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Improved Extended Kalman Filter Estimation
Using Threshold Signal Detection With an
MEMS Electrostatic Microscanner

Yi Chen

Abstracit—In this paper, a threshold signal detector is
proposed to improve the state estimation accuracy of an
extended Kalman filter (EKF) and is validated experimen-
tally with a microelectromechanical system electrostatic mi-
croscanner. A first-order derivative of Gaussian filter is used
to detect and locate rapid changes in voltage signal caused
by crossing of a threshold angle determined by maximum
overlap of capacitive electrodes. The event-triggered mea-
surement is used in the update step of the EKF to provide
intermittent but more accurate angle measurements than
those of the capacitive sensor’s continuous output. Experi-
ments on the electrostatic microscanner show that with the
threshold signal detector incorporated; the average posi-
tion estimation accuracy of the EKF is improved by 15.1%
with largest improvement (30.3%) seen under low signal-
to-noise ratio conditions. A parametric study is conducted
to examine sampling frequency and capacitance profile,
among other factors that may affect detection error and EKF
accuracy.

Index Terms—Kalman
processing.

filter, microsensors, signal

I. INTRODUCTION

APACITIVE sensing technology, commonly used in

microelectromechanical system (MEMS) devices, has
advantages of low-power operation, high sensitivity, and a
relatively simple sensor structure compared to many other
small-scale sensing mechanisms. The sensing principle is
to measure the change of capacitance between two or more
electrodes across a dielectric gap due to the change of gap
geometry or the permittivity of the media between the gap.
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Various sensor geometries have been used in a vast array
of sensing applications, such as measurement of short range
distance (i.e., nanopositioning devices) [1], translational and
rotational motion (i.e., MEMS inertial sensors) [2], [3], and
pressure (i.e., microphone and pressure sensors) [4], [5].

One drawback of capacitive sensing is that its accuracy may
be reduced by temperature and other environmental effects,
which can cause undesired changes in geometric relations be-
tween electrodes [6], [7]. One potential solution is to find fea-
tures of the sensing signal that correspond to specific positions
that are both detectable and constant in the presence of unwanted
geometric perturbations [8]. Such signal features can be used
for measurement of threshold positions with high accuracy to
“reset” position estimates and improve overall motion tracking
accuracy. Design of capacitive sensors that generate threshold
features can be intentional or a natural consequence of electrode
geometry for a given application.

This paper introduces novel threshold signal detector realized
with a derivative of Gaussian (DOG) function in the loop of an
extended Kalman filter (EKF). It is intended to enhance the
angular position and velocity estimation for MEMS microscan-
ners. The paper explores factors impacting the performance of
the estimation scheme, such as noise level, capacitance profile
of the sensor, sampling rate.

Among prior research works, the idea of using threshold
sensing to improve motion tracking can be found in [9], in
which a sensor provided a measurement of the center mass of
an MEMS accelerometer exceeding a threshold location; how-
ever, that literature did not discuss the realization of such a
sensing mechanism. In [10], a design of an out-of-plane capac-
itive sensor using imbalanced capacitance to indicate threshold
location was proposed; however, extraction of the signal was
susceptible to drift of its capacitive signal. In [11], a Kalman
filter estimation scheme with an asynchronized sensing scheme
was proposed, in which a less accurate but frequently measured
analog signal and a highly accurate but infrequent (twice per
period of a waveform) threshold signal were used in a Kalman
filter estimator. That work, however, again did not address the
issue of how to extract the threshold signal and assumed per-
fect detection. Chen and Oldham [8] proposed using a DOG
filter to detect threshold crossing signals and embedded its out-
put as a more accurate source of measurement updates within
a Kalman filter estimator. However, experimental results were
not presented, and issues such as sampling rate and how to
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fully incorporate a nonlinear capacitive sensor model were not
addressed.

Given the limitations of previous works, it is desirable to
study the factors that can affect the usage of threshold sensing
in an EKF: How is the detection error distributed and can it be
well modeled by normal distributions? What is the relationship
between the variance of error and factors including sensor design
(capacitance profile) and operating conditions (sampling rate,
noise)? How should one pick suitable parameters for the DOG
filter to optimize EKF performance?

This paper is organized as follows. Section Il introduces some
background on capacitive sensing, the DOG filter, and the EKF.
Section III presents the process model, sensor model, and EKF
implementation. Section IV presents the experimental setup.
Section V presents the results of parametric studies of factors
that can impact estimator performance. Section VI presents ex-
perimental results. Section VII concludes this paper.

Il. PRELIMINARIES
A. Capacitive Sensing Principles

Most capacitive sensors rely on a change in the geometric
relationship between two electrodes to measure displacement.
The two most common approaches are to vary the electrode
gap or vary their overlapped area [2]. In microscale devices,
gap variation typically provides more sensitivity, at the cost of
nonlinearity and a limited range of measurement. Change in
area typically provides less sensitivity but more linear behavior,
and may be designed to provide a unique feature of a maximal
capacitance when electrodes reach their maximum overlapped
area. We will examine a method to use such a geometric feature
to generate and extract a threshold measurement that enhances
accuracy of motion estimation by an EKF, and experimentally
validate the method with an MEMS microscanner.

B. Electrostatic Microscanner and Threshold Sensing

The sample device studied in this paper, shown in Fig. 1(a),
is an electrostatically driven dual-axis microscanner. It includes
two reflective mirror surfaces for dual axes confocal imaging and
multiple groups of comb fingers. Each group of comb fingers
consists of a moveable comb and a fixed comb [see Fig. 1(b)].
By applying driving voltage with a carefully selected frequency,
the comb finger can generate electrostatic torque that pro-
duces parametric resonance in the form of tilting motion with a
frequency half that of the driving voltage [12].

This class of microscanner is designed to deflect light for
imaging purposes [13]. While the comb-fingers are designed to
serve as actuators, they can also serve as capacitive sensors to
measure the tilting angles of the mirror. The capacitance of the
comb finger as a function of tilting angle [14] is
eoe;nA(0)

5 ()
where €, is the relative static permittivity (1 for air), €, is the
dielectric constant (8.8542 x 1072 Fm™!), A is the overlap area
of electrodes, D is the distance between the electrodes, C;(6)
is sensing capacitance, A(0) is the total area of overlap between
the comb fingers as a function of tilting angle 6, and n is the

Cs (9) =
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Fig. 1. (a) Scanning electron microscope image of a parametrically
resonant microscanner tested in this paper. (b) lllustration of comb-finger
electrodes used as actuators and capacitive sensors. (c) Zoomed in
image of a representative comb-finger structure.

number of pairs of comb fingers. The capacitance reaches its
maximum when the overlapped area is maximized.

To transduce the capacitance change into measurable voltage
signal, we employ a sensing circuit that applies constant bias
voltage Va5 at the sensing electrodes. The change of capaci-
tance can be converted to a sensing current that is amplified by
a feedback resistance R, and transimpedance amplifier into an
analog voltage signal y.,;, by

Yeap = —R, ‘/blas%t(e) ()

It is worth noting that other types of sensing circuits can
be applied [15]. Amplitude modulation and demodulation is
commonly used to separate and suppress any feedthrough
disturbance introduced by parasitic capacitance in the sensing
electrodes, coupling them to the device’s driving voltage.
However, modulation and demodulation introduces undesired
delays and skew in the filtered signal, which will negatively
impact threshold measurement in terms of reducing its accuracy.
In this paper, since the focus is on validating the concept of
generating and extracting threshold angle measurements and
evaluating their effectiveness in an EKF framework, the tran-
simpedance approach is used. This realization is also beneficial
for implementation using very few electrical interconnects in a
compact space, such as an endomicroscope. To compensate for
feedthrough, later experiments were performed with a power
cutoff strategy, discussed in Section I'V.

For this device, capacitance reaches its maximum value when
the movable comb fingers cross the mirror’s central position and
fully overlap the fixed comb fingers. With the transimpedance
circuit, a rapid change in sign and magnitude of the output
sensing signal occurs, as illustrated in Fig. 2(a)—(d). This is
referred to as the threshold angle for this system.
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Fig. 2. lllustration of threshold angle crossing and mechanism of
threshold angle sensing and detection. (a) Configurations of comb fin-
ger (1)—(3) correspond to before, at, and after threshold angle crossing,
respectively. (b) Sensing capacitance versus tilting angle 6. (c) Tilting an-
gle versus time. (d) Noisy sensing signal versus time; the crossing event
generates rapid change of signal around (2). (e) Comparison of filtered
signal by a derivative operator and a DOG operator. DOG operator is
effective in detecting the timing of rapid signal change.

Knowing the exact timing of the threshold angle crossing is
beneficial in high-accuracy estimation of the angular position at
that time. However, in practice, it can be challenging to deter-
mine the threshold-crossing time from the measured signal due
to noise and bias. Since the threshold position crossing corre-
sponds to a locally maximum rate of change of voltage, it might
be obvious to adopt a derivative operator as a first attempt to re-
trieve crossing information. However, as illustrated in Fig. 2(e),
taking the derivative of a noisy signal does not necessarily pro-
vide a reliable outcome. To resolve this issue, a first-order DOG
filter is proposed to extract the timing of the threshold position
crossing [8]. A DOG filter is used as an approximated optimal
filter for edge detection in the field of computer vision [16] and
has merits of good detection (low probability of false detection),
good localization (low variance of detection error), and one re-
sponse to a single edge (one maximum or minimum corresponds
to one crossing) [17].

While the introduction of a DOG filter provides an efficient
and convenient realization for detecting threshold crossing tim-
ing, detection accuracy is still not perfect. In the presence of
noise, the detected timing can deviate from the true timing.
According to Canny [17], for the detection error in timing for a
one-dimensional step edge e; 1y, its variance Iy ¢y, is expressed as

Riyw=FE [egtth] = . v 2 (€)
(12§ ()i (=7 ar |

where f(7) is the filter for edge detection, y(7) is the signal
including the edge, 7 is a dummy variable, and o), is the stan-
dard deviation of the normally distributed zero mean additive
noise to the sensing signal. This expression reveals that R; ¢y
is proportional to the variance of noise (the noisier the signal,
the less accurate the detection) and inversely proportional
to the edge’s slope (the sharper the slope, the more accurate
the detection). R, is a key factor in threshold-sensing
performance and can be used to derive the error covariance
matrix needed to obtain optimal state estimates with an EKF.

C. Challenges

To carry out the EKF algorithm using threshold sensing in-
formation, a value for R; ;, is needed. Although (3) gives a
theoretical derivation, in operation, it is difficult to obtain a sig-
nal y(t) containing an edge that is uncorrupted by noise. Hence,
it is desirable to estimate R, i1, offline, which leads to several
issues. First, the EKF assumes the process is subjected to nor-
mally distributed noise. We will investigate the distribution of
et.th» and more importantly, the distribution of detection error
of threshold angle ey (1, to ensure that the EKF can be appropri-
ately applied. Second, the expression of R; 1}, in (3) is derived in
continuous time and does not take sampling effects into account.
Since the EKF is implemented in discrete time, the choice of
sampling rate can impactestimation performance.

lll. SYSTEM MODELING

In this section, the process model, sensor model, and EKF
incorporated with threshold sensing are described.

A. Process and Sensor Model

The dynamics of the tilting motion of the microscanner are
modeled as a second-order, nonlinear time invariant system

JO+b,0 + k0 =7 (0, V) (4)

where J is the moment of inertia of the microscanner, b, is the
damping coefficient, and k; is the spring constant of a torsional
spring. The torsional load generated by the comb finger 7, is

1 dcdr
2 do

where Vj, is the driving voltage, and Cy; is the driving capac-
itance formed by the comb fingers that generate tilting motion.
Let X = [z; x3]7 to be state vector, where r; = 0 and 2y =
0 = w is the tilting angular velocity. Letting w,, = \/ks/J ,
(= z\/bTT , where w,, is the natural frequency of the tilting
mode and ( is the damping ratio. Equation (4) becomes

. 0 1
X = .
—wfl —2Cwy,

T, (0, U) = Var? (5)

1dCy; .,
o 7. Vdr - 6
2 darl Vl ( )

Denoting the sampling interval to be T, and assuming that
the process is subject to zero-mean, normally distributed process
noise, the discretized process model for the EKF becomes

X =9(Xk-1, Vary) +vi @)
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Fig. 3. Experimental setup. (a) Schematic of major experimental mod-
ules and signal flow. (b) Top view of setup and illustration of geomet-
ric relationship between the laser source, MEMS scanner, and PSD.
(c) Schematic sensing and driving circuitry for the MEMS scanner.

where g(+) is defined as

1 T,
g (kala ‘/drjl\?) = 7k—“Tq 1- %Ts
0] dacy,
X1+ | | 5 (k) Varg2 ®)
ﬁ da?]

For the sensor model, (2) shows that the signal from a ca-
pacitive sensor with current-based readout [see Fig. 3(c)] is
proportional to the rate of change of capacitance dC, /dt. Since
% = %ﬂ %, where %L is the rate change of capacitance
with respect to tilting angle 6. Denoting % = w, we have a

measurement used by the EKF y.,,, of

dc,
Yeap = |:Rs‘/bias%:| w = hcap (9>w (9)

where heap(0) = —R, me% is @ -dependent sensor gain,
R, is a constant resistance, and Vi, is a constant bias voltage.

B. EKF With Threshold Sensing

The proposed EKF includes a hybrid-sensing scheme where
the signal of the capacitive sensor is regarded as a normal analog
measurement, and the detection of threshold crossing is applied
intermittently. The procedure for applying the EKF with the
fusion of the two types of measurements is provided in Table I.
In Table I, X & 1s the a priori state estimates at the kth step, P,
is the a priori error covariance matrix at the kth step, Py is
the a posteriori error covariance matrix at the (k — 1)th step,

form of the matrix of observation Hy, the estimated sensing
signal Y} and the covariance matrix of measurement noise R
will vary. R, is the measurement noise variance for the analog
capacitance signal and Ry 1, is the variance of ¢ (1, . The Kalman
gain K, is then computed and a posteriori state estimates X
and a posteriori estimate error covariance matrix P, are finally
updated with the measurement at the kth step Y),. Measurement
Y = [0n Yeap, |7 is for positive detection and Y3, = Yeap, k
is for negative detection.

IV. EXPERIMENTS AND MODEL IDENTIFICATION

An experimental testbed was prepared and used to identify
parameters of the process and sensor models, and to verify the
effectiveness of the DOG filter in threshold-crossing detection
and the EKF using the hybrid-sensing scheme.

A. Experimental Setup and Methods

As depicted in Fig. 3(a), computer-generated voltage com-
mands were transmitted to an NI PCle 6251 DAQ with sam-
pling rate of 500 kHz. The voltage command was amplified by
a TEGAM 2340 amplifier with 20 times amplification, and the
amplified driving voltage fed to the MEMS scanner to generate
tilting motions. Tilting motion was measured by two means: re-
flection of a laser by the scanner and conversion of the capacitive
sensing current as described in (9).

Laser tracking is treated as the ground truth of tilting mo-
tion. Fig. 3(b) shows the geometric relation between the MEMS
scanner mounted on a dual inline package, aJDSU 1500 helium—
neon laser source, and an On-Trak 1110 position-sensing detec-
tor (PSD). The laser beam is emitted by the source, reflected by
the scanner’s mirror surface, and received by the PSD, amplified
by an On-Trak-301SL sensing amplifier.

On-chip sensing is used by the EKF. Fig. 3(c) depicts the
schematic of integrated driving and sensing circuitry. An ac-
driving voltage is fed into comb fingers used for driving, and a
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dc bias voltage provided by a source meter V4, is fed into comb
fingers used for sensing. The generated current flow through the
shared grounding terminal is fed into a sensing circuit, which
consists of a TT OPA2140 amplifier with a feedback resistance
of 10 M.

Since the objective of this paper is to validate the method of
using a DOG filter for threshold angle-crossing detection and
EKEF integration, it is useful to eliminate the potential distur-
bances introduced by feedthrough of the driving voltage. There-
fore, during experiments, a power cutoff method was applied.
A 0-60 V periodic Vj, was applied to the MEMS scanner, and
the frequency was swept from 1600 to 1220 Hz to reach a max-
imized amplitude of tilting motion, given electrostatic spring
softening [18]. Once the tilting motion was stabilized V3, was
set to zero, while V},;,, was maintained at a constant 10 V. Such
a sequence of voltage commands allows the microscanner to
freely oscillate briefly after the power cutoff, and the sensing
current induced by the oscillation can be amplified and recorded
without feedthrough disturbance.

A total of ten trials of power cutoff experiments were per-
formed and V., Ycap, and ypsp were recorded at 500-kHz rate.
The data were postprocessed as follows for consistency: Each
time series was truncated at the power cutoff and 80 ms after-
ward (approximately 50 periods of free oscillation). The delay
between PSD measurement and sensing circuit measurement
was experimentally calibrated to be 0.114 ms.

To detect a threshold crossing, a DOG filter is applied to the
sensing signal using the nlfilter function in MATLAB, which
is a general sliding-neighborhood operation. The filtered signal
is then processed with nonmaximum suppression to suppress
the filtered response except the local maxima, and these local
maxima are then extracted to indicate the detected threshold
crossing. In this paper, the threshold detections are extracted in
a postprocessing fashion. To achieve a near real-time threshold
detection, a buffer can be used to store measurements from past
to present, and DOG filter can be applied to the signal in the
buffer to generate a local maximum for threshold detection.

B. Identification of Process and Sensor Models
The tilting angle measured by the PSD, fpgp is computed as

yPSDGPSD>

10
L'Nl ( )

fpsp = arctan <
where Gpgsp (0.5 mm/V) is the gain of the PSD-sensing am-
plifier and L,, is the distance from the scanner surface to PSD
surface and is measured to be 32.7 mm. A representative trajec-
tory of the system is shown Fig. 4(a); by fitting the decay curve
using linear viscous damping [19], w,, and ¢ were identified to
be 624.6 Hz and 0.00606, respectively.

The sensor model is the sensing capacitance as a nonlinear
function of angle Cy(6), which can be experimentally identi-
fied by mapping the trajectory Cs (t) versus fpgsp (¢) in various
experiments. First, C,(t) is obtained by integrating yca, with
respect to time, from (2)

tf
O* (t) :/ 7R3Vbiasycapdt (11)
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Fig. 4. (a) Experimentally measured free oscillations versus simu-
lated decay curve of free oscillations with identified natural frequency
and damping ratio of the MEMS scanner. (b) Experimentally identified
sensing capacitance with respect to tilting angle.

TABLE Il
BASE SETTING FOR PARAMETRIC STUDY

Symbol Description Value

fs sampling frequency 500 kHz

Bamp amplitude of 0.15 rad
fm motion frequency 625 Hz
op standard deviation of noise 0.0435V
Ry feedback resistance oM@

Vhias bias voltage v

Wpoe width of DOG filter 400

Opog standard deviation of DOG filter 15

Using the corresponding Opgp (¢), one can establish the map-
ping of Cy(#) and %(9) and, therefore, compute h,,(0) as
suggested in (9). Fig. 4(b) shows the identified sensor gain func-
tion hcap (0). The capacitance profile can be approximated by a
Gaussian model [14].

The threshold location 6y, is identified by computing the
average angular displacement at which the peak capacitance
is reached among the experimental measurements. Nominally,
01, should be zero for the planar microscanner geometry, but
in practice a nonzero value may occur due to finite fabrication
tolerance of electrodes and residual stresses. In this device, 6y,
was calibrated to be 0.0037 rad.

V. PARAMETRIC STUDY OF FACTORS IMPACTING
THRESHOLD DETECTION

In this section, parametric studies investigate the properties
of the error of threshold detection and some contributing fac-
tors, including the sensor map and sampling rate. A sinusoidal
tilting motion is simulated within the capacitive sensor model
described by (9), with additive, zero-mean normally distributed
measurement noise. The signal generated by the capacitive sens-
ing model is passed into a DOG filter to compute the detection
error in timing e; 4, and detection error in threshold angle ey ),.
Baseline settings from experimental device identification are
summarized in Table II.
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becomes sharper around threshold angle as Ny increase. (b) Sensor
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A. Sampling Rate Effects

In (3), sampling rate is not singled out as a factor that affects
the detection of threshold signal. However, this is not the case
during digital implementation, as a low sampling rate introduces
quantization error and a high sampling rate may allow excessive
sensor noise into the filtering process. Therefore, a series of
simulations was conducted, from the baseline in Table 11, and the
sampling rate was swept from 50 kHz to 5 MHz. The filter size
was adjusted proportionally to maintain a fixed ratio between
the filter size and the period of the waveform. The SNR was also
varied by multiplying o,, by factors of 0.1 and 10.

The simulation result is shown in Fig. 5(a). The result shows
that R; 1), increases as the sampling rate is slower than 1250 kHz,
which is mainly due to quantization noise. As the sampling rate
increases, R, ), increases, attributed to noisier samples being
taken into the filtering process. This suggest that an optimal
selection for sampling frequency for a given threshold sensor
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Fig. 8. Variance of detection error in threshold angle during
experiments with respect to the standard deviation of the DOG filter.

exists, and one can properly size the data acquisition system to
achieve the lowest variance of detection timing error without
overreaching for fast sampling capability.

B. Sensor Map Effects

Equation (3) suggests that the variance of detection timing
error is inversely proportional to the rate of change of the signal
y(t), meaning that a sharper and more abrupt change of signal
amplitude can be more accurately located in a statistical sense.
To test the significance of the change, one way is to change the
capacitance profile formed by the electrodes. More specifically,
we are interested in dC' /d6 around threshold location, as higher
values will prompt higher .., (¢) as suggested in (9). In this
paper, a modified logistic function is used to generate a modeled
sensor gain, ﬁcap as

R 1
heap () = N, (—1 e 0.5)

where IV, is the normalization factor for gain, and Ny is the
normalization factor for angle. The modeled sensing capacitance
simply takes the integration of h.,, () with respect to tilting
angle

12)

- 1

ellldx ~
€. (6) =~ /{9 eay (6) dO.

13)

By sweeping Ny, one can vary the maximum sensor gain at
the vicinity of threshold location, with larger Ny corresponding
to steeper slop and more drastic change of capacitance at 6,,
as depicted in Fig. 6. The experimentally identified sensor gain
was used as baseline to generate a series of sensor model with
Ny swept from 0.2 to 5.

Fig. 5(b) shows the simulation results. We find that R; 1, de-
creases as expected as the maximum sensor gain slope increases.
The significance of this change is comparable at various sensor
noise densities.

VI. EXPERIMENTAL RESULTS

In this section, experimental results are presented to eval-
uate the effect of different DOG filters on threshold detec-
tion and EKF performance. The decaying tilting motion of the
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Fig. 9. Representative experimental measurement and estimation result in time domain. (a) Four snapshots of threshold angle crossing detection

improving tilting angle estimation. (b) Overall trajectories of tilting angle measurement and estimations. (c) Overall trajectories of sensing signal
and response of the DOG filter. (d) Corresponding snapshots of sensing signal, where local maxima of filtered response detects threshold angle

crossing.

microscanner after power cutoff provides an opportunity to vary
SNR by segmenting trajectories. Therefore, for each trial, the
measurements and estimated states are divided into four seg-
ments, with SNR ranging from 85 to 1. For conciseness, the EKF
using the hybrid sensing scheme of capacitive analog sensing
and threshold sensing is abbreviated as HYB.

A. Effect of DOG Filter on Threshold Detection

The EKF implementation assumes that process noise and
measurement noise are normally distributed. Therefore, it is
helpful to verify the distribution of measurement noise of the
threshold sensor. Threshold angle measurement noise is defined
as the error between the threshold angle and the ground truth
angle at the instant of detection, denoted as ¢y (1, . Here, ¢; 11, and
g, are computed by taking the differences between the timing
and angle at the detected threshold crossing and their ground
truth values, respectively. The distribution of e; ,, and ej ¢
computed from experimental measurements was analyzed using
the Kolmogorov—Smirnov test [20]. Results indicate that the
error distribution can be well modeled by normal distributions
at the tested conditions, shown in Fig. 7.

Different settings for the DOG filter were also applied to
Yeap and the EKF to evaluate their impact on the variance of
eq,tn and accuracy of state estimation. The filter size wpog was
swept from 80 sample points to 400 sample points and opoc
was swept from 1.5 to 45. No significant performance variation
was found in varying wpog while keeping opoc the same.
However, as shown in Fig. 8, the variance of ey, varies as
opoc varies for all four cases, which suggests a large opo is
beneficial in reducing overall error variance.

B. Effect of Threshold Sensing on EKF

A representative estimation result is depicted in Fig. 9. The
ground truth (EXP) and estimated tilting motion (EKF and
HYB) are shown.

Fig. 9(a) shows the change in estimator output with the intro-
duction of threshold crossing detection: 0 by HYB is corrected
at the instant of threshold crossing detection and, therefore, is
closer to the ground truth value. Fig. 9(d) shows that the local
maxima of the DOG filter response corresponds to the vicinity of
the maximal rate of change of .., and serves as a detection-of-
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TABLE IlI
SUMMARY OF RMSE OF ESTIMATED TILTING ANGLE

SNR85 SNR22 SNR5 SNR1 Overall
EKF Ogyse 0.0050  0.0029  0.0026 0.0025  0.0034
HYB Ogyse 0.0047  0.0023  0.0019 0.0018  0.0029
Oruysg reduced 6.9% 214%  27.6% 303% 151%
EKF Oryse.in 0.0055  0.0051  0.0050 0.0049  0.0051
HYB Oryseen 0.0041 0.0045  0.0049 0.0045  0.0045
Opue o reduced  26.0% 11.6%  2.6% 81%  12.3%
_10¢ —( SNR=85
X -[F SNR=22
W o —-> SNR=5
NS 8t SNR =1
S c
Y ©
o2
NE 6 x e
= =
EZ * <
SEA o iy A
§ 9 B-- - —E' R
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Standard deviation of DOG filter, %506

Fig. 10.  Normalized RMSE with different SNR and various op ¢ set-
tings. Under noisy condition (low SNR), increasing opo¢ effectively
increases threshold detection accuracy and, therefore, increases state
estimation accuracy of the EKF.

threshold-angle crossing. The four snapshots demonstrate that
the detection method is robust under various SNR conditions.

Root mean square error (RMSE) of tilting angle fg\se is
defined as a performance metric

1 N /.
OrMSE = \/N Zi:l (01’ -
where 6/); is a posteriori estimate of tilting angle and Opgp ; is the
tilting angle measured by the PSD at the ith sampling instance,

and N is the number of sampling instants. A normalized RMSE
(NRMSE) of tilting angle, Oxr M sE is also defined and examined

2
Orso, ) (14)

9 _ Oruse
NRMSE = —=
amp

5)

where H_amp is the average amplitude of the corresponding wave-
forms. Orvsk and Ongyvse are evaluated for the overall trajec-
tories as well as each segment.

To evaluate the improvement made by introducing threshold
sensing to the EKF, fr\isg within each segment of estimation
trajectory generated by the two estimators are computed. Here,
OrnsE tn denotes the RMSE computed using 50 sample points
after each threshold has detection occurred. The results are listed
in Table III.

From Table III, we can see that the reduction of RMSE by
HYB over EKF are tabulated and bolded in Table III (third
and sixth row) to quantify the estimation accuracy improvement
thanks to the use of threshold position measurement, and the
largest percentage improvement of total RMSE happens with
SNR = 1. The largest improvement of RMSE after threshold
detection location happens with SNR = 85. The result shows

that the threshold sensing adds the greatest local accuracy in
high SNR conditions, but is more beneficial for overall EKF
performance when SNR is low.

The trend of OxrrsE of each segment with respect to different
opoc is shown in Fig. 10. For segments with high SNR (85 and
22), the change of opo does not significantly change OxgisE -
However, for segments with low SNR (5 and 1), the analy-
sis shows that increasing opoq significantly reduces Oxgise,
which suggests that the performance of EKF with threshold
sensing is sensitive to selection of opo.

VIl. CONCLUSION

In this paper, we introduced a method for utilizing a first-order
DOG operator to detect threshold crossing from noisy signal
and integrated this detection mechanism into an EKF to estimate
states from a nonlinear process. To verify the effectiveness of the
method, experimental and simulation studies were conducted to
estimate the tilting angle of an electrostatic microscanner, and
quantify various factors that might affect the error of threshold
detection and EKF performance. Simulation showed that, first,
an optimal sampling frequency exists for a minimal variance
of detection timing error; second, increasing G,y (#) around
threshold angle reduced variance of detection error in timing
and angle, beneficial for improving an EKF accuracy.

Experimental results showed that use of the threshold-sensing
mechanism improved the EKF performance across SNR condi-
tions on an MEMS microscanner, with best improvement of a
30.3% reduction in RMSE of tilting angle estimation. On av-
erage, using threshold sensing improved the RMSE by 15.1%
across a range of SNR scenarios. A sweep of width o of the
DOG filter also showed that for low SNR, threshold detection
accuracy was more sensitive to DOG filter parameter such as
opoc and, therefore, needs to be selected carefully so that EKF
can maximize the performance improvement of using the DOG
filter.
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