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Abstract. We study a representation of the (local) plactic monoid given by Schur opera-
tors ui, which act on partitions by adding a box in column i (if possible). In particular, we
give a complete list of the relations that hold in the algebra of Schur operators.

1. Introduction

The Schur operator (or column box-adding operator) ui for i = 1, 2, . . . acts on partitions
λ by adding a box to the ith column of the Young diagram of λ if the resulting diagram
is a partition, otherwise ui sends λ to 0. These operators were introduced by Fomin in
[2] and also described by Fomin and Greene in [3] in their development of the theory of
noncommutative Schur functions (which are a useful tool for studying Schur positivity and
related phenomena). They can also be thought of as refinements of the box-adding operator
U acting on Young’s lattice as defined by Stanley [7] in his study of differential posets.

In [2] and [3, Example 2.6], the authors observe that the Schur operators satisfy the
relations of the local plactic monoid/algebra with relations:

uiuj = ujui for |j − i| ≥ 2,

uiui+1ui = ui+1uiui,

ui+1ui+1ui = ui+1uiui+1.

However, they remark that the full set of relations satisfied by the ui is unknown. In
this paper we describe the complete set of relations among the ui and thereby give a full
characterization of the algebra of Schur operators by proving the following theorem. (This
algebra was also characterized independently using different methods by Meinel in [5], where
it is called the partic algebra and studied in relation to bosonic particle configurations.)

Theorem. The algebra of Schur operators is defined by the relations:

uiuj = ujui for |j − i| ≥ 2,

uiui+1ui = ui+1uiui,

ui+1ui+1ui = ui+1uiui+1,

ui+1ui+2ui+1ui = ui+1ui+2uiui+1.

Date: March 20, 2020.
Keywords: Schur operator, plactic monoid.
R. I. Liu and C. Smith were partially supported by National Science Foundation grant DMS-1700302.

1



2 THE ALGEBRA OF SCHUR OPERATORS

Interestingly, this algebra is somewhat more complicated than a more common related
one, also described in [3] (see also [1]), that is generated by diagonal box-adding operators ũi
that add a box to the ith diagonal of λ if possible (where the diagonals are labeled 1, 2, . . .
from bottom to top). The algebra generated by such operators was shown in [1] to be the
nil-Temperley-Lieb algebra given by the relations:

ũ2i = 0,

ũiũj = ũjũi for |j − i| ≥ 2,

ũiũi+1ũi = ũi+1ũiũi+1 = 0.

We will begin with some preliminary background in Section 2 and then move on to a proof
of our main theorem in Section 3.

2. Preliminaries

In this section, we will introduce necessary background about partitions, Knuth equiva-
lence, and Schur operators.

2.1. Partitions. A partition λ = (λ1, . . . , λn) of |λ| =
∑

i λi is a nonincreasing sequence
of nonnegative integers. (We may add or delete trailing zeroes as convenient.) To each
partition, we associate a Young diagram, which is a collection of left aligned boxes with λ1
boxes in the first row, λ2 boxes in the second row, and so on. We also define the conjugate
partition λ′ to be the partition whose Young diagram is obtained from that of λ by reflecting
across its main diagonal.

The set of partitions forms a partially ordered set called Young’s lattice Y = (Y,⊆),
where λ ⊆ µ if and only if the Young diagram of λ fits inside the Young diagram of µ (or
equivalently, λi ≤ µi for all i). In this partial order, µ covers λ if and only if µ/λ is a single
box. Here, µ/λ denotes the skew Young diagram obtained by deleting those boxes in µ that
are also contained in λ.

A semistandard Young tableau (SSYT) of shape λ is formed by filling each box of the
Young diagram of λ with a positive integer such that the numbers are weakly increasing
within a row (read from left to right) and strictly increasing within a column (read from top
to bottom). A standard Young tableau (SYT) is a semistandard Young tableau of shape λ
with labels 1, 2, . . . , |λ|.

The reading word rw(T ) of a tableau T is the word obtained by listing the entries of the
tableau by rows from bottom to top, reading each row from left to right.

Example 2.1. Let λ = (4, 3, 1). For the semistandard Young tableau

T =

1 1 1 4

2 2 3

3

,

we have rw(T ) = 32231114.

The weight of a tableau T is the tuple w(T ) = (w1(T ), w2(T ), . . . ), where wi(T ) is the
number of occurrences of i in T . We similarly define the weight w(x) = (w1(x), w2(x), . . . )
of any word x in the alphabet N = {1, 2, . . . }. (Clearly T and rw(T ) have the same weight.)
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2.2. Schur operators. Let U be the free associative algebra (over the complex field C)
generated by ui for i ∈ N. Given a word x = x1 · · ·xl in the alphabet N, we define the
element ux = ux1 · · ·uxl

∈ U . Hence the set of ux for all words x forms a basis for U .
Let C[Y] be the complex vector space with basis Y. Then U acts on C[Y] as Schur

operators by

ui(λ) =

{
µ if µ/λ is a single box in column i,

0 otherwise,

and ux(λ) = ux1ux2 . . . uxl
(λ), extended linearly.

Example 2.2. Let λ = (3, 1). Then u2(λ) = (3, 2), u3u2(λ) = (3, 3), but u2u3u2(λ) = 0
since adding another box to the second column does not yield a partition.

u2−→ u3−→ u2−→ 0

Let I be the two-sided ideal of U consisting of all elements that annihilate all of C[Y].
Then two elements u and u′ of U are equivalent modulo I, written u ≡ u′ (mod I), if
u(λ) = u′(λ) for all partitions λ. We call U/I the algebra of Schur operators.

As mentioned in the introduction, the Schur operators were introduced by Fomin [2] and
discussed by Fomin and Greene [3, Example 2.6] in their study of noncommutative Schur
functions. In particular, they observe that the Schur operators give a representation of the
local plactic monoid, meaning that the following relations hold modulo I:

uiuj ≡ ujui for |j − i| ≥ 2,

uiui+1ui ≡ ui+1uiui,

ui+1ui+1ui ≡ ui+1uiui+1.

For completeness, we will verify these relations in Section 3 below.

2.3. Knuth equivalence and RSK. Consider words x = x1x2 . . . , y = y1y2 . . . in the

alphabet N = {1, 2, 3, . . . }. We say that x and y are Knuth equivalent, denoted x
K∼ y, if

one can be obtained from the other by applying a sequence of Knuth or plactic relations of
the form

. . . bac . . .
K∼ . . . bca . . . for a < b ≤ c,

. . . acb . . .
K∼ . . . cab . . . for a ≤ b < c.

Here, the ellipses indicate that the subwords occurring before and after the swapped letters
remain unchanged. (The Knuth relations define the so-called plactic monoid [4], of which
the local plactic monoid is a quotient.)

The Robinson-Schensted-Knuth (RSK) algorithm gives a bijection between words x and
pairs of tableaux (P,Q) where the insertion tableau P is semistandard, the recording tableau
Q is standard, and P and Q have the same shape. (See, for instance, [6] for more informa-
tion.) The exact details of the RSK algorithm will not be important for us, as we will only
need the following facts.

• The insertion tableau P has the same weight as x.
• Two words x and y are Knuth equivalent if and only if they have the same insertion

tableau P .
• For any semistandard tableau P , the insertion tableau of rw(P ) is P .
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For instance, these facts imply the following proposition, which we will need for our main
theorem. (Here and elsewhere, we use ik to denote a subword of the form ii . . . i︸ ︷︷ ︸

k

.)

Proposition 2.3. Let x be a word with minimum letter i, and let k = wi(x) be the number
of occurrences of i in x. Then x is Knuth equivalent to a word y = . . . ik . . . in which all
occurrences of i are consecutive.

Proof. Let P be the insertion tableau of x, and let y = rw(P ). Since x and y both insert to

P , we have x
K∼ y, and y has the desired form since all i’s appear next to each other in the

first row of P . �

3. Results

Recall that we define I to be the ideal that gives the relations among the Schur operators
acting on C[Y]. The overall goal of this section is to show that I is generated by the local
plactic relations (1)–(3) and one additional type of relation (4) shown below:

uiuj ≡ ujui for |j − i| ≥ 2,(1)

uiui+1ui ≡ ui+1uiui,(2)

ui+1ui+1ui ≡ ui+1uiui+1,(3)

ui+1ui+2ui+1ui ≡ ui+1ui+2uiui+1.(4)

3.1. Equivalence of words. Let x and y be words. Our first step is to understand when
ux ≡ uy (mod I) for ux, uy ∈ U . To this end we let α(x) = (α1(x), α2(x), . . .), where

αi(x) = max{wi+1(x̃)− wi(x̃) | x̃ is a suffix of x}.

(Here, a suffix of x = x1x2 · · ·xl is a trailing subword of the form x̃ = xjxj+1 · · ·xl, possibly
empty.) Note that if x̃ is the empty subword, then wi+1(x̃) = wi(x̃) = 0, and so αi(x) ≥ 0
for all i.

Proposition 3.1. Let λ be a partition and x a word. Then

ux(λ) =

{
(λ′1 + w1(x), λ′2 + w2(x), . . . )′ if αi(x) ≤ λ′i − λ′i+1 for all i,

0 otherwise.

Proof. If ux(λ) = ux1 · · ·uxl
(λ) 6= 0, then adding boxes to columns xl, xl−1, . . . of λ must

always yield a partition. Hence for all i and suffixes x̃,

λ′i+1 + wi+1(x̃) ≤ λ′i + wi(x̃),

so

wi+1(x̃)− wi(x̃) ≤ λ′i − λ′i+1

for all i and x̃, which implies αi(x) ≤ λ′i − λ′i+1.
Otherwise, if ux(λ) = 0, then ux̃(λ) = 0 for some minimal suffix x̃, so for some i,

αi(x) ≥ wi+1(x̃)− wi(x̃) > λ′i − λ′i+1. �

Corollary 3.2. Let x = x1 . . . xl and y = y1 . . . yl be words. Then ux ≡ uy (mod I) if and
only if w(x) = w(y) and α(x) = α(y).
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Proof. If w(x) = w(y) and α(x) = α(y), then ux ≡ uy (mod I) by Proposition 3.1.
Conversely, if w(x) 6= w(y), then let λ be a partition such that

αi(x), αi(y) ≤ λ′i − λ′i+1 for all i.

Then ux(λ) 6= uy(λ) by Proposition 3.1, which implies ux 6≡ uy (mod I). If instead α(x) 6=
α(y), then suppose without loss of generality that αj(x) < αj(y) for some j. Choose λ such
that αi(x) ≤ λ′i − λ′i+1 for all i, but αj(y) > λ′j − λ′j+1. Then ux(λ) 6= 0 = uy(λ), so again
ux 6≡ uy (mod I). �

In other words, a word ux is determined modulo I by w(x) and α(x). We next verify
that I is a binomial ideal (i.e., generated by elements with two terms), so that Corollary 3.2
essentially determines all of the relations in I.

Proposition 3.3. The ideal I is generated by elements of the form ux− uy for words x and
y such that α(x) = α(y) and w(x) = w(y).

Proof. Let I ′ be the ideal of U generated by ux − uy as described above. By Corollary 3.2,
we have I ′ ⊆ I. Let R be any element of I. Then R ≡ R′ (mod I ′) for some

R′ =
∑
k

ckux(k),

where for each k, x(k) is a word, 0 6= ck ∈ C, and ux(k) 6≡ ux(k′) (mod I ′) for k 6= k′.
Fix some weight w and let x(k1), x(k2), . . . be those words in R′ for which w(x(k)) = w,

with α(x(k1)), α(x(k2)), . . . ordered lexicographically. We construct a partition λ such that

αi(x(k1)) = λ′i − λ′i+1 for all i.

Proposition 3.1 gives ux(k1)(λ) 6= 0, but ux(kj)(λ) = 0 for all kj 6= k1 since by the lexicographic
ordering, αi(x(kj)) > αi(x(k1)) = λ′i−λ′i+1 for some i. This then implies that ck1 = 0, which
is a contradiction unless R′ = 0. Thus R ∈ I ′ and so I = I ′. �

We therefore need only determine relations that allow us to equate ux for all words x with
a fixed α(x) and w(x).

Another useful fact about I is that it satisfies a certain shift invariance.

Corollary 3.4. Let x = x1 . . . xl and y = y1 . . . yl, and define x′ = (x1 + 1) . . . (xl + 1) and
y′ = (y1 + 1) . . . (yl + 1). Then

ux ≡ uy (mod I) if and only if ux′ ≡ uy′ (mod I).

Proof. Since

αi(x
′) = αi−1(x), wi(x

′) = wi−1(x),

αi(y
′) = αi−1(y), wi(y

′) = wi−1(y),

for all i, the result follows by Corollary 3.2. �

For the rest of this section, we will let J denote the ideal generated by relations (1)–(4).
We first verify that these relations all lie in I.

Proposition 3.5. The relations (1)–(4) hold in U/I, or equivalently, J ⊆ I.
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Proof. By Corollary 3.4, we may take i = 1. Thus by Corollary 3.2, we need only check that
w(x) = w(y) and α(x) = α(y) for the appropriate words on both sides of the relation. This
is straightforward: for instance, for relation (4),

w(2321) = w(2312) = (1, 2, 1),

α(2321) = α(2312) = (1, 0).

The other relations follows similarly. �

In particular, we note the following relationship with Knuth equivalence.

Lemma 3.6. Let x and y be words such that x
K∼ y. Then ux ≡ uy (mod J).

Proof. If x and y are related by a Knuth move that switches a < c, then ux ≡ uy (mod J)
by (1) if |a− c| ≥ 2 or by (2) or (3) if c = a+ 1. �

We next demonstrate that Knuth equivalence is sufficient to describe equivalence modulo
I for words in two letters i and i+ 1.

Proposition 3.7. Let x and y be words in i and i + 1. Then ux ≡ uy (mod I) if and only
if ux ≡ uy (mod J).

Proof. We claim that the insertion tableau of x is determined by w(x) and α(x). Indeed,
since P is semistandard and contains only i’s and i + 1’s, it has at most two rows, and i
can only appear in the first row. Then given w(x) = w(P ), all that needs to be determined

is the number of i + 1’s in the first row. Since x
K∼ rw(P ), Corollary 3.2 implies that

αi(x) = αi(rw(P )). But this is clearly the number of i + 1’s in the first row of P (since P
has at least as many i’s in its first row as i+ 1’s in its second row).

We can now prove the proposition. The reverse direction follows from Proposition 3.5, so
suppose ux ≡ uy (mod I). By Corollary 3.2, we have α(x) = α(y) and w(x) = w(y). Hence

x and y must have the same insertion tableau by the above claim, so x
K∼ y. By Lemma 3.6,

it then follows that ux ≡ uy (mod J). �

Note that we have shown that if our words only contain two consecutive letters, then only
relations (2) and (3) are needed to determine equivalence modulo I.

3.2. Key lemmas. When dealing with three or more letters, we will need to utilize relations
(1) and (4). The following two lemmas will show the key contexts in which these relations
will be used.

Denote by x[i, j] the subword of x consisting only of the letters i, i+1, . . . , j. For instance,
if x = 1432212, then x[1, 2] = 12212, and x[2, 4] = 43222.

Lemma 3.8. Let x and y be words in 1, . . . , n. If x[1, 2] = y[1, 2] and x[2, n] = y[2, n], then
ux ≡ uy modulo relation (1), that is, they are equivalent up to commutation relations.

Proof. Note that x[1, 2] and x[2, n] must have the same number of occurrences of 2. Then

x[1, 2] = y[1, 2] = 1n1 2 1n2 2 1n3 2 . . . 2 1nk ,
x[2, n] = y[2, n] = m(1) 2 m(2) 2 m(3) 2 . . . 2 m(k),

where m(j) is a word in 3, . . . , n for all j = 1, . . . , k. Then we must have that

x = m
(1)
x 2 m

(2)
x 2 m

(3)
x 2 . . . 2 m

(k)
y ,

y = m
(1)
y 2 m

(2)
y 2 m

(3)
y 2 . . . 2 m

(k)
y ,
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where m
(i)
x and m

(i)
y are both words obtained by shuffling together 1ni and m(i). But u

m
(i)
x

and u
m

(i)
y

are both equivalent modulo relation (1) to uni
1 um(i) and hence to each other. It

follows that ux and uy are also equivalent modulo relation (1). �

The next lemma shows the key application of relation (4). For ease of notation, we will
abbreviate u1, u2, . . . by 1, 2, . . . .

Lemma 3.9. For any positive integer k, we have the relations

ui+1u
k
i+2ui+1ui ≡ ui+1u

k
i+2uiui+1 (mod J),

ui+1ui+2u
k
i ui+1 ≡ ui+2ui+1u

k
i ui+1 (mod J).

Proof. We may assume i = 1. Then (using the relations indicated)

23k21 ≡ 2323k−11 (3)

≡ 23213k−1 (1)

≡ 23123k−1 (4)

≡ 21323k−1 (1)

≡ 213k2 (3)

≡ 23k12 (1).

Similarly,

231k2 ≡ 21k32 (1)

≡ 1k−12132 (2)

≡ 1k−12312 (1)

≡ 1k−12321 (4)

≡ 1k−13221 (2)

≡ 1k−13212 (3)

≡ 31k−1212 (1)

≡ 321k2 (2).

�

3.3. Main result. We are now ready to prove our main theorem.

Theorem 3.10. For words x and y, ux ≡ uy (mod I) if and only if ux ≡ uy (mod J).

Proof. The reverse direction is proven in Proposition 3.5, so we need only consider the
forward direction. We will induct on n, the largest letter appearing in x and y. The case
n = 1 is trivial, while the case n = 2 follows from Proposition 3.7.

Assume the statement holds for words in letters 1, . . . , n− 1 (and hence for words in any
n − 1 consecutive letters by Corollary 3.4). Let x and y be words in letters 1, . . . , n such
that ux ≡ uy (mod I), so that, by Corollary 3.2, w(x) = w(y) and α(x) = α(y). Since x
and y have the same number of 2’s, we can construct a word z in letters 1, . . . , n such that
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x[2, n] = z[2, n] and y[1, 2] = z[1, 2]. We will then show ux ≡ uz (mod J) and uy ≡ uz
(mod J), which will imply ux ≡ uy (mod J).

By assumption we have ux ≡ uy (mod I), and so by Corollary 3.2,

ux[1,2] ≡ uy[1,2] = uz[1,2] (mod I),

uy[2,n] ≡ ux[2,n] = uz[2,n] (mod I).

By the inductive hypothesis, we then have

ux[1,2] ≡ uz[1,2] (mod J),(5)

uy[2,n] ≡ uz[2,n] (mod J).(6)

We therefore need to show that if ux[1,2] ≡ uz[1,2] (mod J) as in (5) and x[2, n] = z[2, n],
then ux ≡ uz (mod J), and similarly for y and z as in (6). It suffices to check when the two
sides of (5) or (6) differ by a single application of one of the relations (1)–(4).

First suppose the relation um ≡ um′ used in (5) involves at most one u2. This will be
the case unless we are applying (3) with i = 1. Note that m may not be a consecutive
subword inside x because there may be letters i > 2 that occur in between the letters of m
in x. However, by Lemma 3.8, since there is only one occurrence of 2 in m, we can commute
these intervening letters to the left or right to get some ux′ equivalent to ux such that x′

has m as a consecutive subword. Replacing m with m′ in x′ then gives a word z′ such that
z′[1, 2] = z[1, 2] and z′[2, n] = z[2, n]. Hence

ux ≡ ux′ = . . . um . . . ≡ . . . um′ . . . = uz′ ≡ uz.

A similar argument holds if the relation um ≡ um′ used in (6) involves at most one u2.
This will be the case unless we are applying (2) with i = 2. Hence it remains to check only
these remaining two cases.

Suppose in equivalence (5) we are applying (3) with i = 1 by replacing 221 ≡ 212.
As above, 221 and 212 need not appear consecutively inside x and z since there may be
intervening letters i > 2. However, we may as above commute any such letters not appearing
between the 2’s to the right to get words x′ and z′ such that

x′ = . . . 2m21 . . . ,

z′ = . . . 2m12 . . . ,

where m is a word in 3, . . . , n.

By Proposition 2.3, m
K∼ m′3km′′ for some words m′ and m′′ in letters 4, . . . , n. Lemma 3.6

then gives um ≡ um′3kum′′ (mod J). We then have:

ux ≡ . . . 2um21 . . . (Lemma 3.8)

≡ . . . 2um′3kum′′21 . . . (Lemma 3.6)

≡ . . . um′23k21um′′ . . . (1)

≡ . . . um′23k12um′′ . . . (Lemma 3.9)

≡ . . . 2um′3kum′′12 . . . (1)

≡ . . . 2um12 . . . (Lemma 3.6)

≡ uz (Lemma 3.8).
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Similarly, if in equivalence (6) we are applying (2) with i = 2 by replacing 232 ≡ 322, then
we may commute out any 1’s not appearing between the 2’s to get:

uz ≡ . . . 231k2 . . . (Lemma 3.8)

≡ . . . 321k2 . . . (Lemma 3.9)

≡ uy (Lemma 3.8).

�

Corollary 3.11. The algebra of Schur operators is defined by the relations:

uiuj ≡ ujui for |j − i| ≥ 2,

uiui+1ui ≡ ui+1uiui,

ui+1ui+1ui ≡ ui+1uiui+1,

ui+1ui+2ui+1ui ≡ ui+1ui+2uiui+1.

Proof. By Proposition 3.3, I is generated by elements of the form ux − uy. Theorem 3.10
then shows that the above relations generate all such elements. �

Example 3.12. Consider the words

x = 23443231, x[1, 2] = 221, x[2, 4] = 2344323,

y = 23443132, y[1, 2] = 212, y[2, 4] = 2344332.

Using the construction described in Theorem 3.10, we consider the word

z = 23443123, z[1, 2] = 212 = y[1, 2], z[2, 4] = 2344323 = x[2, 4].

Note that x[1, 2] and z[1, 2] differ by a single application of (3) with i = 1, but these subwords
do not appear consecutively within x or z. As in the proof of Theorem 3.10, we can rewrite

the part of x and z between the 2’s using the Knuth moves 3443
K∼ 3434

K∼ 4334 to get the
3’s in the middle so that we can then use commutations to get a consecutive subword of the
form 23k21. We then use Lemma 3.9, followed by the reverse of the previous procedure:

ux = 23443231 ≡ 24334231 (Lemma 3.6)

≡ 42332143 (1)

≡ 42331243 (Lemma 3.9)

≡ 24334123 (1)

≡ 23443123 = uz (Lemma 3.6).

Since y[2, 4] and z[2, 4] differ by a relation that only involves a single 2, we need only use
commutations before we can apply the appropriate relation (3):

uz = 23443123 ≡ 23441323 (1)

≡ 23441332 (3)

≡ 23443132 = uy (1).
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