµ(B(x, t))

dµ(y) dµ(x) ≃ ‖Du‖(X),

and hence if ‖Du‖(X) = 0 then u is constant.
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4.3 Sets of finite perimeter

We introduce some notions from the paper [6] of Ambrosio, Miranda and Pallara. Given A ⊂ X
we set

H(A) := lim
ε→0+

inf

{

∑

i

µ(Bi)

rad(Bi)
: A ⊂

⋃

i

Bi, and ∀i, rad(Bi) < ε

}

.

It is known, see [59, Proposition 6.3], even without the assumption that X supports a 2-Poincaré
inequality, that if H(∂E) <∞, then E is of finite perimeter.

Now let E ⊂ X be a set of finite perimeter and define the measure-theoretic boundary by

∂mE =

{

x ∈ X : lim sup
r→0+

µ(B(x, r) ∩ E)

µ(B(x, r))
> 0, lim sup

r→0+

µ(B(x, r) \E)

µ(B(x, r))
> 0

}

.

For α ∈ (0, 1/2), define also

∂αE =

{

x ∈ X : lim inf
r→0+

min

{

µ(B(x, r) ∩ E)

µ(B(x, r))
,
µ(B(x, r) \ E)

µ(B(x, r))

}

≥ α

}

.

If X supports a 1-Poincaré inequality then, by the results of [6, Theorem 4.4], there is a number
γ ∈ (0, 1/2] such that H(∂mE\∂γE) = 0, where γ depends solely on the doubling and the 1-Poincaré
constants. The same result also tells us that if E is of finite perimeter then H(∂mE) ≃ P (E,X).

We are not assuming X supports a 1-Poincaré inequality, but only that µ is doubling and X
supports a 2-Poincaré inequality. In this setting we instead consider for r0 > 0 and 0 < α ≤ 1/2
the quantity

∂r0α E =

{

x ∈ X : min

{

µ(B(x, r) ∩ E)

µ(B(x, r))
,
µ(B(x, r) \E)

µ(B(x, r))

}

> α for all 0 < r ≤ r0

}

.

Observe that ∂mE =
⋃

0<α<1

⋃

0<r0<1 ∂
r0
α (E) and the union can be made countable by taking α

and r0 to be rational numbers.

Proposition 4.7. Suppose that E ⊂ X with ‖1E‖B1,1/2(X) <∞. Then for all r0 > 0 and 0 < α < 1,

H(∂r0α E) ≤ C

α
P (E,X).

Consequently, H(∂αE) ≤ C
α P (E,X) and H|∂mE is a σ-finite measure.

Proof. Examining the proof of Theorem 4.4 we see that even without the Bakry-Émery condi-
tion (7), if 1E ∈ B1,1/2(X) then 1E ∈ BV (X). By the definition of B1,1/2(X), we know that

sup
t>0

1√
t

∫

X

∫

X
pt(x, y)|1E(x)− 1E(y)| dµ(x) dµ(y) ≤ C P (E,X).

Fix t < (r0/3)
2. Let {Bi}i be a maximal

√
t-separated covering of ∂r0α E such that the balls 5Bi

have a bounded overlap (see Section 2.2). Then by the doubling property of µ and by the Gaussian
lower bound for pt(x, y) in (5),

C
√
t P (E,X) ≥

∑

i

∫

Bi∩E

∫

Bi\E
pt(x, y) dµ(x) dµ(y)

≥ C−1
∑

i

∫

Bi∩E

∫

Bi\E

e−C

µ(Bi)
dµ(x) dµ(y)
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≥ C−1
∑

i

µ(Bi ∩ E)µ(Bi \ E)µ(Bi)

µ(Bi)2
.

In the above computations, C stands for various generic constants that depend only on the doubling
and Poincaré constants of the space, and the value of C could change at each occurrence. Note
that at least one of µ(Bi∩E)/µ(Bi) and µ(Bi \E)/µ(Bi) is larger than 1/2. Now by the definition
of ∂r0α E we obtain

C P (E,X) ≥ α
∑

i

µ(Bi)√
t
.

Since
√
t is the radius of each Bi, we get

C P (E,X) ≥ α lim sup
t→0+

∑

i

µ(Bi)√
t

≥ αH(∂r0α E).

Recall that
∂mE =

⋃

α∈(0,1)∩Q

⋃

r0∈(0,1)∩Q
∂r0α (E).

This yields that H|∂mE is a σ-finite measure.
If 0 < r1 < r0, then

∂r0α E ⊂ ∂r1α E ⊂ ∂mE.

Observing that

∂αE =
⋃

0<r0<1

∂r0α E =
⋃

(0,1)∩Q
∂r0α E,

we now see by the continuity of measure that if the sets ∂r0α E are Borel sets, then

H(∂αE) ≤ C

α
P (E,X).

To see that ∂r0α E is a Borel set we argue as follows. Recall that we assume µ to be Borel regular.
Therefore, given a µ-measurable set E and r > 0, the function

x 7→ µ(B(x, r) ∩E)

is lower semicontinuous, and so the map

ϕE,r(x) :=
µ(B(x, r) ∩ E)

µ(B(x, r))

is a Borel function. Hence the function ΦE,r0 := infr∈Q∩(0,r0] ϕE,r is also a Borel function, and
hence

∂r0α E = {x ∈ X : ΦE,r0(x) > α} ∩ {x ∈ X : ΦX\E,r0(x) > α}
is a Borel set.

Proposition 4.7 gives us a way to control, from above, the H-measure of ∂mE for a set E of
finite perimeter. This should be contrasted with the following lower bound on the co-dimension 1
Minkowski measure of ∂E. For a set A ⊂ X, the co-dimension 1-Minkowski measure of A is defined
to be

M−1(A) := lim inf
ε→0+

µ(Aε)

ε
,

where Aε =
⋃

x∈AB(x, ε).
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Proposition 4.8. Assuming the weak Bakry-Émery condition (7) we have for a set E of finite
perimeter that

P (E,X) ≤ CM−1(∂E)

Proof. Observe that |1E(x)− 1E(y)| is bounded by 1 and is zero if y ∈ B(x, t) and x is not in the
2t neighborhood (∂E)2t of the boundary. Using the doubling property of µ we immediately deduce

lim inf
t→0+

∫

X

∫

B(x,t)

|1E(x)− 1E(y)|
tµ(B(x, t))

dµ(y) dµ(x) ≤ CM−1(∂E).

Now recall from Remark 4.5 that under the weak Bakry-Émery assumption the above limit
inferior is comparable to the supremum, which is the B1

1,∞ norm defined in (16), because both are
comparable to the perimeter measure P (E,X) = ‖D1E(X)‖.

4.4 Under the strong Bakry-Émery condition, Bp,1/2(X) = W 1,p(X) for p > 1

In this section we compare the Besov and Sobolev seminorms for p > 1. The case p = 1 was studied
in detail in Section 4.2. Our main theorem in this section is the following:

Theorem 4.9. Suppose that the strong Bakry-Émery condition (8) holds. Then, for every p > 1,
Bp,1/2(X) =W 1,p(X) with comparable norms.

We will divide the proof of Theorem 4.9 in two parts. In the first part, Theorem 4.11, we prove
that Bp,1/2(X) ⊂W 1,p(X). As we will see, this inclusion does not require the strong Bakry-Émery
condition (8). In the second part, Theorem 4.17 we will prove the inclusion W 1,p(X) ⊂ Bp,1/2(X)
and, to this end, will use the strong Bakry-Émery condition. Before turning to the proof, we point
out the following corollary regarding the Riesz transform.

Corollary 4.10. Suppose that the strong Bakry-Émery condition (8) holds. Let p > 1. Then for
any f ∈ Bp,1/2(X) ∩ F ,

‖f‖p,1/2 ≃ ‖
√
−Lf‖Lp(X).

Consequently, Bp,1/2(X) = L1/2
p , where L1/2

p is the domain of the operator
√
−L in Lp(X) (see [3,

Section 4.6] for the definition).

Proof. In view of Theorem 4.9, we have that for any f ∈ Bp,1/2(X)

‖f‖p,1/2 ≃ ‖|∇f |‖Lp(X).

On the other hand, it follows from [9, Theorem 1.4] that for any f ∈ L1/2
p ,

‖
√
−Lf‖Lp(X) ≃ ‖|∇f |‖Lp(X).

We conclude the proof by combining the above two facts.

4.4.1 Bp,1/2(X) ⊂W 1,p(X)

Theorem 4.11. Let p > 1. There exists a constant C > 0 such that for every u ∈ Bp,1/2(X),

‖|∇u|‖Lp(X) ≤ C‖u‖p,1/2.
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Proof. Let u ∈ Bp,1/2(X). Then from Proposition 4.2, we see that for each ε > 0,

1

εp

∫∫

∆ε

|u(x) − u(y)|p
µ(B(x, ε))

dµ(y) dµ(x) ≤ ‖u‖pp,1/2 <∞.

Fix ε > 0. As in the proof of Lemma 2.11, let {Bε
i = B(xεi , ε)}i be a maximal ε-separated covering

and {ϕε
i}i be a (C/ε)-Lipschitz partition of unity subordinated to this covering. We also set

uε :=
∑

i

uBε
i
ϕε
i .

Then uε is locally Lipschitz and hence is in Floc(X). Indeed, for x, y ∈ Bε
j we see that

|uε(x)− uε(y)| ≤
∑

i:2Bε
i ∩2Bε

j 6=∅
|uBε

i
− uBε

j
||ϕε

i (x)− ϕε
i (y)|

≤ C d(x, y)

ε

∑

i:2Bε
i ∩2Bε

j 6=∅

(

∫

Bε
i

∫

B(x,2ε)
|u(y) − u(x)|p dµ(y) dµ(x)

)1/p

.

Therefore, by Lemma 2.5, we see that

|∇uε| ≤
C

ε

∑

i:2Bε
i ∩2Bε

j 6=∅

(

∫

Bε
i

∫

B(x,2ε)
|u(y)− u(x)|p dµ(y) dµ(x)

)1/p

≤ C

(

∫

2Bε
j

∫

B(x,2ε)

|u(y)− u(x)|p
εp

dµ(y) dµ(x)

)1/p

,

and so by the bounded overlap property of the collection 2Bε
j ,

∫

X
|∇uε|p dµ ≤

∑

j

∫

Bε
j

|∇uε|p dµ

≤ C
∑

j

∫

2Bε
j

∫

B(x,2ε)

|u(y)− u(x)|p
εp

dµ(y) dµ(x)

≤ C

∫

X

∫

B(x,2ε)

|u(y) − u(x)|p
εp

dµ(y) dµ(x)

≤ C
1

εp

∫

∆2ε

|u(x) − u(y)|p
µ(B(x, ε))

dµ(y) dµ(x) ≤ C ‖u‖pp,1/2.

Hence we have

sup
ε>0

∫

X
|∇uε|p dµ ≤ C ‖u‖pp,1/2. (18)

In a similar manner, we can also show that
∫

X
|uε(x)− u(x)|p dµ(x) ≤ Cεp

∫

∆2ε

|u(x)− u(y)|p
εp µ(B(x, ε))

dµ(y) dµ(x) ≤ C εp ‖u‖pp,1/2,

that is, uε → u in Lp(X) as ε→ 0+.
Take a sequence εn → 0+. From (18) and the reflexivity of Lp(X), there exists a subsequence of

{∇uεn}n that is weakly convergent in Lp(X). By Mazur’s lemma, a sequence of convex combinations
of uεn converges in the norm of W 1,p(X). Since it converges to u in Lp(X), we conclude that
u ∈W 1,p(X) and hence

‖|∇u|‖Lp(X) ≤ C‖u‖p,1/2.
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4.4.2 W 1,p(X) ⊂ Bp,1/2(X)

We now turn to the proof of the upper bound for the Besov seminorm in terms of the Sobolev
seminorm and assume that the strong Bakry-Émery condition (8) holds.

A first important corollary of the strong Bakry-Émery estimate is the following Hamilton’s type
gradient estimate for the heat kernel. This type of estimate is well-known on Riemannian manifolds
with non-negative Ricci curvature (see for instance [64]), but is new in our general framework.

Theorem 4.12. There exists a constant C > 0 such that for every t > 0, x, y ∈ X,

|∇x ln pt(x, y)|2 ≤ C

t

(

1 +
d(x, y)2

t

)

.

Proof. The proof proceeds in two steps.
Step 1: We first collect a gradient bound for the heat kernel. Observe that (8) implies a weaker

L2 version as follows
|∇Ptu|2 ≤ CPt(|∇u|2),

and hence the following pointwise heat kernel gradient bound (see [9, Lemma 3.3]) holds:

|∇xpt(x, y)| ≤
C√
t

e−cd(x,y)2/t

√

µ(B(x,
√
t))µ(B(y,

√
t))
.

In particular, we note that |∇xpt(x, ·)| ∈ Lp(X) for every p ≥ 1.

Step 2: In the second step, we prove a reverse log-Sobolev inequality for the heat kernel. Let
τ, ε > 0 and x ∈ X be fixed. We denote u = pτ (x, ·) + ε. One has, from the chain rule for strictly
local forms [32, Lemma 3.2.5],

Pt(u lnu)− Ptu lnPtu =

∫ t

0
∂s (Ps(Pt−su lnPt−su)) ds

=

∫ t

0
LPs(Pt−su lnPt−su)− Ps(LPt−su lnPt−su)− Ps(LPt−su)ds

=

∫ t

0
Ps(L(Pt−su lnPt−su))− Ps(LPt−su lnPt−su)− Ps(LPt−su)ds

=

∫ t

0
Ps [L(Pt−su lnPt−su))− LPt−su lnPt−su− LPt−su] ds

=

∫ t

0
2Ps

( |∇Pt−su|2
Pt−su

)

ds, (19)

where the above computations may be justified by using the Gaussian heat kernel estimates for the
heat kernel and the Gaussian upper bound for the gradient of the heat kernel obtained in Step 1.
In particular, we point out that the commutation LPs(Pt−su lnPt−su) = Ps(L(Pt−su lnPt−su)) is
justified by noting that Pt−su lnPt−su − ε ln ε is in the domain of L in L2(X,µ). Here, L is the
infinitesimal generator (the Laplacian operator) associated with E .

Using the Cauchy-Schwarz inequality in the form Ps

(

f2

g

)

≥ (Psf)2

Psg
and then the strong Bakry-

Émery estimate, we obtain from (19)

Pt(u lnu)− Ptu lnPtu ≥ 2

∫ t

0

(Ps|∇Pt−su|)2
Ps(Pt−su)

ds
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≥ 1

C

1

Ptu

∫ t

0
|∇Ptu|2ds

≥ t

C

1

Ptu
|∇Ptu|2.

Coming back to the definition of u, noting that Ptpτ (x, ·) = pt+τ (x, ·) and applying the previous
inequality with t = τ , we may set Mt(x) = supy∈X pt(x, y) and bound the Pt(u ln u) term by
(Ptu) ln(Mt + ǫ) to deduce

|∇y ln(p2t(x, y) + ε)|2 ≤ C

t
Pt

[

ln

(

Mt(x) + ε

p2t(x, ·) + ε

)]

(y).

By letting ε→ 0 and using the Gaussian heat kernel estimate, one concludes

|∇y ln p2t(x, y)|2 ≤ C

t

(

1 +
d(x, y)2

t

)

Our desired inequality follows by rescaling t, adjusting the constant C and using the symmetry of
pt(x, y) in x and y.

Corollary 4.13. Let p > 1. There exists a constant C > 0 such that for every u ∈ Lp(X),

|∇Ptu| ≤
C√
t
(Pt|u|p)1/p.

Proof. Let p > 1, q be the conjugate exponent and u ∈ Lp(X). One has from Hölder’s inequality

|∇Ptu|(x) ≤
∫

X
|∇xpt(x, y)||u(y)|dµ(y)

≤
(∫

X

|∇xpt(x, y)|q
pt(x, y)q/p

dµ(y)

)1/q

(Pt|u|p)1/p

≤
(∫

X
|∇x ln pt(x, y)|qpt(x, y)dµ(y)

)1/q

(Pt|u|p)1/p.

The proof follows then from Theorem 4.12 and the Gaussian upper bound for the heat kernel.

Note that by integrating over X the previous proposition immediately yields:

Lemma 4.14. Let p > 1. There exists a constant C > 0 such that for every u ∈ Lp(X)

‖|∇Ptu|‖2Lp(X) ≤
C

t
‖u‖2Lp(X).

From this estimate we obtain the following result.

Lemma 4.15. Let p > 1. There exists a constant C > 0 such that for every u ∈ Lp(X) ∩ F with
|∇u| ∈ Lp(X)

‖Ptu− u‖Lp(X) ≤ C
√
t‖|∇u|‖Lp(X)

Proof. With the previous lemma in hand, the proof is similar to the one in Lemma 4.3, with ϕ
in F ∩ Lq(X) and compactly supported, where p−1 + q−1 = 1. As compactly supported functions
in F ∩ Lq(X) form a dense subclass of Lq(X) we recover the Lp-norm of Ptu − u by taking the
supremum over all such ϕ with

∫

X |ϕ|q dµ ≤ 1.
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Lemma 4.16. Let p > 1, then for every u ∈ Lp(X) ∩ F with |∇u| ∈ Lp(X)

(∫

X

∫

X
|Ptu(x)− u(y)|ppt(x, y)dµ(x)dµ(y)

)1/p

≤ C
√
t‖|∇u|‖Lp(X).

Proof. Let u ∈ Lp(X) and t > 0 be fixed in the above argument. By an application of Fubini’s
theorem we have

(∫

X

∫

X
|Ptu(x)− u(y)|ppt(x, y)dµ(x)dµ(y)

)1/p

=

(∫

X
Pt(|Ptu(x)− u|p)(x)dµ(x)

)1/p

.

The main idea now is to adapt the proof of [10, Theorem 6.2]. As above, let q be the conjugate
of p. Let x ∈ X be fixed. Let g be a function in L∞(X) such that Pt(|g|q)(x) ≤ 1.

We first note that from the chain rule:

∂s [Ps((Pt−su)(Pt−sg))(x)]

=LPs((Pt−su)(Pt−sg))(x) − Ps((LPt−su)(Pt−sg))(x) − Ps((Pt−su)(LPt−sg))(x)

=Ps(L(Pt−su)(Pt−sg))(x) − Ps((LPt−su)(Pt−sg))(x) − Ps((Pt−su)(LPt−sg))(x)

=2Ps(Γ(Pt−su, Pt−sg)).

Therefore we have

Pt((u− Ptu(x))g)(x) = Pt(ug)(x) − Ptu(x)Ptg(x)

=

∫ t

0
∂s [Ps((Pt−su)(Pt−sg))(x)] ds

= 2

∫ t

0
Ps (Γ(Pt−su, Pt−sg)) (x)ds

≤ 2

∫ t

0
Ps (|∇Pt−su||∇Pt−sg|)) (x)ds

≤ 2

∫ t

0
Ps (|∇Pt−su|p)1/p (x)Ps (|∇Pt−sg|q)1/q (x)ds.

Now from the strong Bakry-Émery estimate and Hölder’s inequality we have

Ps (|∇Pt−su|p)1/p (x) ≤ CPs (Pt−s(|∇u|p))1/p (x) = CPt(|∇u|p)1/p(x).

On the other hand, Corollary 4.13 gives

|∇Pt−sg|q ≤
C

(t− s)q/2
Pt−s(|g|q).

Thus,

Ps (|∇Pt−sg|q)1/q (x) ≤
C

(t− s)1/2
Pt(|g|q)1/q(x) ≤

C

(t− s)1/2
.

One concludes
Pt((u− Ptu(x))g)(x) ≤ C

√
tPt(|∇u|p)1/p(x).

Thus by Lp − Lq duality in (X, pt(x, y)µ(dy)), one concludes

Pt(|u− Ptu(x)|p)(x)1/p ≤ C
√
tPt(|∇u|p)1/p(x)

and finishes the proof by integration over X.
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We are finally in a position to prove the inclusion of the Sobolev space W 1,p(X) into the Besov
class Bp,1/2, which in turn completes the proof of Theorem 4.9, which is the main result of this
section.

Theorem 4.17. Let p > 1. There exists a constant C > 0 such that for every u ∈W 1,p(X),

‖u‖p,1/2 ≤ C‖|∇u|‖Lp(X).

Proof. We first assume u ∈ Lp(X) ∩ F with |∇u| ∈ Lp(X). One has

(
∫

X

∫

X
|u(x)− u(y)|ppt(x, y)dµ(x)dµ(y)

)1/p

≤
(
∫

X

∫

X
|u(x)− Ptu(x)|ppt(x, y)dµ(x)dµ(y)

)1/p

+

(
∫

X

∫

X
|Ptu(x)− u(y)|ppt(x, y)dµ(x)dµ(y)

)1/p

≤ ‖Ptu− u‖Lp(X) +

(
∫

X

∫

X
|Ptu(x)− u(y)|ppt(x, y)dµ(x)dµ(y)

)1/p

≤ 2C
√
t‖|∇u|‖Lp(X),

where in the last step we applied Lemma 4.15 to the first term and Lemma 4.16 to the second term.
Thus

‖u‖p,1/2 ≤ C‖|∇u|‖Lp(X).

Now let u ∈ W 1,p(X) and choose an increasing sequence of functions φn ∈ C∞([0,∞)) such that
φn ≡ 1 on [0, n], φn ≡ 0 outside [0, 2n], and |φ′n| ≤ 2

n . Let x0 ∈ X. If hn(x) = φn(d(x0, x)) then
hnu ∈ F , hn ր 1 on X as n → ∞, and ‖|∇(hnu)|‖Lp(X) → ‖|∇u|‖Lp(X). Taking the limit in the
inequality

‖hnu‖p,1/2 ≤ C‖|∇(hnu)|‖Lp(X)

yields the result.

4.5 Continuity of Pt in the Besov spaces and critical exponents

We first note the following continuity property of Pt in the Besov spaces.

Proposition 4.18. Suppose that the strong Bakry-Émery condition (8) holds. Let p > 1. There
exists a constant Cp > 0 such that for every f ∈ Lp(X,µ) and t > 0

‖Ptf‖p,1/2 ≤
Cp

t1/2
‖f‖Lp(X).

Proof. This is a consequence of Lemma 4.14 and Theorem 4.17.

Remark 4.19. The above result is true without the strong Bakry-Émery condition for 1 < p ≤ 2
on very general Dirichlet spaces, see [3, Theorem 5.1].

For p ≥ 1, as in [3], we define the Lp Besov density critical exponent α∗
p(X) and triviality critical

exponent α#
p (X) as follows:

α∗
p(X) = sup{α > 0 : Bp,α(X) is dense in Lp(X)},

α#
p (X) = sup{α > 0 : Bp,α(X) contains non-constant functions}.
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Theorem 4.20. Suppose that the weak Bakry-Émery condition (7) holds, then for 1 ≤ p ≤ 2,

α∗
p(X) = α#

p (X) =
1

2
.

Furthermore, if the strong Bakry-Émery condition (8) holds, then for every p > 2,

α∗
p(X) = α#

p (X) =
1

2
.

Proof. Assume that the weak Bakry-Émery condition (7) holds and begin with the case p = 1. Let
f ∈ B1,α(X) with α > 1/2. Since B1,α(X) ⊂ B1,1/2(X) = BV (X), we deduce that f is a BV
function. Now since f ∈ B1,α(X), one has for every t > 0,

∫

X

∫

X
pt(x, y)|f(x)− f(y)|dµ(x)dµ(y) ≤ tα‖f‖1,α.

By using the gaussian heat kernel lower bound we obtain

lim inf
ε→0+

1

ε

∫∫

∆ε

|f(y)− f(x)|
µ(B(x, ε))

dµ(x)dµ(y) = 0,

so ‖Df‖(X) = 0, and from Remark 4.6 one gets that f is constant. It follows that α#
1 (X) ≤ 1/2.

On the other hand, from Corollary 4.8 in [3], B1,1/2(X) is dense in L1(X), so α∗
1(X) = α#

1 (X) = 1
2 .

From Proposition 5.6 in [3], one has:

1. Both p 7→ α∗
p(X) and p 7→ α#

p (X) are non-increasing;

2. For 1 ≤ p ≤ 2 we have α#
p (X) ≥ α∗

p(X) ≥ 1
2 .

Therefore, for 1 ≤ p ≤ 2 we also have α∗
p(X) = α#

p (X) = 1
2 .

Now let p > 2 and assume the strong Bakry-Émery condition (8). In that case, according
to Proposition 4.18, for every f ∈ Lp(X) and t > 0 one has Ptf ∈ Bp,1/2(X). Thus, Bp,1/2(X)
is dense in Lp(X) by strong continuity of the semigroup Pt in Lp(X). Hence α∗

p(X) ≥ 1/2.

Using again the fact that both p 7→ α∗
p(X) and p 7→ α#

p (X) are non-increasing and moreover that

α∗
2(X) = α#

2 (X) = 1
2 , one concludes that for every p > 2, α∗

p(X) = α#
p (X) = 1

2 .

5 Sobolev and isoperimetric inequalities

Combining the conclusions in this paper with the results in [3, Section 6], we immediately obtain
the following results that generalize the Sobolev embedding theorems from the classical Euclidean
setting (see for example [70]) and metric upper gradient setting (see for example [39] and [37]) to
the setting of Dirichlet forms and BV functions.

The following proposition is a weak-type version of the standard Sobolev embedding theorem. It
gives weak-Lq control of the Besov function f , with q the Sobolev conjugate of p, and can therefore
be used to control the Ls-norm of f in terms of the Besov norm of f when 1 ≤ s < pQ/(Q− p).

Proposition 5.1. If the volume growth condition µ(B(x, r)) ≥ C1r
Q, r ≥ 0, is satisfied for some

Q > 0 then one has the following weak type Besov space embedding. Let 0 < δ < Q and 1 ≤ p < Q
δ .

Then there exists a constant Cp,δ > 0 such that for every f ∈ Bp,δ/2(X),

sup
s≥0

sµ ({x ∈ X, |f(x)| ≥ s})
1

q ≤ Cp,δ sup
r>0

1

rδ+Q/p

(
∫∫

{(x,y)∈X×X|d(x,y)<r}
|f(x)−f(y)|p dµ(x) dµ(y)

)1/p
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where q = pQ
Q−pδ . Furthermore, for every 0 < δ < Q, there exists a constant Ciso,δ such that for

every measurable E ⊂ X, µ(E) < +∞,

µ(E)
Q−δ
Q ≤ Ciso,δ sup

r>0

1

rδ+Q
(µ⊗ µ) {(x, y) ∈ E × Ec : d(x, y) ≤ r}

Proof. From the heat kernel upper bound (5), the volume growth condition µ(B(x, r)) ≥ C1r
Q,

r ≥ 0, implies the ultracontractive estimate

pt(x, y) ≤
C

tQ/2
. (20)

We are therefore in the framework of Theorem 6.1 in [3], from which one obtains that there is a
constant Cp,δ > 0 such that for every f ∈ Bp,δ/2(X),

sup
s≥0

s µ ({x ∈ X : |f(x)| ≥ s})
1

q ≤ Cp,δ‖f‖p,δ/2

where q = pQ
Q−pδ . The conclusion follows from Theorem 4.2.

In Euclidean space there is a standard method for using the above weak-type Sobolev embedding
to obtain the usual Sobolev embedding theorem, in which the weak-Lq control of f is replaced by
the strong-Lq control. However this approach uses locality properties which need not be valid for
the Besov seminorm ‖ · ‖p,α. We direct the interested reader to [37] for more details on this topic.

The one circumstance we have investigated in which the Besov seminorm has a locality property
arose in Theorem 4.4, see also Remark 4.5, for the space B1,1/2 under the assumption of a weak
Bakry-Émery estimate, in which case we had B1,1/2 = BV (X). This locality property lets us obtain
a standard Sobolev embedding in which the Lq norm is controlled by the BV norm. We may view
this as an extension of known results on Riemannian manifolds with non-negative Ricci curvature
(see Theorem 8.4 in [66]) or on Carnot groups (see [88]) to our metric measure Dirichlet setting
under the further hypothesis that there is a weak Bakry-Émery estimate.

Theorem 5.2. Suppose that the weak Bakry-Émery estimate (7) is satisfied. If the volume growth
condition µ(B(x, r)) ≥ C1r

Q, r ≥ 0, is satisfied for some Q > 0, then there exists a constant C2 > 0
such that for every f ∈ BV (X),

‖f‖Lq(X) ≤ C2‖Df‖(X)

where q = Q
Q−1 . In particular, if E is a set with finite perimeter in X, then

µ(E)
Q−1

Q ≤ C2P (E,X).

Proof. Observe that as in the above proof, the heat kernel satisfies the ultracontractive esti-
mate (20). From Theorem 4.4 we have

‖f‖1,1/2 ≤ C lim inf
s→0

s−1/2

∫

X
Ps(|f − f(y)|)(y)dµ(y).

This verifies a condition denoted by (P1,1/2) in Definition 6.7 of [3]), putting us in the framework
of [3, Theorem 6.9] with p = 1, α = 1/2 and β = Q/2. Notice also that ‖f‖1,1/2 ≤ C‖Df‖(X) from
Theorem 4.4, so we have

‖f‖Lq(X) ≤ C‖f‖1,1/2 ≤ C2‖Df‖(X),

where q = Q
Q−1 . Taking f = 1E then yields

µ(E)
Q−1

Q ≤ C2P (E,X).
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gasket. Pacific J. Math., 217(1):149–174, 2004. 5, 16

[72] Michele Miranda, Jr. Functions of bounded variation on “good” metric spaces. J. Math. Pures
Appl. (9), 82(8):975–1004, 2003. 2, 12, 16
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fractafolds. J. Anal. Math., 116:255–297, 2012. 2

[82] K. T. Sturm. Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J.
Math. Pures Appl. (9), 75(3):273–297, 1996. 3, 4, 9

[83] Karl-Theodor Sturm. Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and
Lp-Liouville properties. J. Reine Angew. Math., 456:173–196, 1994. 3, 4, 5, 13

[84] Karl-Theodor Sturm. Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the
fundamental solutions of parabolic equations. Osaka J. Math., 32(2):275–312, 1995. 3, 4, 9

[85] Alexander Teplyaev. Energy and Laplacian on the Sierpiński gasket. In Fractal geometry and
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