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Software-Based Phase Control, Mosaicing,
and Video-Rate Lissajous Imaging

Nathan O. Loewke, Zhen Qiu, Michael J. Mandella, Robert Ertsey, Adrienne Loewke, Lisa A. Gunaydin,
Eben L. Rosenthal, Christopher H. Contag, and Olav Solgaard, Fellow, IEEE

Abstract—We present software-based methods for automatic
phase control and for mosaicing high-speed, Lissajous-scanned
images. To achieve imaging speeds fast enough for mosaicing,
we first increase the image update rate tenfold from 3 to 30
Hz, then vertically interpolate each sparse image in real-time
to eliminate fixed pattern noise. We validate our methods by
imaging fluorescent beads and automatically maintaining phase
control over the course of one hour. We then image fixed mouse
brain tissues at varying update rates and compare the resulting
mosaics. Using reconstructed image data as feedback for phase
control eliminates the need for phase sensors and feedback
controllers, enabling long-term imaging experiments without ad-
ditional hardware. Mosaicing subsampled images results in video-
rate imaging speeds, nearly fully recovered spatial resolution, and
millimeter-scale fields of view.

Index Terms—Confocal microscopy, Lissajous imaging, mo-
saicing, real-time, software-based phase control.

I. INTRODUCTION

INIATURIZED, high resolution, laser scanning micro-

scopes are usually constrained by small fields of view
(FOVs) or slow frame rates due to mechanically scanning
across an area, compiling images point-by-point. These de-
vices commonly use microectromechanical systems (MEMS)
scanning mirrors [1], [2], [3] and piezoelectric fiber scanners
[4], [5] for beam deflection. R aster s canning, i n w hich one
axis is driven at resonance while the other is scanned much
more slowly, is simple to implement, but is susceptible to
small FOVs, low electromechanical efficiency, a nd image
warping caused by low frequency mirror actuation (Figure
la). Lissajous scanning, in which both axes are scanned at
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Fig. 1. Image comparison between (a) raster scanning and (b) Lissajous
scanning using the same microscope and MEMS mirror. This mirror exhibits
signs of inter-axis coupling, and thus distortion, during raster scanning. The
Lissajous scan achieves a larger FOV and is less susceptible to image warping,
but suffers from a slight phase misalignment and a few unsampled pixels near
the center of the image. Group six of a reflective 1951 USAF resolution target
shown. The FOVs in (a) and (b) are 90 um X 215 pm (approximate due to
warping) and 140 pm X 260 pm, respectively. Scale bars indicate 50 pm.

resonance [6], maximizes FOV while using lower driving
voltages, but suffers from inefficient sampling and phase drift
over time (Figure 1b).

Lissajous patterns’ inefficient sampling has previously been
addressed either by choosing driving frequency combinations
resulting in nonrepeating patterns [7], or by updating the
image prior to complete image sampling [7], [8]. On its own,
increasing update rate results in undersampled, sparse images,
reducing spatial resolution and requiring interpolation.

Reconstruction techniques developed to improve on linear
interpolation can be categorized into three groups: (1) basic
interpolation using local averaging; (2) inpainting [9], [10],
which extends image features into unsampled regions; and
(3) compressive sensing reconstruction [11], which attempts
to find the sparsest description that fits the sampled data.
Some of these techniques require minor modification to beam-
scanning hardware and additional control and data acquisition
electronics, and all of these techniques are computationally
complex, requiring on the order of seconds to reconstruct each
image on a standard computer.

Lissajous patterns slow frame rates have precluded the im-
plementation of image mosaicing due to motion-based warping
and blurring. Mosaicing is a fundamental technique in image
processing in which consecutive images (frames) are automat-
ically registered, de-warped, overlapped, and blended together
to build a single, large image. This process increases both FOV



and signal-to-noise ratio (SNR), and enables software-based
image stabilization, but depends on fast frame rates. Previous
works in this field has focused on applying mosaicing using
fixed [12], fibered [13], and handheld [14], [15] microscopes,
some in real-time [16], [17], [18].

The lack of phase control in Lissajous scanning has mostly
led the field toward hardware-based solutions to measure the
phase between driving waveforms [19], [20]. Phase-locked
loops (PLLs) are most commonly used for tracking and
controlling periodic signals [19], and have been applied in
MEMS devices [21], AFM [22], and resonant fiber scanners
[23]. Phase control hardware increases both the size and cost
of the optical system, inhibiting miniaturization. For cases in
which the Q-factor of the scanner is sufficiently low, and the
imaging duration relatively short, manual adjustment of phase
through a graphical user interface (GUI) is possible [7].

In this work, we aim to address the traditional disadvantages
of Lissajous imaging: inefficient spatial sampling, slow frame
rates, and phase drift. Our solution is comprised of four steps:
First, in Section II, we boost the update rate of Lissajous-
scanned images, thereby subsampling the FOV to form a
sparse image. Second, in Section III, we interpolate the image
in real-time, obtaining a coherent image with which to perform
phase measurements and template matching. Third, in Section
IV, we analyze every n" image in real-time to maintain phase
control for each axis. Lastly, in Section V, we mosaic images
together to recover the resolution and SNR that was sacrificed
by undersampling. We demonstrate these techniques using a
handheld, dual-axis, confocal (DAC) fluorescent microscope
utilizing a 2D MEMS scanning mirror [24]. This solution
enables high-speed Lissajous imaging with high resolution,
large fields of view, and automatic phase control.

II. SPATIAL SCANNING AND SAMPLING

Pattern repeat rate, f,,, describes the periodicity of a
2D scanning pattern. Update rate, f,, is the rate at which
consecutive frames are displayed and saved, regardless of
how completely we sample the image’s FOV. We distinguish
fu from frame rate, a term that usually implies full frame
sampling prior to update (i.e., when fp. = f,). All of these
rates are expressed in units of frames per second (fps), or Hz.

A. Scanning Patterns

The complex harmonic motion of a Lissajous curve is
described by the parametric equations:

z(t) = %Ag;sin(Zﬂ'fxt +¢z) + %AQJ
(1
1 1

y(t) = iAySi”(zﬂfyt +dy) + §Ay'

In these equations, f is driving frequency, ¢ is phase shift, and
A is the extent of FOV (amplitude) for each axis. In the case
of raster scanning, f,, = fpr, and the scanning patterns shape
is insensitive to frequency (Figure 2a). The scanning paths of
Lissajous curves, on the other hand, are highly sensitive to the
ratio f,/f, [25] (Figures 2b-d). For repeating patterns (Figure
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Fig. 2. Common laser scanning driving modes. (a) Raster scan, in which
fy < fx. (b) Lissajous radial scan, in which f; = fy, ¢ = 0°,
¢y = —90°, and both driving amplitudes ramp at the same linear rate. (c)
Repeating Lissajous scan, in which f/f, is rational. (d) Nonrepeating, or
sliding, Lissajous scan, in which fz/ fy is irrational. Less commonly used
Lissajous patterns for imaging include a line scan, in which f; = f, and
¢x = ¢y = —90°, and a parabola scan, in which f/fy, = 2 and ¢, = 90°
(neither shown). Color represents elapsed time during a single frame period.
Simulations generated in Matlab.

2¢), which occur if and only if f,/f, is rational, the pattern
repeat rate, fp,, is given by

f pr — ﬁ = &7 )

Ng Ny

where n; and n, are the smallest integer divisors of f, and
fy, respectively, and determine the number of cycles scanned
on each axis, each period [8]. This equation introduces an
inherent tradeoff for repeating Lissajous patterns: increasing
line density decreases pattern repeat rate. In other words,
lateral resolution and frame rate are inversely related.

While this work focuses on repeating Lissajous scanning
patterns (Figure 2c), the techniques described later are ap-
plicable to all of the scanning patterns shown in Figure
2. We elected to use a repeating pattern so that we could
directly compare images with identical scanning patterns (and
thus interpolation patterns, discussed later) to determine how
image quality is affected by sampling, interpolation, and phase
control, especially for undersampled images. If we were to
use nonrepeating patterns, each image would be sampled
and interpolated at slightly different spatial locations, making
it difficult to directly compare images and quantify results,
particularly during phase control testing.

B. Spatial Sampling and Update Rate

Mechanical scanning properties (scanning amplitude, fre-
quency, phase, etc.), optical resolution, sample rate, and update
rate all affect sampling sparsity. Of these parameters, update
rate is the simplest to manipulate. The effect of varying update
rate on spatial sampling is shown in Figure 3. The pattern in
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Fig. 3. Sampling efficiency and spatial resolution versus update rate. (a) 3
Hz (fu = fpr), (b) 10 Hz, (c) 20 Hz, and (d) 30 Hz Lissajous scans. Color
represents the number of times each pixel is sampled, with red, blue, and
white representing greatly oversampled, Nyquist-rate sampled, and unsampled
pixels, respectively. (e) Plot showing how sampling is affected by update rate.
(f) Plot showing how spatial resolution is affected by update rate. All scanning
parameters other than sample rate match those used for our microscope: FOV
=250 pixels x 450 pixels, f; = 2034 Hz, f, = 315, and starting phases ¢, =
¢y = —90°. Sample rate SR = 5.77 MHz, satisfying Nyquist. Simulations
generated in Matlab.

/reffig:4.3a naturally closes because f;/f, is rational for our
scanner (f, = 2,034Hz and f, = 315Hz). From Equation
3, the pattern has a natural repeat rate of 3 Hz. Reducing the
update rate to below 3 Hz does not reduce the gap height,
or vertical distance between sampled pixels. Increasing the
update rate past the repeat rate increases the maximum gap
height for each frame and causes sequential frames to have
different scanning trajectories until the pattern reaches the end
of its period.

Spatial sampling efficiency improves logarithmically with
update rate. For example, as we increase update rate from 3
Hz (Figure 3a) to 30 Hz (Figure 3d), the number of greatly
oversampled pixels (those sampled ten times or more per
frame) decreases by ~95%, while the number of unsampled
pixels increases by just ~ 64%, depending on initial phase.
Unsampled pixels form diamond-shaped gaps in the image
because f, > f, for our scanner.

Figures 3a-d are all calculated using the same initial phase
value of 90°. In Figure 3a, f,, = f,, meaning each axis’
phase value ends precisely where it starts, at 90°. Thus the
scanning patterns for two consecutive frames are identical. In
Figures 3b-d, these traits no longer occur since fp, > f,. In
these cases, ending phase does not match starting phase, and
consecutive frames have different scanning patterns, sampling
different regions in the FOV. This phenomenon will prove to
be vital in Sections III and V.

C. Temporal Sampling

For one-dimensional harmonic oscillation, the scanning
points maximum velocity v,q, 1S

Umax = 7Tf4f (3)

Pythagorean theorem gives us maximum velocity for a two-
dimensional system:

Vmaz = \/V2 +v2 = my\[AZf2 + AZ f2. (O]

Maximum velocity occurs in the center of our FOV, when
acceleration is minimized and the oscillating mass in question
(e.g., a scanning fiber or MEMS miirror) is at equilibrium. This
explains why Lissajous images can exhibit poor sampling and
resolution near the center of the FOV. Plugging in values for
our microscope’s MEMS mirror:

Vmaz = 7/ (370um)2(315H 2)2 + (650m)2 (2034 H 2)2
=4.17m/s.

The experimentally measured full width at half maximum
(FWHM) spatial resolution of the microscope is 4.0 um for
both horizontal and vertical axes, determined by scanning a
mirrored knife-edge target across the beam. This represents the
diffraction-limited, transverse confocal response of the system
[26]. A digital acquisition (DAQ) card samples voltages from
the photomultiplier tube (PMT) at a sample rate (SR) of 10
MHz. Using our value for v,,,, the largest distance between
samples in the FOV is

(4.17m/s)(10% um/m)
107samples/s

= 0.417um/sample,

greatly exceeding Nyquists sampling criterion.

To form the final image, each sample is integrated with
the nearest pixel of a 250 x 450 pixel image using sample
locations calculated ahead of time. With a 3 ym resolution and
a 370 x 650 pm FOV, this image size gives us a ratio above
2 pixels per resolution element, also satisfying Nyquist. An
integration map is incremented by one at its corresponding
pixel location for each sample. The final image is then the
quotient of the integrated signal divided by the integration
map, and unsampled pixels are assigned to zero.

III. IMAGE INTERPOLATION

With the goal of broad applicability and real-time, video-
rate use in mind, we linearly interpolate along the vertical
axis: L1,
Y2 — 1’
where y and I are pixel location and intensity, respectively.
This process takes less than 1.5 ms for each 250 x 450 pixel
image, more than fast enough for real-time use at 30 Hz.

Vertical interpolation has three benefits: First, interpola-
tion occurs along the shortest route between sampled pixels.
Second, horizontal resolution of static mosaics is unaffected
because interpolated pixels are not averaged with sampled
pixels during the blending process. Thus, for undersampled,
interpolated images at fast update rates (f,, > fpr), maximum
gap height is the limiting factor in spatial resolution of static

I=L+(y—wn) ®)



mosaics, and is a function of update rate alone. For moving
samples, this effect is overwhelmed by motion artifacts and
registration errors. Third, although interpolation has a low-
pass filtering effect, this effect is constrained to unsampled
pixels; sampled pixels are unaffected. This is necessary for
resolution recovery through mosaicing.

Figure 4 shows the vertical blurring effect for individual,
undersampled images (Figures 4b,e), and for static mosaics
(Figures 4c.f). In calculating Figures 4c.f, thirty consecu-
tive frames are averaged together, each with image quality
comparable to that of Figures 4b,e. However, because each
frame adds new spatial information through sampling slightly
different scanning patterns, as discussed in Section III, the end
result is comparable to simple integration (Figures 4a,d). Thus,
through static mosaicing, we recover lateral resolution and
SNR lost through subsampling to increase temporal sensitivity.
Note that if we were to keep track of sampled locations, avoid
interpolating, and then integrate according to number of times
a given pixel is sampled (as apposed to simple averaging), we
would obtain results identical to those shown in Figures 4a,d.

Interpolation is crucial for both mosaicing and phase feed-
back. For mosaicing, image sparsity introduces high contrast
corners and patterning that would prohibit feature detection
and image registration. For phase feedback, this patterning
introduces high-frequency artifacts in the Fourier domain,
skewing the signal used for phase alignment.

IV. PHASE CONTROL
A. The Phase Control Problem
The MEMS scanner at the heart of our microscope is an
underdamped oscillator driven with a sinusoidal force. The

phase lag ¢ (or mapping phase) between the oscillation and
driving force is

2wwoC
¢ = atan(m) + nm, (6)

where w is the driving frequency, wy is the undamped angular
frequency, and ( is the damping ratio. As driving frequency
w approaches and surpasses resonant frequency w,., phase lag
transitions from 0° to —180°. As damping ratio decreases, and
quality factor (Q-factor) increases, this transition occurs more
quickly, allowing for greater FOV. This also destabilizes the
scanner, making it more difficult to control.

For raster scanning, phase drifts are presented as small shifts
of the entire image along the resonant axis. For Lissajous
scanning, phase drift occurs for both axes, causing interlaced
copies of the image to shift along the vertical and horizontal
axes, despite the beam path scanning along changing, non-
orthogonal directions. These interlaced copies are sometimes
referred to as fields, referring to when the mirror is, for
example, scanning left to right (even) or right to left (odd).

B. Phase Algorithm and Sweep

Our algorithm for testing phase lag in Lissajous scanned im-
ages is inversely related to classic contrast detection schemes,
where maximum contrast occurs at the focal plane [27], [28].
The intent is to measure how in phase or aligned the image
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Fig. 4. Image quality versus update rate, and its potential effect on mosaicing.
From top to bottom: (a1, d1) a single 1 Hz frame; (b1, e1) a single 30 Hz frame
after interpolation; and (c1, f1) 1 second’s worth of 30 Hz images averaged
together, representing a static mosaic. (ag-f2) Corresponding 2D Fourier
transforms, contrast enhanced to show detail and cropped to conserve space.
In comparison to 1 Hz images, 30 Hz images show significant degradation
due to their sparse sampling pattern. 30 Hz images integrated for the same
amount of time show only a slight decrease in vertical resolution, confirmed
by the darker top and bottom regions of the corresponding spectra. (aj-c1) 15
pm diameter fluorescent beads. (d1-f1) Fixed and cleared mouse brain tissue,
labeled with LIQOR785 (red) and DRAQS (green) with dimethyl sulfoxide
(DMSO) to increase label penetration. The vertical dark feature is a micro-tear
in the tissue sample. Scale bars indicate 100 pm.

mapping is, generating a signal according to how coherent
and smooth the image appears. To generate this signal, we
perform the following sequential steps: (1) optically sample
the FOV with our confocal microscope to obtain an image
vector; (2) map the vector into an image using the current
phase lag value being tested; (3) interpolate the image to
remove fixed pattern noise; (4) normalize the image to within
[0,1]; (5) Fourier transform the image, shifting the DC term
to center; and (6) sum the center portion (12.0% of each
dimension by length, or 1.44% by area) of the absolute value
of the image’s spectrum. The dimensions of this center portion
correlate with sampling most of the center lobe of the Fourier
transform, including the DC term, being careful not to extend
into higher frequencies. This process is completed in ~360 ms
per image, the majority of which is spent in step two, mapping
our sampled data vectors into image form. Unfortunately this
step cannot be replaced with less computationally expensive
means (by, for example, simply shifting image pixels), since
sinusoidal mapping dictates that integration is a function of
position in the image.

To apply our algorithm, we use an approach analogous to
passive, contrast detection-based autofocus systems in that
we take a single image vector, map it to image form with
varying test phase values, and then choose the settings with
which we obtain the best results. Before beginning the search,
initial values are first roughly set with the GUI using the real-
time image display as feedback. Once within an acceptable
range (£1°-10°, depending on sample), the software begins
a coarse phase sweep, in which image quality is tested over
a wide range of phase values using coarse increments. After
the initial sweep, the software updates the phase lag with an
initial solution, then decreases the scanning range by a factor
of ten and adjusts the increments such that the total sweep time
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remains constant. This process is repeated until the phase lag
is determined to within 0.001° (0.1% of 1°). After testing a set
of phase values, the software normalizes the responses (from
step five, above) to within [0, 1] and picks phase lag value that
corresponds to maximum signal.

The phase sweep is performed separately for each axis, as
demonstrated in Figure 5. In this example, we perform an
initial sweep over a wide range (2°) using coarse adjustments
(0.1°). Processing the 22 test images in this example takes
~7.5 s. During this process, driving phase is kept constant to
keep the mirror operating smoothly.

To test the algorithm’s sensitivity to parameters such as
SNR and optical resolution, we varied noise, sample rate,
and Gaussian filtering on tissue images undergoing simulated
phase testing like that shown in Figure 5. In these tests, we
define sensitivity as the range between the maximum and
minimum observed signal values, corresponding with the best
and worst aligned images of the test, respectively. Error is
defined as the root-mean-square deviation (RMSD) between
each plot’s normalized shape (Equation 7). As sample rate
drops from 107 to 105, below Nyquist, sensitivity remains
relatively constant, but error rises exponentially. To test sen-
sitivity to SNR, we added zero-mean, Gaussian white noise.
As noise variance rises to 0.01, sensitivity and accuracy both
drop linearly. Together, these results confirm that skipping
small numbers of samples during the 2D mapping step can
increase algorithm speed with limited effect on performance.
To test the algorithm’s sensitivity to optical resolution, we
applied Gaussian filters with sigma values ranging from 1,000
(close to original) to 1 (no discernible features). For o > 20,
decreasing sigma has virtually no affect on sensitivity and
accuracy. For o < 20, sensitivity and accuracy begin to drop
exponentially, with the algorithm losing effectiveness below
o = 10. These results suggest that low-pass filtering images
may be an effective step toward adapting the algorithm for use
with images with low SNR.

We have found the Fourier-based approach used here to
be more robust than typical edge detection schemes (such as
with Sobel or Canny operators) mainly due to noise consid-
erations. Weak fluorescent staining and deep tissue imaging
are common issues with fluorescence that cause significant
drops in SNR. However, we have a few additional sources of
noise unique to our setup that cause variation in SNR within
each image. First, due to the microscope’s optical design, our
focal plane is parabolic, meaning imaging depth decreases
with MEMS mirror deflection, and maximum imaging depth
occurs in the center of the image. Second, the excitation and
collection beams in our microscope are slightly misaligned; a
problem that is exacerbated when the mirror nears maximum
deflection.

C. Maintaining Phase Control

To test phase control over a long period of time, we
continuously imaged a phantom of 15 p/m diameter fluorescent
microbeads suspended in polydimethylsiloxane (PDMS) for 60
minutes while saving each image (Figure 6a) and recording
phase lag for each axis (Figures 6d,e). Before the test started,
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Fig. 5. Two-dimensional phase sweep using images from a random location
in fixed and cleared mouse brain tissue with DRAQS and LICOR785 staining.
(a-c) Horizontal and (d-f) vertical phase sweeps corresponding to minimum,
median, and maximum signal values, respectively. (g) Full plot of horizontal
(blue) and vertical (red) phase sweeps, with image locations labeled. The
initial x-axis phase value is held constant during the y-axis sweep, and vice
versa. Images were taken at 10 Hz and tested every 0.1°, totaling 22 images
in all. Scale bars indicate 100 pm.

we manually adjusted phase to within £1° for each axis, set
the final precision level to 0.1% of a degree, and set frame
rate to 2 Hz. Each time the phase sweep completes, in this
case every 16 frames, or 8 s, phase lag gets updated, and a
new sweep is initiated with the previous test’s phase solutions
as starting points.

To evaluate phase control performance, each image is com-
pared to the first image of the test (Figure 6c¢, blue) as well
as to the previous frame (Figure 6¢c, red) by calculating the
RMSD between said pairs of reconstructed images, defined as

RMSD = v/mean(Im; — Imy)2, (7)

where each image, Im, is converted to double precision and
normalized to within [0,1]. When compared to the previous
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Fig. 6. Real-time phase control during one continuous hour of imaging. (a)
Sample image of 15 pm diameter fluorescent beads. (b) Percent absolute
difference between frames at times t = 0 min and t = 60 min, color-coded
and capped at 50% to enhance contrast. Insets in (a) and (b) show the same
magnified region. (c¢) RMSD values (in units of pixel intensity normalized to
[0, 1]) for each frame compared to the first image (blue) and for consecutive
image pairs (red) over time. (d) X-axis phase lag over time. (e) Y-axis phase
lag over time. Scale bars indicate 100 pm.

frame, RMSD consistently hovers just below 0.01, with an
average value of 8.9 x 1073, indicating that each pairwise
image changes by less than 1% on average. When compared
to the first frame, RMSD grows linearly with time, suggesting
either consistent accumulation of errors in phase control or
gradual phantom shift. Note that this linear RMSD ramp does
not correlate with the fluctuations observed in tracked phase
(Figures 6d,e). Visually assessing the differences between the
first and last images in the test (Figure 6b) confirms that this
ramp is due to phantom shift. Recall from Section IV-A that
inaccurate phase control results in horizontal and/or vertical
translation of even and odd fields of the image. This kind
of error would present itself as doubling (or quadrupling) of
the beads along either axis in the grayscale image data, re-
sulting in pairs of mirrored crescent-shaped patterns in Figure
6b. Instead, we observe two major features in the absolute
difference image: roughly symmetric rings (Figure 6b, inset),
suggesting axial translation of the sample, and crescent-like
shapes, without mirroring, suggesting lateral translation. Either
of these features could be from contraction or relaxation of the
PDMS, or from a shift in imaging depth from the piezoelectric
linear actuator. Other possible sources of FOV instability
include evaporation of the index matching gel between the
microscope’s objective and the sample, fluctuations in room
temperature, and inadequate vibration control. Although the
microscope’s scanner exhibited phase drift of varying severity
for the two axes (Figures 6d,e), image alignment was consis-

Page 6 of 10

6

tent over time (Figure 6c¢, red).

V. IMAGE MOSAICING

With update rates increased and phase lag controlled, mo-
saicing with Lissajous scanned images is now possible. Our
registration method uses normalized cross-correlation [29], a
form of template matching in which one finds areas of an
image that matches a template image kernel. To form our
template, we crop the second image of each pair down to size
w X w pixels, defining the search window, and amount of over-
lap, between sequential frames. This assumption constrains
panning speed (how quickly the user can slide the microscope
across the tissue surface) according to the linear relationship

Umaz = wfu7 (8)

but keeps calculations to a minimum. For example, if we set
our search window to 30 pixels (£15 pum) per axis and
image at 30 Hz, we can pan the microscope at speeds of
up to 450 pm/s. Operating the microscope by hand under
this constraint is challenging, but possible, whereas handheld
operation at single digit update rates is impractical. Thus, at
slower update rates, we depend on linear translation stages
to control panning. Stages also facilitate maintaining optical
contact between the microscope’s objective and the sample,
enabling larger mosaics.

Cross-correlation is simple, computationally efficient, and
performs well enough to avoid needing secondary fine-tuning.
Although frequency domain-based approaches can be sensitive
to noise, we found this phase correlation method to be robust
to both noise and occlusion from, for example, small pieces of
dust or tissue. Through experimentation, we found increased
repeatability through normalizing each pair of images prior
to registration. Whether the microscope is stage-mounted or
handheld, we make no assumptions about direction of travel.
All registration is applied to a single channel of image data
(the channel imaging DRAQS5-stained cell nuclei). We experi-
mented with using both channels of data, which under different
circumstances (e.g., a different modality with better SNR) is
likely be a viable improvement. In our tests, the LIQOR785
channel didn’t show enough contrast for consistent template
matching for all frames.

Image blending is handled with simple averaging, such that
SNR is improved in proportion to the square root of the
number of samples (in overlapping regions). Once imaging
has ended, the mosaic goes through two post-processing steps
to enhance aesthetics: trimming and contrast enhancing. The
trimming step removes empty borders around the mosaic that
are automatically padded on when the FOV approaches any of
the mosaic’s borders. To enhance contrast, we apply contrast-
limited adaptive histogram equalization (CLAHE) [30], as-
suming a linear distribution of image intensity values. This
and other closely related approaches have been applied to
mosaics in micro-angiography [31] and astronomy [32], and
works well here to control lighting uniformity without greatly
oversaturating cell nuclei.

Regardless of update rate, the algorithms used for image in-
terpolation and integration remain constant. However, template
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Fig. 7. Multispectral, real-time 5 Hz mosaic of fixed and cleared mouse
brain tissue stained with IR783 (red) and DRAQS (green). Top: Single 5 Hz
frames before (a) and after (b) interpolation. Bottom (c): Mosaic comprises
400 consecutive images taken over 80 s. White rectangle shows same FOV
as in (a) and (b). Sample translated via manual stage controller. Single frame
FOV is 370 x 650 pum. Total Mosaic FOV is 1.37 x 1.43 mm. Scale bars
indicate 100 pm (top) and 500 pm (bottom).

matching high update rate, low-resolution images requires one
critical tweak: low-pass filtering. In preparation for template
matching, each pair of images is temporarily smoothed using a
median filter with a kernel size that increases with update rate
(e.g., 30 Hz images require a kernel size of 11 pixels, or 5.5
pm). Despite varying initial image resolution, we observed no
difference in registration precision or mosaic resolution with
update rates of up to 30 Hz.

Mosaicing is commonly employed to accumulate large
imaging areas over time from smaller individual FOVs, to pro-
vide image stabilization, and to boost SNR in the overlapped
regions of consecutive frames. However, using mosaicing
to recover the resolution lost through subsampling images
is novel. Recall from Sections II-B and III that although
each individual frame can be greatly degraded, integrating
additional high-resolution information along with interpolated
information can result in image quality comparable to simple
integration. The difference between the static mosaics of
Figures 6c,f and those shown in Figures 7, 8, and 9 is lateral
translation between the microscope and the sample (and longer
total imaging times). To prevent motion blurring, we have
increased the update rate. To determine distance and direction
traveled, we perform template matching and overlay data

Fig. 8. Multispectral, real-time 10 Hz mosaic of fixed and cleared mouse
brain tissue stained with IR783 (red) and DRAQS (green). Top: Single 10 Hz
frames before (a) and after (b) interpolation. Bottom (c): Mosaic comprises
6,398 consecutive images taken over 10.7 min. White rectangle shows same
FOV as in (a) and (b). Sample translated via manual stage controller. Single
frame FOV is 370 x 650 pm. Total Mosaic FOV is 4.43 x 4.27 mm. Scale
bars indicate 100 pm (top) and 1 mm (bottom).

Fig. 9. Multispectral, post-processed 30 Hz mosaic of fixed and cleared
mouse brain tissue stained with IR783 (red) and DRAQS (green). Left (a):
Mosaic comprises 385 consecutive images taken over 12.8 s. White rectangle
shows same FOV as in (b) and (c). Right: Single 30 Hz frames before (a) and
after (b) interpolation, showing severe image degradation due to subsampling.
Microscope translated in hand. Single frame FOV is 370 x 650 pm. Total
mosaic FOV is 1.27 mm X 679 pm. Scale bars indicate 500 pum (left) and
100 pm (right).



accordingly. Thus, combining fast updating and mosaicing en-
ables us to remove the assumption that the microscope is static
while integrating, without sacrificing resolution. This approach
is applicable for all manners of imaging with miniaturized
microscopes, whether static, intentionally panned across tissue,
or for image stabilization.

Figures 7, 8, and 9 show multispectral mosaics of fixed,
cleared mouse brain tissues imaged at 5 Hz, 10 Hz, and
30 Hz, respectively. Each tissue sample was stained with
IR783 to show general tissue morphology (red) and DRAQS
to counterstain cell nuclei (green). These figures represent
the first mosaics comprised entirely of Lissajous scanned
microscopy images. In Figures 7 and 8, the microscope was
inverted and mounted to a static post. The tissue was mounted
to a glass slide and taped down to a manual, linear translation
stage to control panning. These figures were mosaiced in
real-time. In Figure 9, the microscope was detached from
its mount and held by hand, keeping the tissue static. Due
to limited computational power, this figure was mosaiced
in post processing. In contrast to imaging at slower update
rates, manual stages are not necessary when imaging at video-
rate. Although each individual image shows low resolution
and SNR, integration during the mosaicing process mitigates
both these issues, with no appreciable difference in resolution
between mosaics with different update rates.

VI. DISCUSSION AND CONCLUSIONS

With the inclusion of this work, there are now two cate-
gories for real-time phase control during Lissajous imaging:
hardware- and software-based phase control. The work demon-
strated here is not intended to replace physical sensors, but to
offer an alterative for certain applications. For tabletop setups
or in situations where bandwidth and correction response
time is critical, or when frequency control is also needed,
physical sensors are ideal. Such methods can also control
beam path deflection in real-time, ensuring scanning occurs
over a predefined path. However, hardware-based methods add
size, complexity, and cost, making them particularly difficult
to implement in miniaturized microscopes designed for in vivo
imaging. In comparison, software-based methods can enable
phase control for any imaging system, but require real-time
imaging as part of their feedback loop and time to calculate
reconstructions from sampled data. Scanners with high Q-
factors, or those exhibiting gyroscopic sensitivity, may be too
unstable for phase control methods that take on the order
of seconds to respond. Additionally, these methods require
constant optical contact with the sample to ensure a steady
stream of image information with which to work. Thus, our
method is not applicable to non-imaging Lissajous scanning
systems, such as video projectors.

Image processing techniques like the one presented here are
sensitive to SNR, optical resolution, and sample rate. With
that in mind, it is applicable to any modality with comparable
image quality. For example, operating a confocal microscope
in reflectance mode offers identical resolution and sample
rate, but increases SNR greatly. Optical coherence tomogra-
phy (OCT), which typically displays images in which SNR
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degrades with imaging depth, is comparable to our fluorescent
image data, where portions of the image appear out of focus
due to optical misalignment, and image quality degrades with
penetration depth. Even relatively low-resolution images (e.g.,
from magnetic particle imaging) are applicable.

Alternatives to linear image interpolation were considered
early in the project. One idea is to update the image prior to
complete image sampling, replacing only those pixels sampled
[7]. However, this method may not work well with the template
matching or feature tracking processes needed for mosaicing,
as there exists a mixture of new and old information in
each image. In our approach, although we have a mixture
of high- and low-resolution information in each image, each
frame consists entirely of new information in a temporal
sense, enabling accurate motion tracking. A second idea is
to shift each image half a FOV at a time, sampling the same
region once in the low-resolution center of the FOV and then
again in the highly sampled edges or corners. This places
a major constraint on how the microscope is panned across
the FOV, requiring motorized movement between frames,
and preventing software-based image stabilization. A third
option is to amplitude modulate the driving signals, alternating
between full and reduced FOVs in an attempt to fully sample
the center region every n" image. This method could help
with the sampling issues inherent in Lissajous scanning, but
at the costs of artificially limiting sampling bandwidth and
complicating phase control.

The spatial and temporal sampling advantages of Lissajous
scanning, discussed in Section II, can also be thought of in
terms of overall information sampling rates. Space bandwidth
product (SPB) is a unitless metric defined as FOV x maxi-
mum spatial frequency. To compare the SBP of a raster- or
Lissajous-scanned microscope (i.e., characterizing bandwidth
independent of optics), we compare three major factors: (1)
FOV, (2) rate of travel of the focal point, and (3) sampling
efficiency. For fixed amplitude driving signals, driving both
axes in resonance instead of just one results in a factor of up
to 2-3 larger imaging area, depending on the Q-factor of the
scanning mirror and assuming a lack of other limiting factors
such as off-axis aberrations or vignetting. To compare rates
of travel, we use the average scanning speed for a raster-scan
(approximated as a 1D equation),

Uave,raster ~ 2Aresfa (9)

and that of a Lissajous-scan,

~ /A2 £2 2 £2
Vave,Lissajous ~ 2 Aa}faj + Ayfy

Switching from raster scanning (f; = 2034 Hz, f, = 5 Hz)
to Lissajous scanning (f, = 2034 Hz, f, = 315 Hz) increases
the average scanning speed by just 0.4%. However, as shown
in Figure 2, raster scanning is unidirectional, meaning only
one direction of the fast axis’ sinusoidal motion is utilized.
Bi-directional raster scanning is possible, but less commonly
implemented due to requiring phase control but not increasing
FOV. Thus, Lissajous scanning gains a factor of approximately
two in effective scanning speed over raster scanning as a direct
tradeoff for needing phase control. As discussed in Section II,

(10)
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Lissajous sampling efficiency is a function of update rate. In
fact, sampling efficiency relies so heavily upon update rate
that these accumulations in SBP can be completely negated
for slow update rates, or kept mostly intact for fast updating.

Our solutions for phase control, boosting update rate, and
mosaicing are applicable to most Lissajous scanning imaging
modalities and setups. Modern optical microscopy techniques
such as confocal [7], [33], [34], [35], [36], multiphoton [8],
[371, [38], [39], [40], OCT [41], [42], [43], [44], [45], [46],
[47], and resonant fiber scanning [37], [38], [39], [40], [43],
[44], [45], [46], [47], [48] have all had recent success with
Lissajous scanning, and are immediate choices in which to
effectively implement the work shown here due to their
similarity with our own microscopy setup. Other applicable
modalities include high-speed atomic force microscopy (AFM)
[20], [49], [50], [51], [52], magnetic particle imaging (MPI)
[53], [54], [55], [56], and light detection and ranging (LIDAR)
[57], [58], [59], [60]. Many of these systems are being
employed on moving objects such as cars, drones, and other
robots, where mosaicing is commonly used in autonomous
applications, and and replacing phase sensing hardware with
software would lighten the load.

This work could also be applied to raster scanning in two
ways. First, our phase control algorithm (reduced to 1D)
could be used for aligning even and odd fields of a raster
scan, converting traditional raster scanning to bi-directional
scanning, increasing frame rate by a factor of two with
virtually no alterations to the experimental setup. Second,
frame rate could be further improved by increasing the slow
axis scanning speed past that dictated by Nyquist, resulting
in images subsampled in the vertical direction, much like in
this work. Through subsampling, vertical interpolation, and
mosaicing to recover lost resolution, frame rate could be
increased by at least another factor of two. Combined, these
two techniques could improve the effective frame rate of a
raster scanned imaging device by a factor of at least four,
potentially boosting single digit frame rates to video-rate.
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