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Abstract. Given a knot K ⊂ S3, let u−(K) (respectively, u+(K)) denote the minimum number
of negative (respectively, positive) crossing changes among all unknotting sequences for K. We use
knot Floer homology to construct the invariants l−(K), l+(K) and l(K), which give lower bounds
on u−(K), u+(K) and the unknotting number u(K), respectively. The invariant l(K) only vanishes
for the unknot, and satisfies l(K) ≥ ν+(K), while the difference l(K) − ν+(K) can be arbitrarily
large. We also present several applications towards bounding the unknotting number, the alteration
number and the Gordian distance.

1. Introduction

Given a knot K ⊂ S3, by an unknotting sequence for K we mean a sequence of crossing changes
for K which results in the unknot. The minimum length of an unknotting sequence for K is called
the unknotting number of K and is denoted by u(K). Let u−(K) denote the minimum number
of negative crossing changes (i.e. changes of a negative crossing to a positive crossing) among all
unknotting sequences for K and u+(K) denote the minimum number of positive crossing changes
among all such sequences. It is then clear that u(K) ≥ u+(K) + u−(K), while the equality is
not necessarily satisfied. The unknotting number is one of the simplest, yet most mysterious and
intractable invariants of knots in S3. The answer to several simple questions about the unknotting
number is still not known. In particular, the the following question is widely open.

Question 1.1. If K and L are knots in S3, is it true that u(K#L) = u(K) + u(L)? How about
the (weaker) inequality u(K#L) ≥ max{u(K), u(L)}?

Scharlemann proved that composite knots have unknotting number at least 2 [Sch85]. However,
no matter how large u(K) and u(L) are, it is not known in general whether u(K#L) ≥ 3 [Lac].

Another example is Milnor’s question about the unknotting number of the torus knot Tp,q, which
remained open for a long time, until Kronheimer and Mrowka gave a positive answer to it using
gauge theory [KM93]. Later, Ozsváth and Szabó reproved it using their invariant τ(K) [OS03]
and Rasmussen gave a purely combinatorial proof by introducing his invariant s(K) [Ras10]. Both
|τ(K)| and |s(K)|/2, as well as classical lower bounds for the unknotting number coming from
Levine-Tristram signatures [Lev69, Tri69], are in fact lower bounds for the 4-ball genus g4(K).
Since g4(K) ≤ u(K), they also give lower bounds for the unknotting number. Nevertheless, lower
bounds for u(K) constructed by bounding the 4-ball genus fail to give effective data for many classes
of knots. In particular, if −K denotes the mirror image of the knot K, the knot L = K# − K
is always slice and τ(L) = s(L) = 0. It is thus interesting to construct lower bounds for u(K),
which do not come from bounds on g4(K). In this paper, we use knot Floer homology to construct
the invariants l+(K), l−(K) = l+(−K) and l(K) associated with a knot K ⊂ S3 and prove the
following theorem.

Theorem 1.1. For every knot K ⊂ S3 we have

• l+(K) ≤ u+(K), l−(K) ≤ u−(K) and l(K) ≤ u(K).
• l+(K) ≥ ν+(K) ≥ τ(K) and l−(K) ≥ ν+(−K) ≥ −τ(K). Therefore, for every 0 ≤ t ≤ 1
we have tl−(K) ≥ ΥK(t) ≥ −tl+(K).

• l(K) ≥ t̂(K) where t̂(K) is the maximum order of U -torsion in HFK−(K).
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Unlike most other lower bounds for the unknotting number, the torsion invariant t̂ resists the
connected sum operation, specifically:

Corollary 1.2. If K and K ′ are knots in S3 then

u(K#K ′) ≥ t̂(K#K ′) = max{̂t(K), t̂(K ′)}.

In particular, for the torus knot Tp,q with 0 < p < q, t̂(Tp,q) = p− 1 and for every knot K ⊂ S3

u(K#Tp,q) ≥ p− 1.

Therefore, for every coprime 0 < p < q, l(−Tp,q#Tp,q) ≥ p − 1, while the lower bounds ν+, |τ |
and |s|/2 vanish, because −Tp,q#Tp,q is slice.

Theorem 1.1 naturally reproves the following corollary.

Corollary 1.3. For every knot K ⊂ S3, ν+(K) is a lower bounds for u+(K), while ν+(−K) is a
lower bound for u−(K). In particular, u+(Tp,q) = (p− 1)(q − 1)/2.

Associated with a knot K ⊂ S3, one can construct a Heegaard Floer chain complex CF(K),
which is freely generated over A = F[u,w] by the intersection points associated with a Heegaard
diagram for K. CF(K) is equipped with differential d, which is an A-homomorphism defined by
counting holomorphic disks [AE15]. Let H(K) denote the homology of (CF(K), d), which is again
a module over A. Let T(K) denote the torsion submodule of H(K), i.e. T(K) consists of x ∈ H(K)
such that there exists a non-zero a ∈ A with a · x = 0. Then, H(K) sits in a short exact sequence

0 - T(K) - H(K) - A(K) - 0,

where the torsion free part A(K) of the homology is isomorphic to an ideal in A. Specifically, for
every knot K, there is an ideal sequence ı(K) = (i0 = 0 < i1 < · · · < in = ν+(K)) of some length
n = n(K) and a canonical identification

A(K) = 〈uikwin−k | k = 0, 1, . . . , n〉A ≤ A.

We define t(K) as the smallest integer m such that wm acts trivially on T(K) (i.e. maps T(K) to
zero). For the unknot U , we have T(U) = 0 and A(U) = A.

If K ′ is obtained from K by a sequence of m positive crossing changes and n negative crossing
changes, we use the cobordism maps constructed in [AE] to show that w

nA(K) ⊂ A(K ′) and
w
mA(K ′) ⊂ A(K), while w

m+nT(K) may be embedded in T(K ′). This observation implies, in
particular, that ν+(K) is a lower bound for u+(K) and that t(K) is lower bound for u(K).

The above construction also gives lower bounds on the Gordian distance u(K,K ′) from a knot
K to another knot K ′, i.e. the minimum number of crossing changes required to get from K to K ′.
In particular, we give the following three lower bounds on the alternation number alt(K), defined
as the least Gordian distance of an alternating knot from K.

Proposition 1.4. The alternation number alt(K) of a knot K ⊂ S3 satisfies the inequalities

alt(K) ≥ ν+(K)− a(K), alt(K) ≥ t̂(K)− 1 and alt(K) ≥ min{t+(K)− 1, ν+(K)},

where a(K) is the minimum degree of a monomial in A(K).

In particular, as a corollary of this Proposition we show that

alt(Tp,pn+1) ≥ n

⌊
(p− 1)2

4

⌋
,

which improves [JLPZ17, Theorem 1.3]. Specifically, in [JLPZ17] the authors give the same lower
bound for the dealternating number which is bounded below by the alternation number.

A similar strategy is used by the first author in [Ali] to construct lower bounds for the unknotting
number from Khovanov homology. The resulting invariants are used in [AD] to prove the knight
move conjecture for knots with unknotting number at most 2.

In Section 2 we study the cobordism maps induced on knot chain complexes associated with a
crossing change. These cobordism maps are used in Section 3 to construct lower bounds on the
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Gordian distance of knots, while simpler obstructions to the unknotting are extracted from these
lower bounds in Section 4. We discuss several examples and applications in Section 5.

Acknowledgements. The authors would like to thank Jennifer Hom, Robert Lipshitz and
Iman Setayesh for helpful discussions and suggestions.

2. Changing the crossings in knot diagrams

By a crossing change for an oriented knot (or link) K ⊂ S3 we mean replacing a ball in S3

in which K looks like a positive crossing to the ball in which K looks like a negative crossing
(a positive crossing change), or the reverse of the above operation (a negative crossing change).
Figure 1 illustrates how a band surgery on K can be used to do any of the following two changes
(or the reverse of it):

• A positive crossing change and adding a positively oriented meridian for K as a new link
component.

• A negative crossing change and adding a negatively oriented meridian for K as a new link
component.

Let us assume that K ′ is obtained from K by a positive crossing change and that L is obtained
from K ′ by adding a positively oriented meridian. As illustrated in Figure 1, one may then place a
pair of markings p1, p2 on K, and distinguish a band I with endpoints on K \{p1, p2}, such that the
band surgery on I gives L, while p1 lands on K ′ and p2 lands on the positively oriented meridian.

Associated with the pointed knot (K, p1, p2), we may construct a tangle (equivalently, a sutured
manifold) as follows. Fix an orientation on K and consider two disjoint small arcs on K which
contain p1 and p2, respectively. Remove a small ball around each one of the four ends of these
arcs to obtain a 3-manifold M with four sphere boundary components. Using the orientation on
K we may orient these spheres so that two of them form ∂+M and the other two form ∂−M , as in
Figure 1. Let T1 and T2 denote the remaining part of the two arcs around p1 and p2, respectively,
which are now strands in M connecting ∂+M to ∂−M . The complement of the two arcs in K gives
two other strands T3 and T4 which connect ∂−M to ∂+M . The 3-manifold M and the strands
T1, T2, T3 and T4 then form a tangle associated with (K, p1, p2) (see [AE]). Correspondingly, we
also obtain a sutured manifold, which is constructed by removing a solid cylinder around each one
of the strands and considering the boundary of these 4 solid cylinders as the set of sutures on the
resulting 3-manifold. The construction of authors in [AE15], as well as the special case considered in
[AE15, Subsection 8.2], may be used to associate a chain complex CF(K, p1, p2) with this tangle (or
sutured manifold), which is a module over A′ = F[u, v,w]. The variables u and v are associated with
the strands T1 and T2 (equivalently, with p1 and p2), while the variable w is associated with T3 and
T4 (equivalently, with K \ {p1, p2}). Similarly, we can associate a chain complex CF(L, p1, p2) with
the pointed link (L, p1, p2), which is again a module over A′. The generators of the two complexes
all correspond to the unique Spinc structure s0 on S3, which will be dropped from the notation.

Associated with the band I, the construction of [AE] gives the A′-cobordism maps

g− : CF(K, p1, p2) → CF(L, p1, p2) and g+ : CF(L, p1, p2) → CF(K, p1, p2).

Moreover, g+ ◦ g− (resp. g− ◦ g+) corresponds to the decorated cobordism from (K, p1, p2) (resp.
(L, p1, p2)) to itself obtained from the product cobordism by adding a tube with feet on T3 × [0, 1]
and T4 × [0, 1].

Lemma 2.1. With the above notation fixed, the maps

g+ ◦ g− : CF(K, p1, p2) → CF(K, p1, p2) and g− ◦ g+ : CF(L, p1, p2) → CF(L, p1, p2)

are both multiplication by w, up to chain homotopy.

Proof. For defining g+ we may use a Heegaard triple

(Σ,α,β,γ, z = {z1, z2, z3, z4})
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This diagram is equipped with the A′-coloring which maps z1 and z2 to u and v, respectively,
while mapping w1 and w2 to w. Therefore,

(1) CF(H, p′1, p2) '


〈y1 + y2, y2〉A′

[
0 w

u+ v u

]

−−−−−−−−→ 〈y3, y4〉A′


 ,

and so the claim follows from the connected sum formula.
�

Corresponding to the above chain homotopy equivalences, we may present g− and g+ as 4 × 2
and 2× 4 matrices (g−ij)ij and (g+ji)ji, where

g−ij : CF(K)⊗A A′ → CF(K ′)⊗A A′ and g+ji : CF(K
′)⊗A A′ → CF(K)⊗A A′.

Let us denote u+ v by σ and regard A′ as A[σ]. For each 1 ≤ i, j ≤ 2, we decompose

g−ij = g−ij,0 + σh−ij and g+ji = g+ji,0 + σh+ji,

where the maps g±ij,0 do not use the variable σ. We will find chain homotopies such that

(2) g− '




g−11,0 0

g−21,0 0

g−31,0 0

g−41,0 g−11,0


 and g+ '

[
g+24,0 0 0 0

g+21,0 g+22,0 g+23,0 g+24,0

]
.

First, we deduce from g− and g+ being chain maps that

σ.g−12 = g−11 ◦ d+ d ◦ g−11

σ.g−22 = g−21 ◦ d+ d ◦ g−21

σ.g−32 = w.g−21 + g−31 ◦ d+ d ◦ g−31

σ.g−42 = σ.g−11 + u.g−21 + g−41 ◦ d+ d ◦ g−41

and

σ.g+11 = σ.g+24 + g+21 ◦ d+ d ◦ g+21

σ.g+12 = w.g+23 + u.g+24 + g+22 ◦ d+ d ◦ g+22

σ.g+13 = g+23 ◦ d+ d ◦ g+23

σ.g+14 = g+24 ◦ d+ d ◦ g+24

The differentials d of the complexes do not use the variable v, hence are not in the image of σ = u+v

and the above equations imply

g−12 = h−11 ◦ d+ d ◦ h−11

g−22 = h−21 ◦ d+ d ◦ h−21

g−32 = w.h−21 + h−31 ◦ d+ d ◦ h−31

g−42 = g−11 + u.h−21 + h−41 ◦ d+ d ◦ h−41

and

g+11 = g+24 + h+21 ◦ d+ d ◦ h+21

g+12 = w.h+23 + u.h+24 + h+22 ◦ d+ d ◦ h+22

g+13 = h+23 ◦ d+ d ◦ h+23

g+14 = h+24 ◦ d+ d ◦ h+24

Then, it is easy to check that

H− =




0 h−11
0 h−21
0 h−31
0 h−41


 and H+ =

[
h+21 h+22 h+23 h+24
0 0 0 0

]

are the chain homotopies for g− and g+ which result in Equation 2, respectively. Abusing the
notation we keep denoting the new matrixes by g− = (g−ij) and g+ = (g+ij).

We now set σ = 0, or equivalently v = u. Then, g−11 and g+11 induce chain maps

g−11 : CF(K) → CF(K ′) and g+11 : CF(K
′) → CF(K),

and we define f− = g−11 and f+ = g+11. Note that (g+ ◦ g−)11 = g+11 ◦ g
−
11 and (g− ◦ g+)11 = g−11 ◦ g

+
11.

So, both f+ ◦ f− and f− ◦ f+ are chain homotopic to multiplication by w.
If K ′ is obtained from K by a negative crossing change, a similar argument may be used to arrive

at the same conclusion. The above discussion implies the following theorem.
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Theorem 2.3. If K ′ ⊂ S3 is obtained from K ⊂ S3 by a crossing change, there exist chain maps

f− : CF(K) → CF(K ′) and f+ : CF(K ′) → CF(K)

such that f+ ◦ f− and f− ◦ f+ are chain homotopic to multiplication by w.

Given a knot K ⊂ S3, the knot Floer chain complex CF(K) (which is generated over A = F[u,w])
is Z-bigraded. It has a Maslov grading µ and an Alexander grading A, as defined in [OS04a].
Multiplication by u and w changes these gradings by

µ(uawbx) = µ(x)− 2a and A(uawbx) = A(x)− a+ b

Subsequently, we may write

CF(K) =
⊕

d,s∈Z

CFd(K, s),

where d and s denote the Maslov and Alexander grading, respectively. For instance, for the unknot
we obtain

CF(Unknot) = F[u,w] =
⊕

s∈Z

A0(s), where A0(s) = 〈uawb | b− a = s〉.

Proposition 2.4. Both f+ and f− are homogeneous maps. If K ′ is obtained from K by a positive
crossing change then f− and f+ have bidegree (µ,A) = (0, 0) and (0, 1), respectively. Similarly, if
K ′ is obtained from K by a negative crossing change then f− and f+ have bidegree (0, 1) and (0, 0),
respectively.

Proof. Suppose K ′ is obtained from K by a positive crossing change. In the situation of Lemma 2.1,
the chain maps g− and g+ are homogeneous, [AE, Lemma 7.8], and it follows from [Zem, Lemma
7.2] that g− and g+ are homogeneous of bidegree (0, 1/2). Furthermore, considering the bigradings,

CF(K, p1, p2)⊗A′ A = CF(K)⊗A V

where V is a free A-module with two generators in bigradings (12 ,
1
2) and (−1

2 ,−
1
2). In addition,

CF(L, p1, p2)⊗A′ A = CF(K ′)⊗A W,

where W = CF(H, p1, p2) and H is the right-handed Hopf link. Specifically, it is the chain complex
given in Equation 1 with bigradings

(µ(y3), A(y3)) = (−
3

2
,−1), (µ(y4), A(y4)) = (

1

2
, 1)

and (µ(y1), A(y1)) = (µ(y2), A(y2)) = (−
1

2
, 0).

Then, for every a ∈ CF(K) we have

(
µ
(
g− ◦ i1(a)

)
, A

(
g− ◦ i1(a)

))
=

(
µ(a)−

1

2
, A(a)

)

where i1 : CF(K) → CF(K, p1, p2) denotes the inclusion in the first summand. Since (µ(yi), A(yi)) =
(−1

2 , 0) for i = 1, 2, this implies that f− preserves the Maslov and Alexander grading. On the other
hand, if a ∈ CF(K ′), the above bigradings imply that

(
µ
(
g+ ◦ i′4(a)

)
, A

(
g+ ◦ i′4(a)

))
=

(
µ(a) +

1

2
, A(a) +

3

2

)

and so f+ has bidegree (0, 1). Here, i′4 : CF(K ′) → CF(L, p1, 2) is the inclusion in the fourth
summand. The proof for a negative crossing change is analogous. �

Since the crossing change chain maps f+ and f− do not change the Maslov index, we will drop
it from the notation in the rest of the paper. Moreover, by degree of a homogeneous chain map f ,
denoted by deg(f), we mean the Alexander grading degree of f .
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3. The depth of a knot and bounding the unknotting number

Let K and K ′ be knots in S3 and I denote a sequence of crossing changes which modifies K to
K ′. We denote the length of I by |I|, and the number of positive (resp. negative) crossing changes
in I by m+(I) (resp. m−(I)). For • ∈ {+,−}, let u•(K,K ′) denote the minimum of m•(I) over all
such sequences I of crossing changes. Futher, the Gordian distance u(K,K ′) between K and K ′ is
defined as the minimum number of crossing changes required for modifying K to K ′. Therefore,

u(K,K ′) ≥ u−(K,K ′) + u+(K,K ′).

Define u•(K) = u•(K,U), where U denotes the unknot. Note that in principle it is possible that
u+(K) and/or u−(K) are realized in an unknotting sequence which does not have minimal length.
The knot K ′ is called Gordian adjacent to K if there exists a minimal unknotting sequence for K
containing K ′. Equivalently, the Gordian distance u(K,K ′) from K to K ′ is u(K)− u(K ′). Based
on Theorem 2.3 we make the following definition.

Definition 3.1. Given the knots K,K ′ ⊂ S3, consider all pairs of homogeneous chain maps

f− : CF(K) → CF(K ′) and f+ : CF(K ′) → CF(K)

of degrees m− = deg(f−) and m+ = deg(f+) such that f− ◦ f+ and f+ ◦ f− are chain homotopic to
multiplication by w

m, where m− +m+ = m. Define l−(K,K ′), l+(K,K ′) and l(K,K ′) as the least
values for the integers deg(f−), deg(f+) and m = deg(f−) + deg(f+) (respectively) among all such
pairs. In particular, define l±(K) = l±(K,U) and l(K) = l(K,U), where U denotes the unknot.

When K ′ = U , the chain complex CF(U) is chain homotopic to A (with trivial differentials).
For defining l±(K) and l(K), we are thus lead to consider all pairs of homogeneous chain maps

f− : CF(K) → A and f+ : A → CF(K)

of degrees m− = deg(f−) and m+ = deg(f+) such that f− ◦ f+ is multiplication by w
m and f+ ◦ f− is

chain homotopic to multiplication by w
m. The discussion of the previous section, and in particular

Theorem 2.3 and Proposition 2.4, imply the following theorem.

Theorem 3.1. Given a pair of knots K,K ′ ⊂ S3, u•(K,K ′) is bounded below by l•(K,K ′) for
• ∈ {−,+}, while u(K,K ′) is bounded below by l(K,K ′).

Remark 3.2. Let K and K ′ be knots in S3. Given chain maps f− and f+ satisfying the assumptions
of Definition 3.1, their adjoints are chain maps

f
−
: CF(−K ′) → CF(−K) and f

+
: CF(−K) → CF(−K ′)

of degrees m− and m+, respectively, satisfying

f
−
◦ f

+
' w

m and f
+
◦ f

−
' w

m.

Thus,

l−(−K,−K ′) = l+(K,K ′), l+(−K,−K ′) = l−(K,K ′) and l(K,K ′) = l(−K,−K ′).

Let us denote the homology of CF(K, s) by H(K, s) for every s ∈ Z, and set H(K) =
⊕

sH(K, s).
Then H(K) is a module over A = F[u,w]. Let T(K) denote the torsion submodule of H(K), i.e.

T(K) = {x ∈ H(K) | ∃a ∈ A− {0} s.t. ax = 0}.

It is clear that T(K) is a sub-module of H(K), and there is a short exact sequence

0 - T(K)
ıK

- H(K)
πK

- A(K) - 0,

where A(K), defined by the above exact sequence, is the torsion-free part of H(K). Fix a se-
quence I of crossing changes which modify K to the unknot. Correspondingly, we obtain the A-
homomorphisms f−

I
: H(K) → A and f+

I
: A → H(K). The map f−

I
induces a map f−

I,T : T(K) → A,

while f+
I
induces the map f+ : A → A(K).
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Lemma 3.3. The map f+ : A → A(K) induced by f+
I

is injective, while the map f−
I,T : T(K) → A

is trivial. We thus have a map f− : A(K) → A induced by f−
I
, which is injective. The induced maps

are homogeneous with respect to the Alexander grading.

Proof. Let m− = deg(f−
I
) and m+ = deg(f+

I
). If x ∈ T(K) and ax = 0 for 0 6= a ∈ A, it follows

that af−
I
(x) = 0 in A, implying that f−

I
(x) = 0. Since the restriction f−

I,T of f−
I

to T(K) is trivial,

a map f− : A(K) → A is induced by f−
I
. Let us now assume that x ∈ H(K) is in the kernel of f−

I
.

Then w
mx = f+

I
◦ f−

I
(x) = 0, implying that x ∈ T(K). In particular, f− : A(K) → A is injective.

On the other hand, if a ∈ A and x = f+
I
(a) ∈ T(K), it follows that 0 = f−

I
(x) = w

ma, implying that
a = 0. Thus f+ : A → A(K) is injective. This completes the proof of the lemma, as the statement
about the Alexander grading follows immediately from our previous discussions. �

Proposition 3.4. There is a sequence 0 = i0(K) < i1(K) < · · · < in(K) = ν+(K) associated with
every knot K ⊂ S3, and an identification

(3) A(K) =
〈
u
ik(K)

w
in−k(K) | k ∈ {0, 1, . . . , n}

〉
A
.

Moreover, the identification of Equation 3 preserves the Alexander grading.

Proof. For each s, CF(K, s) is a chain complex of F[U ]-modules for U = uw and multiplication by
w and u induce chain maps

w : CF(K, s) → CF(K, s+ 1) and u : CF(K, s+ 1) → CF(K, s)

respectively. Moreover, for s sufficiently large (resp. small), CF(K, s) is isomorphic to CF−(S3)
and multiplication by w (resp. u) is an isomorphism. Let s+ >> 0 (resp. s− << 0) denote such a
sufficiently large (resp. small) s.

For any s < s+, let vs denote the homomorphism induced by w
s+−s from H(K, s) to H(K, s+) ∼=

F[U ]. The kernel of vs is equal to T(K, s) and so the restriction of vs to A(K, s) ∼= F[U ] is injective.
The smallest s ≤ s+ such that vs is a surjective homomorphism, equivalently vs|A(K,s) is an

isomorphism, is the invariant ν+ = ν+(K) = ν−(K) defined by Hom-Wu [HW16], based on
Rasmussen’s work [Ras04], and also Ozsváth-Szabó [OSS17]. Note that this invariant is a lower
bound for the slice genus. For all s ≥ ν+, multiplication by w is an isomorphism from A(K, s) to

A(K, s+ 1). Suppose s < ν+, and let b ∈ A(K, s) be the generator. Then, wν+−sb ∈ A(K, ν+) and

so w
ν+−sb = p(U)a where a is the generator of A(K, ν+) and p(U) ∈ F[U ]. Thus,

Uν+−sb = p(U)uν
+−sa = p(U)p′(U)b,

and consequently p(U) = U js for some 0 ≤ js ≤ ν+ − s. By definition, js is equal to the invariants
Vs defined by Ni and Wu [NW15] and hs defined by Rasmussen [Ras03]. See Remark 3.5 for more
details.

Additionally, H(K) is symmetric under exchanging the variables u and w, which gives an isomor-
phism between H(K, s) and H(K,−s). Thus, for all s ≤ −ν+ multiplication by u is an isomorphism
from A(K, s) to A(K, s − 1). Moreover, if b ∈ A(K, s) is the generator for some s > −ν+, then

u
s+ν+b = U j′sa′ where j′s = j−s and a′ is the generator of A(K,−ν+). By [HLZ15, Lemma 2.5]

j′s = Hs = Vs + s = js + s.

Consequently, jν+ = j′−ν+ = 0 implies j−ν+ = j′ν+ = ν+, i.e.

u
2ν+a = Uν+a′ and w

2ν+a′ = Uν+a.

Then, we define a grading preserving A-module homomorphism

ı : A(K) = ⊕sA(K, s) → A

by setting ı(b) = u
js
w
j′s for the generator b ∈ A(K, s). For instance, if s ≥ ν+ then ı(b) = w

s,
while if s ≤ −ν+ then ı(b) = u

−s. It is clear that ı is injective and it identifies A(K) with an ideal
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generated by at most 2ν+ + 1 monomial of the form u
i
w
j with 0 ≤ i, j ≤ ν+ in A. This set of

generators contains a unique minimal subset

{uikwjk | 0 = i0 < i1 < ... < in = ν+ and ν+ = j0 > j1 > ... > jn = 0}

that generates the image of ı. The symmetry of H(K) implies that jk = in−k for all k = 0, ..., n.
�

Definition 3.2. Under the identification of Equation 3, for every knot K ⊂ S3 the sequence

ı(K) = (0 = i0(K) < i1(K) < · · · < in(K)(K) = ν+(K))

is called the ideal sequence associated with the knot K. The ideal A(ı) associated with a sequence
ı = (0 = i0 < i1 < · · · < in) is defined as

A(ı) =
〈
u
ik
w
in−k | k ∈ {0, 1, . . . , n}

〉
A
,

and we identify A(K) = A(ı(K)).

Remark 3.5. For every knot K in S3, if we set w = 1 and consider CF(K) as a chain complex
filtered by the Alexander filtration, we obtain an identification of CF(K, s) and C{max(i, j−s) ≤ 0}
as chain complexes of F[U ]−modules. Under this identification, the inclusion

C{max(i, j − s) ≤ 0} → C{max(i, j − s− 1) ≤ 0}

corresponds to the multiplication by w. Moreover, CF(K, s+) is identified with C{i ≤ 0}. Conse-
quently, ν+ is the smallest s such that the map

vs : H? (C{max(i, j − s) ≤ 0}) → H? (C{i ≤ 0}) = F[U ]

induced by inclusion is surjective, which by definition is ν−(K) = ν+(K). Similarly, considering
the definitions of Vs and Hs using HF− we have js = Vs and j′s = Hs.

Consequently, the ideal sequence

ı(K) = (i0 < i1 < ... < in) ⊂ {Vs | − ν+ ≤ s ≤ ν+}

is determined as follows. First, let {−ν+ = k0 < k1 < ... < km = ν+} indicate the places of jumps

in the sequence {Vs}
ν+

s=−ν− i.e.

{Vki | 0 ≤ i ≤ m} = {Vs | − ν+ ≤ s ≤ ν+}

and Vki < Vki−1 for all i. Then, ı(K) is the subset of {Vs} consisting of every Vki such that
V−ki < V−ki+1

.

For finite increasing sequences ı, ı′ of non-negative integers as above define the distance `(ı, ı′)
from ı to ı′ as the smallest value for p such that w

pA(ı′) ⊂ A(ı). Given the knots K,K ′ ⊂ S3,
define the positive distance `+(K,K ′) as `(ı(K), ı(K ′)). Define the negative distance by `−(K,K ′) =
`+(−K,−K ′), where −K denotes the mirror image of K. Define the positive/negative depth of a
knot K by `±(K) = `±(K,U), where U denotes the unknot.

Note that under the identification of Equation 3, the positive depth of K is equal to ν+(K).

Proposition 3.6. Let K and K ′ be knots in S3. Then

l+(K,K ′) ≥ max{`+(K,K ′), `−(K ′,K)} and l−(K,K ′) ≥ max{`−(K,K ′), `+(K ′,K)}.

Before proving this Proposition, we need to make an algebraic observation.

Lemma 3.7. Given integer sequences ı = (0 = i0 < i1 < ... < in) and ı′ = (0 = i′0 < i′1 < ... < i′m),
every A-homomorphism f : A(ı) → A(ı′) is equal to the restriction of an A-homomorphism from A

to A and so it is defined by multiplication with some polynomial p ∈ A.
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Proof. Let i : A(ı′) → A be the inclusion map, and F = i ◦ f . First,

F (uinwin) = u
inF (win) = w

inF (uin)

implies F (uin) = puin and F (win) = pwin for some p ∈ A. Consequently,

u
ik
w
inp = F (uikwin) = w

in−in−kF (uikwin−k).

Therefore, F (uikwin−k) = u
ik
w
in−kp and we are done. �

Proof of Proposition 3.6. It is straightforward corollary of the definition, that l−(K,K ′) = l+(K ′,K).
So, remark 3.2 implies that it suffices to show that l+(K,K ′) ≥ `+(K,K ′). By definition, there
exists A-homomorphisms

f : A(K) → A(K ′) and g : A(K ′) → A(K)

such that f ◦g and g◦f are equal to multiplication by w
m, and deg(g) = l+(K,K ′). Under the iden-

tification of Equation 3, Lemma 3.7 implies that f and g are the restriction of A-homomorphisms
from A to A defined by multiplication with polynomials p and q in A. Since, pq = w

m and

deg(g) = l+(K,K ′), we have g = w
l+(K,K′) and so l+(K,K ′) ≥ `+(K,K ′). �

Theorem 3.1 and the above proposition imply that `±(K,K ′) ≤ u±(K,K ′).

Corollary 3.8. For any knot K ⊂ S3, we have

u+(K) ≥ l+(K) ≥ ν+(K) ≥ τ(K) and u−(K) ≥ l−(K) ≥ ν+(−K) ≥ −τ(K).

Therefore, for 0 ≤ t ≤ 1, we have −tl+(K) ≤ ΥK(t) ≤ tl−(K).

Proof. The first two claims follow from Proposition 3.6 and the inequality ν+(K) ≥ τ(K) from
[HW16, Proposition 2.3]. The last claim follows from the inequality −tν+(K) ≤ ΥK(t) from
[OSS17, Proposition 4.7]. �

4. The torsion obstruction

Let us assume that a sequence I of crossing changes is used to unknot K ⊂ S3. Let us further
assume that m+ = m+(I) and m− = m−(I), while m = m+ + m− = |I|. The argument of
Lemma 3.3 then implies that multiplication by w

m trivializes all of T(K). This observation gives
a weaker obstruction to the unknotting number.

Definition 4.1. Define the positive torsion depth t+(K) of a knot K ⊂ S3 to be the smallest
integer m such that multiplication by w

m is trivial on T(K). Let t−(K) = t+(−K). Then t(K) =
max{t−(K), t+(K)} is called the torsion depth of K.

Consider the homomorphism φ̂ : A → F[w] defined by φ̂(u) = 0 and φ̂(w) = w. This homomor-
phism makes F[w] into an A-module. We define

ĈF(K) = CF(K)⊗
φ̂
F[w] and Ĥ(K) = H?(ĈF(K)).

Note that after replacing w with U , ĈF(K) and Ĥ(K) are isomorphic to CFK−(K) and HFK−(K),

respectively. Thus, Ĥ(K) is a F[w]-module, with a free summand isomorphic to F[w] and a torsion

summand denoted by T̂(K). Define t̂(K) as the smallest m such that multiplication by w
m is

trivial on T̂(K). The following proposition is a straightforward corollary of previous definitions and
discussions.

Proposition 4.1. For any knot K ⊂ S3, the torsion classes t̂(K), t̂(−K), and t(K) are lower
bounds for l(K), and thus for the unknotting number u(K).

Proposition 4.2. If the genus g(K) of a knot K ⊂ S3 is strictly bigger than τ(K) then T(K) 6= 0,
and in particular, t+(K) ≥ 1.
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Proof. The differential d of the chain complex CF(K) may be written as d =
∑

i,j≥0 u
i
w
jdi,j . Using

a spectral sequence determined by (CF(K), d), we can replace CF(K) with page 1 of the aforemen-

tioned spectral sequence and assume that d0,0 = 0. Let x denote a generator of ĤFK(K, g(K)). If
a generator y appears in di,0(x) (where i > 0), it follows that

g(K) = A(x) = A(uiy) = A(y)− i < A(y).

Since ĤFK(K, s) = 0 for s > g(K), the above observation implies that di,0(x) = 0. In particular,
d(x) = w

pz for some p > 0 and some z representing a class [z] ∈ H(K). Clearly, wp[z] = 0 in H(K).
If z = d(x′) for some x′ ∈ CF(K), then d(x+w

px′) = 0. Since τ(K) < g(K), the image of x+w
px′

under the chain map CF(K) → ĈF(K) represents a trivial homology class. Thus, x appears in

d0,i(y) (where i > 0) for some generator y ∈ ĤFK(K). So,

A(y) = A(wix) = A(x) + i > g(K)

which is a contradiction. In particular, [z] is non-zero in T(K). �

Corollary 4.3. If K is a non-trivial knot then both t̂(K) and t(K) are strictly bigger than zero.

Proof. First t̂(K) > 0 is a trivial consequence of the definition and genus and unknot detection of
knot Floer homology. Second, either τ(K) < g(K) or τ(−K) = −g(K) < g(−K). Thus, t(K) > 0
follows from Proposition 4.2. �

Proposition 4.4. Suppose K and K ′ are knots in S3. Then,

t̂(K#K ′) = max{̂t(K), t̂(K ′)}.

Proof. By Künneth theorem for homology, there is a split exact sequence

0 - Ĥ(K)⊗ Ĥ(K ′) - Ĥ(K#K ′) - TorF[w](Ĥ(K), Ĥ(K ′)) - 0.

Thus, t̂(K#K ′) is equal to the maximum order of w-torsions in Ĥ(K)⊗Ĥ(K ′) and TorF[w](Ĥ(K), Ĥ(K ′)),

which is equal to max{̂t(K), t̂(K ′)}.
�

Remark 4.5. One can construct a similar lower bound tp/q by sending u and w to v
p and v

q in
F[v], respectively, which satisfy a statement similar to Proposition 4.4.

5. Examples and applications

Example 5.1. Let K = Tp,q be the (p, q) torus knot with 0 < p < q. The chain homotopy type
of CF(K) is specified by the Alexander polynomial of K [OS05]. Specifically, the symmetrized
Alexander polynomial of K is equal to

∆K(t) = t−
(p−1)(q−1)

2
(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
= (−1)n +

n∑

i=1

(−1)n−i(tai + t−ai)

where 0 < a1 < a2 < ... < an = (p−1)(q−1)
2 . The chain complex CF(K) which is determined by

the Alexander polynomial is a staircase, freely generated over A with generators {xi}
n
i=−n and

differential

dxi =

{
w
ai−ai−1xi−1 + u

ai+1−aixi+1 if n− i is odd

0 if n− i is even.

where a0 = 0 and a−i = −ai, see Figure 5. Consequently, T(K) = 0 and A(K) = H(K) is generated
by [xn−2i] for i = 0, ..., n. Moreover, for each j = n− 2i

u
aj+2−aj+1 [xj+2] = w

aj+1−aj [xj ].
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Thus, A(−Tp,q) ∼= A is generated by
∑n

k=0 u
in−k

w
ikx2k, while [x2k+1] is torsion of order ik+1 for

k = 0, ..., n− 1. Therefore,

t(Tp,q) = t+(Tp,q) = in = ν+(Tp,q) =
(p− 1)(q − 1)

2
.

Special case: p = 2, q = 2n+ 1. For the torus knot T2,2n+1 we have

∆T2,2n+1(t) = (−1)n +

n∑

i=1

(−1)n−i(ti + t−i).

So, ai = i for −n ≤ i ≤ n, and thus Vn−2i = Vn−2i+1 = i for 0 ≤ i ≤ n. Therefore,

ı(T2,2n+1) = (0 < 1 < 2 < ... < n) and A(T2,2n+1) = 〈uiwj | i+ j ≥ n〉A.

Special case: p = 3, q = 3k ± 1. Suppose q = 3k + 1. First, we compute the symmetrized
Alexander polynomial of T3,3k+1:

∆T3,3k+1
(t) = t−3k (t

3(3k+1) − 1)(t− 1)

(t3k+1 − 1)(t3 − 1)
= t−3k t

2(3k+1) + t3k+1 + 1

t2 + t+ 1

= t−3k t
3k+2(t3k − 1) + t3k(t2 + t+ 1) + 1− t3k

t2 + t+ 1

=

k∑

i=1

(t3i − t3i−1) + 1 +

−1∑

i=−k

(t3i − t3i+1).

Therefore, ı(K) = (0 = V3k < V3k−3 < ... < V−3k = 3k). Furthermore,

V3k−3i =

{
i for 0 ≤ i ≤ k

2i− k for k < i ≤ 2k.

Consequently,

A(T3,3k+1) = 〈uiwj | 2i+ j ≥ 3k and i+ 2j ≥ 3k〉A.

For q = 3k − 1, an analogous argument implies that

A(T3,3k−1) = 〈uiwj | 2i+ j ≥ 3k − 2 and i+ 2j ≥ 3k − 2〉A

More generally, the ideal sequence for the torus knot Tp,pn+1 takes the explicit form

ı(Tp,pn+1) =

(
0 < 1 < · · · < n < n+ 2 < · · · < 3n < 3n+ 3 < · · · <

(
p

2

)
n

)

or equivalently, ik =

(
k −

n

2

⌊
k

n

⌋)(⌊
k

n

⌋
+ 1

)
, for k = 0, 1, . . . , n(p− 1).

Let a(K) denote the minimum degree of a monomial in A(K). Then, for Tp,pn+1 we have:

a(Tp,pn+1) = ibn(p−1)/2c + idn(p−1)/2e =



⌊
n(p− 1)

2

⌋
−

n

2



⌊
n(p−1)

2

⌋

n









⌊
n(p−1)

2

⌋

n

+ 1




+



⌈
n(p− 1)

2

⌉
−

n

2



⌈
n(p−1)

2

⌉

n









⌈
n(p−1)

2

⌉

n

+ 1




= n

⌊
p2

4

⌋
.

(5)

In general, a(K) is determined by the concordance homomorphism upsilon [OSS17], and one can
derive this invariant for the torus knot Tp,q from the ideal A(Tp,q) as follows.
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Lemma 5.1. For every torus knot Tp,q with 0 < p < q we have

ΥTp,q(t) = Υp,q(t) = −2min

{
t

2
i+

(
1−

t

2

)
j
∣∣∣ uiwj ∈ A(Tp,q)

}

Proof. Note that

min

{
t

2
i+

(
1−

t

2

)
j
∣∣∣ uiwj ∈ A(Tp,q)

}
= min

{
t

2
ij +

(
1−

t

2

)
in−j

∣∣∣ 0 ≤ j ≤ n

}
.

The claim follows from the description of Υp,q(t) in [Liv17] and the fact that (ij , in−j) are the
coordinates of xn−2j in Figure 5. �

Corollary 5.2. For any pair of coprime integers 0 < p < q, we have a(Tp,q) = −Υp,q(1) and so

a(Tp,q) ≥
q − 1

p

⌊
p2

4

⌋
.

Proof. The first part follows from Lemma 5.1 by setting t = 1. For proving the inequality we use
induction with the inductive formula

Υp,q(t) = Υp,q−p(t) + Υp,p+1(t)

from [FK]. First, it follows from the Equation 5 that −Υp,p+1(1) =
⌊
p2

4

⌋
for all p. Assume the

inequality holds for Tp,q−p. If p < q − p, then

−Υp,q(1) = −Υp,q−p(1)−Υp,p+1(1) ≥
q − p− 1

p

⌊
p2

4

⌋
+

⌊
p2

4

⌋
=

q − 1

p

⌊
p2

4

⌋
.

Otherwise, p > q − p and

−Υp,q(1) ≥
p− 1

q − p

⌊
(q − p)2

4

⌋
+

⌊
p2

4

⌋

≥
q − p− 1

p

⌊
p2

4

⌋
+

⌊
p2

4

⌋
=

q − 1

p

⌊
p2

4

⌋

where the second inequality follows from
(
p− 1

q − p

)
·

(
(q − p)2 − 1

4

)
≥

(
q − p− 1

p

)
·

(
p2

4

)
.

This will finish the proof. �

Proposition 5.3. If a torus knot K = Tp,p′ with 0 < p < p′ is Gordian adjacent to a torus knot
K ′ = Tq,q′ with 0 < q < q′, then

A(Tq,q′) ≤ A(Tp,p′) and w
uA(Tp,p′) ≤ A(Tq,q′),

where u = u(K ′)− u(K) = (q−1)(q′−1)
2 − (p−1)(p′−1)

2 . In particular, a(Tq,q′) ≥ a(Tp,p′).

Proof. Since Tp,p′ is Gordian adjacent to Tq,q′ , there exists A-homomorphisms

f : H(Tq,q′) → H(Tp,p′) and g : H(Tp,p′) → H(Tq,q′)

such that f ◦ g = g ◦ f = w
u. Note that H(Tp,p′) = A(Tp,p′) and H(Tq,q′) = A(Tq,q′). So, f and

g are defined by multiplication with polynomials p, q ∈ A = F[u,w]. Thus, f ◦ g = g ◦ f = w
u

implies that f = w
m−

and g = w
m+

such that m++m− = u. On the other hand, by Corollary 3.8,
a minimal unknotting sequence for a torus knot only consists of positive crossing changes. Thus,
deg f = m− = 0 and deg g = m+ = u. Therefore, f is multiplication by 1, g is multiplication by
w
u and A(Tq,q′) ≤ A(Tp,p′) and w

uA(Tp,p′) ≤ A(Tq,q′). �

The computations in Example 5.1 and the Proposition 5.3 have a number of quick consequences.
One outcome is the following corollary that was suggested to us by Jennifer Hom. This result was
first proved by Borodzik and Livingston in [BL16].
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Corollary 5.4. If a torus knot Tp,p′ with 0 < p < p′ is Gordian adjacent to a torus knot Tq,q′ with
0 < q < q′, then p ≤ q.

Proof. Assume that

ı(Tp,p′) = (i0 < · · · < in) and ı(Tq,q′) = (j0 < · · · < jm).

Proposition 5.3 implies that wjm−inA(Tp,p′) ≤ A(Tq,q′). Thus,

w
jm−in+in−1

u
i1 = w

u(K′)−u(K)
w
in−1

u
i1 ∈ A(Tq,q′).

Note that i1 = j1 = 1 and

in − in−1 =
2n−1∑

k=0

(−1)kan−k −
2n−3∑

k=0

(−1)kan−k = a−n+2 − a−n+1 = an−1 − an−2 = p− 1.

Thus, jm − jm−1 = q − 1, and

jm − in + in−1 ≥ jm−1 ⇔
(q − 1)(q′ − 1)

2
− p+ 1 ≥

(q − 1)(q′ − 1)

2
− q + 1 ⇔ q ≥ p,

completing the proof. �

We also obtain a proof of the following corollary. The second statement of the corollary was first
proved by Peter Feller in [Fel14].

Corollary 5.5. If the torus knot Tp,pn+1 is Gordian adjacent to the torus knot Tq,qm+1, then

n

⌊
p2

4

⌋
≤ m

⌊
q2

4

⌋
.

If T2,n is Gordian adjacent to T3,m, where n is odd and m is not a multiple of 3, then n ≤ 4
3m+ 1

3 .

Proof. Proposition 5.3 implies that a(Tp,pn+1) ≤ a(Tq,qm+1). So, following the computations of
Example 5.1 we have

n

⌊
p2

4

⌋
≤ m

⌊
q2

4

⌋
.

Moreover, from the same example we know that A(T3,m) ≤ A(T2,n) if and only if for any pair (i, j)
such that i+ 2j ≥ m− 1 and j + 2i ≥ m− 1, we have i+ j ≥ n−1

2 . It is clear that

min{i+ j | i+ 2j ≥ m− 1 and 2i+ j ≥ m− 1} =

⌈
2(m− 1)

3

⌉
=

⌊
2m

3
−

1

3

⌋
.

Thus, n−1
2 ≤ 2m

3 − 1
3 and n ≤ 4

3m+ 1
3 . �

Example 5.2. An interesting example is the case of the figure 8 knot, where the chain complex
is generated by 5 generators X,Y, Z,W and B, where d(B) = d(X) = 0 while d(W ) = uZ + wY ,
d(Y ) = uX and d(Z) = wX. Thus, T(K) is generated by x = [X] and ux and wx are both zero.
Moreover, A(K) is generated by [B] and is isomorphic with A. In particular, ν+(K) = ν+(−K) = 0,

while t(K) = t̂(K) = 1. The sub-complex generated by X,Y, Z and W will be referred to as a
square.

Example 5.3. Alternating knots are known to have simple knot Floer chain complexes. The
restriction on the Alexander and Maslov grading of generators (that their difference is a con-
stant number) implies that the chain complex decomposes as the (shifted) direct sum of a copy of
CF(±T2,2n+1) and several squares. In particular, if K is an alternating knot with τ(K) > 0 then

ı(K) = ı(T2,2n+1) = (0 < 1 < 2 < · · · < τ(K)),

while t+(K) ≤ 1. Moreover, t−(K) = t+(−K) = t+(−T2,2n+1) = n. So t(K) = n.
On the other hand, Since l(T2,2n+1) = l+(T2,2n+1) = u+(T2,2n+1) = n, there are chain maps

f− : CF(T2,2n+1) → A and f+ : A → CF(T2,2n+1)
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such that both f+ ◦ f− and f− ◦ f+ are chain homotopic to multiplication by w
n. Further, for each

square summand, it is easy to check that multiplication by w is nullhomotopic. Thus, we can
extend f− to a map from CF(K) by defining it to be zero on all square summands, and compose f+

with the inclusion of CF(T2,2n+1) in CF(K) and both f+ ◦ f− and f− ◦ f+ remain chain homotopic
to multiplication by w

n. Therefore,

n ≥ l(K) ≥ l+(K) ≥ ν+(K) = n

and so l(K) = l+(K) = ν+(K) = n.

Example 5.3 gives interesting bounds on the alternation number alt(K) of a knot K, defined as
the minimum Gordian distance between K and an alternating knot. The first bound is very similar
to, yet different from, the bound constructed in [FPZ18, Corollary 2.2].

Proposition 5.6. The alternation number alt(K) of a knot K ⊂ S3 satisfies

alt(K) ≥ ν+(K)− a(K), alt(K) ≥ t̂(K)− 1 and alt(K) ≥ min{t+(K)− 1, ν+(K)}.

Proof. Let us assume that K is modified to an alternating knot K ′ using a sequence of m+ positive
crossing changes and m− negative crossing changes and that alt(K) = m+ +m−. It follows that

ν+(K ′) ≥ ν+(K) − m+. Since w
m−

A(K) is a subset of A(K ′), it follows that A(K ′) includes a
monomial of degree m− + a(K). However, every monomial in A(K ′) has degree at least ν+(K ′).
This means that

a(K) +m− ≥ ν+(K ′) ≥ ν+(K)−m+ ⇒ m+ +m− ≥ ν+(K)− a(K),

and completes the proof of the first inequality. The second and third inequalities are easier. For
the second equality note that in the above situation,

u(K,K ′) ≥ t̂(K)− t̂(K ′) = t̂(K)− 1.

For the third inequality, we have

ν+(K) ≤ ν+(K ′) +m+ and t+(K) ≤ t+(K ′) +m+ +m−.

If ν+(K ′) = 0 then ν+(K) ≤ m+ ≤ alt(K). Otherwise, τ(K ′) = ν+(K ′) > 0 and T(K ′) can
only include torsion elements trivialized by w. In particular, t+(K ′) ≤ 1 and alt(K) = m++m− ≥
t+(K)− 1. �

For torus knots, we obtain the following corollary from our computations in Example 5.1. Similar
bounds may also be obtained using upsilon invariants, see [FPZ18] for the case p < 5.

Corollary 5.7. The alternation number of the torus knot Tp,pn+1 is at least n
⌊
(p−1)2

4

⌋
.

Proof. Using the first inequality in Proposition 5.6 we have

alt(Tp,pn+1) ≥ ν+(Tp,pn+1)− a(Tp,pn+1) = n

(
p

2

)
− n

⌊
p2

4

⌋
= n

⌊
(p− 1)2

4

⌋
.

This completes the proof. �

Example 5.4. The knot 12n404, which is a (1, 1) knot, is illustrated in Figure 6. Using Rasmussen’s
notation [Ras05, page 14], it is given by the quadruple [29, 7, 14, 1]. The corresponding chain
complex CF(12n404) may be computed combinatorially, e.g. using Krcatovich’s computer program
[Krc]. After a straight-forward change of basis, we arrive at the chain complex illustrated in
Figure 7.

Each dot represents a generator of CF(12n404). An arrow which connects a dot corresponding
to a generator x to a dot representing a generator y and cuts i vertical lines and j horizontal
lines corresponds to the contribution of uiwjy to d(x). The blue dots and the black dots in the
diagram generate subcomplexes C and C ′ of the knot chain complex, respectively, and we obtain a
decomposition CF(12n404) = C ⊕ C ′. We may then identify

C = 〈X,Y0, Y1, Y2, Z0, Z1〉A, d(Yi) = u
i
w
2−iX and d(Zi) = uYi + wYi+1.
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Consequently, f−
2 x1 + f−

1 x2 is a multiple of t, which implies that f−
2 = w

m−

u
ig and f−

1 = w
m−+ig

for some g ∈ A. On the other hand, since f−
1 f+

1 +f−
2 f+

2 = w
m we have g(0, 0) = 1 and f+

1 = w
m+−ih

for some h ∈ A such that h(0, 0) = 1. Therefore,

f+
1 (f−

2 x1 + f−
1 x2) = w

m+−ih(wm−

g · t) = (wm−ihg)t = 0,

which implies that m− i ≥ j and so m ≥ i+ j. In other words, l(C) ≥ i+ j.
Moreover, we show that l(C) = i + j by finding explicit chain maps. Let f− : C → A and

f+ : A → C be chain maps defined as

f−(X1) = w
i, f−(X2) = u

i, and f−(Y1) = f−(Y2) = f−(Z) = 0,

f+(1) = X1.

It is easy to check that w
j(f+ ◦ f−) is chain homotopic to multiplication by w

i+j . In fact, chain
homotopy is given by

h(X2) = Y1, h(Y2) = w
iZ, and h(X1) = h(Y1) = h(Z) = 0.

Further, wj(f−◦f+) is equal to multiplication by w
i+j . Therefore, l(C) = i+j, while considering the

pairs (wjf−, f+) and (f−,wjf+) we have l+(C) = ν+(C) = i and l−(C) = 0, respectively. Moreover,
t(C) = j. Thus, C gives an example with l(C) = ν+(C) + t(C). It is interesting to note that in

this example, t̂(C) = i+ j.
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