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Abstract

We introduce the class of bounded variation (BV) functions in a general framework of strictly
local Dirichlet spaces with doubling measure. Under the 2-Poincaré inequality and a weak
Bakry—Emery curvature type condition, this BV class is identified with the heat semigroup
based Besov class B!:1/2 (X)) that was introduced in our previous paper. Assuming furthermore
a strong Bakry—Emery curvature type condition, we prove that for p > 1, the Sobolev class
W1P(X) can be identified with BP/2(X). Consequences of those identifications in terms of
isoperimetric and Sobolev inequalities with sharp exponents are given.
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1 Introduction

In metric measure spaces X that are highly path-connected, the theory of Sobolev classes based
on upper gradients provides an approach to calculus using a derivative structure that is strongly
local. One can construct an analog of |V f| (called a weak upper gradient) when f is a measurable
function on the metric space; |V f| satisfies a variant of the fundamental theorem of calculus along
most rectifiable curves in X, and has the property that if f is constant on a Borel set £ C X,
then |V f| = 0 almost everywhere in E, see [39]. Should the measure on X be doubling and X
be sufficiently well-connected by paths that X supports a 1-Poincaré inequality controlling f by
|V f|, the notion of functions of bounded variation (BV) as constructed by [72] leads to a fruitful
exploration of geometry of X in terms of BV functions and sets of finite perimeter (sets whose
characteristic functions are BV functions).

However, there are doubling metric measure spaces that are well-connected enough to support
a p-Poincaré inequality for some p > 1 but not a 1-Poincaré inequality, see for example [68].
Moreover, there are many metric measure spaces, including fractals like the Sierpinski gasket, that
have a doubling measure but support no Poincaré inequality of this type; some of these spaces
are even quasiconvex. In such settings, the theory of BV functions based on upper gradients as
in [6,72] is not very productive. On the other hand, the theory of Dirichlet forms is well-developed
in many such spaces, including both certain types of fractal spaces and some general settings
like connected metric measure spaces supporting a p-Poincaré inequality for some p > 1, see for
example [23,48,54,55,57,60,61,74,76,79-81], which is far from an exhaustive list of the literature.
In such situations, the theory of BV functions has not been well-explored. In [61] the Sobolev
type spaces constructed using Dirichlet forms were shown to be the same as those constructed
using upper gradients if the metric space supports a 2-Poincaré inequality. From [23] it follows
that in a doubling metric measure space supporting a p-Poincaré inequality for some 1 < p < 2,
there is a Dirichlet form that is compatible with the upper gradient Sobolev class structure, see for
example [60].

The goal of this paper is to develop a theory of a BV class of functions from Dirichlet forms
in a specific setting: that of a locally compact metric space X, equipped with a doubling Radon
measure 4 and a strictly local Dirichlet form € on L?(X). We propose a notion of BV functions and
prove fundamental properties, including the Radon measure property of the BV energy seminorm,
the notion of sets of finite perimeter, and a co-area formula (see Theorem 3.11) connecting sets of
finite perimeter to BV energy.

In this paper we will also compare the notion of BV functions developed here to Besov classes
derived from the heat semigroup and from purely metric notions. The heat-semigroup based Besov
classes have already been considered in some specific settings, for example in [75], and are investi-
gated in a very general setting in the first paper in this series [3]. The paper [75] also considered a
notion of metric-based Besov classes under the assumption that the measure is Ahlfors regular; our
metric notion of Besov classes will not assume that the underlying measure u is Ahlfors regular,
but we will assume that it is doubling with respect to the intrinsic metric dg of the Dirichlet form,
see (1), which is well-defined as £ is regular. We prove that under a weak Bakry—Emery curvature
condition, the heat semigroup BV class we construct is the same as the metric-based Besov class
Bh1/2(X). One of the key tools used there is the co-area formula Theorem 3.11. Finally, we will
establish Sobolev-type and isoperimetric inequalities that parallel the classical Sobolev embedding
theorems associated with the classical Sobolev and BV classes as in [1,70].

The tools of heat semigroup based Besov spaces needed in this paper were developed in the
first paper in this series [3], but the present paper can largely be read independently from [3]. The
results of this paper depend heavily on the assumption that £ be not strictly local, but in the third



paper [4] in this series we develop two types of Besov classes (one based on the heat semigroup and
the other based on a metric) as possible substitutes for BV functions.

The structure of this paper is as follows. In Section 2 we give a description of the background
notions and discuss related results from some of the existing literature on Dirichlet forms, though
in the interests of brevity our discussion is far from exhaustive.

The definition of BV class of functions is given in Section 3, where we also give a proof that
the BV energy density || Dul|| of w € BV (X) is a Radon measure on X, see Theorem 3.7. The main
tool used in the proof of this theorem is a characterization of Radon measures due to De Giorgi
and Letta. We then establish a co-area formula for BV functions.

Section 4 is the heart of the paper. We begin by comparing the heat semigroup-based Besov
class BP%/2(X) introduced in [3] with a more classical Besov class By o(X) that was defined in [34]
and is based on the intrinsic metric d = dg¢ rather than the heat semigroup F;. Under our standing
hypotheses (p is doubling and supports a 2-Poincaré inequality) we show that B»®/2(X) coincides
with B2 (X). It should be noted that this differs from the correspondence of metric and heat
semigroup based Besov class established in [75] in that the latter assumes p is Ahlfors regular.
We then compare the class BV (X) to the heat semi-group Besov class B"'/2(X) and show these
coincide under the additional hypothesis that £ supports a weak Bakry—Emery curvature condition,
see Theorem 4.4. We also explore a connection between the co-dimension 1 Hausdorff measure of
the regular boundary 0°F of a set E of finite perimeter (meaning 1z € BV (X)) to its perimeter
measure |[D1gl||(X) =: P(E, X), see Proposition 4.7. In the last part of Section 4 we show that if
X supports a strong Bakry-Emery curvature condition and p > 1, then the heat semigroup-based
Besov class BP'/2(X) coincides with the Sobolev space WP (X), see Theorems 4.9, 4.11 and 4.17.

We conclude the paper in Section 5 with a discussion of Sobolev type embedding theorems for
Besov and BV spaces in the context of strictly local Dirichlet forms satisfying the weak Bakry-
Emery estimate.

2 Preliminaries

2.1 Strictly local Dirichlet spaces, doubling measures, and our standing as-
sumptions

Throughout the paper, let X be a locally compact metric space equipped with a Radon measure p
supported on X. Let (£,F = dom(&)) be a Dirichlet form on X, meaning it is a densely defined,
closed, symmetric and Markovian form on L?(X). The book [32] is a classical reference on the
theory of Dirichlet forms. We also refer to the foundational papers by K.T. Sturm [82-84].

We denote by C.(X) the vector space of all continuous functions with compact support in X
and Cp(X) its closure with respect to the supremum norm. A core for (X, u, &, F) is a subset C of
C.(X) N F which is dense in C.(X) in the supremum norm and dense in F in the norm

1/2
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The Dirichlet form £ is called regular if it admits a core. It is called strongly local if for any two
functions u,v € F with compact supports such that u is constant in a neighborhood of the support
of v, we have &(u,v) = 0 (see Page 6 of [32]).

Throughout this paper, we assume that (£,F) is a strongly local regular Dirichlet form on
L%(X). Since & is regular, for every u,v € F N L®(X), we can define the energy measure I'(u,v)



through the formula
/ ¢ dl (u,v) = %[Ewu,v) + E(v,u) — E(p,uv)], ¢ € FNC(X).
X

Then I'(u,v) can be extended to all u,v € F by truncation (see [24, Theorem 4.3.11]). According
to Beurling and Deny [19], one has then for u,v € F

£(u, v) = /X dr'(u, v)

and I'(u,v) is a signed Radon measure.

Definition 2.1. Observe that the energy measures I'(u,v) inherit a strong locality property from
E, namely that 1ydl (u,v) = 0 for any open subset U C X and u,v € F such that u is a constant
on U. One can then extend I' to Fioe(X) defined as

Floe(X) = {u € L2 (X) : ¥V compact K C X,3v € F such that u = v|g a.e.}.

We will still denote this extension by I'. For later use we collect some properties of this extension
(see for instance [32, Section 3.2] and also [83, Section 4]).

e Strong locality. For all u,v € Floe(X) and all open subset U C X on which u is a constant
1ydl (u,v) = 0.

e Leibniz and chain rules. For all u € Floe(X),v € Floe(X) N LY

loc(X)> w € ]:loc(X) and
n € CHR),

dl' (uwv, w) = udl (v, w) + vdl'(u, w),
dl(n(w),v) = n'(u)dl (u,v).

With respect to £ we can define the following intrinsic metric de on X by
de(x,y) = sup{u(z) —u(y) : we FNCy(X) and dl'(u,u) < du}. (1)

Here the condition dI'(u, u) < du means that I'(u, u) is absolutely continuous with respect to p with
Radon-Nikodym derivative bounded by 1. The term “intrinsic metric” is potentially misleading
because in general there is no reason why dg is a metric on X (it could be infinite for a given pair of
points z, y or zero for some distinct pair of points), however in this paper we will work in a standard
setting in which it is a metric. The following definition is from [67, and references therein]|, which
is based on the classical papers [20-22,82-84]).

Definition 2.2. A strongly local regular Dirichlet space is called strictly local if dg is a metric on
X and the topology induced by dg coincides with the topology on X.

We will assume strict locality throughout the paper.

Example 2.3. In the context of a complete metric measure space (X, d, i) supporting a 2-Poincaré
inequality and where y is doubling, one can construct a Dirichlet form £ with domain N%2(X) by
using a choice of a Cheeger differential structure as in [23]. This Dirichlet form is then strictly local
and the intrinsic distance dg is bi-Lipschitz equivalent to the original metric d. We refer to [69]
and the references therein for further details. This framework encompasses for instance the one of
Riemannian manifolds with non-negative Ricci curvature and the one of doubling sub-Riemannian
spaces supporting a 2-Poincaré inequality.



Example 2.4. In the context of fractals, strictly local Dirichlet forms appear in [5,21,22, 31,42,
49,50,53,56,63,71,85,86] and play an important role in analysis of first-order derivatives in these
settings. Whether every local Dirichlet form admits a change of measure under which it becomes
strictly local is an open question, though some natural conditions for this are discussed in [40,43],
where it is also proved that I' is the norm of a well defined gradient that may be extended to
measurable 1-forms, see [41]. Without giving details of this analysis, we mention that existence
of a suitable collection of finite (Dirichlet) energy coordinate functions, which depend only on the
Dirichlet form &, is essentially equivalent to the existence of a measure which is compatible with
an intrinsic distance. In particular, [40] proves existence of a measure which is compatible with
an intrinsic distance for any local resistance form in the sense of Kigami [53,55,57,58]. Thus, any
fractal space with a local resistance form has an intrinsic metric and is a strictly local Dirichlet
form for an appropriate choice of the measure.

Now suppose in addition to strict locality we know that open balls have compact closures and
that (X, dg) is complete. In this setting we may apply [83, Lemma 1, Lemma 1’| to obtain that
the distance function ¢, : y — de(z,y) on X is in Fioc(X) NC and dI' (¢4, @) < du. Then cut-off
functions on intrinsic balls B(z,r) of the form

oty > (r—de(w,y))4

are also in Floe(X) NC and dI' (g, 9or) < dp (for all > 0 and z € X). The following lemma
will be useful.

Lemma 2.5. Let f: X — R be locally Lipschitz continuous with respect to dg. Then f € Fioc(X)
with T(f, f) < p. If f is locally K -Lipschitz, then T'(f, f) < K? pu.

Proof. Let @ be a countable dense subset of X. Let U C X be a bounded open set and let {g; }icrcn
be an enumeration of N U. Note that @ N U is dense in U. For each i € I let ¢;(z) = dg(z, ;).
Then as explained above, 1; € F(U) with T'(¢;,1;) < p. For j € I set

fi(x) == inf{f(q;) + Ki(x) : ¢ € I with i < j},

where K > 0 is the Lipschitz constant of f in U. The above functions are inspired by the proof
of the McShane extension theorem (see for example [38]). By the lattice properties of Dirichlet
forms, it is seen that each f; € F(U) with dU'(f;, f;) < K%du. Here, by the lattice property, we
mean that if u,v € F, then w; = min{u,v} and we = max{u,v} are also in F with I'(w,w;) =
Ly} (v, ) + 1gy<y T'(u, u). Furthermore, f; are K-Lipschitz in U with f;(q;) = f(g;) fori e I
with i < j. We can see that f; — f monotonically and hence (as f and f; are bounded in U
because U is bounded) f; — f in L*(U), with dU'(f, f)/dp < K? on U. O

At many places in the paper we will need to approximate using locally Lipschitz functions and
use locally Lipschitz cutoffs, so will assume density of these functions in L'(X). Now we come to
the final assumption which will be made throughout the paper, namely that p is volume doubling.

Definition 2.6. We say that the metric measure space (X,dg,p) satisfies the volume doubling
property if there exists a constant C' > 0 such that for every x € X and r > 0,

u(B(z,2r)) < Cu(B(z,r)).

It follows from the doubling property of u (see [38]) that there is a constant 0 < @ < oo and
C > 1 such that whenever 0 < r < R and =z € X, we have

u(B(z, R)) R\
n(B(.1) C() | @

IN
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Another well-known consequence of the doubling property is the availability of a maximal &-
separated covering. Let U C X be a non-empty subset and let £ > 0. Then there exists a family of
balls {Bf = B(x%,¢)}; such that

e The collection {1Bf}; is a maximal pairwise disjoint family of balls with radius £/2;
e The collection {B5}; covers U, that is, U = |, BS;

e There exists K € N such that each point x € X is contained in at most K balls from the
family {2B¢};.

Moreover if p has the volume doubling property and (X,dg) is complete then it also follows
that closed and bounded subsets of X are compact.

We now summarize the assumptions that will be in force throughout the paper, some of the
above conclusions that will be used without further comment, and the notation for the upper
gradient we frequently use.

Assumption 2.7.

e The Dirichlet space (X, u,E,F) is strictly local, so & is strongly local and regular and dg is a
metric on X that induces the topology on X;

e the metric space (X,dg) is complete;
o 1 is volume doubling;

o closed bounded subsets of (X,dg) are compact (this is a consequence of the preceeding two
assumptions);

e locally Lipschitz functions are dense in L'(X);

o if I'(f, f) is absolutely continuous with respect to p, as is the case for locally Lipschitz func-
tions, then |V f| is the square root of its Radon-Nikodym derivative, so I'(f, f) = |V f|?dpu.

It should be noted that with the exception of some parts of Section 3, we will typically also
assume existence of a 2-Poincaré inequality, which is discussed next.
2.2 The 2-Poincaré inequality
Let (X, u, €, F) be a strictly local regular Dirichlet space as in Section 2.1.

Definition 2.8. We say that (X, u,E, F) supports the 2-Poincaré inequality if there are constants
C >0 and X\ > 1 such that whenever B is a ball in X (with respect to the metric dg) and u € F,

we have
ﬁ/}g[u—u]g\d,u < Crad(B) <ﬁ /}\Bdf(u,u)>1/2.

Remark 2.9. The 2-Poincaré inequality does not need £ to be strictly local, but it does need it
to be regular, in order for the measure I'(u,u) representing the Dirichlet energy of u € F to exist,
see [32] for more details. However we will always be considering strictly local forms.

Example 2.10. Examples of strictly local Dirichlet spaces (X, u,E,F) that satisfy the volume
doubling property and support the 2-Poincaré inequality include:



e Complete Riemannian manifolds with non-negative Ricci curvature or more generally RCD(0, 0o)
spaces in the sense of Ambrosio-Gigli-Savaré [8],

e Carnot groups and other complete sub-Riemannian manifolds satisfying a generalized curva-
ture dimension inequality (see [12,17]),

e Doubling metric measure spaces that support a 2-Poincaré inequality with respect to the
upper gradient structure of Heinonen and Koskela (see [39,62,63]).

e Metric graphs with bounded geometry (see [36]).

When the 2-Poincaré inequality is satisfied, a standard argument due to Semmes tells us that
locally Lipschitz continuous functions form a dense subclass of F, where F is equipped with the
norm

ull7 = [JullL2(x) + vV E(u,u),
see for example [39, Theorem 8.2.1]. Moreover, by [61], we know that if the 2-Poincaré inequality
is satisfied and p is doubling then the Newton-Sobolev class (based on upper gradients, see [39]) is
the same as the class F, with comparable energy seminorms.

The next lemma is used to define a length of the gradient in the current setting and shows that
the Dirichlet form admits a carré du champ operator.

Lemma 2.11. Suppose that (X, u,E,F) satisfies the doubling property and supports the 2-Poincaré

inequality. Then for all u € F, we have dI'(u,u) < p and we set |Vul? to be the Radon-Nikodym

. . dl(u,u)
derivative -

Proof. Let uw € F. Fix ¢ > 0. Let {Bf = B(af,¢)}; be a maximal e-separated covering of X such
that the family {2B}; has bounded overlap property. Let ¢5 be a (C/e)-Lipschitz partition of
unity subordinated to this cover: that is, 0 < ¢f <lon X, > . ¢ =1on X, and ¢f =01in X \ BS.

We then set
ue =y up: 5,
i

where ups = fB_s udp. Then as each ¢f is Lipschitz, we know that u. is locally Lipschitz and hence
is in Floc(X). Indeed, for z,y € B; we see that from the 2-Poincaré inequality

ue(@) —ue(y)] < Y fuss —upel|gf () — 5 (v)]
i:2B5N2B5£0

1/2
Cd($7y) 2
> ( L o, o) Pt du<x>>

i:2B5N2B5£0

1/2
< M <]£B Ju(y) - U6B§’2dﬂ(y)>

J

1/2
< Cd(z,y) <]£AB§ dl'(u, u)) .

It follows from Lemma 2.5 that I'(ue,u:) < p and the Radon-Nikodym measure is denoted by
|Vue|?. Moreover, we also have on Bf that

dl (ug,ue) < C <][ dT(u,u)) dps.
6ABE
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This yields

/ |Vue|?dp = E(ue,u:) < Z/ dl(ue, ue) < CZN(Bi)][ dl'(u,u) < CE(u,u).  (3)
X — JB; . 6ABS
In the last inequality above we used the fact that u is a doubling measure.

In a similar manner,

u(e) — ue(z)] < Z () = upz | ()] < Z () = upz| 15 (2).

Notice that the above sum has at most K terms due to the finite overlap property. Hence by the
2-Poincaré inequality

[ (@) = (o)l dua) < D> / Iu(a) s Py < O3

that is, ue — u in L*(X) as e — 0.

Take a sequence €, — 07. From (3) and the reflexivity of L*(X), there exists a subsequence
of {|Vue,|}, that is weakly convergent in L?(X). By Mazur’s lemma, a sequence of convex com-
binations of u., (still denoted by {uc,}) converges in the norm | - || #. Since u., converges to u

in L2(X) we see that |Vu, | converges in L?(X) and denote the limit by |Vu|. At the same time,
dI'(u,u
m

dl'(u, u) < 062/ dl'(u, u).
ABS X

E(ue,u.) converges to €(u,u). We conclude that d—) = |Vul?.
U

Definition 2.12. Let 1 < p < co. We say that (X, u,E,F) supports a p-Poincaré inequality if
there are constants C > 0 and X\ > 1 such that whenever B is a ball in X (with respect to the metric
dg) and u € F, we have

ﬁ/BM—uBM,u < C'rad(B) (@ /AB|vu|pdu>l/p.

Of course, the p-Poincaré inequality for any p # 2 does not make sense if £ does not satisfy
the condition of strict locality. The requirement that £ supports a 1-Poincaré inequality is a
significantly stronger requirement than supporting a 2-Poincaré inequality.

Much of the current theory on functions of bounded variation in the metric setting requires
a 1-Poincaré inequality. In this paper we will not require that (X, u,&,F) supports a 1-Poincaré
inequality but only the weaker 2-Poincaré inequality. However in some of our analysis we will need
an additional requirement called the weak Bakry—Emery curvature condition.

2.3 Sobolev classes W'?(X)

The theory of Sobolev spaces was first advanced in order to prove solvability of certain PDEs,
see for example [30,70]. When X is a Riemannian manifold, a function f € LP(X) is said to be
in the Sobolev class WHP(X) if its distributional derivative is given by a vector-valued function
Vf e LP(X : R™). Extensions of this idea to sub-Riemannian spaces have been considered in [33].
However, in more general metric spaces where the distributional theory of derivatives (which relies
on integration by parts) is unavailable, an alternate notion of derivatives needs to be found. Indeed,
we do not need an alternative to V f, as long as we have a substitute for |V f|. For metric spaces
X, Lipschitz functions f : X — R have a natural such alternative, Lipf, given by

Lipf(x) :=limsup sup M
r—0t yeB(z,r) r

8



Other notions such as upper gradients and Hajlasz gradients play this substitute role well, see for
example [39]. In the current paper we consider another possible notion of |V f| which has a more
natural affinity to the heat semigroup and the Dirichlet form, as in Lemma 2.11. So, in this paper,
our definition of W1P(X), p > 1 is the following:

WHP(X) = {u € LP(X) N Fioc(X) : T(u,u) < p1,|Vu| € LP(X)}. (4)
The norm on WHP(X) is then given by

lullwirxy = llulloe ) + VUl e xo)-

Note, in particular, that W12(X) = F. In the context of Sobolev spaces, Besov function classes
arise naturally in two ways. Given a Sobolev class W1P(R"*!) and a bi-Lipschitz embedding of R"
into R"*!, there is a natural trace of functions in WP(R"*1) to the embedded surface, and this
trace belongs to a Besov class, see for example [46,47]. Besov classes also arise via real interpolations
of LP(R™) and W1P(R"), see for example [18,87]. In the present paper we will relate Sobolev classes
WLP(X) to two types of Besov classes defined in our previous paper [3], see Theorems 4.11, 4.17,
and 4.9. One of these types of Besov classes is defined from the heat semigroup, while the other
uses only the metric structure of X. We note that previous metric characterizations of Sobolev
spaces in the presence of doubling and 2-Poincaré have been studied in [27].

2.4 Bakry—Emery curvature conditions

Let {P:}e0,00) denote the self-adjoint semigroup of contractions on L?(X, u) associated with
the Dirichlet space (X,u,&,F) and L the infinitesimal generator of {F;}ic[0,00)- The semigroup
{ Py }1€]0,00) 1 referred to as the heat semigroup on (X, i, £, F). For classical properties of { P; }1¢(0,00),
we refer to Section 2.2 in [3]. It is known that that doubling property together with the 2-Poincaré
inequality imply that the semigroup {P;} is conservative, i.e. P;1 = 1.

The work of Sturm [82, 84] (see Saloff-Coste [77] and Grigor'yan [35] for earlier results on
Riemannian manifolds) tells us that doubling property together with the 2-Poincaré inequality are
equivalent to the property that the heat semigroup P, admits a heat kernel function p:(z,y) on
[0,00) x X x X for which there are constants ¢, ¢y, C > 0 such that whenever ¢t > 0 and z,y € X,

e—cld(m,y)2/t e—CQd(ZE,y)Q/t
< pt

1
— < p(z,y) <C .
C \Ju(B VOB, VD) V(B V) u(B(y, VD))

The above inequalities are called Gaussian bounds for the heat kernel. Due to the doubling property,
one can equivalently rewrite the Gaussian bounds as:

(5)

1 6—01d(x7y)2/t ( ) o e—C2d(1’7y)2/t
= <pn(2,y) <C——rF,
C (B, V%) (B, VD))

for some different constants cqi,c3,C > 0. The combination of the doubling property and the
2-Poincaré inequality also implies the following Holder regularity of the heat kernel

(6)

o) -zl < (152) -8
Vi 1(B(y, V1))
for some C' > 0, a € (0,1), and all z,y,2z € X (see for instance [78]). In some parts of this paper,
we need a stronger condition than Hoélder regularity for the heat kernel, in which case we will use
the following uniform Lipschitz continuity property.



Definition 2.13. We say that the Dirichlet metric space (X, E,dg, p) satisfies a weak Bakry—Emery
curvature condition if, whenever v € F N L>®(X) and t > 0,

C
IV PelllZoo () < 5 1l oo x)- @)

We refer to (7) as a weak Bakry—Emery curvature condition because, in many settings, its
validity is related to the existence of curvature lower bounds on the underlying space.

Example 2.14. The weak Bakry—Emery curvature condition is satisfied in the following examples:

e Complete Riemannian manifolds with non-negative Ricci curvature and more generally, the
RCD(0,+00) spaces (see [45]).

e Carnot groups (see [13])

e Complete sub-Riemannian manifolds with generalized non-negative Ricci curvature (see [12,
17])

e On non-compact metric graphs with finite number of edges, the weak weak Bakry-Emery
curvature condition has been proved to hold for ¢ € (0,1] (see [16, Theorem 5.4]), and is
conjectured to be true for all t. If the graph is moreover compact, the weak Bakry-Emery
estimate holds for every ¢ > 0 [16, Theorem 5.4]) .

Several statements equivalent to the weak Bakry—Emery curvature condition are given in [25, The-
orem 1.2]. There are some metric measure spaces equipped with a doubling measure supporting
a 2-Poincaré inequality but without the above weak Bakry—Emery condition, see for example [60].
For instance, it should be noted, that in the setting of complete sub-Riemannian manifolds with
generalized non-negative Ricci curvature in the sense of [15], while the weak Bakry-Emery curva-
ture condition is known to be satisfied (see [12,17]), the 1-Poincaré inequality is so far not known
to hold, though the 2-Poincaré inequality is known to be always satisfied, see [14].

We will also sometimes need a stronger condition than (7).

Definition 2.15. We say that the Dirichlet metric space (X,E,dg,n) satisfies a strong Bakry-
Emery curvature condition if there exists a constant C > 0 such that for every uw € F andt > 0 we

have v a.e.
|V Pu| < CP|Vul. (8)

The strong Bakry—Emery curvature condition implies the weak one, as is demonstrated in the
proof of Theorem 3.3 in [16]. Examples where the strong Bakry—Emery estimate is satisfied include:
Riemannian manifolds with non negative Ricci curvature and more generally RC'D(0,+00) spaces
(in that case C' =1, see [29]), some metric graphs like the Walsh spider (see [16, Example 5.1] and
also [16, Theorem 5.4])), the Heisenberg group and more generally H-type groups (see [10,28]).

3 BV class and co-area formula

In this section we use the Dirichlet form and the associated family I'(-,-) of measures to construct
a BV class of functions on X. To do so, we only need p to be a doubling measure on X for de and
the class of locally Lipschitz functions to be dense in L'(X). So in this section we do not need the
2-Poincaré inequality nor do we need the weak Bakry—Emery curvature condition. In the second
part of the section we prove a co-area formula for BV functions; such a co-area formula is highly
useful in understanding the structure of BV functions, and underscores the importance of studying
sets of finite perimeter (sets whose characteristic functions are BV functions).
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3.1 BV class

We set the core of the Dirichlet form, C(X), to be the class of all f € Fio.(X) N C(X) such that
I'(f, f) < p and recall that the Sobolev class W1(X) is the class of all f € Fioe(X) N LY(X) for
which T'(f, f) < p and |V f| € L}(X) (see Definition (4)).

Definition 3.1. We say that v € L'(X) is in BV(X) if there is a sequence of local Lipschitz
functions uy € LY(X) such that up — u in L*(X) and

liminf/ |Vug| du < .
X

k—00

We note that if the Dirichlet form supports a 1-Poincaré inequality, then the Sobolev space
WH1(X) is a subspace of BV (X).

Definition 3.2. For v € BV (X) and open sets U C X, we set

Du||(U) = inf lim inf Vug| du.
H U”( ) ukEC(U),uiILu i LY(U) lkni;)% /U‘ Uk‘ H

We will see in the next part of this section that ||Du| can be extended from the collection of
open sets to the collection of all Borel sets as a Radon measure, see Definition 3.5.

Lemma 3.3. If u,v € BV(X) and n is a Lipschitz continuous function on X with 0 <n <1 on
X, then nu+ (1 —n)v € BV(X) with
[1D(u + (1 = n)v)[[(X) < [[Dul[(X) + [[Dv[|(X) + /X lu— ol [V dp.

Proof. From Lemma 2.5 we already know that such 7 are in Fio.(X) with |Vn| € L*°(X). From
the definition, we can choose sequences uy, vy € L'(X) of locally Lipschitz functions on X such
that uxy — v and vy — v in L(X) and [y [Vug|dp — [|[Dul|(X) and [ [Vog|dp — ||Dv][(X) as
k — oo. Now an application of the Leibniz rule to the functions nux + (1 — n)vy tells us that

DG+ (1= o) (X) < timint [ [Vl + (1= n)oud d
< liminf (/ aVurldu+ [ = n)Tuldn+ [ \uk—vmvmdu).
k—oo X X X

Now using 0 <7 < 1 and ug, — vp — u — v in L'(X) we obtain the required inequality. O
We now establish some elementary properties of || Dul|.
Lemma 3.4. Let U and V' be two open subsets of X. If u € BV (X), then
1. |Dul(0) =0,
2. |Dul|(U) < [|Dul|(V) if U CV,
3. | Du||(U,; Us) = >, |1Dul|(U;) if {Us}i is a pairwise disjoint subfamily of open subsets of X.
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Proof. We will only prove the third property here, as the other two are quite direct consequences
of the definition of || Dul|. Since any function f € F(|J; U;) has restrictions u; = f|y, € F(U;) with
fU'Ui IVfldu =3 Jy, |Vusl dp, it follows that

1Dul(Jv) = Y 1Dl (T

In the above we also used the fact that as f gets closer to u in the L'(|J; U;) sense, u; gets closer
to u in the L!(U;) sense.

To prove the reverse inequality, for € > 0 we can choose locally Lipschitz continuous u; € F(U;)
for each i such that

/ lu — ;| dp < 2772
U;

and
/ |Vui| dp < || Dul|(U;) + 27 2.

(3

Now the function f. = >, u;1y, is in F(|J, U;) because the U; are pairwise disjoint open sets, and
£ is local. Therefore
€
u=fldp <3 [ u-wldu<

and

93
[, VA0 =32 [ [Vuldu < 5+ 37105100

i

From the first of the above two inequalities it follows that lim._, g+ f. = u in L' (U, Us), and therefore

N €
1Dull(JUr) < limint (5 +Z|!Duu<v;->> = Y 1Dul ), 0
We use the above definition of ||[Dul|| on open sets to consider the following Caratheodory

construction.

Definition 3.5. For A C X, we set
|Dul|*(A) := inf{||Dul|(O) : O is an open subset of X, A C O}.

By the second property listed in the above lemma, we note that if A is an open subset of X,
then || Dul|*(A) = ||Dul|(A). With this observation, we re-name || Du||*(A) as ||Dul||(A) even when
A is not open.

We end this section by proving that ||Du||, as constructed above, is a Radon measure on X.
The idea of the proof is from [72]. The principal tool used in the proof is the following lemma due
to De Giorgi and Letta [26, Theorem 5.1], see also [7, Theorem 1.53].

Lemma 3.6 ( [26, Theorem 5.1)). If v is a non-negative function on the class of all open subsets
of X such that for open sets Uy, Uy

1. v(0) =0,
2. if Uy C Uy then v(Uy) < v(Us),
3. v(U UU,) < v(Uy) +v(Us),

12



4. if Uy NUy is empty then v(Uy U Us) = v(Uy) 4+ v(Ua),
5. v(Uy) = sup{v(V) : V is bounded and open in X with V C U }.
Then the Carathéodory extension of v to all subsets of X is a Borel regular outer measure on X.

Theorem 3.7. If f € BV(X), then ||Df|| is a Radon outer measure on X and the restriction of
|Df]| to the Borel sigma algebra is a Radon measure which is the weak limit of || Dugl|| for some
sequence uy, of locally Lipschitz functions in L'(X) such that u, — f in L'(X).

Proof. For simplicity of notation we will assume that X is itself bounded. Thanks to the lemma
of De Giorgi and Letta (Lemma 3.6), it suffices to verify that || Dul| satisfies the five conditions set
forth in Lemma 3.6. By Lemma 3.4, we know that ||Du|| satisfies Conditions 1, 2 and 4. Thus it
suffices for us to verify Condition 3 and Condition 5. We will first show the validity of Condition 5,
and use it (or rather, its proof) to show that Condition 3 holds. We will do so for bounded open
subsets of X. A simple modification (by truncating Us by balls) would complete the proof for
unbounded sets and we leave this part of the extension to the interested reader.

Proof of Condition 5: From the monotonicity condition 2, it suffices to prove that
IDfII(U) < sup{||Df]|(V) : V is open in X,V is a compact subset of U}.

For § > 0 we set
Us={zxeU : dist(z, X \U) > d}.

For 0 < 61 < 82 < diam(U)/2, let V = Us, and W = U \ Us,. Then V and W are open subsets of
U, and the closure of V' is a compact subset of U (recall that we assume from Assumption 2.7 that
X is complete, and hence as p is doubling with respect to d¢ we know that closed and bounded
subsets of X are compact). Note also that U = V U W and that OV N OW is empty. Thus we
can find a Lipschitz function n on U that can be used as a “needle and thread” to stitch Sobolev
functions on V' to Sobolev functions on W to obtain a Sobolev function on U as follows: take n
with0<n<lonU,n=1on V\W =Us,,n=00n W\V =U\Us,, and

Lipn < 1yaw.

2
02 — 01

Now, for v € F(V) and w € F(W) we set u = nv+ (1 —n)w. As we have the Leibniz rule (see [83]),
we can see that v € F(U) and

2
/ |Vul|du g/ |Vv|d,u—|—/ |Vw|dp + / lv —w|dp. (9)
U 1% W 02 — 01 Jyrw
Furthermore, whenever h € L'(U), we can write h = nh + (1 — n)h to see that
/|u—h|d,u§/|v—h|d,u—|—/ |w — h|dpu. (10)
U \% w

Now, we take v from F(V) such that v, — f in LY(V) and limj—o [i, [Vor|dp = || Df[|(V), and
take wy, € F(W) analogously. We then follow through by stitching together vy and wy into the
function uy as prescribed above. By (10) with h = f, we have that

/|f—uk|dus/|vk—f|du+/ o — fldpi— 0 as & — oo.
U Vv w
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It follows from (9) and the fact [i, ;- [vr — wi|dp — 0 as k — oo that

IDFIU) < 111221-‘/(] [Vug| dp < [[DfI[(V) + [[DFII(W).
Remembering again that the closure of V' is a compact subset of U, we see that
IDfIU) < sup{||Df||(V) : V is open in X,V is compact subset of U} + || Df||(U \ Us,).

So now it suffices to prove that o
lim [[Df|(U\Us) = 0. (11)
d—0+

To prove this, we note first that the above limit exists as |Df||(U \ Us) decreases as § decreases.
We fix a strictly monotone decreasing sequence of real numbers & with limg_,., 6 = 0, and for
k> 2 weset Vi, :=Us,, ., \ Us,,. Observe that each of {Vay}x and {Vag11} is a pairwise disjoint
families open subsets of X

By Lemma 3.4, we know that

Y IDFIVar) = DA Vaw) < IDFIIU) < oo,

k=1 k>1

and

Y IPFI(Vakgr) = DA Varr1) < IDFIITU) < oo

k=1 k>1

It follows that for € > 0 there is some positive integer k. > 2 such that

S IDAIVaR) + Y IDFI(Varsr) < e

k=ke k=ke

Now we stitch together approximations on Vo, to approximations on Vot 1, and from there to Voy, o

and so on. For each k we choose a “stitching function” 7 as a Lipschitz function on Ufi,ig Vj such

that 0 <, <1, with gy =1 on Vi \ Vi_1, nx = 0 on U?;,ig Vi \ Vi, and |Vn,| < Crlyay, .
Next, for each k we can find v, ; € F(V}) such that

—k—j

= fldu <
"de f‘:u—g(

and
/ Vol du < |DFI|(Vi) + 279,
Vi

We now inductively stitch the functions together. To do so, we first fix ¢ € N.
Starting with k = k., we stitch uy ; to ug41; using nx41 = Nk 41 to obtain w; i € F(Vi. UVi41)

so that we have -
ik,

wig — fldp < ———
/‘/kEUVkE+1 ' 1 + Cks‘l'l

and
ke+1

/ Vil di < S [DF(V;) + 21
Vks kas+1 j=ke

14



Suppose now that for some £ € N with £ > k. + 1 we have constructed w;; € F (U?st Vj) such
that

lwi ) — fldp <
L?—ks Vi IZI;E 1+Gj
and
k . .
[ Vuiddn< Y (IDI) +2779).
Uj:kg J j=ke

Then we stitch ugy1; to w;j using nr41 to obtain w; ;41 satisfying inequalities analogous to the
above two. Note that w;x41 = w;x—1 on Vi for & > k. + 2. Thus, in the limit, we obtain a
function w; = limy_00 wi € ]-"(UZO:,CE Vi) satisfying

k —i—j

2 .
i — fldp < E < 21_Z,
/U°° ‘w f’ o= 1+Cj

ji—ke Vi k=k-

[ Velde< 3 DAI0G) + 2 <2
Uitk Vi j=ke

o

From the first of the above two inequalities, we see that w; — f in L'(|J k.

from the second of the above two inequalities we obtain

Vj) as i — oo, and so

D71 Vi) = IDFI(U\ Ts) < limin / Vil dp < e.
j:k;s 1—00 U;.;kg‘/J

The last inequality above tells us that the claim we set out to prove, namely

li DFfI(U\Us) =0.
Jim | Df|(U\T5)

This completes the proof of Condition 5.

Proof of Condition 3: By Condition 5, which was proved above, for each ¢ > 0 we can find
relatively compact open subsets U] € U and U} € Us such that || D f||(U1UU2) < ||Df||(U;UU5)+e.
We then choose a Lipschitz “stitching function” 7 on X such that 0 <7 <1on X, n =1 on Uj,
n=0on X\ U, and

1
V| <
Vil < 7—

1,Yq

For u; € F(U;) and ug € F(Usz), we obtain the stitched function w = nu; + (1 — n)uz and note
that w € F(U; UUS). Observe that we cannot in general have w € F(U; UUs), as w is not defined
in Uy \ (U] UUs) because 1 — 7 is non-vanishing and ugy is not defined there. Then we have

1
/ \Vw\d,ug/ \Vul\d,u—l—/ |Vusg dp + / lur — ue| dp
U{UUé Uy Us C(U1,U{ U1NUs

1U1\U{ .

and

/ !w—f\dué/ rul—f\dw/ s — £ du.
Ul Uy Us
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As before, choosing uy 1, to be the optimal approximating sequence for f on U; and us j, correspond-
ingly for f on Us, we see from the first of the above two inequalities that the stitched sequence wy
approximates f on U] U Uj. Therefore we obtain

k—o0

IDfIU1UTs) < e+ | DfI(UTUT3) < e+ hminf/ [Vwg|dp < |Df[(U1) + ([ Df[[(Uz) +e.
U1UU2

Letting ¢ — 0 now gives the desired Condition 3.

Proof of weak convergence: Consider an optimal sequence for the convergence from Def-
inition 3.2, that is, ug is a sequence of locally Lipschitz functions on X such that up — u
in L'(X) and limy [y [Vug|dp = |[Dul|(X). Then for each open set U C X we have that
|Dul|(U) < liminfy, [;; [Vug|dp. We can choose a subsequence of uy, so that |[Vuy|du has a weak
limit, say v, on X.

Now by weak limits, we have that v(X) = ||Dul/(X) and for open sets U C X for which
v(0U) = 0 we have that v(U) = limy, [;; |Vug|dp > || Dul|(U). Then

[Dul(X\U) = [[Dul[(X) = |[Dul|(U) = v(X\U).

On the other hand, we can approximate X \ U by open sets W; with v(0W;) =0 and X \U C W;,
that is, ||Dul||(X \ U) = lim; ||Dul[(W}); the above then tell us that v(W;) > ||[Du|(W;), and
hence v(X \ U) > ||Dul|(X \ U). Thus we obtain ||Dul[(X \ U) = v(X \ U), and therefore
|Du||(U) = v(U) because ||[Dul|(X) = v(X). Thus we conclude that whenever U C X is an open
set with v(0U) = 0, we have || Du||(U) = v(U). Since every open set can be approximated by open
sets O with v(00) = 0, we have || Dul|| = v. O

Example 3.8. In the context of a doubling metric measure space (X, d, ) supporting a 2-Poincaré
inequality, where the Dirichlet form is given in terms of a Cheeger differential structure (see Ex-
ample 2.3), the construction of BV (X) and ||Df]| is due to M. Miranda [72]. When applied to
Riemannian or sub-Riemannian spaces, it yields the usual notion of variation (see [72]).

Example 3.9. There is a large class of fractal examples [54, 55, 65, 86] with resistance forms
&, a so-called Kusuoka measure u, and a base of open sets O with finite boundaries, such that
lp € BV(X) and ||D1p|| is absolutely continuous with respect to the counting measure on 90.
Among these examples, the most notable are the Sierpinski gasket in harmonic coordinates [31,49,
50, 56,63, 71, 85], fractal quantum graphs [5] and diamond fractals [2, and references therein]. In
particular, on diamond fractals [2] provides explicit formulas for the heat kernel, which allow for
many computations relevant to our paper. On the Sierpinski gasket [85, Proposition 4.14] shows
how to make computations at the dense set of junction points. One might expect that if u € BV (X)
then, following [41,42], Du could be defined as a vector valued Borel measure, however the details
of this construction are outside of the scope of this article. The long term motivation for this type
of analysis comes from stochastic PDEs, see [11,44,51,52,73] and the references therein.

3.2 Co-area formula

The goal of this subsection is to prove a co-area formula that connects the BV energy seminorm of
a BV function with the perimeter measure of its super-level sets.

Definition 3.10. A function u is said to be in BVioc(X) if for each bounded open set U C X there
is a compactly supported Lipschitz function ny on X such that ny =1 on U and ny u € BV (X).
We say that a measurable set E C X is of finite perimeter if 15 € BVioo(X) with | D1g||(X) < oco.
For any Borel set A C X, we denote by P(E, A) := |D1g||(A) the perimeter measure of E.
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Theorem 3.11. The co-area formula holds true, that is, for Borel sets A C X and u € L%OC(X),

1Dul|(A) = /R P({u> s}, A)ds.

Proof. We first prove the formula for open sets A.
Suppose u € BVjoe(X) with ||[Dul|(A) < oco. For s € R let

Es :={x e X : u(z) > s}.

The set Fs is denoted by the abbreviation {u > s} in the statement of the theorem. Consider the

function m : R — R given by
m(t) = || Dul|(A N Ey).

Then m is a monotone decreasing function, and hence is differentiable almost everywhere. Let
t € R such that m’(t) exists. Then

lim | Dul|(AN E; \ Et+h)_

/
t) =
m() h—0+ h

Note that the functions
max{t, min{t + h,u}} —t
h
converge in L'(X) to 1g, as h — 0T. Using the fact that A is open, it follows that

’LLt,h =

o v IDUl[(AN B\ Eygn)
P(By, A) < liminf | Dug | (A) = lim inf . =m/(t).

Note also that by this lower semicontinuity of BV energy, t — P(FEy, A) is a lower semicontinuous
function, and hence is measurable; and as it is non-negative, we can talk about its integral, whether
that integral is finite or not. Therefore, by the fundamental theorem of calculus for monotone
functions,

S, T—00

/P(Et,A) dt < / m/(t)dt < lim (m(s) —m(—7)) = || Dul|(A).
R R

The above in particular tells us that if u € BVj,.(X) then almost all of its superlevel sets E; have
finite perimeter. If u is not a BV function on A, then ||Du||(A) = oo, and hence we also have

/RP(Et,A) dt < ||Dul|(A). (12)

In particular, it also follows that [, P(E;, A)dt < oo if u € BV(X).
We continue to assume that A is open, and prove the reverse of the above inequality. If
Jg P(E;, A)dt = oo, then trivially

1Dul[(A) < /RP(Et,A) dt.

So we may assume without loss of generality that fR P(Ey, A) dt is finite. Note also by the Markovian
property of Dirichlet forms, filtered down to the level of the measure |V f|, we have that

|Dull(4) = lim_[[Dus.-[|(A),
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where u; » = max{—7, min{u, s}}. So without loss of generality we may assume that a < u < b for
some finite a,b € R. For positive integers k we can divide [0, 1] into k equal sub-intervals [t;, t;+1],
i=0,---,k—1with t;;; —t; = 1/k. Then we can find pj; € (¢;,t;41) such that

tit1

P(Ep )< [ P(EA)ds

t;

1
k
We set

U =

|
-

1Emm-‘
1

J

Then as |ux —u| < 1/k on X, we have that uj, — u in L'(A) as k — oo, and so
k 1 1
|Dul|(A) < liminf || Dug||(A) = liminf Y~ = P(E,, ,, A) g/ P(E,, A)ds. (13)
k—oo k—o0 = k ’ 0

Note now that by the proofs of inequalities (12) and (13), if A is an open set then u € BV (A)
if and only if [ P(E}, A)dt is finite.

Finally, we remove the requirement that A be open. By the above comment, it suffices to prove
this for the case that v € BV (X). In this case, the maps A — |[Dul|(A) and A — [, P(E;, A)dt
are both Radon measures on X that agree on open subsets of X (that is, they are equal for open
A). Hence it follows that they agree on Borel subsets of X. This completes the proof of the coarea
formula. O

4 BV, Sobolev and heat semigroup-based Besov classes

Throughout the section, let (X, u, &, dg, F) be a strictly local regular Dirichlet space that satisfies
the general assumptions of Section 2, the doubling property and the 2-Poincaré inequality. We
stress that the 1-Poincaré inequality is not assumed.

4.1 Heat semigroup-based Besov classes

We first turn our attention to the study of Besov classes. In [3], we defined the heat semigroup-based
Besov classes. Our basic definition of the Besov seminorm is the following:

Definition 4.1 ( [3]). Let p > 1 and o > 0. For f € LP(X), we define the Besov seminorm:

1/p
e =supe ([ [ mleilsto) = s auternt )
t>0 XJX
and the Besov spaces
BP(X) ={f € L(X) : [[fllpa < +o0}. (14)
The norm on BP%(X) is defined as:

1fllBeax) = [[fllzex) + 1fllp.a-

It is proved in Proposition 4.14 and Corollary 4.16 of [3] that BP%(X) is a Banach space for p > 1
and that it is reflexive for p > 1. In this section, we compare the spaces B»“(X) to more classical
notions of Besov classes that have previously been considered in the metric setting.
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We recall the following definition from [34]. For 0 < a < 00, 1 < p < 0o and p < ¢ < o0, let
By ,(X) be the collection of functions u € LP(X) for which, if ¢ < oo

» a/p La
lull Bg , (x) = (/ </ /Bm tpu w))!) d (y)du(:n)) Cit) < 00 (15)

and in the case ¢ = oo

1/p
x)\p
lull g . x X) 7= sup (/ /Bm (B (a.1) dp(y) du(x)) < oo. (16)

Proposition 4.2. For 1 <p < oo and 0 < a < 0o we have
BY*/?(X) = By (X)),
with equivalent seminorms.

Proof. Since p is doubling and supports a 2-Poincaré inequality, we have the Gaussian double
bound (6) for pi(z,y). Hence if u € BP*(X), we then must have

[Jull? Sup/ / uly) —u(w)fp X du(y) dp(x)
pa2 2 t“p/2 p(B(z, V1))
lu(y) — u(z)p e—cd@)?/t
! sup / / - du(y) dp()
Vi>0/ X B Vi t p/2 u(B(z, V1))

u(z) P
Sup// du(y) du(x
Iy KL
_ =1y, 1P
= 0l x.

and from this it follows that BP*/2(X) embeds boundedly into By o (X).
Now we focus on proving the converse embedding. From (2) and (6), we have

tc«%ﬂ/x/x lu(y) — u(@) | pe(z,y) du(y) dp(z)

c / - / Ju(y) — u(z)|P e
< — dp(y) dp(z
ter/? XZ-:Z_:oo Ba2VD\B@2i-vD) (B, V1) (W) dul)

R july) — (@) = p(B(z,2V) )
= tap”/x-z fras B0 ) BT t>> Ay )

e v max iQ ) ap y) B u(‘r)’p z
Stam 2_: {1,2°9} (2'V1) //x2 VG ap,u(B(x,Z"\/z_f)) dp(y) dp(x)

o
D —cd? giap iQ
< C|ul| o (X) Z e~ 2P max{1,2'% }.
1=—00
Since
o0 ) ) o0

Z 6—641 2iap max{l, 2ZQ} < 26—041 2i(ap—|—Q) + Z 2—iap < 00,

i=—o0 ieN i=0
the desired bound follows. O
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4.2 Under the weak Bakry-Emery condition, B4*/2(X) = BV (X)

Recall from Definition 2.1 that u € Fio.(X) if for each ball B in X there is a compactly supported
Lipschitz function ¢ with ¢ = 1 on B such that up € F; in this case we can set |[Vu| = |V (up)| in
B, thanks to the strict locality property of £.

Lemma 4.3. Suppose that the weak Bakry-Emery condition (7) holds. Then foru € FNWH(X),
we have that

1P = ulr) < CVE [ [Vuld

Hence, if u € BV (X), then
1P = ull g (x) < CVE | Dul|(X).

Proof. To see the first part of the claim, we note that for each x € X and s > 0, P u(x) exists,
and so by the fundamental theorem of calculus, for 0 < 7 <t and z € X,

Fru(a) / 5L

Thus for each compactly supported function ¢ € F N L°(X), by the facts that Pu satisfies the
heat equation and that Py is a symmetric operator for each s > 0,

_ / / (x) ds dpu()
_ /T /X AT (0, Pyu)(x) ds
_ /T t /X AT (Pyp,u)(z) ds

t
< [ [ 1Rl Vulduds
T JX

‘ [ e@ipute) - Pru(w)] duto)

t
< IV Pl ) / /X Yl ds dy.

An application of (7) gives

t
— oo ( Vuldsd
\/EusouL /X/| |ds du

t—
:C— oo Vuldu.
— lelim /X IVl dys

' [ ota)iPuata) — Pruta) duto)| <

As the above holds for all compactly supported ¢ € F N L% (X), we obtain
t—1T1

Now by the fact that by the fact that {P;};~0 has an extension as a contraction semigroup to L'(X)
such that Pyu — u as 7 — 07 in LY(X), (see [3, Section 2.2]), we have

1P = ula) < CVE [ [Vuld
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Finally, if u € BV(X), then we can find a sequence uy € F N WhH(X) such that uy — u in
LY(X) and limy o0 [y [Vug| dp = |[Dul|(X). By the contraction property of P; on L'(X), we have

[P — ullprxy < 1Pe(u — )l o xy + 1 Pruk — wellprxy + llue — ullx

< Cllu - ugllgaxy + C Vi /X Wkl dp+ [l — il x)

Letting k£ — oo concludes the proof. O

Note from the results of [69, Theorem 4.1] that if the measure p is doubling and supports a
1-Poincaré inequality, then a measurable set ¥ C X is in the BV class if

1
liminf—/ Plgdu < oo.
t—0+ t JEVI\E

Here E° = |J,cp B(z,¢). Note that by the symmetry and conservativeness of the operator P,
[ pte = teldu= [ 0= Papdu+ [ Papds
X E X\E

=/ 1p(1 - Plg)du+ P1gdu
X X\E

= / (Pilg)1x\gdu +/ Plgpdy = 2/ P1gdp.
X X\E X\E

Therefore,

1
/ PtlEdMS/ PtlEdN:_”PtlE_lE”Ll(X)'
EVO\E X\E 2

Thus if p is doubling and supports a 1-Poincaré inequality, and in addition
sup = [Pl = Lellzicx) < o,
\[ (X)

then E is of finite perimeter. In our framework, those results coming from [69] can not be used,
since we do not assume the 1-Poincaré inequality. Instead we prove the following theorem, which
is the main result of the section.

Theorem 4.4. If the weak Bakry-Emery condition (7) holds, then BYY/2(X) = BV(X) with
comparable seminorms. Moreover, there exist constants ¢,C' > 0 such that for every u € BV (X),

climsup s~ /2 / Ps(lu = u(y))()dp(y) < |[Dul|(X) < Climig]afs‘l/?/ Py(lu —u(y) ) (y)du(y)-
s—0 X s— X

Proof. First we assume that u € BV (X). Then we know that for almost every ¢ € R the set E; is
of finite perimeter, where
Ei={ze X : u(z) >t}

and by the co-area formula for BV functions (see Theorem 3.11),

|Dull(X / D15 (X
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For such ¢, by Lemma 4.3 we know that

1
sup—/ |Ps1p, (x) — 1p,(z)| du(z) < C || D1g, [|(X).
s>0 VS JXx

Now, setting A = {(z,y) € X x X : u(z) < u(y)}, we have for s > 0,

/ / Pa(, 9)luu() — ()] dp(x)dp(y)
X JX

2 / P, ) () — u(y)] dp(x)du(y)

/
),

hS

Il
N

(z,y) dt du(z)dp(y)

bS

(z)
/1 (@)u(y) () La(z,y) ps(z,y) dt du(z)du(y)

[ ®
J

XJX JR
. /R /X Xl — 1, ()] ps (2 y) dpu() dpu(y) dit
_ /R /X Pop, (2)[ - 15, (x)) dpu(z) dt

= 2/ / P1p, (z) du(x) dt.
R JX\E;
Observe that

/ Pl (2) du(x) = / Pulpy () — L, (2)| dya / P gy () — Lp, ()] dp(a).
X\E: X\Eq
Therefore we obtain

/X /X po(,y) lulz) — u(y)| du(x)du(y) <2 /R P, — 15 o dt

An application of Lemma 4.3 now gives

[ | i) @) = utl dute)dute) < 05 [ 1015]1(X) at
whence with the help of the co-area formula we obtain
lull1,1/2 < Cl|Dul|(X),

that is, u € B4/2(X). Thus BV (X) ¢ BY/2(X) boundedly.

Now we show that B»'/2(X) ¢ BV(X). This inclusion holds even when € does not support
a Bakry-Emery curvature condition; only a 2-Poincaré inequality and the doubling condition on p
are needed. Suppose that v € BY1/2(X). Then there is some C' > 0 such that for each ¢ > 0,

/ / P y)|uly) — u(@)| du(y) du(z) < CVE
XJX

By (6), we have a Gaussian lower bound for the heat kernel:
e—cd(zy)*/t

) 2 B )
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Let Co = [[ul|1,1/2- Therefore, setting A, = {(x,y) € X : d(x,y) < e} for some ¢ > 0, we get

—cd )2/
Coviz [ [ ) — ) dut) o)

—cd(:c y)?/t
// C B ) )] dr)iuy)

e/t Ju(y) — u(=)]
// ey d(@uty).

With the choice of € = /¢, we now get
Coe > 5// | dp(x)du(y).

lim inf — //A | du(x)du(y) < CCh < . (17)

It follows that

e—0t €

Now an argument as in the second half of the proof of [69, Theorem 3.1] tells us that u € BV (X). We
point out here that although Theorem 3.1 in [69] assumes that X supports a 1-Poincaré inequality,
the second part of the proof there does not need this assumption. In fact, the argument using
discrete convolution there is valid also in our setting. It is this second part of the proof that we
referred to above. We then obtain

1Dulx) < timint > [ =0 Gyt < e =
e—0t € Ac

Remark 4.5. As a byproduct of this proof, we also obtain that there exists a constant C' > 0 such

that for every u € BV (X),

sup / /A |d pl@)duly) < limint — / /A 'd p()dpay)

because both sides are comparable to |Du||(X). Indeed, the fact that ||Du|(X) is dominated by
the right hand side is directly from Theorem 4.4, which, together with Proposition 4.2 (the metric
characterization of Besov spaces), implies that the left hand side can be bounded by || Dul|(X). This
property of the metric measure space (X,d, ) can be viewed as an interesting consequence of the
weak Bakry—Emery estimate.

Remark 4.6. Another application of Proposition 4.2 is the following. It is in general not true
that if ||Dul|(X) = 0 then u is constant almost everywhere in X, even if X is connected. Should
X support a 1-Poincaré inequality, it follows immediately that if ||Dul||(X) = 0 then u is constant.
We can use the above proposition to show that even if we do not have 1-Poincaré inequality, if X
supports the Bakry—Emery curvature condition (7), then

lu@) —uw) , - D
wp [ ) dute) = Dl (),

and hence if || Dul[(X) = 0 then u is constant.
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4.3 Sets of finite perimeter

We introduce some notions from the paper [6] of Ambrosio, Miranda and Pallara. Given A C X
we set

T w(Bi) .
H(A) = El_1>1r(r)1+ mf{ : rad(By) AcC LZJBZ-, and Vi, rad(B;) < 6}.
It is known, see [59, Proposition 6.3], even without the assumption that X supports a 2-Poincaré
inequality, that if H(OF) < oo, then E is of finite perimeter.

Now let £ C X be a set of finite perimeter and define the measure-theoretic boundary by

g BENNE) L p(Blar)\ )
amE‘{ € Xt = By T B ) >0}'

For a € (0,1/2), define also

ey [a(Br)NE) p(Ban)\B))
aaE‘{ € Xt { W(B@.r) (B }2 }

If X supports a 1-Poincaré inequality then, by the results of [6, Theorem 4.4], there is a number
v € (0,1/2] such that H(9,, E\OyE) = 0, where v depends solely on the doubling and the 1-Poincaré
constants. The same result also tells us that if F is of finite perimeter then H (0, F) ~ P(E, X).

We are not assuming X supports a 1-Poincaré inequality, but only that u is doubling and X
supports a 2-Poincaré inequality. In this setting we instead consider for 7o > 0 and 0 < o < 1/2
the quantity

p(B(z,r) N E) p(B(x,r)\ E)
u(B(x,r) ~ p(B(z,r))

Observe that 0 E = Uy o1 Upcrg<1 9o (£) and the union can be made countable by taking o
and rg to be rational numbers.

GQOE:{xEX:min{ }>afora110<r§7‘0}.

Proposition 4.7. Suppose that E C X with ”].E”Bl,l/Z(X) < o0o. Then forallrg >0 and0 < a < 1,

C

H(OOE) < = P(E, X).
(6%

Consequently, H(0oE) < € P(E, X) and H|s,,p is a o-finite measure.
Proof. Examining the proof of Theorem 4.4 we see that even without the Bakry—Emery condi-

tion (7), if 1z € BYY/2(X) then 15 € BV(X). By the definition of BYY/2(X), we know that

2‘55% /X /X P, )1 (x) — 15(y)| du(z) du(y) < C P(E, X).

Fix t < (r9/3)%. Let {B;}; be a maximal /t-separated covering of 97°F such that the balls 5B;
have a bounded overlap (see Section 2.2). Then by the doubling property of x4 and by the Gaussian
lower bound for p;(x,y) in (5),

CVtP(E,X) > Z/_OE/_\Ept(:v,y) du(x) dp(y)

e—C’

-1
= ¢ ZZ: /BmE /Bi\E w(B;) dulw) du(y)
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1(B;)?

In the above computations, C' stands for various generic constants that depend only on the doubling
and Poincaré constants of the space, and the value of C' could change at each occurrence. Note
that at least one of u(B;NE)/u(B;) and u(B; \ E)/u(B;) is larger than 1/2. Now by the definition
of 00 F we obtain

>0ty pBiN E) p(Bi \ E) n(Bi)

C’P(E,X)ZaZL\Zi).

Since v/t is the radius of each B;, we get

1(Bi)
Vi

> aH(OE).

t—0t

CPE,X)> alimsupz

Recall that

omE= | U orE.

a€(0,1)NQ ro€(0,1)NQ

This yields that H|s,, g is a o-finite measure.
If 0 < ry <rg, then
ONE CO}E C OpE.

Observing that
0.E= |J orE= J OrE,

0<ro<l1 (0,1)NQ

we now see by the continuity of measure that if the sets 0.0 FE are Borel sets, then

C
H(0E) < — P(E, X).
o
To see that 0J0F is a Borel set we argue as follows. Recall that we assume p to be Borel regular.
Therefore, given a p-measurable set £ and r > 0, the function
x = pu(B(z,r)NE)

is lower semicontinuous, and so the map

w(B(z,r) N E)

ep() =
' w(B(z,7))
is a Borel function. Hence the function ®g ,, = inf,cqn(o,r] YE, 15 also a Borel function, and
hence
O E={re X : Ppy(z) >atnN{zr e X : &x\p,(7) > a}
is a Borel set. U

Proposition 4.7 gives us a way to control, from above, the H-measure of 0,, F for a set E of
finite perimeter. This should be contrasted with the following lower bound on the co-dimension 1
Minkowski measure of OF. For a set A C X, the co-dimension 1-Minkowski measure of A is defined
to be

M_i(A) := liminf M(AE),

e—0t 5

where A. = J,c4 B(2,¢).
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Proposition 4.8. Assuming the weak Bakry—Emery condition (7) we have for a set E of finite
perimeter that

P(E,X) < CM_4(9F)

Proof. Observe that [1g(x) — 1g(y)| is bounded by 1 and is zero if y € B(x,t) and « is not in the
2t neighborhood (OF)y; of the boundary. Using the doubling property of u we immediately deduce

. 1p(z) — 15(y)|
htn;légf/ /B(m (B 1) dp(y) dp(r) < CM_1(9F).

Now recall from Remark 4.5 that under the weak Bakry—Emery assumption the above limit
inferior is comparable to the supremum, which is the B ~ horm defined in (16), because both are
comparable to the perimeter measure P(E, X) = HDlE( )|| O

4.4 Under the strong Bakry-Emery condition, B?/2(X) = Wr(X) for p > 1

In this section we compare the Besov and Sobolev seminorms for p > 1. The case p = 1 was studied
in detail in Section 4.2. Our main theorem in this section is the following:

Theorem 4.9. Suppose that the strong Bakry-E'mery condition (8) holds. Then, for every p > 1,
BP1/2(X) = WhP(X) with comparable norms.

We will divide the proof of Theorem 4.9 in two parts. In the first part, Theorem 4.11, we prove
that BP1/2(X) ¢ WP(X). As we will see, this inclusion does not require the strong Bakry-Emery
condition (8). In the second part, Theorem 4.17 we will prove the inclusion W'?(X) c BP1/2(X)
and, to this end, will use the strong Bakry—Emery condition. Before turning to the proof, we point
out the following corollary regarding the Riesz transform.

Corollary 4.10. Suppose that the strong Bakry-E'mery condition (8) holds. Let p > 1. Then for
any f € BPY/2(X)N F,
1 llpaj2 = IV =Lfllo(x

Consequently, BP1/2(X) = ﬁ;ﬂ, where ﬁp/ is the domain of the operator /—L in LP(X) (see [3,
Section 4.6] for the definition).

Proof. In view of Theorem 4.9, we have that for any f € BP1/2 (X)

£ llp,172 = 1V Flllze )
On the other hand, it follows from [9, Theorem 1.4] that for any f € El/ 2
IV=Lfllox) = NV £l 2o (x)
We conclude the proof by combining the above two facts. O
4.41 BPY2(X)cWhr(X)
Theorem 4.11. Let p > 1. There exists a constant C > 0 such that for every u € Bp’l/z(X),

IVulllzr(xy < Cllullp,2-
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Proof. Let u € BP'/2(X). Then from Proposition 4.2, we see that for each & > 0,

1 u(z) — u(y)”
= L, G ) dute) <l < o

Fix € > 0. As in the proof of Lemma 2.11, let { B = B(a£,¢)}; be a maximal e-separated covering
and {¢5}; be a (C/¢e)-Lipschitz partition of unity subordinated to this covering. We also set

- E €
Ue ‘= uBf @i -
T

Then w, is locally Lipschitz and hence is in Fioc(X). Indeed, for z,y € Bj- we see that

us(2) —us(y) < Y lup — up:llef (@) — @5 (y)]

i:2B5N2B5 £0

1/p
C’d(:z: Y) » .
< d& (f o ) P ) )) .

i 2B502B57$@

1/p
( ][ ][ — u(@)P duly) dum)
Z2BEO2BE7$@ i/ B(x,2)

1/p
uly) — u(@)l” )
=€ <]£B§- ][B(:Ly?&) ep At it )> 7

and so by the bounded overlap property of the collection 2B]€-,

/XIVusI”dué Z/ Vue|P dp
<CZ/BJHE 1) = O ) o

<0/][x2€ P =D 4y)

Therefore, by Lemma 2.5, we see that

|Vue| < =

lu(z) —u(y)l
<C B~ B duly) dulz) < C [lull?
Ao H(B(z,¢)) L2
Hence we have
sup [ V0P dpe < C ] (18)

In a similar manner, we can also show that

) ) [ ) — )l .
[ ete) —u@)P dpte) < 02 [ Y duty) dua) < O fulf,,

that is, ue — uin LP(X) as € — 0.

Take a sequence &, — 07. From (18) and the reflexivity of LP(X), there exists a subsequence of
{Vu,, }» that is weakly convergent in LP(X). By Mazur’s lemma, a sequence of convex combinations
of u., converges in the norm of WP(X). Since it converges to u in LP(X), we conclude that
u € WHP(X) and hence

¥l < Cllull - =
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4.4.2 WW(X)c BPY/2(X)

We now turn to the proof of the upper bound for the Besov seminorm in terms of the Sobolev
seminorm and assume that the strong Bakry—Emery condition (8) holds.

A first important corollary of the strong Bakry—Emery estimate is the following Hamilton’s type
gradient estimate for the heat kernel. This type of estimate is well-known on Riemannian manifolds
with non-negative Ricci curvature (see for instance [64]), but is new in our general framework.

Theorem 4.12. There exists a constant C' > 0 such that for everyt >0, z,y € X,

d(z,y)? ) '

C
Vo) < (1495

Proof. The proof proceeds in two steps.
Step 1: We first collect a gradient bound for the heat kernel. Observe that (8) implies a weaker
L? version as follows
[VPul? < CP(|[Vul?),

and hence the following pointwise heat kernel gradient bound (see [9, Lemma 3.3]) holds:

e—cd(zy)?/t
f b\ (B D)u(By. VD)

In particular, we note that |Vyp(z,-)| € LP(X) for every p > 1.

|Vapi(z,y)| <

Step 2: In the second step, we prove a reverse log-Sobolev inequality for the heat kernel. Let
7, >0 and = € X be fixed. We denote u = p(x,-) + . One has, from the chain rule for strictly
local forms [32, Lemma 3.2.5],

Pi(ulnu) — PtulnPtu—/ Os (Ps(Pi—suln Py_gu)) ds
t
= / LPs(P;_suln P,_gu) — Ps(LP,—suln P,_gu) — Ps(LP,_su)ds
0
t
= / Py(L(P—suln P,_su)) — Ps(LP;—suln P,_su) — Py(LP;_su)ds
0

t
= / Py [L(P—suln P,_4u)) — LP,_suln P,_yu — LP,_qu] ds
0

2
/O 2P, <W§%5|> ds, (19)

where the above computations may be justified by using the Gaussian heat kernel estimates for the
heat kernel and the Gaussian upper bound for the gradient of the heat kernel obtained in Step 1.
In particular, we point out that the commutation LP;(P;_suln Pi_su) = Ps(L(P;—suln P,_gu)) is
justified by noting that P;_guln P,_su — eln¢ is in the domain of L in L?(X,u). Here, L is the
infinitesimal generator (the Laplacian operator) associated with &.

Using the Cauchy-Schwarz inequality in the form P (f;) > (];; ) and then the strong Bakry-

Emery estimate, we obtain from (19)

t Ps P—s 2
P(ulnu) — Pauln Pu > 2/ Mds

0 Ps(P;—su)
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Coming back to the definition of u, noting that Pyp,(z, ) = pry+(z, ) and applying the previous
inequality with ¢ = 7, we may set M;(x) = sup,cx pi(z,y) and bound the P(ulnu) term by
(Pyu) In(M; + €) to deduce

9, g ) + o) < S [ (D2 ),

By letting € — 0 and using the Gaussian heat kernel estimate, one concludes

C d(z,y)?
]Vylnpgt(x,y)\Q < " <1 + ( ty) >

Our desired inequality follows by rescaling ¢, adjusting the constant C' and using the symmetry of
pi(x,y) in z and y. O

Corollary 4.13. Let p > 1. There exists a constant C' > 0 such that for every u € LP(X),
C
V Pu| < —(Py|ulP)V/P.
|V Pl < \/E( t|ul”)
Proof. Let p > 1, q be the conjugate exponent and u € LP(X). One has from Holder’s inequality

IV Pul(z) < /X IV api(, ) uy) [dua(y)

|prt($,y)|q >1/q 1
< ——d Py|ulP)Y/P
N ( x pelx,y)i/p #lv) (Bilul")

1/q
< ( /. \vxlnmx,y)\qptm,y)du(y)) (Pluf?) 7.

The proof follows then from Theorem 4.12 and the Gaussian upper bound for the heat kernel. [
Note that by integrating over X the previous proposition immediately yields:

Lemma 4.14. Let p > 1. There exists a constant C > 0 such that for every u € LP(X)

C
H|VPtU|||2Lp(X) < TH,LLH%P(X)'
From this estimate we obtain the following result.

Lemma 4.15. Let p > 1. There exists a constant C' > 0 such that for every u € LP(X) N F with
|Vu| € LP(X)
[P = ull o (xy < CVE|[Vull| o)

Proof. With the previous lemma in hand, the proof is similar to the one in Lemma 4.3, with ¢
in 7N LX) and compactly supported, where p~! 4+ ¢~! = 1. As compactly supported functions
in F N LX) form a dense subclass of LI(X) we recover the LP-norm of P,u — u by taking the
supremum over all such ¢ with [y [p|?dp < 1. O
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Lemma 4.16. Let p > 1, then for every u € LP(X) N F with |Vu| € LP(X)

1/p
( | mu(:c)—u<y>|ppt<x,y>du<w>du<y>> < OVIIVulll o).
X JX

Proof. Let u € LP(X) and ¢t > 0 be fixed in the above argument. By an application of Fubini’s
theorem we have

</X /X | Pru(x) — u(y)|ppt($,y)du(x)du(y)> r _ </X Py Prulx) u|p)($)dﬂ($)> 1/p.

The main idea now is to adapt the proof of [10, Theorem 6.2]. As above, let ¢ be the conjugate
of p. Let x € X be fixed. Let g be a function in L>°(X) such that P(|g|?)(z) < 1.
We first note that from the chain rule:

05 [Ps((Pr—su)(Pr—s9)) ()]
=LP,((Pr—su)(Pi—s9))(2) — Po(LP—su)(Pi—sg))(x) — Ps((Pr—su)(LPi—s9))(x)
=Py(L(Pi—su)(Pr—s9))(x) — Ps((LPi—su)(Pi—s9))(x) — Ps((Pi—su)(LPi—sg))(z)
—2P,(T(P—su, Pi—s9)).

~—_ ~—

Therefore we have
P,((u — Pau(z))g)(z) = Pi(ug)(z) — Pou(r)Pg(z)

/ 0y [Py ((Prst)(Prs))(2)] d
2/0 Py (T(Py—su, Pi—sg)) (z)ds
< 2/0 Py (VP stV Pr_og))) (x)ds
<2 [ PUIVPal?) 7 @P. (VPagl) (@)

Now from the strong Bakry-Emery estimate and Holder’s inequality we have
Py ([VP—qul?)'/? () < OP, (Pes(|Vul?)) P (2) = CR(|Vul?) /P ().
On the other hand, Corollary 4.13 gives

C
|VPt—sg|q < mﬂ—sﬂmq)-

Thus,
C

P, (VP ygl) (2) < %erg\q)“q(m) S el

=
One concludes

Py((u— Puu(z))g)(x) < CVEP(|VulP) /P (x).
Thus by LP — L7 duality in (X, pi(z,y)u(dy)), one concludes

Py(|ju— Pu(a)]?) ()7 < CVEP(|Vul?) /7 (x)

and finishes the proof by integration over X. O
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We are finally in a position to prove the inclusion of the Sobolev space W!P(X) into the Besov
class BP1/2 which in turn completes the proof of Theorem 4.9, which is the main result of this
section.

Theorem 4.17. Let p > 1. There exists a constant C > 0 such that for every u € WhHP(X),
[ellp.1/2 < CllIVulllzrx)-

Proof. We first assume u € LP(X) N F with |Vu| € LP(X). One has

(/X /X [ufz) - u(y)‘ppt(x’y)dﬂ(x)du(y)> 1/p

1/p

(/[ ru<x>—Pm(z)\ppt(x,y)du(w)dmw)l/p+( [ [ 1Pte) = atw) P pyinaratn)

1/p
< 1Pt~ ull o + ( /X [ 1Pt - u<y>|Ppt<x,y>du<x>du<y>)
< 2CVH||Vull 1o (x)s

where in the last step we applied Lemma 4.15 to the first term and Lemma 4.16 to the second term.
Thus
[ullp,1/2 < CHIVulllLex)-

Now let v € WP(X) and choose an increasing sequence of functions ¢, € C°°([0,00)) such that
¢n =1 on [0,n], ¢, = 0 outside [0,2n], and |¢,| < 2. Let zg € X. If hy(x) = ¢n(d(z0,2)) then
hou € F, hy /1T on X as n — oo, and [||V(hyu)l|[zr(x) = [I[Vullle(x). Taking the limit in the
inequality

atellpze < CUIT (at)llo )

yields the result. O

4.5 Continuity of F; in the Besov spaces and critical exponents

We first note the following continuity property of P; in the Besov spaces.

Proposition 4.18. Suppose that the strong Bakry—Emery condition (8) holds. Let p > 1. There
exists a constant Cp, > 0 such that for every f € LP(X, ) and t > 0

C,
1P fllpij2 < tl—/z;HfHLP(X)-
Proof. This is a consequence of Lemma 4.14 and Theorem 4.17. O

Remark 4.19. The above result is true without the strong Bakry—Emery condition for 1 < p < 2
on very general Dirichlet spaces, see [3, Theorem 5.1].

For p > 1, as in [3], we define the LP Besov density critical exponent aj;(X) and triviality critical

exponent 04# (X) as follows:

o, (X) = sup{a > 0 : BP*(X) is dense in LP(X)},

#

7(X) =sup{a >0 : B”%(X) contains non-constant functions}.

(07
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Theorem 4.20. Suppose that the weak Bakry—Emery condition (7) holds, then for 1 <p <2,

ay(X) = af(X) =-.

Furthermore, if the strong Bakry—Emery condition (8) holds, then for every p > 2,
1
(X) = aff(X) = 5.

Proof. Assume that the weak Bakry—Emery condition (7) holds and begin with the case p = 1. Let
f € BLY*(X) with a > 1/2. Since B"*(X) ¢ BLY/2(X) = BV(X), we deduce that f is a BV
function. Now since f € B%*(X), one has for every ¢t > 0,

/ / P y)|f (@) — F@)ldp(@)duty) < 1]l a.
X JX

*
Oép

By using the gaussian heat kernel lower bound we obtain

. |f(y) = f(2)]
1 f— ————=d d =0
im inf - // u(B2) p(x)dp(y) =0,
so || Df]|(X) = 0, and from Remark 4.6 one gets that f is constant. It follows that oﬁfé(X) <1/2.
On the other hand, from Corollary 4.8 in [3], BY/2(X) is dense in L'(X), so o’ (X) = oﬂfﬁ(X) =1
From Proposition 5.6 in [3], one has:

1. Both p+— aj(X) and p — a#(X) are non-increasing;

2. For 1 < p <2 we have af(X) > ap(X) > 1.

Therefore, for 1 < p < 2 we also have o (X) = a#(X) = %
Now let p > 2 and assume the strong Bakry—Emery condition (8). In that case, according
to Proposition 4.18, for every f € LP(X) and t > 0 one has Pif € BPY/2(X). Thus, B?!/2(X)

is dense in LP(X) by strong continuity of the semigroup P; in LP(X). Hence o(X) > 1/2.

P
Using again the fact that both p +— a;(X) and p a# (X) are non-increasing and moreover that
as(X) = a#(X) = 1, one concludes that for every p > 2, ap(X) = off (X) = 1. O

5 Sobolev and isoperimetric inequalities

Combining the conclusions in this paper with the results in [3, Section 6], we immediately obtain
the following results that generalize the Sobolev embedding theorems from the classical Euclidean
setting (see for example [70]) and metric upper gradient setting (see for example [39] and [37]) to
the setting of Dirichlet forms and BV functions.

The following proposition is a weak-type version of the standard Sobolev embedding theorem. It
gives weak-L? control of the Besov function f, with ¢ the Sobolev conjugate of p, and can therefore
be used to control the L*-norm of f in terms of the Besov norm of f when 1 < s < pQ/(Q — p).

Proposition 5.1. If the volume growth condition p(B(x,r)) > C1r@, r > 0, is satisfied for some
Q > 0 then one has the following weak type Besov space embedding. Let 0 < < Q and 1 <p < 3.
Then there ewists a constant C), s > 0 such that for every f € Bp"s/z(X),

1 1 1/p
sup s ({z € X, f(2)] 2 s})7 < Cpgsup ——o ( // |F ()= FW)IP du() du(y)>
520 r>0 T {(zy)eXxX|d(z,y)<r}
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where q = Qp_pé. Furthermore, for every 0 < § < @Q, there exists a constant Ciso s such that for

every measurable E C X, u(E) < 400,
Q=9 1
WE) @ < Ciogsup g (n®p) {(z,y) € Ex B2 d(w,y) <1}
r>

Proof. From the heat kernel upper bound (5), the volume growth condition u(B(z,r)) > C1r?,
r > 0, implies the ultracontractive estimate

C
pe(x,y) < e (20)

We are therefore in the framework of Theorem 6.1 in [3], from which one obtains that there is a
constant Cp, 5 > 0 such that for every f € BP%/2(X),

1
sup sp({z € X o |f(@)] = s})7 < Cosllflps2

where ¢ = Qp_%(;. The conclusion follows from Theorem 4.2. O

In Euclidean space there is a standard method for using the above weak-type Sobolev embedding
to obtain the usual Sobolev embedding theorem, in which the weak-LY control of f is replaced by
the strong-L? control. However this approach uses locality properties which need not be valid for
the Besov seminorm | - ||, o. We direct the interested reader to [37] for more details on this topic.

The one circumstance we have investigated in which the Besov seminorm has a locality property
arose in Theorem 4.4, see also Remark 4.5, for the space BY1/2 under the assumption of a weak
Bakry—Emery estimate, in which case we had B'/2 = B V(X). This locality property lets us obtain
a standard Sobolev embedding in which the L? norm is controlled by the BV norm. We may view
this as an extension of known results on Riemannian manifolds with non-negative Ricci curvature
(see Theorem 8.4 in [66]) or on Carnot groups (see [88]) to our metric measure Dirichlet setting
under the further hypothesis that there is a weak Bakry-Emery estimate.

Theorem 5.2. Suppose that the weak Bakry-E'mery estimate (7) is satisfied. If the volume growth
condition u(B(x,r)) > C1r@, r > 0, is satisfied for some Q > 0, then there exists a constant Cy > 0
such that for every f € BV (X),

[ fllaxy < Col|DII(X)

where ¢ = % In particular, if ¥ is a set with finite perimeter in X, then
Q-1
WE) @ < C,P(E,X).

Proof. Observe that as in the above proof, the heat kernel satisfies the ultracontractive esti-
mate (20). From Theorem 4.4 we have

£z < Climint ™2 [ P(1f = £@)D0)duty).
s— X

This verifies a condition denoted by (P 1/2) in Definition 6.7 of [3]), putting us in the framework
of [3, Theorem 6.9] with p =1, = 1/2 and 8 = Q/2. Notice also that || f||;1/2 < C||Df|(X) from
Theorem 4.4, so we have

[fllzacxy < Cllflliaye < Col[DFI(X),

where g = % Taking f = 1g then yields
Q-1
uw(E) @ < CoP(E, X). O

33



References

1]
2]

[3]

[10]

[11]

[12]

[13]

[14]

Robert A. Adams and John J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied
Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, 2003. 2

P. Alonso-Ruiz. Explicit formulas for heat kernels on diamond fractals. Communications in
Mathematical Physics, 364(3):1305-1326, Dec 2018. 16

P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam, and A. Teplyaev. Besov
class via heat semigroup on Dirichlet spaces I: Sobolev type inequalities. preprint, 2018. 2, 3,
9, 18, 20, 26, 31, 32, 33

P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam, and A. Teplyaev. Besov
class via heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel
estimates. preprint, 2018. 3

Patricia Alonso-Ruiz, Daniel J. Kelleher, and Alexander Teplyaev. Energy and Laplacian on
Hanoi-type fractal quantum graphs. J. Phys. A, 49(16):165206, 36, 2016. 5, 16

L. Ambrosio, M. Miranda, Jr., and D. Pallara. Special functions of bounded variation in
doubling metric measure spaces. In Calculus of variations: topics from the mathematical
heritage of E. De Giorgi, volume 14 of Quad. Mat., pages 1-45. Dept. Math., Seconda Univ.
Napoli, Caserta, 2004. 2, 24

Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free
discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford Uni-
versity Press, New York, 2000. 12

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Metric measure spaces with Riemannian
Ricci curvature bounded from below. Duke Math. J., 163(7):1405-1490, 2014. 7

Pascal Auscher, Thierry Coulhon, Xuan Thinh Duong, and Steve Hofmann. Riesz transform
on manifolds and heat kernel regularity. Ann. Sci. Ecole Norm. Sup. (4), 37(6):911-957, 2004.
26, 28

Dominique Bakry, Fabrice Baudoin, Michel Bonnefont, and Djalil Chafai. On gradient bounds
for the heat kernel on the Heisenberg group. J. Funct. Anal., 255(8):1905-1938, 2008. 10, 30
Viorel Barbu and Michael Rockner. Stochastic variational inequalities and applications to the
total variation flow perturbed by linear multiplicative noise. Archive for Rational Mechanics
and Analysis, 209(3):797-834, Sep 2013. 16

Fabrice Baudoin and Michel Bonnefont. Log-Sobolev inequalities for subelliptic operators
satisfying a generalized curvature dimension inequality. J. Funct. Anal., 262(6):2646-2676,
2012. 7, 10

Fabrice Baudoin and Michel Bonnefont. Reverse Poincaré inequalities, isoperimetry, and Riesz
transforms in Carnot groups. Nonlinear Anal., 131:48-59, 2016. 10

Fabrice Baudoin, Michel Bonnefont, and Nicola Garofalo. A sub-Riemannian curvature-
dimension inequality, volume doubling property and the Poincaré inequality. Math. Ann.,
358(3-4):833-860, 2014. 10

Fabrice Baudoin and Nicola Garofalo. Curvature-dimension inequalities and Ricci lower bounds
for sub-Riemannian manifolds with transverse symmetries. J. Fur. Math. Soc. (JEMS),
19(1):151-219, 2017. 10

Fabrice Baudoin and Daniel J Kelleher. Differential one-forms on Dirichlet spaces and Bakry-
Emery estimates on metric graphs. arXiv:1604.02520, to apear in Trans. Amer. Math. Soc.,
pages 1-42, 2017. 10

34



[17]

[18]
[19]

[20]

22]
[23]

[24]

Fabrice Baudoin and Bumsik Kim. Sobolev, Poincaré, and isoperimetric inequalities for subel-
liptic diffusion operators satisfying a generalized curvature dimension inequality. Rev. Mat.
Iberoam., 30(1):109-131, 2014. 7, 10

Colin Bennett and Robert Sharpley. Interpolation of operators, volume 129 of Pure and Applied
Mathematics. Academic Press, Inc., Boston, MA, 1988. 9

A. Beurling and J. Deny. Espaces de Dirichlet. I. Le cas élémentaire. Acta Math., 99:203-224,
1958. 4

Marco Biroli and Umberto Mosco. Sobolev and isoperimetric inequalities for Dirichlet forms
on homogeneous spaces. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9)
Mat. Appl., 6(1):37-44, 1995. 4

Marco Biroli and Umberto Mosco. Sobolev inequalities on homogeneous spaces. Poten-
tial Anal., 4(4):311-324, 1995. Potential theory and degenerate partial differential operators
(Parma). 4, 5

Marco Biroli and Umberto Mosco. Kato space for Dirichlet forms. Potential Anal., 10(4):327—
345, 1999. 4, 5

Jeff Cheeger. Differentiability of lipschitz functions on metric measure spaces. Geom. Funct.
Anal., 9:428-517, 1999. 2, 4

Zhen-Qing Chen and Masatoshi Fukushima. Symmetric Markov processes, time change, and
boundary theory, volume 35 of London Mathematical Society Monographs Series. Princeton
University Press, Princeton, NJ, 2012. 4

Thierry Coulhon, Renjin Jiang, Pekka Koskela, and Adam Sikora. Gradient estimates for heat
kernels and harmonic functions. arXiv:1703.02152, 2017. 10

E. De Giorgi and G. Letta. Une notion générale de convergence faible pour des fonctions
croissantes d’ensemble. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4(1):61-99, 1977. 12
Simone Di Marino and Marco Squassina. New characterizations of sobolev metric spaces, year
= 2018. Journal of Functional Analysis. 9

Nathaniel Eldredge. Gradient estimates for the subelliptic heat kernel on H-type groups. J.
Funct. Anal., 258(2):504-533, 2010. 10

Matthias Erbar, Kazumasa Kuwada, and Karl-Theodor Sturm. On the equivalence of the
entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces.
Invent. Math., 201(3):993-1071, 2015. 10

Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathe-
matics. American Mathematical Society, Providence, RI, second edition, 2010. 8

Daniel Fontaine, Thomas Smith, and Alexander Teplyaev. Resistance of random Sierpinski
gaskets. In Quantum graphs and their applications, volume 415 of Contemp. Math., pages
121-136. Amer. Math. Soc., Providence, RI, 2006. 5, 16

Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda. Dirichlet forms and symmetric
Markov processes, volume 19 of De Gruyter Studies in Mathematics. Walter de Gruyter &
Co., Berlin, extended edition, 2011. 3, 4, 6, 28

Nicola Garofalo and Duy-Minh Nhieu. Isoperimetric and Sobolev inequalities for Carnot-
Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math.,
49(10):1081-1144, 1996. 8

Amiran Gogatishvili, Pekka Koskela, and Nageswari Shanmugalingam. Interpolation properties
of Besov spaces defined on metric spaces. Math. Nachr., 283(2):215-231, 2010. 3, 19

A. A. Grigor’yan. The heat equation on noncompact Riemannian manifolds. Mat. Sb.,
182(1):55-87, 1991. 9

35



[36]
[37]
[38]

[39]

[40]

[41]

Sebastian Haeseler. Heat kernel estimates and related inequalities on metric graphs, year =
2011. preprint. 7

Piotr Hajt asz and Pekka Koskela. Sobolev met Poincaré. Mem. Amer. Math. Soc.,
145(688):x+101, 2000. 32, 33

Juha Heinonen. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New
York, 2001. 5

Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson. Sobolev
spaces on metric measure spaces, volume 27 of New Mathematical Monographs. Cambridge
University Press, Cambridge, 2015. An approach based on upper gradients. 2, 7, 9, 32
Michael Hinz, Daniel J. Kelleher, and Alexander Teplyaev. Metrics and spectral triples for
Dirichlet and resistance forms. J. Noncommut. Geom., 9(2):359-390, 2015. 5

Michael Hinz, Michael Rockner, and Alexander Teplyaev. Vector analysis for Dirichlet
forms and quasilinear PDE and SPDE on metric measure spaces. Stochastic Process. Appl.,
123(12):4373-4406, 2013. 5, 16

Michael Hinz and Alexander Teplyaev. Dirac and magnetic Schrodinger operators on fractals.
J. Funct. Anal., 265(11):2830-2854, 2013. 5, 16

Michael Hinz and Alexander Teplyaev. Vector analysis on fractals and applications. In Fractal
geometry and dynamical systems in pure and applied mathematics. II. Fractals in applied
mathematics, volume 601 of Contemp. Math., pages 147-163. Amer. Math. Soc., Providence,
RI, 2013. 5

Michael Hinz and Martina Zahle. Semigroups, potential spaces and applications to (S)PDE.
Potential Anal., 36(3):483-515, 2012. 16

Renjin Jiang. The Li-Yau inequality and heat kernels on metric measure spaces. J. Math.
Pures Appl. (9), 104(1):29-57, 2015. 10

A. Jonsson and H. Wallin. A trace theorem for generalized Besov spaces with three indexes. In
Fourier analysis and approximation theory (Proc. Colloq., Budapest, 1976), Vol. I, volume 19
of Collog. Math. Soc. Janos Bolyai, pages 429-449. North-Holland, Amsterdam-New York,
1978. 9

A. Jonsson and H. Wallin. A Whitney extension theorem in L, and Besov spaces. Ann. Inst.
Fourier (Grenoble), 28(1):vi, 139-192, 1978. 9

Naotaka Kajino. Spectral asymptotics for Laplacians on self-similar sets. J. Funct. Anal.,
258(4):1310-1360, 2010. 2

Naotaka Kajino. Heat kernel asymptotics for the measurable Riemannian structure on the
Sierpinski gasket. Potential Anal., 36(1):67-115, 2012. 5, 16

Naotaka Kajino. Analysis and geometry of the measurable Riemannian structure on the
Sierpiriski gasket. In Fractal geometry and dynamical systems in pure and applied mathematics.
1. Fractals in pure mathematics, volume 600 of Contemp. Math., pages 91-133. Amer. Math.
Soc., Providence, RI, 2013. 5, 16

Davar Khoshnevisan, Kunwoo Kim, and Yimin Xiao. Intermittency and multifractality: a
case study via parabolic stochastic PDEs. Ann. Probab., 45(6A):3697-3751, 2017. 16

Davar Khoshnevisan, Kunwoo Kim, and Yimin Xiao. A macroscopic multifractal analysis of
parabolic stochastic PDEs. Comm. Math. Phys., 360(1):307-346, 2018. 16

J. Kigami. Harmonic metric and Dirichlet form on the Sierpinski gasket. In Asymptotic
problems in probability theory: stochastic models and diffusions on fractals (Sanda/Kyoto,
1990), volume 283 of Pitman Res. Notes Math. Ser., pages 201-218. Longman Sci. Tech.,
Harlow, 1993. 5

36



[54]
[55]
[56]
[57]
[58]

[59]

[62]
[63]
[64]
[65]

[66]

[70]

Jun Kigami. Harmonic calculus on p.c.f. self-similar sets. Trans. Amer. Math. Soc., 335(2):721—
755, 1993. 2, 16

Jun Kigami. Analysis on fractals, volume 143 of Cambridge Tracts in Mathematics. Cambridge
University Press, Cambridge, 2001. 2, 5, 16

Jun Kigami. Measurable Riemannian geometry on the Sierpinski gasket: the Kusuoka measure
and the Gaussian heat kernel estimate. Math. Ann., 340(4):781-804, 2008. 5, 16

Jun Kigami. Volume doubling measures and heat kernel estimates on self-similar sets. Mem.
Amer. Math. Soc., 199(932):viii+94, 2009. 2, 5

Jun Kigami. Resistance forms, quasisymmetric maps and heat kernel estimates. Mem. Amer.
Math. Soc., 216(1015):vi+132, 2012. 5

Juha Kinnunen, Riikka Korte, Nageswari Shanmugalingam, and Heli Tuominen. A charac-
terization of Newtonian functions with zero boundary values. Calc. Var. Partial Differential
Equations, 43(3-4):507-528, 2012. 24

Pekka Koskela, Kai Rajala, and Nageswari Shanmugalingam. Lipschitz continuity of Cheeger-
harmonic functions in metric measure spaces. J. Funct. Anal., 202(1):147-173, 2003. 2, 10
Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson. Dirichlet forms, Poincaré
inequalities, and the Sobolev spaces of Korevaar and Schoen. Potential Anal., 21(3):241-262,
2004. 2, 7

Pekka Koskela, Nageswari Shanmugalingam, and Yuan Zhou. Geometry and analysis of Dirich-
let forms (II). J. Funct. Anal., 267(7):2437-2477, 2014. 7

Pekka Koskela and Yuan Zhou. Geometry and analysis of Dirichlet forms. Adv. Math.,
231(5):2755-2801, 2012. 5, 7, 16

Brett L. Kotschwar. Hamilton’s gradient estimate for the heat kernel on complete manifolds.
Proc. Amer. Math. Soc., 135(9):3013-3019, 2007. 28

Shigeo Kusuoka. Dirichlet forms on fractals and products of random matrices. Publ. Res. Inst.
Math. Sci., 25(4):659-680, 1989. 16

Michel Ledoux. Isoperimetry and Gaussian analysis. In Lectures on probability theory and
statistics (Saint-Flour, 199/ ), volume 1648 of Lecture Notes in Math., pages 165-294. Springer,
Berlin, 1996. 33

Daniel Lenz, Peter Stollmann, and Ivan Veseli¢. Generalized eigenfunctions and spectral theory
for strongly local Dirichlet forms. In Spectral theory and analysis, volume 214 of Oper. Theory
Adv. Appl., pages 83-106. Birkhduser/Springer Basel AG, Basel, 2011. 4

John Mackay, Jeremy T. Tyson, and Kevin Wildrick. Modulus and poincaré inequalities on
non-self-similar sierpinski carpets. Geom. Funct. Anal., 23:985-1034, 2013. 2

Niko Marola, Michele Miranda, Jr., and Nageswari Shanmugalingam. Characterizations of sets
of finite perimeter using heat kernels in metric spaces. Potential Anal., 45(4):609-633, 2016.
4, 21, 23

Vladimir Maz’ya. Sobolev spaces; with applications to elliptic partial differential equations.
Springer Verlag Berlin Heidelberg, Grundlehren der mathematischen Wissenschaften 342,
2011. 2, 8, 32

Robert Meyers, Robert S. Strichartz, and Alexander Teplyaev. Dirichlet forms on the Sierpinski
gasket. Pacific J. Math., 217(1):149-174, 2004. 5, 16

Michele Miranda, Jr. Functions of bounded variation on “good” metric spaces. J. Math. Pures
Appl. (9), 82(8):975-1004, 2003. 2, 12, 16

Ionut Munteanu and Michael Rockner. Total variation flow perturbed by gradient linear
multiplicative noise. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21(1):1850003, 28,
2018. 16

37



[74]
[75]
[76]
[77]
78]

[79]

[36]
[87]

[83]

Kasso A. Okoudjou, Luke G. Rogers, and Robert S. Strichartz. Szegd limit theorems on the
Sierpiniski gasket. J. Fourier Anal. Appl., 16(3):434-447, 2010. 2

Katarzyna Pietrushka-Paluba. Heat kernel characterisation of besov-lipschitz spaces on metric
measure spaces. Manuscripta Math., pages 131-199, 2010. 2, 3

Luke G. Rogers and Alexander Teplyaev. Laplacians on the basilica Julia sets. Commun. Pure
Appl. Anal., 9(1):211-231, 2010. 2

Laurent Saloff-Coste. A note on Poincaré, Sobolev, and Harnack inequalities. Internat. Math.
Res. Notices, (2):27-38, 1992. 9

Laurent Saloff-Coste. Aspects of Sobolev-type inequalities, volume 289 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge, 2002. 9

Robert S. Strichartz. Fractafolds based on the Sierpinski gasket and their spectra. Trans.
Amer. Math. Soc., 355(10):4019-4043, 2003. 2

Robert S. Strichartz. Function spaces on fractals. J. Funct. Anal., 198(1):43-83, 2003. 2
Robert S. Strichartz and Alexander Teplyaev. Spectral analysis on infinite Sierpinski
fractafolds. J. Anal. Math., 116:255-297, 2012. 2

K. T. Sturm. Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J.
Math. Pures Appl. (9), 75(3):273-297, 1996. 3, 4, 9

Karl-Theodor Sturm. Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and
LP-Liouville properties. J. Reine Angew. Math., 456:173-196, 1994. 3, 4, 5, 13

Karl-Theodor Sturm. Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the
fundamental solutions of parabolic equations. Osaka J. Math., 32(2):275-312, 1995. 3, 4, 9
Alexander Teplyaev. Energy and Laplacian on the Sierpinski gasket. In Fractal geometry and
applications: a jubilee of Benoit Mandelbrot. Part 1, volume 72 of Proc. Sympos. Pure Math.,
pages 131-154. Amer. Math. Soc., Providence, RI, 2004. 5, 16

Alexander Teplyaev. Harmonic coordinates on fractals with finitely ramified cell structure.
Canad. J. Math., 60(2):457-480, 2008. 5, 16

H. Triebel. Interpolation theory, function spaces, differential operators. VEB Deutscher Verlag
der Wissenschaften, Berlin, 1978. 9

N. Th. Varopoulos. Small time Gaussian estimates of heat diffusion kernels. I. The semigroup
technique. Bull. Sci. Math., 113(3):253-277, 1989. 33

38



	1 Introduction
	2 Preliminaries
	2.1 Strictly local Dirichlet spaces, doubling measures, and our standing assumptions 
	2.2 The 2-Poincaré inequality
	2.3 Sobolev classes W1,p(X)
	2.4 Bakry-Émery curvature conditions

	3 BV class and co-area formula
	3.1 BV class
	3.2 Co-area formula

	4 BV, Sobolev and heat semigroup-based Besov classes 
	4.1 Heat semigroup-based Besov classes
	4.2 Under the weak Bakry-Émery condition, B1,1/2(X)=BV(X)
	4.3 Sets of finite perimeter
	4.4 Under the strong Bakry-Émery condition, Bp,1/2(X)=W1,p(X) for p >1
	4.4.1 Bp,1/2(X) W1,p(X)
	4.4.2 W1,p(X) Bp,1/2(X)

	4.5 Continuity of Pt in the Besov spaces and critical exponents

	5 Sobolev and isoperimetric inequalities

