

Achievements, Challenges, and Perspectives on Cathode Catalysts in Proton Exchange Membrane Fuel Cells for Transportation

Xiao Xia Wang, Mark T. Swihart, and Gang Wu*

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States

* Corresponding author: gangwu@buffalo.edu (G. Wu)

Proton exchange membrane fuel cells (PEMFCs) can use hydrogen and air to power clean electric vehicles. However, technical barriers including high cost, insufficient lifetime, and insufficient power density limit their broad applications. Advanced cathode catalysts for the kinetically-sluggish oxygen reduction reaction (ORR) in acidic media are essential for overcoming these barriers. Here, we highlight breakthroughs, challenges, and future directions for both platinum group metal (PGM) and PGM-free ORR catalysts. Among PGM catalysts, highly-ordered PtM intermetallic nanostructures exhibit enhanced activity and stability relative to PtM random alloys. Carbon supports, with optimal balance between graphitization degree and porosity, play an important role in enhancing overall performance. Among PGM-free catalysts, transition metal and nitrogen co-doped carbons (M-N-C) perform best. However, degradation at practical voltages (>0.6 V) prevents their practical application. For all catalysts, translating intrinsic activity and stability into device performance requires electrodes with robust three-phase interfaces for effective charge and mass transfer.

Keywords: oxygen reduction; PGM catalysts; PGM-free catalysts; fuel cells; transportation.

Proton exchange membrane fuel cells (PEMFC) have advanced tremendously in past decades, now providing hydrogen fuel cell vehicles (FCVs) with cruise ranges up to 650 kilometers. However, PEMFC commercialization has been limited by factors including high cost, insufficient durability, and

limited power density. Due to sluggish oxygen reduction reaction (ORR) kinetics at the cathode, a high overpotential (*c.a.* 400 mV) is required to generate practical current density, leading to an open circuit voltage (OCV) significantly below the theoretical value of 1.23 V. Over 40% of the current cost of PEMFCs (\$40/kW) arises from Pt catalysts used for the ORR. The United States Department of Energy (DOE) near-term cost target for PEMFCs for transportation applications is \$30/kW¹. Meeting PEMFC lifetime requirements of 8000 h for cars (150,000 miles equivalent) and 20000 h for buses, with <10% performance loss, remains a grand challenge due to catalyst deactivation². High power density (> 1.0 W/cm²) is desirable for transportation but is limited by inefficient mass transfer and charge transport in membrane electrode assemblies (MEAs), especially at ultra-low Pt loadings (<0.1 mg_{Pt}/cm²). Low-platinum group metal (low-PGM) catalysts and PGM-free catalysts as outlined in **Figure 1** are both being studied to improve performance and reduce cost. PtM alloy nanostructures have been extensively investigated to enhance intrinsic activity and stability of Pt-based catalysts³⁻⁹. In the longer term, PGM-free catalysts could support large-scale commercialization of PEMFCs. Among PGM-free formulations, transition metal (*e.g.*, Fe, Co, or/and Mn) and nitrogen co-doped carbon (M-N-C) catalysts exhibit encouraging performance, but their activity and stability must improve substantially to make them viable. Recent years have witnessed great improvements in mechanistic understanding of the ORR, new catalyst synthesis concepts, and overall performance enhancement. Prior reviews have focused fundamental understanding, device performance, or industrial perspectives^{8,10}. Herein, we highlight recent achievements in low-PGM and PGM-free cathode catalysts for PEMFCs, while outlining remaining challenges and potential solutions.

PGM catalysts for PEMFCs

ORR at the cathode governs overall PEMFC performance. Its sluggish kinetics, especially in acidic media, arise from the complex four electron transfer required for this multistep protonation process. Several reaction pathways are possible, and the rate determining steps (RDS) depend on the active sites and reaction conditions (*e.g.*, pH, temperature, and potential). Although mechanistic

understanding remains incomplete, the most common viewpoint is that an efficient ORR catalyst should bind oxygen strongly enough to facilitate cleavage of O=O bonds, but weakly enough to release reaction intermediates and products. From this perspective, oxygen binding on pure Pt is too strong. Early research revealed that an oxygen binding energy about 0.2 eV lower than that of Pt should provide higher intrinsic activity¹¹. Because most transition metals (M) are smaller than Pt, their incorporation into face-centered cubic (*fcc*) Pt produces contraction strain in the lattice^{12,13}. Oxygen chemisorption on these compressed PtM surfaces is weaker than on pure Pt. Compressive lattice strain also directly influences the electronic structure of PtM, reducing the number of unoccupied projected electronic states and shifting the electronic *d*-band center downward¹⁴. Both geometric and electronic modifications contribute to enhanced activity of PtM alloy catalysts¹¹. Unfortunately, leaching of M from PtM alloy catalysts limits their stability. In contrast, ordered PtM intermetallic nanoparticles exhibit both enhanced activity and stability for the ORR. Development of ordered PtM catalysts shows a great promise for addressing durability issues of PEMFCs.

Basic principles of PtM alloy catalyst design. A volcano-type relationship between catalytic activity and electronic structure (*d*-band center energy) of PtM catalysts has been established to rationalize the activity pattern of PtM and provide a basis for tuning electronic properties to maximize activity¹⁵. Initially, alloys with a 3:1 Pt:M ratio were most commonly used in theoretical and computational studies¹¹. Adding a third metal might further improve performance^{16,17}, due to optimization of local oxygen binding energies and stabilization of M in Pt lattices¹⁸. The catalytic activity of PtM catalysts also depends upon particle size¹⁹, nanostructure²⁰, and morphology²¹. Generally, catalyst particles are made as small as possible, to maximize surface area. However, early studies indicated that Pt particles with diameters of 3-4 nm are optimal for the ORR. This optimal size was attributed to variation in the fraction of surface atoms on (100) and (111) crystal faces with sizes, which changes the surface coordination number. ORR is structure-sensitive with activity increasing as (100) < (111) < (110) for Pt single-crystals according to Feliu^{6,22} and Markovic's groups^{23,24}.

In addition to traditional spherical nanoparticles, one-dimensional (1D) anisotropic structures may also have enhanced electrocatalytic activity, due to rough surfaces that expose high-index facets and numerous edges, corners, and step-edge atoms, which are highly reactive²⁵. Rationally introducing high-index facets provides a promising approach to maximize Pt utilization. Anisotropic structures fundamentally allow greater control over exposed surface facets compared to quasi-spherical structures²⁶⁻²⁸. Under-coordinated surface atoms on these structures are essential for enhancing ORR activity. Mechanical strain also decreased the binding energy of intermediates, further contributing to activity enhancement²⁸, as supported by DFT calculations²⁷.

Pt shells on various core substrates can show improved catalytic activity and Pt utilization^{3,9}. Core composition, morphology, and number of shell layers each affect the core-shell interaction, potentially enhancing ORR activity^{5,29,30}, through changes in the electronic and geometric structures of the outer Pt shell^{31,32}. A novel structural descriptor was recently proposed to capture the surface defectivity of PtNi catalysts with distinct compositions, sizes, and shape. It was used to rationalize changes in ORR activity and mechanism, showing that promoting surface defectivity in bimetallic catalysts can enhance ORR activity⁴.

Nanoframes and nanocages, open nanostructures with three-dimensional (3D) edges, possess high intrinsic activity due to the richness of high-index facets and the optimal strains in surface Pt layers³³. Their open construction of nano- and micro-lattice frameworks allows reactants to adsorb on both exterior and interior surfaces, making more Pt atoms available for the ORR^{34,35}. Controlling surface composition and atomic configuration enables optimizing catalytic properties of the nanoframe/nanocage structures³⁶. Chemical etching or dealloying processes selectively remove specific facets and undesirable elements from them³⁷⁻³⁹. Their high activity is often ascribed to reduced coverage of oxygenated intermediates on the Pt surface due to weaker oxygen binding, which also reduces Pt dissolution³⁹.

Structurally ordered PtM intermetallic catalysts. Atoms in PtM alloys are randomly distributed in

the Pt *fcc* lattice⁴⁰. In the corrosive PEMFC cathode environment, M is rapidly etched from these random alloys, reducing catalyst activity. In contrast, ordered intermetallic compounds combine metallic and ionic bonding. Pt and M occupy specific sites, forming an ordered atomic lattice with specific stoichiometry and crystal structure, as shown in **Figure 2**. The ordered geometric and electronic structures at the atomic-level can boost both intrinsic catalytic activity and stability⁴¹. Several PtM intermetallic catalysts have been studied, including PtCo⁴²⁻⁴⁶, PtFe⁴⁷, PtCu⁴⁸, PtAl⁴⁹, PtCr⁵⁰, PtPb⁵¹ and some corresponding ternary compounds^{52,53}.

Strategies to reduce the size of intermetallic nanoparticles. Intermetallic compounds are formed via high temperature (>700 °C) annealing of disordered PtM alloys. Heat treatment is crucial for producing ordered intermetallic structures. However, agglomeration and sintering during heating treatments significantly increases nanoparticle size, thus reducing mass activity. Coating PtM nanoparticles with oxide or carbon layers can help to maintain small particle sizes and narrow size distribution during the high-temperature treatment⁵⁴. MgO-coated PtFe alloy nanoparticles showed no aggregation after phase transformation into the ordered face-centered tetragonal (*fct*) PtFe intermetallic compound⁵⁵. However, this protection usually allows only partial transformation to ordered structures because of limited atom mobility within the MgO shell. A modified strategy of heating FePt-Fe₃O₄/MgO nanoparticles was proposed, in which the Fe₃O₄ was reduced to Fe to promote Fe and Pt diffusion, facilitating formation of fully ordered *fct*-FePt⁵⁶. Nanoparticles can also be coated with polymers such as polydopamine to generate a thin carbon shell on their surface, which prevents nanoparticle coalescence and sintering/aggregation during annealing⁵⁷.

Structure-controlled synthesis of intermetallic catalysts. Controlling the morphology of PtM intermetallic catalysts is essential for maximizing activity⁵⁸. Core-shell structures can form spontaneously during heat treatments, as excess Pt atoms preferentially occupy under-coordinated surface sites. Several layers of Pt atoms may coat the intermetallic core. Lattice contraction strain and

electronic state modification due to lattice mismatch between core and shell layers can enhance ORR activity³⁹. **Figure 3a** illustrates O₂ adsorption on L₁₀-CoPt/Pt surface. Ordered L₁₀-CoPt/Pt core/shell nanoparticles synthesized by co-reduction and heat treatment exhibited a record high half-wave potential ($E_{1/2}$) of 0.96 V (~20 $\mu\text{g}_{\text{Pt}}/\text{cm}^2$, 1600 rpm, 25 °C) and mass activity (MA) of 2.26 A/mg_{Pt} in aqueous electrolytes by using a rotating disk electrode (RDE). After 30000 potential cycles (0.6-1.0 V) at 60 °C, $E_{1/2}$ shifted negatively by only 7 mV and mass activity was retained at 1.83 A/mg_{Pt} (**Figure 3b** and **3c**). Durability tests in MEAs at PEMFC operating temperature 80°C suggested high stability of the ordered structure. In MEA tests at 80 °C, initial mass activity at 0.9 V_{iR-free} achieved 0.56 A/mg_{Pt} and only declined to 0.45 A/mg_{Pt} (80%) after 30000 voltage cycles (0.6-1.0 V), exceeding U.S. DOE 2020 targets for PGM catalyst activity (0.44 A/mg_{Pt}) and stability (<40% loss) (**Figure 3d**). End of life (EOL) elemental analysis demonstrated well preservation of the L₁₀ ordered core and thin Pt shell, with significant Co in the core (**Figure 3e** and **3f**). Large-area elemental mapping at EOL showed good uniformity of Pt and Co content (**Figure 3g**). The L₁₀ ordering in the core and thin Pt both prevented Co from leaching in the acidic environment and improved oxygenated species-binding energetics on the compressed Pt surface⁵⁹. A simple synthesis strategy and excellent activity and stability in a real fuel cell environment make this highly-ordered L₁₀-CoPt/Pt core/shell catalyst among the most promising for practical application in PEMFCs.

Although compressive strain in core/shell structures can improve ORR activity, DFT calculations indicated that tensile strain on the Pt (110) facet could also increase ORR activity, and low-coordinated surface atoms could be activated by large tensile strains⁵¹. Integrating strong lattice, an ordered intermetallic core, and an active shell enhances ORR performance^{14,60}. Specific structures including skeleton frameworks^{49,61}, and 1D nanowires⁴⁵ with hierarchical and high-index facets can also improve catalytic activity, because ORR is highly structure-dependent. Porous structures increase reactant-accessible surface area, improving Pt utilization^{48,62}. A unique mesostructured Pt-Al skeleton catalyst, with a single atomic layer of Pt on Pt₃Al or Pt₅Al intermetallic cores, was prepared by de-alloying. Its

bimodal mesoporous architecture comprised quasi-periodic Pt₃Al/Pt ligaments and mesoporous channels, enhancing catalytic activity⁴⁹.

Figure 4a and **4b** summarize reported half-cell activity and stability of recent PtM catalysts, demonstrating the breakthrough provided by highly ordered PtM intermetallic catalysts. **Figure 4c** and **4d** further compare PEMFC performance of PGM cathodes, showing greatly-reduced Pt loading in MEAs using structurally ordered PtM intermetallic catalysts^{7,63-68}. This exciting performance improvement suggests that practical applications in the PEMFC industry should emerge quickly.

Advanced carbon supports for low-PGM catalysts

Catalyst supports can be as important as PtM alloy nanoparticles themselves for determining overall MEA performance, which depends upon catalyst utilization, mass transfer, charge transport, and durability. The most common supports are spherical carbon blacks such as Vulcan XC-72 and Ketjenblack, which show reasonable performance. However, their corrosion at high voltages (up to 1.5 V) significantly reduces the electrochemically active surface area (ECSA) of Pt and degrades performance^{69,70}. Their susceptibility to corrosion arises mainly from a low degree of graphitization, *i.e.* high amorphous carbon content and lack of long-range ordered graphitic structures⁷¹. Moreover, relatively weak PtM-support interactions allow migration and agglomeration of PtM nanoparticles under the dynamic operation conditions of PEMFCs. The weak interaction also increases electron-transfer resistance at the catalyst-support interface and thus increases the ORR overpotential. Ideal carbon supports should be highly graphitized to resist corrosion, have high surface area and optimal morphology for uniform nanoparticle dispersion, and exhibit strong metal-support interactions. The demanding U.S. DOE support stability target at the MEA level requires less than 30 mV voltage decrease after 5000 cycles from 1.0 to 1.5 V⁷.

Many carbon and non-carbon materials have been studied in order to meet these demanding support stability targets. Although carbides and oxides have intrinsically high corrosion resistance, their poor electrical conductivity and low surface areas have prevented their practical use in PEMFCs.

The most promising supports are still carbon-based. Highly graphitized carbon tubes, particularly large-diameter (up to 500 nm) nitrogen-doped graphene tubes (NGT) have been developed recently. Tests of NGTs in acidic aqueous electrolytes demonstrated good stability under severe conditions, and showed that the graphitized carbon surface interacted strongly with metals⁷². However, their relatively low surface areas ($\sim 100 \text{ m}^2/\text{g}$) and hollow structures yield low ECSA of Pt and poor dispersion of ionomer within cathodes, leading to disappointing fuel cell performance. The negative outcome suggested that morphologies of carbon supports are crucial for catalyst dispersion with ionomers to increase Pt utilization, facilitate mass transfer, and boost MEA performance.

Engineering carbon supports with high surface area and porous structure is necessary for cathode catalysts. Recent approaches, using metal-organic frameworks (MOFs) to template carbon structures, particularly zeolitic imidazolate framework (ZIF)-derived carbon, show great promise^{73,74}. Most of the ZIF's porosity is retained after carbonization. After Pt nanoparticles were deposited on porous carbon derived from Co-doped ZIF-8, Co atoms diffused into the Pt nanocrystals during the subsequent annealing, forming highly ordered Pt_3Co intermetallic particles with enhanced activity and stability. Metal-support bonding was also strengthened by this process⁵³. However, the partially amorphous ZIF-derived carbon contains disordered carbon structures and cannot meet fuel cell stability requirements. Increasing corrosion resistance by controlling ligand structures and thermal activation conditions may enhance stability of ZIF-derived carbon supports. In fact, balancing graphitization degree and porosity remains a grand challenge for carbon materials. New synthetic concepts are crucial for overcoming this barrier. Recently, Mn-catalyzed carbonization of a polymer hydrogel showed promise to combine a high degree of graphitization with high surface area ($\sim 500 \text{ m}^2/\text{g}$) and porosity. The porous graphitic carbon (PGC) exhibited significantly enhanced activity and stability for Pt/C catalysts in MEA tests. Compared with the commercial Pt/C catalyst based on XC-72 carbon black, PGC-supported Pt exhibited five times lower carbon corrosion rates. After 5000 voltage cycles (1.0 to 1.5 V), the Pt/PGC catalyst only lost 30 mV at a current density of 1.0 A/cm^2 , while the commercial Pt/C cathode lost

more than 200 mV⁷. Exceptionally strong Pt-support interactions arise from optimal nitrogen doping, as demonstrated through X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations. This PGC support met the challenging U.S. DOE stability milestone, and we expect this approach to eventually address the support stability issue in PEMFCs.

PGM-free catalysts for PEMFCs

Among PGM-free catalysts, transition metal and nitrogen co-doped carbons (M-N-C, M=Fe, Co, or/and Mn) show the most promising activity and stability in acidic media for the ORR. In particular, Fe-N-C catalysts containing atomically-dispersed FeN₄ moieties, have demonstrated activity approaching that of Pt in aqueous acids as well as encouraging performance in PEMFCs⁷⁵⁻⁷⁸. However, the low density of active sites, insufficient stability, and poor three-phase interfaces within the cathode remain grand challenges for these M-N-C catalysts.

Catalytic activity of atomically dispersed M-N-C catalysts. Traditional M-N-C catalyst synthesis methods involve high temperature treatments (>700 °C) of nitrogen- and carbon-containing compounds, metal sources, and carbon supports⁷⁹⁻⁸⁵. However, this method often produces a highly heterogeneous catalyst morphology without precise control of the density and local environments of active sites. As shown in **Figure 5a**⁷⁹, polyaniline (PANI)-derived Fe catalysts supported on Ketjenblack exhibited encouraging activity and significantly reduced the gap between PGM-free catalysts and the standard Pt/C catalyst. Durability in a MEA was demonstrated for 700 hours at a relatively low voltage of 0.4 V. Unfortunately, applying a higher voltage of >0.6 V led to substantial performance loss. The catalyst contains multiple carbon phases and metal species, limiting our ability to understand its active components⁷⁹. Designing optimal precursors consisting of N, M, and C sources uniformly mixed at the atomic level is crucial for increasing the density of active sites and strengthening bonds of M-N-C. Due to the unique structure and chemistry, MOFs have been newly emerged as promising precursors for M-N-C catalysts, capable of providing M, N, and C sources connected with covalent bonds. Dodelet *et al.* introduced ZIF-8, a type of MOF containing zinc ions

and imidazolate ligands, as a microporous host for additional nitrogen and iron to design a catalyst precursor that was carbonized by multiple heating treatments^{86,87}. The final catalyst exhibited enhanced performance in MEAs, especially the power density, suggesting an improvement of mass transfer. However, its nanostructure remained heterogeneous with poor control over chemistry and structure, resulting in insufficient activity. To overcome this issue, support-free synthesis methods use active metal (e.g., Fe or Co) doped ZIF-8 or polymer hydrogel precursors that provide nitrogen and metal dopant sources uniformly dispersed within 3D hydrocarbon frameworks. **Figure 5b** illustrates an example of this strategy, in which Fe ions partially replace Zn ions in tetrahedral Zn-N₄ complexes in ZIF-8 and are chemically bonded with imidazolate ligands⁷⁵. These Fe-N₄ complexes were converted *in-situ* into FeN₄ active sites during thermal activation, providing atomic-level dispersion of Fe active sites⁷⁵. Due to the relatively low boiling point of Zn (*i.e.*, 907 °C), the high-temperature treatment during the catalyst synthesis leads to the evaporation of Zn and creates highly porous carbon morphologies. Thus, most ZIF-8 micropores are retained in the final catalysts, providing exceptionally high active site density⁸⁸. Eliminating inactive carbon supports further increases the active site density. The uniform polyhedral morphology of ZIF-8 was retained in the final Fe-N-C catalyst, providing a rare opportunity to tune particle size and shape of carbon catalysts. This atomically dispersed single Fe-site based Fe-N-C catalyst showed significantly enhanced ORR activity in acid ($E_{1/2}$ of 0.86 V *vs.* reversible hydrogen electrode-RHE), generating a current density of 0.044 A/cm² at 0.87 V in a MEA using H₂-O₂ at 1.0 bar, only 30 mV away from the U.S. DOE target at 0.9 V⁸⁹. Under practical H₂-air at 1.0 bar conditions, it yielded current densities of 120 and 380 mA/cm² at 0.8 and 0.7 V, respectively⁹⁰. Engineering catalyst morphologies with optimal particle size, shape, and porosity could further increase active-site density and improve mass transfer. Recently, ZIF-8-derived concave-shaped Fe-N-C catalysts provide large external surface areas and mesopores, therefore exposing more FeN₄ sites inside the carbon particles with enhanced mass transfer. The catalyst exhibited a current density of

0.022 A/cm² at 0.9 V_{IR-free} at 1.0 bar H₂-O₂, and achieved a current density of 129 mA/cm² at 0.8 V_{IR-free} under practical 1.0 bar H₂-air conditions⁹¹.

Atomically dispersed Fe active sites are likely associated with N coordination. Recent DFT calculations, XAS, and Mößbauer spectroscopy analyses suggest that FeN₄ or FeN₂₊₂ moieties are the most likely active sites^{92,93}. Their electronic structures provide appropriate adsorption energies for O₂ and reaction intermediates. Monotonically decreasing free energy for each successive intermediate step up to OH* should result in excellent electrocatalytic activity and 4e⁻ selectivity⁸⁷. Novel synthesis procedures to form FeN₄ or FeN₂₊₂ coordination with homogeneous distribution in a favorable porous carbon structure is one of future directions to advance Fe-N-C catalysts.

Despite their promise, a major concern for Fe-N-C catalysts is dissolution of Fe in acid to form Fe²⁺, which reacts with H₂O₂ to generate free radicals through the Fenton reaction, leading to performance degradation and cell failure. Thus, catalysts that are both PGM-free and Fe-free have attracted great attention recently. Co-based catalysts are of interest because of the relatively lower activity of Co for the Fenton reactions. However, previous Co-based catalysts exhibited disappointing activity and Co in these catalysts was mainly present as nanoparticles, limiting the density of CoN_x active sites, and thus the ORR activity⁹⁴. Recently, chemically Co-doped ZIF-8 precursors were prepared, with some Zn atoms replaced by Co to achieve atomic-level homogeneous distribution of Co. The existence of optimal Zn content in precursor helped to maintain the distance between Co²⁺ ions, preventing formation of Co-Co bonds during pyrolysis^{95,96}. As a result, atomically dispersed Co coordinated with N atoms was retained after Zn evaporation. A volcano plot relationship between Co content and ORR activity was obtained, in which low Co content results in few CoN₄ active sites, while excess Co content leads to formation of inactive crystalline Co aggregates⁹⁷. Increasing dispersion of CoN₄ sites without clustering is the key to further enhancing catalytic activity. Due to weaker adsorption of O₂ on CoN₄ compared with FeN₄, Co-N-C catalysts are intrinsically less active than Fe-N-C. DFT calculations predict that modifying local defects and carbon structures adjacent to

CoN_4 sites may strengthen O_2 adsorption and reduce the activation barrier for $\text{O}=\text{O}$ bond breaking. A core-shell structured atomically dispersed Co-N-C catalyst prepared using a surfactant template (F127) exhibited record ORR activity in acidic media, with an $E_{1/2}$ of 0.84 V *vs.* RHE. Cohesive interactions between the surfactant and ZIFs suppressed Co agglomeration and prevented collapse of the ZIF microstructure. More micropores were retained during thermal activation producing an increased density of active sites, likely as CoN_{2+2} . DFT calculations suggest that these sites exhibit enhanced ORR activity through a 4e^- pathway compared with traditional CoN_4 sites^{98,99}. Like Fe-N-C catalysts, Co-based catalysts also suffer from significant initial activity loss at high voltages (>0.6 V). In addition, compare to Fe, the high cost of Co ($\sim \$30,000$ per ton) is still a concern. Thus, new chemistry and concepts are still needed for development of more stable and low-cost PGM-free catalysts.

Manganese promotes formation of highly graphitized carbon with enhanced corrosion resistance in electrochemical oxidative environments^{100,101}. Fenton reactions involving Mn ions are nearly negligible¹⁰². DFT calculations predict promising intrinsic activity and stability for the ORR on MnN_4C_y sites. Thus, Mn-based catalysts may provide a new opportunity to achieve enhanced catalyst stability. Unlike Fe and Co, it is very challenging to realize atomically dispersed and nitrogen coordinated Mn single metal sites, due to the strong tendency of forming Mn aggregates and clusters. A two-step doping-adsorption method based on Mn-doped ZIF-8 precursors increased the density of MnN_4 active sites without forming Mn clusters¹⁰³. The atomically dispersed Mn-N-C catalysts exhibited encouraging activity and significantly enhanced stability in acidic media relative to Fe-N-C. The unique porous structure and nitrogen doping of carbon hosts derived from ZIF-8 are crucial for accommodating sufficient MnN_4 sites.

Among Fe-, Co-, and Mn-based catalysts explored as PGM-free catalysts for PEMFCs, Fe-N-C catalysts perform the best so far. As illustrated in **Figure 6a**,^{79,90,104} significant activity enhancement of Fe-N-C catalysts, including a positive shift of 100 mV, was achieved over the past ten years using well-defined Fe-coped ZIF-8 precursors rather than the ethylenediamine and PANI used in early

studies. However, Fenton reactions must be mitigated. Co-N-C and Mn-N-C catalysts exhibit encouraging activity, but both intrinsic activity and the density of atomically dispersed active sites must be improved to reach practically useful performance levels. **Figure 6b** and **6c** summarize the continued performance improvement of M-N-C catalysts in $E_{1/2}$ and MEA fuel cell power density, respectively. Although the difference in $E_{1/2}$ between M-N-C and benchmark Pt/C catalysts in aqueous acidic electrolytes was only dozens of millivolt, the performance of M-N-C catalysts in real MEAs still falls far short of that of commercial Pt/C. Despite encouraging activity and stability improvements, no PGM-free catalyst has reached the DOE activity target of $>0.044 \text{ A/cm}^2$ @ 0.9 V_{IR-free} in MEAs.

Controlling atomic metal (*e.g.*, Fe, Co or/and Mn) dispersion in partially graphitized and disordered carbon, rather than highly graphitized carbon covering metal aggregates, is crucial for enhancing ORR activity in acidic media (**Figure 7a**)⁷⁵. Two straightforward methods to improve catalytic mass activity and intrinsic activity are outlined in **Figure 7b**^{92,97}. Mass activity is improved by maximizing the density of nitrogen-coordinated single metal sites, and intrinsic activity of MN₄ sites can be further enhanced by controlling local geometric and electronic structures.

Stability enhancement of M-N-C catalysts. Limited durability of M-N-C catalysts remains a grand challenge¹⁰⁵. Mechanistic understanding of degradation is the foundation for addressing stability issues. Stability of M-N-C catalysts is related to both the MN₄ active centers and the carbon phases hosting these active sites. Early fuel cell stability tests using voltage cycling in N₂-saturated aqueous acids/MEAs or tests at a constant low potential of 0.4 V suggested promising durability⁷⁹. However, in the presence of O₂ at more practical potentials ($>0.6 \text{ V}$), significant performance loss (~50%) occurred over a few hundred hours¹⁰⁶. Most catalyst degradation is divided into two phases. Fast degradation in the first phase (up to 20 hours) occurs in both aqueous acidic electrolyte and solid-state electrolyte-based MEAs. Demetallation is a straightforward mechanism for performance loss of M-N-C catalysts containing MN₄ active sites¹⁰⁷⁻¹⁰⁹. However, deeper understanding of the dependence of demetallation on metal type and operating conditions including voltages, temperature, humidity,

pressure, and local chemical environment (*e.g.*, O₂ or H₂O₂ concentration) is still needed. The resulting solvated metal ions within electrodes can further catalyze deterioration of membranes and ionomers, reducing proton conductivity.

Because carbon is the dominant component of M-N-C catalysts (>85 at.%), thermodynamically favorable electrochemical corrosion (0.207 V *vs.* standard hydrogen electrode-SHE) of carbon was identified as a major cause of long-term performance loss. While CO₂ evolution was only detected during fuel cell tests at voltages above 0.9 V, the oxidation of carbon in water to yield oxygen-containing functional groups (*e.g.*, COOH, -C=O, -C-O) takes place at lower voltages. Chemical attack by H₂O₂ and radicals within cathodes also causes carbon corrosion. Carbon corrosion or formation of functional groups can, in turn, drive demetallation of MN₄ sites next to oxidized carbon atoms. Collapse of carbon structures generates additional barriers for mass transfer and charge transport.

ZIF-8-derived atomically-dispersed M-N-C catalysts show encouraging stability, especially at the fully viable and challenging voltage of 0.7 V in MEAs. However, initial fast degradation still limits their practical application^{98,103}. MnN₄ sites seems more stable than FeN₄ sites against demetallation during ORR based on recent experimental and theoretical results¹⁰³. Increasing graphitization degree in catalysts may benefit catalyst stability by mitigating carbon corrosion. Use of highly graphitized carbon structures such as graphene and carbon nanotube matrices provides improved corrosion resistance^{77,81}. However, increased graphitization leaves fewer defects to accommodate M and N dopants, implying a trade-off between activity and stability for M-N-C catalysts. Performance loss at the MEA level is more complex. Collapse of three-phase interfaces within electrodes, due to degradation of catalyst-ionomer interfaces, hinders charge transport (*i.e.*, of electrons and protons), and mass transfer (*i.e.*, of O₂ and H₂O).

Outlook

Realizing large-scale commercialization of PEMFCs for transportation applications requires addressing key issues of cost, durability, and power density. Low-PGM and PGM-free catalysts are

being developed for near- and long-term PEMFC applications, respectively. Several PtM intermetallic catalysts with highly ordered structures have exceeded DOE 2020 activity targets ($0.44 \text{ A/mg}_{\text{Pt}}$) in MEAs with encouraging durability ($<40 \text{ mV}$ change in voltage loss after 30000 cycle, 0.6-0.95 V). Carbon support durability targets (1.0-1.5 V for 5000 cycles, $<30 \text{ mV}$ loss) have also been met using highly graphitized porous carbon supports. Achieving power density targets ($>1 \text{ W/cm}^2$) at ultra-low Pt loading ($<0.15 \text{ mg}_{\text{Pt}}/\text{cm}^2$ in MEAs) requires further advances in both catalysts and electrodes. MEA performance of atomically dispersed Fe-N-C cathodes is approaching the DOE activity target (0.044 A/cm^2 at $0.9 \text{ V}_{IR \text{ free}}$). However, significant improvement in both activity and stability remain essential. In addition to new synthetic chemistry and advanced in-situ characterization tools, theoretical research on ORR pathways and active sites is crucial for further enhancing activity and eventually addressing stability issues of current M-N-C catalysts.

Perspectives on low-PGM catalysts. Fully ordered PtM intermetallic nanoparticles exhibit significantly enhanced activity and stability in both aqueous acids and MEAs. Among studied first-row transition metals (M), Pt-Ni polyhedral nanocrystals have shown the highest activity. However, compositional segregation was often observed in shaped PtNi nanoparticles, with a Pt-rich frame along the edges and corners and Ni atoms segregated in (111) facets. Moreover, due to concerns about the negative impact of Fe-catalyzed Fenton reactions on membranes and ionomers, Fe is virtually excluded from practical fuel cell catalysts. Thus, Co is currently the most promising first row transition metal. Highly-ordered core-shell PtCo structures (*i.e.*, L₁₀-CoPt/Pt system) showed significantly enhanced activity and durability in MEAs through improved Pt utilization and tuning of the strain of Pt layers for maximum activity⁵⁹. The tetragonal L₁₀-PtM has M:Pt in a 1:1 ratio, and M (3d) and Pt (5d) atomic orbitals are strongly coupled along the crystallographic *c* direction. Detailed mechanisms clearly linking the ordered structures and enhanced catalytic performance remain to be fully elucidated. In principle, a maximum of activity can be realized when both the adsorption and reduction of oxygen occur rapidly. Deviations from this optimum lead to either less adsorption of oxygen on the surface or

slower reaction of adsorbed species and desorption of products. Deep understanding of ORR mechanisms of these PtM catalysts can guide optimization of Pt layer thickness and Pt:M ratio in the core, which tune the biaxial strain and optimize the ligand effect of M, further weakening the binding of all oxygenated intermediates on the Pt surface and enhancing ORR activity.

During dynamic fuel cell operation, dissolution and reprecipitation of Pt can drive particle agglomeration, reducing ECSA and degrading intrinsic activity. Dissolved Pt and M can diffuse and precipitate in the proton-exchange membrane and ionomer, reducing proton conductivity. Development of robust carbon supports with favorable morphology and metal-support interactions is crucial for enhancing durability by improving dispersion of PtM nanoparticles, mitigating carbon corrosion, and inhibiting migration of PtM nanoparticles. Highly ordered intermetallic particles well dispersed onto advanced carbon supports with strengthened metal-support interactions may provide the ultimate solution to performance and stability of low-PGM catalysts.

Perspective on PGM-free Catalysts. Unlike early stage M-N-C catalysts containing inactive and unstable metallic aggregates, 3D MOF- and polymer hydrogel-derived catalysts contain atomically dispersed MN₄ sites within robust carbon structures at significantly increased density. Fe-N-C catalysts exhibit the best activity, but Fe-free catalysts are needed to avoid concerns about Fenton chemistry. Therefore, Co- and Mn-N-C catalysts also hold great promise. Current PGM-free catalysts are not commercially viable due to insufficient activity and stability. To address these grand challenges, researchers in the field should be focussing on the four interrelated objectives outlined in **Figure 8**.

Design structurally-defined 3D precursors with M-N₄ coordination. Tuning the structure of precursors such as MOFs can control active metal site distribution, M-N bonding, and surrounding carbon morphology and structure. The modular nature of MOFs⁸⁶ enables precursor production with a range of ligands, local hydrocarbon networks, and M-N₄ content. Correlating catalyst structure to precursor structure will help to explain performance trends. Other available controls include physical properties of MOFs such as crystal size, shape, and porosity. The overall catalyst morphology can be engineered

by directly transferring those precursor features into final catalysts through a one-step thermal activation.

Elucidate the roles of metal in promoting activity (e.g., Fe, Co, Ni, or Mn). Precursors with well-defined M-N₄ content are an ideal model system to elucidate active site formation during catalyst synthesis. Key factors associated with mechanistic understanding the role of metals include atomic MN₄ site formation, N doping, and the associated carbon structure and morphology. The behavior of Fe, Co, and Mn in active site formation may each be different and remain to be fully understood.

Identify the optimal carbon in catalysts. Carbon is the dominant component in M-N-C catalysts (>85 at.%), but its role remains controversial. We initially speculated that *in situ* formation of highly graphitized nanocarbons was critical for active site generation¹¹⁰. However, recent ZIF-derived atomically dispersed Fe-N-C catalysts with disordered, partially-graphitized carbon show even higher ORR activity ($E_{1/2}$ up to 0.86 V *vs* RHE), relative to graphitized carbon-rich Fe-N-C catalysts (~0.80 V) under identical testing conditions. The role of carbon structure and morphology in determining activity and stability must be understood.

Illuminate catalyst degradation mechanisms. The stability problem must be addressed to make PGM-free catalysts practically viable. Strengthening M-N and C-N bonding in a robust and corrosion-resistant carbon is crucial, subject to precursor structure requirements (e.g., M-N₄ complex formation, local hydrocarbon groups, and crystal sizes) and active site formation during thermal conversion (e.g., temperature, duration, pressure, and atmosphere). Experimental and theoretical studies should focus on metal site dissolution, doped N oxidation, and carbon corrosion.

Translating catalyst activity and stability into MEA performance. For both PGM and PGM-free catalysts, translating the activity and stability observed in aqueous electrolytes into high-performance MEAs remains a grand challenge due to the lack of accurate nanoscale control of three-phase interfaces within electrodes. Trends and observations of RDE activity and MEA performance are often inconsistent. In MEAs, solid-electrolyte ionomers and thicker catalyst layers inhibit transport of both

O_2 and protons, compared to experiments in liquid electrolytes. MEA fabrication methods strongly affect MEA performance in voltage ranges where performance is controlled by kinetics and mass transfer. Different catalysts with unique surface and structural properties may require different fabrication parameters. The durability of catalysts in fuel cells should be studied intensively during long-term operation. Degradation mechanisms of catalysts in MEAs might not be identical to those in acidic liquid electrolyte. Along with degradation of catalysts, collapse of interfaces due to morphology changes of ionomers and carbon corrosion also cause significant performance loss in MEAs.

Compared to PGM catalysts, translating PGM-free catalysts into high MEA performance is even more difficult, due to thicker PGM-free cathodes¹⁰⁴. We identified the dependence of MEA performance on the particle size of atomically-dispersed Fe catalysts, suggesting that catalyst morphology and nanostructure play important roles in overall MEA performance⁹⁰. Water flooding is more critical in thick PGM-free cathodes. Thus, a balance between hydrophilicity and hydrophobicity, associated with surface chemistry and porosity, is more critical for M-N-C catalysts. Recently, nano-CT was used to study PGM-free cathodes to determine porosity and ionomer dispersion in electrodes and further link these features to fabrication methods and MEA performance¹¹¹. Advanced *in situ* and *ex situ* techniques will be valuable to explore the properties of MEAs, providing new insight into MEA performance and degradation under varied operating conditions.

References

- 1 Thompson, S. T. *et al.* Electrocatalysis: DOE's approach to PGM-free catalyst and electrode R&D. *Solid State Ionics* **319**, 68-76 (2018). **A briefy summary provides a perspecitvie of PGM-free catalysts for transportation application from U.S. DOE point of view.**
- 2 Wang, X. X., Prabhakaran, V., He, Y., Shao, Y. & Wu, G. Iron-free cathode catalysts for proton-exchange-membrane fuel cells: Cobalt catalysts and the peroxide mitigation approach. *Adv. Mater.* **31**, 1805126 (2019).
- 3 Adzic, R. R. Platinum monolayer electrocatalysts: Tunable activity, stability, and self-healing

properties. *Electrocatalysis* **3**, 163-169 (2012).

4 Chattot, R. *et al.* Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. *Nat. Mater.* **17**, 827-833 (2018). **Surface distortions as a novel structural descriptor is propsoed to rationlize the electrocatalytic properties based on PtNi/C nanocatalysts.**

5 Gan, L., Cui, C., Rudi, S. & Strasser, P. Core–shell and nanoporous particle architectures and their effect on the activity and stability of Pt ORR electrocatalysts. *Top. Catal.* **57**, 236-244 (2014).

6 Gómez-Marín, A. M. & Feliu, J. M. Oxygen reduction on nanostructured platinum surfaces in acidic media: Promoting effect of surface steps and ideal response of Pt (111). *Catal. Today* **244**, 172-176 (2015).

7 Spendelow, J. S. Advanced electro-catalysts through crystallographic enhancement. *U.S. DOE 2017 Hydrogen and Fuel Cell Program AMR Proceedings* https://www.hydrogen.energy.gov/pdfs/review18/fc161_spendelow_2018_o.pdf (2018).

8 Kongkanand, A. & Mathias, M. F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. *J. Phys. Chem. Lett.* **7**, 1127-1137 (2016).
A review provides understanding on cathod catalyst layer and ionomer design with low-Pt loading from fuel cell vehicle application point of view.

9 Sasaki, K. *et al.* Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. *Angew. Chem. Int. Ed.* **49**, 8602-8607 (2010).

10 Banham, D. & Ye, S. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: An industrial perspective. *ACS Energy Lett.* **2**, 629-638 (2017).

11 Stamenkovic, V. *et al.* Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. *Angew. Chem. Int. Ed.* **45**, 2897-2901 (2006).

12 Oezaslan, M., Hasché, F. & Strasser, P. Pt-based core–shell catalyst architectures for oxygen fuel cell electrodes. *J. Phys. Chem. Lett.* **4**, 3273-3291 (2013).

13 Wu, J. & Yang, H. Platinum-based oxygen reduction electrocatalysts. *Acc. Chem. Res.* **46**, 1848-1857 (2013).

14 Luo, M. & Guo, S. Strain-controlled electrocatalysis on multimetallic nanomaterials. *Nat. Rev. Mater.* **2**, 17059 (2017).

15 Stamenkovic, V. R. *et al.* Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. *Nat. Mater.* **6**, 241-247 (2007).

16 Cho, K. Y. *et al.* Molybdenum-doped PdPt@Pt core–shell octahedra supported by ionic block copolymer-functionalized graphene as a highly active and durable oxygen reduction electrocatalyst. *ACS Appl. Mater. Interfaces* **9**, 1524-1535 (2017).

17 Zhang, C., Sandorf, W. & Peng, Z. Octahedral Pt₂CuNi uniform alloy nanoparticle catalyst with high activity and promising stability for oxygen reduction reaction. *ACS Catal.* **5**, 2296-2300 (2015).

18 Huang, X. *et al.* High-performance transition metal–doped Pt₃Ni octahedra for oxygen reduction reaction. *Science* **348**, 1230-1234 (2015).

19 Yano, H., Watanabe, M., Iiyama, A. & Uchida, H. Particle-size effect of Pt cathode catalysts on durability in fuel cells. *Nano Energy* **29**, 323-333 (2016).

20 Strasser, P. Catalysts by platonic design. *Science* **349**, 379-380 (2015).

21 Erikson, H., Sarapuu, A., Tammeveski, K., Solla-Gullón, J. & Feliu, J. M. Shape-dependent electrocatalysis: Oxygen reduction on carbon-supported gold nanoparticles. *ChemElectroChem* **1**, 1338-1347 (2014).

22 Kuzume, A., Herrero, E. & Feliu, J. M. Oxygen reduction on stepped platinum surfaces in acidic media. *J. Electroanal. Chem.* **599**, 333-343 (2007).

23 Stamenkovic, V. R. *et al.* Improved oxygen reduction activity on Pt₃Ni(111) via increased

surface site availability. *Science* **315**, 493-497 (2007). **An experimental and theoretical study on the catalytic activity of different lattice planes of Pt₃Ni, suggesting Pt₃Ni(111) surface is more active than Pt(111) because of an unusual d-band center position.**

24 Marković, N. M., Schmidt, T. J., Stamenković, V. & Ross, P. N. Oxygen reduction reaction on Pt and Pt bimetallic surfaces: A selective review. *Fuel Cells* **1**, 105-116 (2001).

25 Jiang, K. *et al.* Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. *Sci. Adv.* **3**, e1601705 (2017).

26 Bu, L. *et al.* A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. *Adv. Mater.* **27**, 7204-7212 (2015).

27 Luo, M. *et al.* Stable high-index faceted Pt skin on Zigzag-like PtFe nanowires enhances oxygen reduction catalysis. *Adv. Mater.* **30**, 1705515 (2018).

28 Li, M. *et al.* Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. *Science* **354**, 1414-1419 (2016).

29 Sun, X. *et al.* Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. *J. Am. Chem. Soc.* **136**, 5745-5749 (2014).

30 Corona, B., Howard, M., Zhang, L. & Henkelman, G. Computational screening of core@shell nanoparticles for the hydrogen evolution and oxygen reduction reactions. *J. Chem. Phys.* **145**, 244708 (2016).

31 Ye, W. *et al.* Enhanced O₂ reduction on atomically thin Pt-based nanoshells by integrating surface facet, interfacial electronic, and substrate stabilization effects. *Nano Res.* **11**, 3313-3326 (2018).

32 Shen, L.-L., Zhang, G.-R., Miao, S., Liu, J. & Xu, B.-Q. Core–shell nanostructured Au@Ni_mPt₂ electrocatalysts with enhanced activity and durability for oxygen reduction reaction. *ACS Catal.* **6**, 1680-1690 (2016).

33 Luo, S., Tang, M., Shen, P. K. & Ye, S. Atomic-scale preparation of octopod nanoframes with

high-index facets as highly active and stable catalysts. *Adv. Mater.* **29**, 1601687 (2017).

34 Wang, X. *et al.* Pt-based icosahedral nanocages: Using a combination of {111} facets, twin defects, and ultrathin walls to greatly enhance their activity toward oxygen reduction. *Nano Lett.* **16**, 1467-1471 (2016).

35 Park, J., Wang, H., Vara, M. & Xia, Y. Platinum cubic nanoframes with enhanced catalytic activity and durability toward oxygen reduction. *ChemSusChem* **9**, 2855-2861 (2016).

36 Kwon, H. *et al.* Dendrite-embedded platinum–nickel multiframes as highly active and durable electrocatalyst toward the oxygen reduction reaction. *Nano Lett.* **18**, 2930-2936 (2018).

37 Zhang, L. *et al.* Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. *Science* **349**, 412-416 (2015).

38 Peng, X., Zhao, S., Omasta, T. J., Roller, J. M. & Mustain, W. E. Activity and durability of Pt–Ni nanocage electocatalysts in proton exchange membrane fuel cells. *Appl. Catal. B* **203**, 927-935 (2017).

39 Xie, S. *et al.* Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. *Nano Lett.* **14**, 3570-3576 (2014).

40 Antolini, E. Alloy vs. Intermetallic compounds: Effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts. *Appl. Catal. B* **217**, 201-213 (2017).

41 Xiao, W., Lei, W., Gong, M., Xin, H. L. & Wang, D. Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis. *ACS Catal.* **8**, 3237-3256 (2018).

42 Jung, W. S. & Popov, B. N. New method to synthesize highly active and durable chemically ordered fct-PtCo cathode catalyst for PEMFCs. *ACS Appl. Mater. Interfaces* **9**, 23679-23686 (2017).

43 Choi, D. S., Robertson, A. W., Warner, J. H., Kim, S. O. & Kim, H. Low-temperature chemical vapor deposition synthesis of Pt-Co alloyed nanoparticles with enhanced oxygen reduction

reaction catalysis. *Adv. Mater.* **28**, 7115-7122 (2016).

44 Cai, Y., Gao, P., Wang, F. & Zhu, H. Carbon supported chemically ordered nanoparticles with stable Pt shell and their superior catalysis toward the oxygen reduction reaction. *Electrochim. Acta* **245**, 924-933 (2017).

45 Bu, L. *et al.* Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. *Nat. Commun.* **7**, 11850 (2016).

46 Wang, D. *et al.* Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. *Nat. Mater.* **12**, 81-87 (2013). **Pt₃Co@Pt nanoparticles with ordered PtCo₃ core and Pt shell strucutre showed enhanced activity and stability for the ORR in acidic media.**

47 Du, X. X., He, Y., Wang, X. X. & Wang, J. N. Fine-grained and fully ordered intermetallic PtFe catalyst with largely enhanced catalytic activity and durability. *Energy Environ. Sci.* **9**, 2623-2632 (2016).

48 Wang, D. *et al.* Morphology and activity tuning of Cu₃Pt/C ordered intermetallic nanoparticles by selective electrochemical dealloying. *Nano Lett.* **15**, 1343-1348 (2015).

49 Lang, X.-Y. *et al.* Mesostructured intermetallic compounds of platinum and non-transition metals for enhanced electrocatalysis of oxygen reduction reaction. *Adv. Funct. Mater.* **25**, 230-237 (2015).

50 Cui, Z., Chen, H., Zhou, W., Zhao, M. & Disalvo, F. J. Structurally ordered Pt₃Cr as oxygen reduction electrocatalyst: Ordering control and origin of enhanced stability. *Chem. Mater.* **27**, 7538-7545 (2015).

51 Bu, L. *et al.* Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. *Science* **354**, 1410-1414 (2016).

52 Arumugam, B. *et al.* Enhanced activity and durability for the electroreduction of oxygen at a chemically ordered intermetallic PtFeCo catalyst. *RSC Adv.* **4**, 27510-27517 (2014).

53 Zhu, H., Cai, Y., Wang, F., Gao, P. & Cao, J. Scalable preparation of the chemically ordered Pt–Fe–Au nanocatalysts with high catalytic reactivity and stability for oxygen reduction reactions. *ACS Appl. Mater. Interfaces* **10**, 22156-22166 (2018).

54 Kim, J., Rong, C., Lee, Y., Liu, J. P. & Sun, S. From core/shell structured FePt/Fe₃O₄/MgO to ferromagnetic FePt nanoparticles. *Chem. Mater.* **20**, 7242-7245 (2008).

55 Kim, J., Lee, Y. & Sun, S. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. *J. Am. Chem. Soc.* **132**, 4996-4997 (2010).

56 Li, Q. *et al.* New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. *Nano Lett.* **15**, 2468-2473 (2015).

57 Chung, D. Y. *et al.* Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. *J. Am. Chem. Soc.* **137**, 15478-15485 (2015).

58 Bu, L. *et al.* PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. *J. Am. Chem. Soc.* **139**, 9576-9582 (2017).

59 Li, J. *et al.* Hard-magnet L1₀-CoPt nanoparticles advance fuel cell catalysis. *Joule* **3**, 124-135 (2018). **An ordered intermetallic CoPt catalyst was studied in both acidic aqueous electrolyte and solid-state MEAs with exceptionally enhanced activity and stability, exceeding DOE 2020 targets for PEMFCs' transportation applicatoins.**

60 Wang, L. *et al.* Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. *Science* **363**, 870-874 (2019).

61 Kim, H. Y. *et al.* Self-supported mesostructured Pt-based bimetallic nanospheres containing an intermetallic phase as ultrastable oxygen reduction electrocatalysts. *Small* **12**, 5347-5353 (2016).

62 Wang, D. *et al.* Tuning oxygen reduction reaction activity via controllable dealloying: A model study of ordered Cu₃Pt/C intermetallic nanocatalysts. *Nano Lett.* **12**, 5230-5238 (2012).

63 Gummalla, M. *et al.* Effect of particle size and operating conditions on Pt₃Co PEMFC cathode

catalyst durability. *Catalysts* **5**, 926-948 (2015).

64 Jia, Q. *et al.* Improved oxygen reduction activity and durability of dealloyed PtCo_x catalysts for proton exchange membrane fuel cells: Strain, ligand, and particle size effects. *ACS Catal.* **5**, 176-186 (2015).

65 Vojislav R. Stamenkovic, N. M. M. Tailored high performance low-PGM alloy cathode catalysts *U.S. DOE 2017 Hydrogen and Fuel Cell Program AMR Proceedings* https://www.hydrogen.energy.gov/pdfs/review17/fc140_stamenkovic_2017_o.pdf (2017).

66 Steinbach, A. J. Highly active, durable, and ultra-low PGM NSTF thin film ORR catalysts and supports. *U.S. DOE 2017 Hydrogen and Fuel Cell Program AMR Proceedings* https://www.hydrogen.energy.gov/pdfs/review17/fc143_steinbach_2017_o.pdf (2017).

67 Vojislav R. Stamenkovic, N. M. M. Tailored high performance low-PGM alloy cathode catalysts *U.S. DOE 2016 Hydrogen and Fuel Cell Program AMR Proceedings* https://www.hydrogen.energy.gov/pdfs/review16/fc140_stamenkovic_2016_o.pdf (2016).

68 Steinbach, A. J. Highly active, durable, and ultra-low PGM NSTF thin film orr catalysts and supports. *U.S. DOE 2016 Hydrogen and Fuel Cell Program AMR Proceedings* https://www.hydrogen.energy.gov/pdfs/review16/fc143_steinbach_2016_o.pdf (2016)

69 Park, Y.-C. *et al.* Investigation of the corrosion of carbon supports in polymer electrolyte fuel cells using simulated start-up/shutdown cycling. *Electrochim. Acta* **91**, 195-207 (2013).

70 Ahluwalia, R. *et al.* Mechanism and kinetics of carbon corrosion in polymer electrolyte fuel cells during drive cycles. *ECS Meeting Abstracts MA2015-02*, 1503 (2015).

71 Borup, R. L. *et al.* Electrocatalyst layer degradation of PEM fuel cells. *ECS Meeting Abstracts MA2014-02*, 1201 (2014).

72 Chen, M. *et al.* Pt alloy nanoparticles decorated on large-size nitrogen-doped graphene tubes for highly stable oxygen-reduction catalysts. *Nanoscale* **10**, 17318-17326 (2018).

73 Chong, L. *et al.* Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate

frameworks. *Science* **362**, 1276-1281 (2018).

74 Wang, X. X. *et al.* Ordered Pt₃Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction. *Nano Lett.* **18**, 4163-4171, (2018).

75 Zhang, H. *et al.* Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. *J. Am. Chem. Soc.* **139**, 14143 (2017). **An atomically dispersed and nitrogen coordination single iron catalyst in the form of FeN₄ exhibited ever recorded ORR activity and stability in acidic media.**

76 Chung, H. T. *et al.* Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. *Science* **357**, 479-484 (2017).

77 Miao, Z. *et al.* Atomically dispersed Fe-N_x/C electrocatalyst boosts oxygen catalysis via a new metal-organic polymer supramolecule strategy. *Adv. Energy Mater.* **8**, 1801226 (2018).

78 Choi, J.-Y. *et al.* Is the rapid initial performance loss of Fe/N/C non precious metal catalysts due to micropore flooding? *Energy Environ. Sci.* **10**, 296-305 (2017).

79 Wu, G., More, K. L., Johnston, C. M. & Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. *Science* **332**, 443-447 (2011).

80 Chokai, M., Daidou, T. & Nabae, Y. Development of Pt-free carbon-based catalyst for PEFC cathode prepared from polyacrylonitrile. *ECS Trans.* **64**, 261-270 (2014).

81 Fu, X. *et al.* In situ polymer graphenization ingrained with nanoporosity in a nitrogenous electrocatalyst boosting the performance of polymer-electrolyte-membrane fuel cells. *Adv. Mater.* **29**, 1604456 (2017).

82 Liang, H.-W., Wei, W., Wu, Z.-S., Feng, X. & Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. *J. Am. Chem. Soc.* **135**, 16002-16005 (2013).

83 Wang, Y.-C. *et al.* S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. *Angew. Chem. Int. Ed.* **54**, 9907-9910 (2015).

84 Yang, L. *et al.* Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. *PNAS* **115**, 6626-6631 (2018).

85 Sa, Y. J. *et al.* A general approach to preferential formation of active Fe-N_x sites in Fe/N/C electrocatalysts for efficient oxygen reduction reaction. *J. Am. Chem. Soc.* **138**, 15046-15056 (2016).

86 Herranz, J. *et al.* Unveiling N-protonation and anion-binding effects on Fe/N/C catalysts for O₂ reduction in proton-exchange-membrane fuel cells. *J. Phys. Chem. C* **115**, 16087-16097 (2011).

87 Lai, Q. *et al.* Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-N_x sites for advanced oxygen reduction in acid media. *ACS Catal.* **7**, 1655-1663 (2017).

88 Zhang, C. *et al.* Networking pyrolyzed zeolitic imidazolate frameworks by carbon nanotubes improves conductivity and enhances oxygen-reduction performance in polymer-electrolyte-membrane fuel cells. *Adv. Mater.* **29**, 1604556 (2017).

89 Myers, D. & Zelenay, P. Electrocatalysis consortium. *U.S. DOE 2018 Hydrogen and Fuel Cell Program AMR Proceedings* https://www.hydrogen.energy.gov/pdfs/review18/fc160_myers_2018_o.pdf (2018).

90 Litster, S. Advanced PGM-free cathode engineering for high power density and durability. *U.S. DOE 2018 Hydrogen and Fuel Cell Program AMR Proceedings* https://www.hydrogen.energy.gov/pdfs/review18/fc171_litster_2018_o.pdf (2018).

91 Wan, X. *et al.* Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. *Nat. Catal.* **2**, 259-268 (2019). **A Fe–N–C catalyst with unique concave and mesoporosity morphologies provides increased density of active sites and improved mass transfor**

92 Liu, K., Wu, G. & Wang, G. Role of local carbon structure surrounding FeN₄ sites in boosting the catalytic activity for oxygen reduction. *J. Phys. Chem. C* **121**, 11319-11324 (2017).

93 Kneebone, J. L. *et al.* A combined probe-molecule, mössbauer, nuclear resonance vibrational spectroscopy, and density functional theory approach for evaluation of potential iron active sites in an oxygen reduction reaction catalyst. *J. Phys. Chem. C* **121**, 16283-16290 (2017).

94 You, B. *et al.* Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. *ACS Catal.* **5**, 7068-7076 (2015).

95 Yin, P. *et al.* Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. *Angew. Chem. Int. Ed.* **55**, 10800-10805 (2016).

96 Wang, J. *et al.* Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. *J. Am. Chem. Soc.* **139**, 17281-17284 (2017).

97 Wang, X. X. *et al.* Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. *Adv. Mater.* **30**, 1706758 (2018). **An atomically dispersed and nitrogen-coordinated Co site catalysts derived from Co-doped ZIF-8 demonstrated promising applications in PEMFCs.**

98 He, Y. *et al.* Highly active atomically dispersed CoN₄ fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy. *Energy Environ. Sci.* **12**, 250-260 (2019).

99 Xiao, M. *et al.* Identification of binuclear Co₂N₅ active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN₄ site. *Nano Energy* **46**, 396-403 (2018).

100 Wang, X. *et al.* Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction. *Nanoscale* **7**, 20290-20298 (2015).

101 Gupta, S. *et al.* Quaternary FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: Promotional role of Mn doping in stabilizing carbon. *ACS Catal.* **7**, 8386-8393 (2017).

102 Zhong, Y. *et al.* The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in

magnetite on its catalytic activity in heterogeneous fenton and UV/Fenton reaction: From the perspective of hydroxyl radical generation. *Appl. Catal. B* **150-151**, 612-618 (2014).

103 Li, J. *et al.* Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. *Nat. Catal.* **1**, 935–945 (2018). **A study on atomically dispersed and nitrogen-coordinated Mn sites demonstrated a concept that Mn-based catalysts can minimize the possible Fenton-realted reactions in PEMFCs and thus eventually resolve the stabilyt issues of PGM-free catalysts.**

104 Nallathambi, V., Lee, J.-W., Kumaraguru, S. P., Wu, G. & Popov, B. N. Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM proton exchange membrane fuel cells. *J. Power Sources* **183**, 34-42 (2008).

105 Shao, Y., Dodelet, J.-P., Wu, G. & Zelenay, P. PGM-free cathode catalysts for PEM fuel cells: A mini-review on stability challenges. *Adv. Mater.* **31**, 1807615 (2019). **A short summary of stability challenges of current PGM-free cathode catalysts in PEMFCs and possible solutions to address them.**

106 Chong, L. *et al.* Investigation of oxygen reduction activity of catalysts derived from Co and Co/Zn methyl-imidazolate frameworks in proton exchange membrane fuel cells. *ChemElectroChem* **3**, 1541-1545 (2016).

107 Choi, C. H. *et al.* Stability of Fe-N-C catalysts in acidic medium studied by operando spectroscopy. *Angew. Chem. Int. Ed.* **54**, 12753-12757 (2015).

108 Chenitz, R. *et al.* A specific demetalation of Fe-N₄ catalytic sites in the micropores of NC_Ar + NH₃ is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells. *Energy Environ. Sci.* **11**, 365-382 (2018).

109 Ferrandon, M. *et al.* Stability of iron species in heat-treated polyaniline-iron-carbon polymer electrolyte fuel cell cathode catalysts. *Electrochim. Acta* **110**, 282-291 (2013).

110 Wu, G. *et al.* Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe

binary non-precious-metal catalysts for oxygen-reduction. *Carbon* **49**, 3972-3982 (2011).

111 Komini Babu, S., Chung, H. T., Zelenay, P. & Litster, S. Resolving electrode morphology's impact on platinum group metal-free cathode performance using nano-CT of 3D hierarchical pore and ionomer distribution. *ACS Appl. Mater. Interfaces* **8**, 32764-32777 (2016).

Acknowledgements

We acknowledge the financial support from U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technology Office (DE-EE0008075, DE-EE0008076, and DE-EE0008417) along with National Science Foundation (CBET-1604392, 1804326).

Competing interests

The authors declare no competing interests.

Author Information

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence should be addressed to G.W.

Fig. 1 | Development of cathode catalysts for PEMFCs. Low-platinum group metal (PGM) and PGM-free catalyst approaches are currently explored for near- and long-term applications for transportation, respectively.

Fig. 2 | Highly ordered PtM intermetallic catalysts. **a**, Schematic illustration of transformation from a disordered PtM structure to an ordered one. **b**, Multislice simulated ADF-STEM image of an idealized nanoparticle of Pt_3Co and the idealized atomic structure of the Pt_3Co core–shell nanoparticle, in which white and blue spheres represent Pt and Co atoms, respectively⁴⁶. **c**, STEM image of a typical $\text{L1}_0\text{-CoPt}$ intermetallic, where L1_0 designates the particular crystal unit cell structure. Pt is colored in red and Co is colored in blue⁵⁹. Panels reproduced from: **b**, ref.⁴⁶, Springer Nature; **c**, ref.⁵⁹, Elsevier.

Fig. 3 | L1₀-CoPt/Pt NPs and their ORR catalytic performance in both rotating disk electrode (RDE) and MEA experiments. **a**, Modeling of O₂ adsorption on CoPt/Pt NPs, **b**, ORR polarization curves obtained before and after accelerated stress testing (AST), **c**, Specific activity and mass activity at 0.9 V at different numbers of cycles tested in aqueous acidic electrolytes via RDE. **d**, Beginning-of-life (BOL) mass activities of L1₀-CoPt/Pt tested via current DOE protocols in MEAs for transportation applications. **e**, STEM image of L1₀-CoPt/Pt after 30,000 AST cycles in the MEA at 80°C. **f**, Elemental mapping of a representative CoPt NP after cycling in the MEA. **g**, Wide-area elemental mapping of the MEA at end-of-life (EOL)⁵⁹. Panels reproduced from: **a-g**, ref. ⁵⁹, Elsevier.

Fig. 4 | Current development of PGM catalysts. **a**, Specific activity and mass activity @0.9 V for different PtM intermetallic catalysts in aqueous electrolytes via RDE tests. **b**, Mass activity @0.9 V before and after 10k potential cycling AST (Refs. for Panels **a**, **b**: ¹⁸ ²⁸ ⁵⁷ ⁵⁰ ¹⁷ ⁴³ ⁵⁸ ⁴⁴ ⁴⁴ ⁴⁵ ⁵¹ ⁵³ ⁵⁹). **c**, Mass activity @0.9 V for low-Pt catalysts, calculated from PEMFC performance by using H₂-O₂, 1.0 bar, 80°C, and 100 RH%. **d**, Mass activity @0.9 V in beginning of life (BOL) tests and end of life (EOL) tests after 30k potential cycles in PEMFCs (Refs. for Panels **c**, **d**: ⁶³ ⁶⁴ ⁶¹ ⁴² ⁷³ ⁵⁹ ⁷⁴ ⁶⁵ ⁶⁶ ⁶⁷ ⁶⁸).

Fig. 5 | Typical M-N-C catalyst synthesis using carbon supports (e.g., Ketjenblack) and self-templating material (e.g., ZIF-8). **a**, Carbon supported PANI-FeCo-N catalysts prepared by in situ polymerization onto Ketjenblack with a combination of FeCo species, showing heterogeneous morphologies and containing multiple phases of metals and nanocarbon⁷⁹. **b**, Atomically dispersed Fe-N-C catalyst derived from chemically doped Fe-ZIF-8 without any additional carbon support, showing homogeneous carbon particle morphology and atomic dispersion of Fe-based active sites uniformly dispersed within porous carbon⁷⁵. Panels reproduced from: **a**, ref.⁷⁹, AAAS; **b**, ref.⁷⁵, ACS.

Fig. 6 | Current development of PGM-free catalysts. **a**, Significant activity enhancement of Fe-N-C catalysts was achieved gaining a positive shift of 100 mV in past ten years through using well-defined Fe-coped ZIF-8 precursors relative to ethylenediamine and PANI studied in early stages.^{79,104} **b**, Half-wave potential of various M-N-C catalysts tested in acidic electrolytes. **c**, Maximum power density for PEMFCs using M-N-C as cathode catalysts under H₂-O₂ conditions at 80°C and 100RH%. Pressures are 1.0 bar and specified otherwise. Refs for b, c: ▼⁹⁴(no MEA test), ▶¹⁰⁶, ▷⁸⁵, ★⁸¹(1.4 bar), ▲⁸³, ●⁹⁶, ▨⁷⁵(no MEA test), ☀⁹⁷(2.0 bar), □⁹⁹(no MEA test), ●⁹⁸, ◇⁷⁷(no MEA test), ✕⁷⁶, ◇⁸⁸, ●⁸⁴, ●⁹¹(2.5 bar), and ⚡¹⁰³. Panels reproduced from: **a**, ref.⁹⁶, Elsvier; ref.⁷⁴, AAAS.

Fig. 7 | Directions to improve catalytic activity of M-N-C catalysts. **a**, Controlling atomic metal (e.g., Fe) dispersion into partially graphitized and disordered carbon phase, instead of highly graphitized carbon covering metal aggregates⁷⁵. **b**, Strategies to improve the density of active sites in the form of MN_4 and enhance intrinsic activity by modifying local carbon structure adjacent to MN_4 sites.^{92,97} Panels reproduced from: **a**, ref.⁷⁵, ACS; **b**, ref.⁹², ACS and ref.⁹⁷, Wiley.

Fig. 8 | Four interrelated scientific objectives for advancing M-N-C based PGM-free catalysts.

They are the designing structurally-defined 3D precursors with M-N₄ coordination, the elucidating the roles of metal in promoting activity, the identifying the optimal carbon in catalysts, and the illuminating catalyst degradation mechanisms.