GELFAND-TSETLIN POLYTOPES: A STORY OF FLOW & ORDER POLYTOPES
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ABSTRACT. Gelfand—Tsetlin polytopes are prominent objects in algebraic combinatorics. The number of
integer points of the Gelfand—Tsetlin polytope GT(A) is equal to the dimension of the corresponding irre-
ducible representation of GL(n). It is well-known that the Gelfand—Tsetlin polytope is both a marked order
polytope and a flow polytope. In this paper, we draw corollaries from this result and establish a general
theory connecting marked order polytopes and flow polytopes.

1. INTRODUCTION

Given a partition A = (A1,...,\n) € Z%, the Gelfand—Tsetlin polytope GT()) is the set of all
nonnegative triangular arrays

11 T12 ce Tin
T22 T23 ce Tan

Tpn—1,n—1 Tn—1,n
Tnn

such that

r; =N foralll1 <i<n,
Ti—1,5—-1 Z Tij Z Ti—1,5 for all 2 S ) S ] S n.

The integer points of GT(\) are in bijection with semistandard Young tableaux of shape A on the alphabet
[n]. Moreover, the integer point transform of GT(A) projects to the Schur function sy. The latter beautiful
result generalizes to Minkowski sums of Gelfand-Tsetlin polytopes and certain Schubert polynomials as
well [5]. In this paper we will be interested in the Gelfand—Tsetlin polytope GT()) from a purely discrete
geometric point of view: we will explore it as a marked order polytope and as a flow polytope.

Ardila et al. introduced marked order polytopes and showed that Gelfand—T'setlin polytopes are examples
of them in |1]. That Gelfand-Tsetlin polytopes are also flow polytopes was shown by Danilov, Karzanov, and
Koshevoy in [3]. Theorem summarizes previous work by Postnikov |9, Theorem 15.1] on the Gelfand-
Tsetlin polytope and also demonstrates how the Gelfand—Tsetlin polytopes being flow polytopes allows us to
write the number of integer points and the volume of GT(A\)—which are equal respectively to the dimension
of the irreducible representation V) of GL(n) and the top homogeneous component of the dimension when

viewed as a polynomial in Ay, ..., A\,—in terms of Kostant partition functions:
Theorem 1.1. Let A € Z%, be a partition and r = |V (Gy)| -1 = ("3?) = 3. The volume of GT(X) is given
by
A — s
1 1 GT(\) = -/ 7
) vor G = [[ ==
1<i<j<n
()\1 - AQ)bl ()\n—l - )\n)bn_l
9 _ . N(by,..., b,
( ) Z bl' bn71! ( 1, ) 1)
b1yebp—120
A= X))t (Aot — Ay )it _ .
(3) Z(ljl|2) ( 1]' 1') KGA(jl717”'7]%—1717715"'371707"'7070)'
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The integer point count of GT(X\) is given by

10 A= A4
1<i<j<n J -t

©) =2 (Al }?2 ! 1) (An_ljnin : 1) <31> (j(lg)> (j(;l) <JO>

J

4) e Nz

-Ka, (]1 -1, . Jn— —1,jn—1,...,j(721) —1,](g)+1,...,jr,O).

Equalities and follow from GT () being a flow polytope. The other equations are known and follow
from the representation theory of GL(n) and from Postnikov’s work |9, Theorem 15.1]. For the notation
used in Theorem [1.1} we refer the reader to Section We remark that from equations and , we
obtain that the evaluations N(by,...,b,—1) and K¢, (j1 —1,...,jn—1—1,—1,...,—1,0,...,0,0) are equal.
We additionally provide a bijective proof of this in Section

Section 3] is devoted to marked order polytopes in general. In light of the work of the second author with
Morales and Striker [7] where they show that order polytopes of strongly planar posets are flow polytopes,
it is natural to wonder if the Gelfand—Tsetlin polytopes being both a marked order polytope and a flow
polytope is part of a larger picture. Indeed, we show that marked order polytopes of strongly planar posets
with certain conditions on the markings are flow polytopes:

Theorem 1.2. If (P, A, \) is a marked poset admitting a bounded strongly planar embedding, then the marked
order polytope O(P, A)y is integrally equivalent to the flow polytope FGipan-

For the terminology used in Theorem see Sections [3] and [d] There is a natural way of subdividing
the marked order polytope O(P, A), into products of simplices labeled by certain linear extensions of the
poset (Theorem , and there is a natural way of subdividing the flow polytope F¢, , ,, into products of
simplices labeled by integer points of other flow polytopes (Section . In Section |p| we show that these
subdivisions map to each other under the integral equivalence of Theorem [I.2] and we conclude by bijecting
their combinatorial labelings in Corollary

Roadmap of the paper. In Section [2] we define flow polytopes and show several consequences of Gelfand—
Tsetlin polytopes being integrally equivalent to flow polytopes for their volume and Ehrhart polynomial
formulas. It is well-known that the Gelfand—Tsetlin polytope is also a marked order polytope, and in Section
[3]we define marked order polytopes as well as collect and extend some known results about them. Section [4]
proves Theorem [I.2] which gives conditions under which marked order polytopes are integrally equivalent to
flow polytopes. The Gelfand—Tsetlin polytopes appear as a special case in this more general theory. Finally,
in Section [5| we review the subdivision methods for flow polytopes and (marked) order polytopes, and we
show that they map to each other under the integral equivalence of Theorem [I.2] We conclude by bijecting
the two sets of combinatorial labels coming from the subdivisions of flow and marked order polytopes in

Corollary

2. GELFAND—TSETLIN POLYTOPES AS FLOW POLYTOPES

In this section, we recall the result from [3] that every Gelfand—Tsetlin polytope is integrally equivalent
to a flow polytope. We then study the volume and Ehrhart polynomial of Gelfand—Tsetlin polytopes. We
start by defining flow polytopes and providing the necessary background on them.

2.1. Background on flow polytopes. Let G be a directed acyclic connected (multi-)graph on the vertex
set [n+1] with m edges. An integer vector a = (a1, ..., an, — Y 1y a;) € Z"! is called a netflow vector. A
pair (G, a) will be referred to as a flow network. To minimize notational complexity, we will typically omit
the netflow a when referring to a flow network G, describing it only when defining G. When not explicitly
stated, we will always assume vertices of G are labeled so that (i,j) € F(G) implies i < j.

To each edge (i, j) of G, associate the type A positive root e; —e; € R”. Let Mg be the incidence matrix
of G, the matrix whose columns are the multiset of vectors e; — e; for (i,j) € E(G). A flow on a flow

network G with netflow a is a vector f = (f(e))eecr(q) in Rggc) such that Mg f = a. Equivalently, for all



1 <17 < n, we have
Yo f@+a= > [l
e=(k,1)€E(G) e=(i,k)€E(G)
The fact that the netflow of vertex n+11is — ) " | a; is implied by these equations.
Define the flow polytope Fg(a) of a graph G with netflow a to be the set of all flows on G-

Fo=Fcla)={f e REY | Maf = a}.

Given a graph G, the Kostant partition function K¢ of G evaluated at a vector b € Z"*! is the number
of ways to write b as a nonnegative integer combination of the multiset of vectors {e; —e; | (i,)) € E(G)},
or equivalently

Kg(b) = | Fa(b) nZFP@].

Remark 2.1. When G is a flow network (G, a), we will write F¢ for Fg(a). For any b € Z"!, we will write
Fa(b) and K¢ (b) when we wish to use a vector possibly different from the netflow a associated to G.

The following remarkable theorem gives the volume and Ehrhart polynomial formulas for a family of flow
polytopes.
Theorem 2.2 (Baldoni—Vergne-Lidskii formulas |2, Thm. 38]). Let G be a connected graph on the vertex

set [n+ 1] with m edges, and let a = (a1, ..., an, — Y 1y a;) with a; € Zxo for i € [n]. Direct the edges of G
by i — j if i < j, and assume there is at least one outgoing edge at vertex i for eachi=1,...,n. Then

ajl aj“ ] '
(6) Vol Fg(a) = Z —1' =5 Ka (j1 —outy,..., jn —outy, 0),
; Ji- In:
t t
M Fel@)nzE@ = ( o ) ( o )  Kg (j1 — outy, ..., ju — outy, 0),
J1 In

J

(8) = Z <<a1 j_,linl) ((“” ;nin”) - K¢ (j1 — outy, ..., jn — oltty,0)

for out; = outd; — 1 and in; = ind; — 1, where outd; and ind; denote the outdegree and indegree of vertex

i in G. Each sum is over weak compositions j = (j1,j2,-..,Jn) of m —n that are greater than or equal to
(outy,...,out,) in dominance order, and ((Z)) = (”+£71).

2.2. The Gelfand—Tsetlin polytope as a flow polytope. Given any partition A, we describe below a
graph G such that the following theorem holds.

Theorem 2.3 ([3, Proof of Theorem 2]). GT()) is integrally equivalent to Fg, .

Recall that two integral polytopes P in R? and Q in R™ are integrally equivalent if there is an affine
transformation ¢: R? — R™ whose restriction to P is a bijection : P — Q that preserves the lattice, i.e.,
¢ is a bijection between Z? N aff(P) and Z™ N aff(Q), where aff(-) denotes affine span. The map ¢ is called
an integral equivalence. Note that integrally equivalent polytopes have the same Ehrhart polynomials
and therefore the same volume.

We now define the flow network G, describing the graph and its associated netflow (see Remark .
For an illustration of Gy, see Figure[l]

Definition 2.4. For a partition A € Z%, with n > 2, let G\ be defined as follows:
If n =1, let G be a single vertex vyy defined to have flow polytope consisting of one point, 0. Otherwise,
let G have vertices

V(Gy) ={vij |2<i<j<n}U{vii1|3<i<n+2}U{vin41|3<i<n+1}
and edges
E(Gy) ={(vij,vit1,5) 12 <8 < j < npU{(vint1, Vit1,n41) [ 3< i <n+1}
U{(vigs vit1,541) [2 <0 < j <npU{(v5i-1,0i41,) [ 3< i <m+ 1}

The default netflow vector on G is as follows:
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o To vertex vg; for 2 < j < n, assign netflow A\;_; — A;.
o To vertex v,12 nyt1, assign netflow A, — A;.
e To all other vertices, assign netflow 0.

Given a flow on G}, denote the flow value on each edge (v;j,v;41,;) by a5, and denote the flow value on
each edge (vij,Vit1,541) by bij.

>\|*/\2

>\4*/\"

U36

FIGURE 1. The flow network G with £(\) = 5.

We note that viewing GT()) as a marked order polytope ([1]), Theorem is also a special case of our
more general Theorem

Several expressions for the volume and integer point count of GT()) are given in the following theorem.
To apply the Lidskii formulas (Theorem to G, we list the vertices of G in the following order: First
are the vertices {v;; | 2 < i < j < n} ordered lexicographically; next, the vertices {v;;—1 |3 < i < n+1}
ordered lexicographically; then, the vertices {v; n41 | 3 < i < n+ 1} ordered lexicographically; and lastly,
the sink vertex vp42 ny1-

In below, we need a few definitions: A shifted standard Young tableaux (shSYT) is a bijection
T: {(i,7)|1<i<j<n}— {1,2,...,(";1)} such that T'(i,7) < T(i + 1,) and T(i,5) < T(i,5 + 1). The
diagonal vector of a shSYT T is (7'(1,1),7(2,2),...,T(n,n)). Denote by N(by,...,b,—1) the number of
shSYT T with diagonal entries T'(¢,7) =7+ b1 4+ -+ + b;—_1.

Theorem Let A € Z%, be a partition and r = |V (Gy)|—1= ("'2"2) — 3. The volume of GT(A) is given
by -

Vol GT()\)

10 X — A

L2 j—1
1<i<j<n
AL — Ag)? Apoq — A, )bnt
I
bi,...,bpn—12>0 1 n—1-
AL — M) A"— _>‘n Jn—1 .
(3) :Z( ) L ) Kg, (h—1,.. ., jn1—1,-1,...,-1,0,...,0,0).

i Jl' jnfl!



The integer point count of GT(X\) is given by
[ Aouri
1<i<j<n J -t

(OG- GG G)

J

@ et Nz

(&)

'KGA <.]1 - 1a"'7jn—1 - 17]71 - 177.](72‘) - 1’j(g)+1a"'ajrvo) .

Proof. In [9], , , and are shown. Applying Theorem to the flow network G, yields and
@). O

Corollary 2.5. Comparing the volume formulas (@ and (@, we obtain that
N(by,...,bp—1)=Kg, (b1 —1,...,bp—1 —1,-1,...,-1,0,...,0,0)
forall by, ..., b1 > 0.

One can also see Corollarybijectively as follows. Given a shSYT T counted by N(by,...,b,_1), define
forl <i<j<n
Aj—i+1,5 = |{(Zl7]/) | T(lvj - 1) < T(ilvj/) < T(Zv.])a i’ < i? jl > ]}|7
bj—i+17j: |{(Z/7]/) |T(l7]) <T(7’lajl) <T(7’+17J)7 Zlglv ]/>]}|

We claim that these define a flow on G with netflow (by — 1,...,b,-1 —1,-1,...,—1,0,...,0,0).
e Note that a;; = 0 for i = j, while b;; = 0 for j = n. Thus there is no netflow at vertex v;; unless
2<i<j<n.

o At vyj, the netflow is asj + bj, which counts pairs (i, j) such that T'(j — 1,5 — 1) < T'(7,j") <
T(j—1,5)or T(j—1,7) <T(,j") <T(j,7), of which there are T'(j,j)—T(j—1,j—1)—2=1b;_1—1.

o At any other vertex Vij, the netflow is Qi —|—b7] — Qi1 — b'i—l,j—l- But Qi +bij and Qi—1,5 —|—b1'_17j_1
both count pairs (7/,7') such that T(j — i+ 1,5 — 1) < T(#,5") < T(j — i + 2,7) with the only
difference being that (i’,j') = (j —i+1,7) is not counted by the first quantity but is counted by the
second. It follows that the netflow is —1, as desired.

For the inverse map, we can construct the shSYT T inductively: by removing the vertices vy; and edges
with flows ag; and by; from Gy, we arrive at the graph for a partition of length n — 1 with netflow

(b22+a23—1,b23+a24—1,...,b2,n,1+a2n—1,—1,...,—1,0,...,0).

By induction, we can construct from this a shSYT T with side length n — 1 whose ith diagonal entry T"(i, 1)
is

i+ (baa +agz) + (bag +aoa) + -+ (b2i +agit1) =i+ (b1 — 1)+ (b2 — 1)+ -+ (bim1 — 1) + ag,i41
=1+bi+be+-+bi—1+azit1

Hence
T4+by+ba+--+bg <T'(4,i) < by +by+ -+ b

Then let us modify 77 by adding 1 to the entries 1,...,b;, adding 2 to the entries 1 + by,...,b; + ba, and
so forth, which in particular will add ¢ to T7”(¢,7). We can then attach to T a new diagonal with entries 1,
24 b1, 34 by + ba, ..., which will yield a shSYT T of side length n with the desired diagonal entries. It is
straightforward to check that these two maps are inverses of one another, completing the bijection.

We will provide a bijective proof of a generalization of Corollary in Section | in the more general
setting of strongly planar marked order polytopes.

2.3. Kostka numbers and key polynomials. Since GT()) is integrally equivalent to Fg,, all concepts
defined via the Gelfand—Tsetlin polytope may also be defined via the flow polytope. One such example is
Kostka numbers K4, which count the number of integer points in GT(\) with weight . Recall the weight
wt of a point (x;;);; is the vector whose ith component is Z;L:l Tij — Z?:i-u Tit1,j. Equivalently, K,
counts the number of semistandard Young tableaux with shape A and content «.
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Kostka numbers can be given in terms of the flow polytope of G by defining a weight map gwt on flows.
Let f € RE(G)) be a flow on G corresponding to the point P; € GT()). Define gwt: RE(GN) 5 R™ by
setting

JUH(T (0101 ) = €im1 and  gwt(T(y,; w00 ,40)) = 0
It is shown in [5, Proposition 3.9] that wt(Py); = gwt(f); + A, for each 1.

Another example is the key polynomials, also known as Demazure characters. In [13], it is shown that
every key polynomial appears as the integer point transform of the projection of a union of Kogan faces of
GT(X). We define Kogan faces and describe them in the context of Fg, .

Recall that every face of GT(\) is obtained by enforcing equality in some subset of the defining inequalities

Ti—1,j—1 = X5 and x5 > Ti_q 5.

A face is called Kogan if it is given by equations of the form x;; = ;1 ;. A face F’ of F¢, corresponds to a
Kogan face of GT(A) if and only if it is obtained by enforcing equations b;; = 0 on F¢, for some pairs (i, j).

3. MARKED ORDER POLYTOPES

In [1], Ardila, Bliem, and Salazar observed that the Gelfand—Tsetlin polytope is a section of an order
polytope. Inspired, they introduced marked posets and marked poset polytopes, generalizing Stanley’s
notion of order and chain polytopes introduced in [11]. In this section we give background on unmarked
and marked order polytopes, and we explain the generalizations of several results from order polytopes to
marked order polytopes.

Definition 3.1. A marked poset (P, A, \) consists of a finite poset P, a subposet A C P containing all its
extremal elements, and an order-preserving map A\: A — R. We identify (P, A, \) with the marked Hasse
diagram in which we label the elements a € A with A(a) in the Hasse diagram of P.

Definition 3.2. The marked order polytope of (P, A, \) is
O(P,A)y ={z e R |z, <z, for p< gin P and z, = \(a) for a € A}.
Let O(P, A) denote O(P, A)y projected onto the coordinates P\A.

Stanley’s construction of the order polytope O(P) [11] is a special case of a marked order polytope.
Given a finite poset P, add a new smallest and largest element to obtain P = P 1 {0,1}. Let A = {0,1}
and A(a) = a. Then

O(P) = O(P, A)s.

In general, computing or finding a combinatorial interpretation for the volume of a polytope is a hard
problem. Order polytopes are an especially nice class of polytopes whose volume has a combinatorial
interpretation.

Theorem 3.3 (Stanley |11]). Given a poset P, we have that

(i) the vertices of O(P) are in bijection with characteristic functions of complements of order ideals of
P,
(i) the normalized volume of O(P) is e(P), where e(P) is the number of linear extensions of P, and
(iii) the Ehrhart polynomial Lo(py(m) of O(P) equals the order polynomial Q(P,m + 1) of P.

We now explain how Theorem [3.3] generalizes to the setting of marked order polytopes.

For part (i), the vertices and facial structure of marked order polytopes are described by Pegel in [8].
A point z € O(P, A), induces a partition 7, of P that is the transitive closure of the relation p; ~, po if
xp, = x4 and p, ¢ are comparable. A point x € O(P, A), is a vertex if and only if each block of 7, contains
a marked point. In the case of an unmarked order polytope O(P), the blocks will be an order ideal and its
complement, so the vertices are characteristic functions.

Part (ii) of Theorem has a beautiful geometric justification: order polytopes have a canonical subdi-
vision into e(P) unimodular simplices. Consider O(P) cut with all hyperplanes of the form z, = z, where
p,q € P with p and ¢ incomparable. The regions of this arrangement correspond to the ways of totally
ordering the coordinates z, compatible with all inequalities of O(P), that is, linear extensions of P. Each
region is defined by inequalities of the form y; < yo < --- <y p| for y1,...,y p| a permutation of {z,},cp,
so each region is a simplex.
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The following theorem generalizes part (ii) of Theorem to marked order polytopes. For notational
convenience, we will take a linear extension of a poset P with n elements to be an order-reversing bijection
o: [n] = P, so for example o(1) will be a maximal element of P. We will generally label the elements of A
as {p1,p2,...,pr} such that A(p1) > --- > A(px) (and, additionally, if p; > p; in P, then i < j).

Theorem 3.4. (c¢f. [10, Theorem 3.2]) If (P, A, \) is a marked poset with marked elements A = {p1,...,px}
having markings AM(p1) > -+ > Mpx) denoted A1, ..., \g, then

~ AL — Ag)™t A1 — A ) %1
VOLOP Ay = 3 Npan(an,..,ap )220 Qe 2 AJT
ar: Ap—1:
ai,...,ap—1>0
where Np a(ai1,...,ax_1) is the number of linear extensions of P such that elements of A = {p1,...,pk}
occur at positions 1,24+ ay,...,k+ a1 + -+ + ax_1, respectively.

We note that when the markings A are along a chain in the poset P, Stanley has shown the above theorem
in his proof of a certain log-concavity conjecture which we explain below; see the proof of |10, Theorem 3.2].
His proof can be generalized to the above setting. We provide the proof here for completeness and take a
slightly different perspective via hyperplane cuts, much like Postnikov does in 9] for GT ().

Proof of Theorem[3.4) Consider 5(P, A)y cut with all hyperplanes of the form z, = z, or z, = A(a),
where p,q € P\A with p is incomparable with ¢, and a € A is incomparable with p. The regions of
this arrangement correspond to the ways of totally ordering the coordinates (x,),cp compatible with all
inequalities and markings, that is, certain linear extensions of P. Let o: [n] — P be a linear extension of P,
say with o(i;) = p; for j € [k], i1 <12 < --- <. Since A contains all minimal and maximal elements of P,
note that i; = 1 and i; = n. The associated region ﬁg in the subdivision is the projection of the region

O, ={z €R” | 2,01) > To(2) =+ = To(n)s To(iy) = Aj}-

onto the coordinates R¥\A. If nonempty, ﬁc, is the direct product
k—1
I, = H{)\j > To(i;41) = 2 To(iy—1) = Njt1)
j=1
where each term {\; > T, 41) >+ > ZTo(i; 1) = Aj+1} is an (ij41 —4; — 1)-dimensional simplex with

Aj—Xjpqp) i1t
( J J+1) . ThUS

volume (tj41—i5—1)!

Vol i, = M= 22)®  (eor = A)™
al! ak,ﬂ

where we set a; :=1i;41 — 7; — 1. Summing over all linear extensions o of P, we obtain
Vol O(P,A)y= > Volll,
oceL(P)
(A1 =A% (Ng—1 — Ag)® !

= Z Npaa(ai,...,ap-1) , , . O
aq- ap—1-

ai,...,ap—1>0
Marked order polytopes also enjoy a Minkowski sum property and decomposition.
Theorem 3.5 (|4]). Let P be a poset and A a subposet. If A\, pu: A — R are markings, then
O(P,A)xyp = O(P,A)y+ O(P, A),.

Corollary 3.6. For (P, A,\) a marked poset with marked elements A = {pi1,...,pr} having markings
Ap1) > - > AMpr), let w;: A — R be the map such that w;(p;) =1 for j <i and w;(p;) =0 if j > i. Then,
taking A(pr+1) to mean 0, O(P, A)x decomposes into the Minkowski sum

k
O(P, A =D (Api) = A(pi1))O(P, A,

=1
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3.1. A Log-Concavity Result. Recall that a sequence by, b1, ..., b, of non-negative real numbers is said
to be log-concave if b? > b;_1b;41 for 1 <i < m — 1. In particular, a log-concave sequence is unimodal,
that is for some j, we have by <by <--- < bj and b; > bj11 > -+ > byy,.

Using the Alexandrov—Fenchel inequalities and the volume formula for order polytopes, Stanley proved
the following log-concavity result in the special case where all marked elements of P lie on a chain in |10].

Theorem 3.7. Let (P, A,)\) be a marked poset with marked elements A = {p1,...,pr} having markings
A(p1) > -+ > Mpg) denoted My, ..., N,. If ar,...,ar > 0 with aj_1 > 1 and a; > 1 for some j, then

2
Np,A)\(al, NN ,ak_l) Z NP7A7,\(CL1, N ,aj_l,aj—l,aj+1, [N ,ak_l)Np7A7A(a1, .. .,aj_l,aj+1,aj+1, .. .,ak_l).

Before proving Theorem 3.7] we give some background on the theory of mixed volumes and the Alexandrov—
Fenchel inequalities following that of [10]. If Kj,..., K, are convex bodies (nonempty compact convex
subsets) of R™, fix weights r1,...,7rs > 0 and let K denote the Minkowski sum

K=rK + - 4rsKs={rt1+ - +rsts | t; € K;}.

The volume V(K) of K is a homogeneous polynomial of degree n in r1,...,7s:
V(K) = Z Z Z VieoinTiy =T, -
i1=lig=1  in=1

The coefficients V;, .. ;, are uniquely determined by requiring they be symmetric up to permutations of
subscripts. The coeflicient V;, . ; depends only on Kj, ,...,K; and is called the mixed volume of
K;,...,K; . If we write V(K{*,..., K%) for

VIKi,... K. . K. K|,

al as

then
n a as as
V(K) = Z (al’...ﬂS)V(Kll,...,Ks)r‘f1~-~r5.

ar+-tas=n

The well-known result about mixed volumes needed for the proof of Theorem is the following.

Theorem 3.8 (Alexandrov—Fenchel Inequalities, |[12]). Given 0 < m < n and convex bodies C1,...,Cp_pm, K, L C
R™, the sequence (bg,b1,...,by,,) defined by

b, =V (Cl, oy G, Km_i, LZ)
is log-concave.

We can now give the proof of Theorem
Proof of Theorem[3.7 Corollary [3.6] yields the Minkowski sum

k
O(P7 A)A = Z()‘l - )‘i+1)O(P7 A)ww
i=1
so taking Ag11 =0,
k
Vol O(P, A)y = Vol Y (A — Ais1)O(P, A,
i=1
|P| -k %) a %) a a ak
= > V(O(P, AL, ..., O(P, A1) (A1 = A2)™ - (Aot — )™
_ Aty ..., Q-1
ai+-+ax—1=|P|—k
Comparing this with the volume formula
5 (A1 — Ag)™ (Ap—1 — Ag)%t
Vol O(P,A)\ = N e Q] )
ol O(P, A)x Z panx(ar, ... ax-1) ay! apq!

ai,...,ax—1>0

of Theorem [3.4] we obtain
Npax(a,...,ap_1) = (|[P| = k)V(O(P,A)% ..., O(P, A)%1).

w1? Wr—1



An application of the Alexandrov—Fenchel Inequality completes the proof. O

4. MARKED ORDER POLYTOPES AS FLOW POLYTOPES

In this section we prove that for strongly planar posets with special markings, the marked order polytopes
are integrally equivalent to flow polytopes. This generalizes a result of Mészdros-Morales-Striker [7, Theorem
3.14] for (unmarked) order polytopes, which we now review.

A poset P is strongly planar if the Hasse diagram of P:=PU {0, i} is planar and can be drawn in the
plane so that the y-coordinates of vertices respect the order of P. When we refer to a bounded embedding
of P, we will mean a strongly planar drawing of the Hasse diagram of P with an additional two edges between
0 and 1 added, one drawn to the left of P and the other drawn to the right (see Figure . We will view this
embedding as a planar graph and discuss its (bounded) faces in the usual graph-theoretic sense.

P H

FIGURE 2. The Hasse diagram of a poset P (left), a bounded embedding H of P (middle),
and the directed graph Gp drawn over H (right).

We begin by recalling the case of order polytopes. Given a strongly planar poset P, let H be a bounded
embedding of P (viewed as a planar graph). Let H* be the graph-theoretic dual of H. Define Gp to be the
subgraph of H* obtained by deleting the vertex corresponding to the unbounded face of H. Denote the two
vertices of G that lie in faces of H containing the edges ((A)7 1) by s and ¢ with s on the right and ¢ on the
left.

Assign each edge e in Gp an orientation by the following rule: in the construction of H* the edge e crosses
an edge p < g of H; orient e so that while traversing e, ¢ is on the right and p is on the left. Make Gp into
a flow network by assigning netflow 1 to s, —1 to t, and 0 to all other vertices.

Theorem 4.1 (|7, Theorem 3.14]). Let P be a strongly planar poset and Gp be the flow network constructed
above. The polytopes O(P) and Fg, are integrally equivalent.

Proof sketch. The map from O(P) — Fg, is given by (zp)pep — f where f(e) = x4 — z, if e crosses the
edge p < ¢ in H and x5, z7 are taken to be 0 and 1 respectively. For the inverse, take a flow f on G'p. For
each p € P, choose any path in H from 0 to p. To define xp, sum the flow values f(e) on each edge e € Gp
crossing an edge in the chosen path from 0 to p in H. |

We now generalize Theorem to marked order polytopes. We begin with some terminology used to
define the marked analogue of a strongly planar poset. If F' is a bounded face of a bounded embedding H
of P, let p denote the minimum element of F' and let ¢ denote the maximum. The graph F\{p, ¢} has two
components whose unions with {p, ¢} we will call the left and right boundaries of F.

Definition 4.2. A marked poset (P, A, \) is called strongly planar if P is strongly planar as an unmarked
poset and admits a bounded embedding H such that for each bounded face F' C PofH , if the left boundary
of F' (including min(F) and max(F')) contains a marked element, then both min(F") and max(F') are marked.
We will call such an embedding a bounded strongly planar embedding.
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Remark 4.3. We note that in Definition we made a choice to put conditions on the markings on the
left boundaries of bounded faces. Of course we could have put those conditions on the right boundaries
instead. Moreover, as Remark [£.4] explains, the definition can be relaxed by mixing and matching left and
right boundaries of bounded faces under certain conditions in such a way that the main result, Theorem[I.2]
still holds.

For a bounded strongly planar embedding H of the marked poset (P, A, \), we now construct a flow
network G(p 4,») from Gp. Begin with a bounded strongly planar embedding H and the flow network G'p
constructed from H, as in the case of order polytopes. View the markings A as being on A inside of H, and
add additional markings min{\(a) | @ € A} on 0 and max{\(a) | a € A} on 1.

Recall that each vertex of Gp is naturally labeled by a bounded face of H. (In the rest of the paper,
whenever we refer to a face of bounded strongly planar embedding H, we mean a bounded face.) Denote
the vertex labeled by a face F' by vgr. Starting from Gp, construct a flow network G(p 4,x) by applying
the following construction to vg for each (bounded) face F' of H. See Figure |3| for an illustration of this
construction.

If F' contains no marked elements on its left boundary, do nothing, and let vp continue to have netflow 0.
Otherwise, suppose the left boundary of F' is composed of elements p; > -+ > py in H, with min(F) = py
and max(F) = p;. Since some point on the left boundary of F is marked, so are p; = ¢1 and pp = ¢ by
strong planarity. Suppose the marked elements among py, ..., px are p1 = p;, > p;, > -+ > p;, = pr marked
by a1 > az > --- > a4. Delete the edges outgoing from vertex vp in Gp, and let vp become a sink with
netflow —(p; — pg), with the incoming edges as before. The edges previously outgoing from vr in Gp that
crossed the left boundary of I’ between marked elements p;, , and p;,. ., will now be outgoing from the source
vertex sb for m € [g — 1]. Assign s% netflow a,, — ay,41 for each m.

. -
1 i
r _—
N N

1 1

7

2

FIGURE 3. An illustration of the construction of G(p 4,1 from Gp on a single face F'.

Theorem Given a bounded strongly planar embedding H of a marked poset (P, A, \), the marked order
polytope O(P, A)y is integrally equivalent to the flow polytope FGip.axy: where Gpay is the flow network
described above.

Proof. The integral equivalences between O(P, A), and FGp.ax are exactly as in the order polytope case.
The map I't O(P, A)x = FGp 4., 18 given by (zp)pep > f where f(e) = x4 — z, if e crosses the edge p < ¢
in H. The inverse map I'"! is given by 2, = 3, f(e) over edges e € G(p,a,x) crossing any fixed path from 0
to p in H. (Note that from any marked point p € A, there exists a path from p to 0 in H that only walks
along the left boundaries of faces to the minimums of those faces.) The details of the proof are analogous to
those in 7] and are left to the reader. O
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Theorem provides a general framework for obtaining the graphs G used in Theorem and for
proving Theorem See Figure [4] for an example of this.

A
)\1 >\1
)\2 )\2
A3 A3
)\4 )\4
As As
(P, A, N) (P,AN)
As
A
0 ) o—=—0(
M
)\1*)\2 )\1*)\2 /\17)\2
A2
)\2 - >\d )\2 - )\3 /\2 - )\3
As — A1 A3 As — A1 As — A1
Az — Ay Az — Ay Az — Ay
A
A — A5 A — A5 A — A5
As
0 0 0e—<—e0 G
- by ~
Gppayn ° Gpan

FIGURE 4. Top row: the marked poset (P, A, \) with O(P, A)y = GT()\), P = Pu{0,1},
and the flow network G p; Bottom row: the flow network Gp 4 ) and the integrally equiv-
alent flow network G of Definition @

Remark 4.4. Note that Theorem can be generalized in various ways. We can obtain slightly different
conditions on the markings of strongly planar posets under which the statement of Theorem [T.2] as well as
the map given in its proof are still correct. We picked the above particular definition for bounded strongly
planar embeddings relying on conditions on the left boundaries of the bounded faces of the embedding as
it seemed the least technical to state. We could have, of course, equally worked with right boundaries of
the bounded faces of the embedding, or, we could mix and match as to when we consider the left or right
boundary of a bounded face as long as we ensure that the flow conditions pick up the restriction coming
from two marked points that are comparable but do not lie in a common face. Next, we give an example of
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how relaxing the marking conditions in Theorem yields a new proof that skew Gelfand—Tsetlin polytopes
are flow polytopes.

Definition 4.5. Given partitions \, i € Z%, and m € N, the skew Gelfand—Tsetlin polytope GT(\/u, m)
is the set of all arrays

ITml Tm2 - - - o e Tmn

xll m12 o e xln
To1 To2 <o Ton

with top row A and bottom row p such that x;; > z;_1 ; and z;; > x;41,;41 for all ¢, 7.

Proposition 4.6. Skew Gelfand—Tsetlin polytopes are marked order polytopes of strongly planar marked
posets.

Proof. Given A, p, and m, begin with a skew Gelfand-Tsetlin array (x;;); ;. Replace each entry x;; by a
vertex, and each relation ;; > x;_1; or T;; > X;41,;41 by an edge between the corresponding vertices. Mark
the top row of vertices with the corresponding entries of A, and mark the bottom row of vertices with the
corresponding entries of p. Rotate the graph 90 degrees clockwise. The result is the Hasse diagram of a
strongly planar marked poset (P, A, ) with O(P, A,\) = GT(\/u, m). See Figure [5| for an example of this
construction. O

Corollary 4.7 ([3]). Skew Gelfand-Tsetlin polytopes are integrally equivalent to flow polytopes.

Proof. Apply the generalization of Theorem [1.2] explained in Remark [£.4]to the poset constructed in Lemma
See Figure 5] for an example of the resulting flow network. O

AL — Ay
H1 — Al
A2 — A3
H2 — [
)\1 )\2 )\3 )\4 )\3 - /\1
Lol T2 T23 T4
T11 T2 T13 T4 M3 — M2
H1 o p2 M3 4
Ay — iy
M4 — 3

FIGURE 5. An example of the marked poset and corresponding flow network for recognizing
a skew Gelfand—Tsetlin polytope GT(\/u, 3) with £()\) = 4 as a marked order polytope and
a flow polytope.

Remark 4.8. In , a family of polytopes containing the skew Gelfand—Tsetlin polytopes is considered, and
all members of the family are shown to be flow polytopes. It is easy to see using the idea of Proposition 4.6
that all members of this family are also strongly planar marked order polytopes.
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5. SUBDIVISIONS OF MARKED ORDER AND FLOW POLYTOPES

In this section, we will give subdivision procedures for O(P, A), and F¢ (p.a., 211d prove the two procedures
are equivalent. In particular, this will yield a bijective proof of Corollary

We start by reviewing the subdivision procedure for flow polytopes following the exposition of [6]. However,
we will use a simplified version of the flow polytope subdivision method presented there, specialized to the
types of graphs that appear in the present paper.

5.1. Subdividing flow polytopes into products of simplices. Flow polytopes admit a combinatorial
iterative subdivision procedure. To describe the algorithm, we first introduce the necessary terminology
and notation. A bipartite noncrossing tree is a tree with a distinguished bipartition of vertices into
left vertices z1,...,z, and right vertices z,y1, ..., z,y, with no pair of edges (xp, Ti4q), (T4, To4q) Where
p <t and g > u. Denote by T r the set of bipartite noncrossing trees, where L and R are the ordered sets
(x1,...,20) and (xe41,...,2e4,) respectively. Note that |7 g| = (E'ZIQL since they are in bijection with
weak compositions of r — 1 into ¢ parts: a tree T in Tz g corresponds to the composition (by —1,...,by — 1)
of r — 1, where b; denotes the number of edges incident to the left vertex x4; in 7.
The bipartite noncrossing tree encoded by the composition (0,2, 1, 1) is the following:

Consider a graph G on the vertex set [n + 1] and an integer netflow vector a = (a1,...,an,—>_;a;). In
this paper, we will assume that a; > 0 implies 7 has no incoming edges, a; < 0 implies ¢ has no outgoing
edges, and a; = 0 implies 7 has both incoming and outgoing edges. For these flow networks, the basic step
of the subdivision method is the following:

Pick an arbitrary vertex ¢ of G with netflow a; = 0. Let Z; = Z,(G) be the multiset of edges incoming to 4,
edges of the form (-,4). Let O; = O;(G) be the multiset of outgoing edges from i, edges of the form (i, ).

Assign an ordering to the sets Z; and O;, and consider a tree T' € Tz, o,. For each tree-edge (e1,ez2) of
T, where e; = (r,i) € Z; and e = (i,s) € O;, let edge(e1, ez) = (r,s). Define a graph Ggf) by starting with
G, deleting vertex ¢ and all incident edges Z; U O; of G, and adding the multiset of edges {edge(es,e2) |
(e1,€2) € E(T)}. See Figure [6] for an example.

Lemma 5.1 (Compounded Subdivision Lemma). Let G be a flow network on the vertex set [n + 1] with
netflowa = (ay,...,an, =Y iy a;) € Z" and a vertexi € {2,...,n} with a; = 0. Then, {F ) (a)}rers, o,
i $0;

are top dimensional pieces in a subdivision of Fa(a), where & equals a with ith coordinate deleted.

In order to view F, o as a subset of Fg, label each edge e of G with a coordinate f.. Label each new
T

edge of G(jf) by the formal sum of the coordinates of the edges of G that formed it. To get an inclusion

e

labeling it.

@ C Fg, simply add the flow value of each edge in Ggf) to all edges of G appearing in the formal sum
T

We refer to replacing G by {Ggrz)}TeTL,R as a compounded reduction on G. In order to fully subdi-
vide F¢ into simplices, one performs a compounded reduction on G, then iteratively performs compound
reductions on the graphs Ggf). A series of these reductions can be efficiently encoded by a compounded
reduction tree: the root of the tree is the original graph G; and the descendants of any node are the
graphs obtained via a compounded reduction on that node. See Figure [f] for an example. The canonical
compounded reduction tree of G is obtained by performing compounded reductions from highest to low-
est index netflow zero vertices, as in Figure [f] There is a natural way of labeling the products of simplices
into which we subdivide our flow polytope via the compounded reductions by integer points of other flow
polytopes, as is explained in [6].

5.2. Subdividing order polytopes into products of simplices. Given a bounded strongly planar em-
bedding H of a marked poset (P, A, \), consider the following method for subdividing O(P, A): Consider
any face F of H not containing an edge (0, 1) (where, as previously, by face we mean bounded face). Suppose
that F' is bounded on the left by p; > .-+ > pr and on the right by p1 = ¢1 > -+ > q» = px. Replacing F
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fi3 S f3
aQ : fi2 fa3 f31 fa
1 vz v3 v v
faa 7f45
faa
faa+ fus
fis I35
fi2 f23 faa+ fas
o va v3 vs
fis Z fis fis Xﬁm
fas faa + f1s fos fsa+ fas
fis + fast fas
fis+ fis Jis+ f35
foat fas Jaat fas
fos + fss
fi2 fos + faa+ fus fiz Jos+ faa+ [
vy va Us vy V2 Us
Jaa+ fas
Ja+ fas
fiz fort fs iz <
fa3+ faa + fas
fa3+ faa + fas
Jis+ fas Jis+ faa + fas
Szt faat fas Jis+ f35
Sz fas + fs5 Ji2+ faa + fas
iz + fas + faa+ fas Ji2 + fas + faa + fas

U1 Vs Us

FIGURE 6. An example of a compounded reduction tree for a graph G with netflow
(1,0,0,0,—1). The tree is built downward by performing a series of compounded reduc-
tions, starting with the root GG. The labels on edges record the inclusion maps from the flow
polytope of each graph to the flow polytope of G.

.,q¢—1, we obtain A strongly planar marked

by any of the N = (¥F*>*) linear extensions of p,...,pk, g2, .

2
posets (P, A, ), ..., (Py, A, N\).

Lemma 5.2. The marked order polytopes O(P1, A, \),...,O(Py, A, \) described above form a subdivision
of the order polytope O(P, A, \).

Proof. This subdivision is obtained by cutting O(P, A)x by the hyperplanes x,, = x,, for i € [1,k] and
jel,e. O

By the above lemma, applying the above construction iteratively to each face of the bounded strongly
planar embedding H of the marked poset (P, A, \) yields a subdivision of O(P, A), into the marked poset
polytopes of a set of marked chains, that is, into products of simplices.

5.3. Comparing the subdivisions of flow and order polytopes. Theorem shows O(P, A), is in-
tegrally equivalent to a flow polytope Fg , ,,,- As we saw in Sections and both flow and order
polytopes admit an iterative subdivision procedure. We show here that indeed those procedures can be
considered identical.

Through a single application of Lemma on FGp 4 ), We obtain the following.

Lemma 5.3. Given a bounded strongly planar embedding H of the marked poset (P, A, \), consider a face
F of H which has no markings on its left boundary. Linearly order the k — 1 outgoing and £ — 1 incoming
edges of vp from top to bottom. Performing a compounded reduction at vy on G(p a ) yields N = (k+z_4)

-2
1 N ivi
flow networks G(P’A)\), ceey G(P’A,A) such that the polytopes ]:G%P,A,k) e ’]:G-é\}/D,A,)\) subdivide Fgp 4 5, -



p1

ep1 [ Y41 L Y41 oP1
D2

L 1%D) [ Y] [ Y] ep2
p3 q2 L Y22 L X)) oD3 o3
I ep3 op3 L 1)) [ Y2
[ Y2 op4 L Y2 L 1))
Ps e D5 [ Y451 ®Ds5 L Y45

FIGURE 7. A face F' with unmarked left boundary in the embedding of a strongly planar
poset P (left) and the corresponding linear extensions of F' that replace F' to form the posets
Py, ..., Py when subdividing O(P, A, A) (right).

e 611 1D2 611 1D2
‘P1D2 D1 €pigo €p1go
6112[)3 6112[)3
e 6113[)4 6113[)4
“P2P3 e e
~q2pP5 ~q2pP5
Cpaps €paps
p3 q2
€psps P Epips Epips
Ep1ge Ep1ge
(A 92p5 6112[)3 6112[)3
ol p5 o] ]
Cpaps €pspy Epspa
Cqaps Cqaps
Cpaps €paps

FIGURE 8. A netflow zero vertex vr of G(p.a ) (left) and the corresponding bipartite
noncrossing trees that can be used to perform a compounded reduction at vg to produce
flow networks G%RA’/\), ceey G%’A’A) whose flow polytopes subdivide F¢ . , ,, (right).
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We now describe an equivalence between the subdivision procedures of O(P, A), and FG(p.ay Whose
basic step is described in Lemma and Lemma [5.3| respectively. We first focus on the case of a single step
of both subdivisions.

Lemma 5.4. Given a bounded strongly planar embedding H of a marked poset (P, A, \), let F be a face of
H with unmarked left boundary. Let T' be the integral equivalence O(P, A)y — FGpan of Theorem .
Then there is a bijection v: [N] — [N] between the linear extensions of F' and the bipartite noncrossing trees
from a compounded reduction at vy such that

I: O(Pj,A))\ — -FG’Y(j)

(P,A,X)
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Proof. Let F' be bounded by p; > pa > --+ > pi on the left and p; = ¢1 > g2 > -+ > q¢ = pi, on the right.
To define the bijection, we start by drawing the bipartite noncrossing trees with the vertices arranged in
vertical columns. Label each vertex of the tree by the edge of H dual to the edge of G(p 4,y) it represents.
Encase each tree in a bounding rectangle so that the vertex columns lie on the interiors of the sides of the
rectangle. See Figure [9]

To construct a linear order from a tree, we will label the regions of the rectangle cut out by the tree.
Label the top region p; and the bottom pg. All intermediate regions are triangles with exactly one edge on
the bounding rectangle. Label such regions by the common label of the endpoints of this edge. The result
will be a linear order of the face F'. Conversely, a linear ordering gives an ordering on the edge segments on
each side of the rectangle. Build the tree top to bottom by adding in edges inside the bounding rectangle to
cut out regions as specified by the linear order from top to bottom.

To see that v has the property

I: O(Pj,A)A _>‘7:G'*(j) y

(P,A,X\)
it suffices to note that v is constructed precisely so that G(p, a,x) = G(WI(D{347A) for each j € [N]. O
b1 D1
Ep1p2 Ep1p2 —_

() . Do >0€’ .
P142 P142
q2

D1 67)21)3
D2

Epspa %

e
“P2P3
< q2

Epspa %

>€(72;’15

6[}2])3 D4 6(]2])5 P4
€pups '/] 5 Cpaps ./] 5

Epspa D4

Cpip O~

P2

€paps 4

P1

?equ

Cpip O~

P2

€paps 4

P1

6771(]2

(&
q2P5
o Q2 o ﬁ
e D5 “P3P4 “P3P4 %
“P4aPs 9
par D4 >‘€(72;’)5 /.6(72;’)5
€paps o~ | €paps

I

5

5

FIGURE 9. An example of the equivalence between the subdivisions of O(P,A), and

FG(p.a.y through a bijection of linear orders and bipartite noncrossing trees.

Theorem 5.5. Let H be a bounded strongly planar embedding of the marked poset (P, A,\). Choose an
ordering Fi, ..., Fy,, of the faces of H that contain no marked elements on their respective left boundaries.
Let A be the subdivision of O(P, A)x obtained by applying Lemma to each of Fy,...,Fy,,. Let A" be
the subdivision of Fap , , obtained by applying Lemma to each of vp,,...,vF, in Gpax). Then the
integral equivalence T': O(P, A)x — FGip.ax induces a bijection y from regions of A to regions of A

Proof. Apply Lemma [5.4] iteratively to each of Py,..., Py. O

5.4. Bijecting the combinatorial objects labeling the subdivisions of flow and order polytopes.
Now we are ready to give a bijective proof of a generalization of Corollary Figure [10] provides a detailed
example of the bijection.
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A AR

FI1GURE 10. An example of the bijective proof of Corollary In the left column, a flow on
G(p,a,») is mapped to a leaf of the canonical compounded reduction tree of G\(p 4 ). Then,
each step of the path (middle column) from the root to that leaf is mapped to a marked
order polytope by « (right column), the last of which is a linear order.

17
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Corollary 5.6. Let H be a bounded strongly planar embedding of the marked poset (P, A, \) with A =
{p1,...,px} such that X(p1) > --- > Xpy). Additionally, assume P is marked in such a way that G(p a,x)
has only one sink. Order the n vertices of Gp a.x so that sources corresponding to pi1,...,pr are first, edges
go from earlier to later vertices, and the sink is last. Then

Npax(al,...,a5-1) = KGipas (a1 —outy,...,ax—1 —outg_1, —outg, ..., —out,_1,0),
where out; is the outdegree of vertex j in G(p a x) minus 1.

Proof. Choose an ordering of the vertices of G(p 4,) so that all edges go from earlier to later vertices in
the order. Let vp, < --- < vp, be the induced order of the vertices vp corresponding to faces with
unmarked left boundary. Let A be the subdivision of O(P, A) and A’ the subdivision of F¢,, , ,, obtained
by using Lemma onF; ,...,F; and Lemma onvg, ,...,vr, respectively. The integral equivalence
[': O(P,A)x = FG(p 4., induces a bijection v from regions of A to regions of A'.

As described in [6] Lemma 4.1, flows on Gp 4 » with netflow

(a1 —outy,...,ax_1 — outg_1, —outy,..., —out,_1,0)

are in bijection with leaves of the canonical compounded reduction tree of G(p 4,x) With a; edges outgoing
from the ith source vertex. The flow values on edges incoming to each vertex are read off from the composition
corresponding to the noncrossing bipartite tree chosen when reducing that vertex. The volume-preserving
bijection 7 provides a correspondence between these leaves and linear extensions of P with the marked
elements in positions 1,2+ aq,...,k+ay + -+ ag—1. |

See Figure [10] for an illustration of Corollary
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