KNOT FLOER HOMOLOGY AND THE UNKNOTTING NUMBER
AKRAM ALISHAHI AND EAMAN EFTEKHARY

ABSTRACT. Given a knot K C S%, let u™ (K) (respectively, u(K)) denote the minimum number
of negative (respectively, positive) crossing changes among all unknotting sequences for K. We use
knot Floer homology to construct the invariants [~ (K), [T (K) and [(K), which give lower bounds
on v~ (K),u" (K) and the unknotting number u(K), respectively. The invariant [(/K) only vanishes
for the unknot, and satisfies [(K) > v+ (K), while the difference [(K) — vt (K) can be arbitrarily
large. We also present several applications towards bounding the unknotting number, the alteration
number and the Gordian distance.

1. INTRODUCTION

Given a knot K C S2, by an unknotting sequence for K we mean a sequence of crossing changes
for K which results in the unknot. The minimum length of an unknotting sequence for K is called
the unknotting number of K and is denoted by u(K). Let v~ (K) denote the minimum number
of negative crossing changes (i.e. changes of a negative crossing to a positive crossing) among all
unknotting sequences for K and u™(K) denote the minimum number of positive crossing changes
among all such sequences. It is then clear that w(K) > u™(K) + v~ (K), while the equality is
not necessarily satisfied. The unknotting number is one of the simplest, yet most mysterious and
intractable invariants of knots in S3. The answer to several simple questions about the unknotting
number is still not known. In particular, the the following question is widely open.

Question 1.1. If K and L are knots in S>, is it true that u(K#L) = u(K) + u(L)? How about
the (weaker) inequality u(K#L) > max{u(K),u(L)}?

Scharlemann proved that composite knots have unknotting number at least 2 [Sch85]. However,
no matter how large u(K) and u(L) are, it is not known in general whether u(K#L) > 3 [Lac].

Another example is Milnor’s question about the unknotting number of the torus knot 7;, ;, which
remained open for a long time, until Kronheimer and Mrowka gave a positive answer to it using
gauge theory [KM93]. Later, Ozsvath and Szabé reproved it using their invariant 7(K) [OS03]
and Rasmussen gave a purely combinatorial proof by introducing his invariant s(K) [Ras10]. Both
|7(K)| and |s(K)|/2, as well as classical lower bounds for the unknotting number coming from
Levine-Tristram signatures [Lev69, Tri69], are in fact lower bounds for the 4-ball genus g4(K).
Since g4(K) < u(K), they also give lower bounds for the unknotting number. Nevertheless, lower
bounds for u(K) constructed by bounding the 4-ball genus fail to give effective data for many classes
of knots. In particular, if —K denotes the mirror image of the knot K, the knot L = K# — K
is always slice and 7(L) = s(L) = 0. It is thus interesting to construct lower bounds for u(K),
which do not come from bounds on g4(K). In this paper, we use knot Floer homology to construct
the invariants [*(K),[7(K) = [*(—K) and [(K) associated with a knot K C S3 and prove the
following theorem.

Theorem 1.1. For every knot K C S we have
o [M(K) <uM(K), "(K) <u (K) and (K) < u(K).
o [M(K)>vH(K)>7(K) and I (K) > v (—K) > —7(K). Therefore, for every 0 <t <1
we have tI~(K) > Tk (t) > —tIT(K).
o [(K) >HK) where t(K) is the mazimum order of U-torsion in HFK™(K).
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Unlike most other lower bounds for the unknotting number, the torsion invariant t resists the
connected sum operation, specifically:

Corollary 1.2. If K and K’ are knots in S® then
w(K#K') > (K#K') = max{t(K), {(K")}.
In particular, for the torus knot Ty, , with 0 < p < g, ?(Tp’q) =p—1 and for every knot K C S3
uw(K#1p4) >p—1.

Therefore, for every coprime 0 < p < ¢, (=T (#1pq) > p — 1, while the lower bounds v, ||
and |s|/2 vanish, because —T), ,#1) 4 is slice.
Theorem 1.1 naturally reproves the following corollary.

Corollary 1.3. For every knot K C 53, vt (K) is a lower bounds for ut(K), while vT(—=K) is a
lower bound for v (K). In particular, u*(T,,) = (p—1)(g — 1)/2.

Associated with a knot K C S3, one can construct a Heegaard Floer chain complex CF(K),
which is freely generated over A = [Flu,w] by the intersection points associated with a Heegaard
diagram for K. CF(K) is equipped with differential d, which is an A-homomorphism defined by
counting holomorphic disks [AE15]. Let H(K') denote the homology of (CF(K),d), which is again
a module over A. Let T(K) denote the torsion submodule of H(K), i.e. T(K) consists of x € H(K)
such that there exists a non-zero a € A with a - = 0. Then, H(K) sits in a short exact sequence

0 T(K) H(K) — A(K) 0,

where the torsion free part A(K) of the homology is isomorphic to an ideal in A. Specifically, for
every knot K, there is an ideal sequence 1(K) = (ip =0 < i3 < -+ < i, = v (K)) of some length
n = n(K) and a canonical identification

A(K) = (uwin* | k=0,1,...,n)s <A.

We define t(K) as the smallest integer m such that w™ acts trivially on T(K) (i.e. maps T(K) to
zero). For the unknot U, we have T(U) =0 and A(U) = A.

If K’ is obtained from K by a sequence of m positive crossing changes and n negative crossing
changes, we use the cobordism maps constructed in [AE] to show that w"A(K) C A(K’) and
wmA(K') € A(K), while w"t"T(K) may be embedded in T(K’). This observation implies, in
particular, that v (K) is a lower bound for u™(K) and that t(K) is lower bound for u(K).

The above construction also gives lower bounds on the Gordian distance u(K, K') from a knot
K to another knot K, i.e. the minimum number of crossing changes required to get from K to K’.
In particular, we give the following three lower bounds on the alternation number alt(K), defined
as the least Gordian distance of an alternating knot from K.

Proposition 1.4. The alternation number alt(K) of a knot K C S3 satisfies the inequalities
alt(K) > vH(K) —a(K), alt(K)>tK)—1 and alt(K)>min{th(K)—1,v1(K)},
where a(K) is the minimum degree of a monomial in A(K).

In particular, as a corollary of this Proposition we show that

(»— 1)2J
4 )
which improves [JLPZ17, Theorem 1.3]. Specifically, in [JLPZ17] the authors give the same lower
bound for the dealternating number which is bounded below by the alternation number.

A similar strategy is used by the first author in [Ali] to construct lower bounds for the unknotting
number from Khovanov homology. The resulting invariants are used in [AD] to prove the knight
move conjecture for knots with unknotting number at most 2.

In Section 2 we study the cobordism maps induced on knot chain complexes associated with a
crossing change. These cobordism maps are used in Section 3 to construct lower bounds on the

alt(Tppnt1) 2 n {
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Gordian distance of knots, while simpler obstructions to the unknotting are extracted from these
lower bounds in Section 4. We discuss several examples and applications in Section 5.

Acknowledgements. The authors would like to thank Jennifer Hom, Robert Lipshitz and
Iman Setayesh for helpful discussions and suggestions.

2. CHANGING THE CROSSINGS IN KNOT DIAGRAMS

By a crossing change for an oriented knot (or link) K C S% we mean replacing a ball in S3
in which K looks like a positive crossing to the ball in which K looks like a negative crossing
(a positive crossing change), or the reverse of the above operation (a negative crossing change).
Figure 1 illustrates how a band surgery on K can be used to do any of the following two changes
(or the reverse of it):

e A positive crossing change and adding a positively oriented meridian for K as a new link
component.

e A negative crossing change and adding a negatively oriented meridian for K as a new link
component.

Let us assume that K’ is obtained from K by a positive crossing change and that L is obtained
from K’ by adding a positively oriented meridian. As illustrated in Figure 1, one may then place a
pair of markings p1,p2 on K, and distinguish a band I with endpoints on K \ {p1, p2}, such that the
band surgery on I gives L, while p; lands on K’ and ps lands on the positively oriented meridian.
Associated with the pointed knot (K, p1,p2), we may construct a tangle (equivalently, a sutured
manifold) as follows. Fix an orientation on K and consider two disjoint small arcs on K which
contain p; and po, respectively. Remove a small ball around each one of the four ends of these
arcs to obtain a 3-manifold M with four sphere boundary components. Using the orientation on
K we may orient these spheres so that two of them form M and the other two form 0~ M, as in
Figure 1. Let 77 and T, denote the remaining part of the two arcs around p; and po, respectively,
which are now strands in M connecting 9T M to &~ M. The complement of the two arcs in K gives
two other strands T3 and Ty which connect O~ M to 0T M. The 3-manifold M and the strands
Ty,T5,T5 and Ty then form a tangle associated with (K, p1,p2) (see [AE]). Correspondingly, we
also obtain a sutured manifold, which is constructed by removing a solid cylinder around each one
of the strands and considering the boundary of these 4 solid cylinders as the set of sutures on the
resulting 3-manifold. The construction of authors in [AE15], as well as the special case considered in
[AE15, Subsection 8.2], may be used to associate a chain complex CF (K, p1, p2) with this tangle (or
sutured manifold), which is a module over A’ = F[u, v, w|. The variables u and v are associated with
the strands 77 and T, (equivalently, with p; and p3), while the variable w is associated with 73 and
T4 (equivalently, with K \ {p1,p2}). Similarly, we can associate a chain complex CF(L, p1, p2) with
the pointed link (L, p1,p2), which is again a module over A’. The generators of the two complexes
all correspond to the unique Spin® structure sy on S3, which will be dropped from the notation.
Associated with the band I, the construction of [AE] gives the A’-cobordism maps

gi : CF(K7p17p2) — CF(L7p17p2) and g+ : CF(L7p17p2) — CF(KaphpQ)'

Moreover, gt o g~ (resp. g~ o g") corresponds to the decorated cobordism from (K, py, p2) (resp.
(L,p1,p2)) to itself obtained from the product cobordism by adding a tube with feet on T3 x [0, 1]
and Ty x [0, 1].

Lemma 2.1. With the above notation fized, the maps

gt og™ : CF(K,p1,p2) — CF(K,p1,p2) and g ogt:CF(L,p1,p2) — CF(L,p1,p2)
are both multiplication by w, up to chain homotopy.
Proof. For defining g™ we may use a Heegaard triple

(27 Oé,,@,"}’, Zz = {Zly 22,23, 24})
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FiGURE 1. We may change a crossing in the expense of adding a meridian. The
meridian can be positively or negatively oriented depending on whether the initial
crossing is positive or negative, respectively.

subordinate to the band I, where z; corresponds to the strand 7;. See Figure 2 for the special g
and v curves corresponding to a band I in a Heegaard triple subordinate to it. The corresponding
A’-coloring maps 21 to u and z3 to v, while z3 and z4 are mapped to w. If § is obtained by a small
Hamiltonian isotopy from 3 which does not cross z, then (X, a,~,d,z) is subordinate to I, the
reverse band surgery. Associated with the Heegaard quadruple H = (¥, e, 8,7, 8,2z) we obtain:

e the top generators O, 0,5 and Ogs in TgNT,, T, NTs and Tg N Ty, respectively,

e the triangle maps fagy, favys, fags and fgys, which are associated with the triples (o, 3,7),
(a,7,9), (o, 8,0) and (8,7, 0), respectively, and the induced maps g~ = fog,(— ® Op,)
and 9+ = fa'y5(_ ® ®'y5)7

e and the holomorphic square map & which satisfies

do@+6God=g"0g™ +faps(— @ Fp,6(0p, ® Oss)).
The position of the curves in 8 U« U d, which is basically illustrated in Figure 3, implies that
f876(Opy ® ©45) = WO,

Since faps(— ® Ogs) gives a map chain homotopic to the identity on CF(L,pi,p2), the above
observation completes the proof for the composition g™ o g~. A similar argument implies that
g~ ogt is chain homotopic to multiplication by w. O

Removing po from K, we obtain a knot with a single marked point on it. Correspondingly, we
find a tangle with two strands and the standard knot chain complex CF(K) for K, which is a
module over A = F[u,w|. Similarly, there is a single marked point on K’, and associated with it we
obtain the chain complex CF(K’), which is again an A-module.

® @ ® @
band
> — >
surgery 1
e 6 e 6

FiGURE 2. The right picture shows the two special 8 and v curves corresponding
to the band surgery on the Heegaard diagram subordinate to the band.

B_1q
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FIGURE 3. If § is obtained from 8 by a Hamiltonian isotopy supported away from
the marked points, the domain of the distinguished triangle class in (X, 3,4, 9,2)
connecting O, 0,5 and Ogs will contain one of the marked points corresponding
to the strands connected by I. The intersection of the domain of the triangle with
the surface is the small triangle connecting A, B and C.

Lemma 2.2. The chain homotopy types of CF(K,p1,p2) and CF(L,p1,p2) can be described in
terms of CF(K) and CF(K') as the following mapping cones.

CF(K, p1, p2) = <CF(K) ®a A Y% CF(K) ©a A’) . and

0 w
CF(L,p1.p2) = | (CF(K') @ CF(K")) 0y A L”L (CR(K") & CF(K")) @ A’

Proof. The former is a direct corollary of [OS08, Lemma 6.1]. The latter is deduced from the
identification L = K'#H, where H denotes the right-handed Hopf link. More precisely, H is
equipped with two marked points p) and ps, located on distinct components, such that L is obtained
by taking the connected sum on the component containing pj. Then, the connected sum formula
implies

CF(L7p17p2) = CF(K/) A CF(H7p,17p2)

Here, CF(H, p), p2) is the chain complex of A’-modules defined similar to CF(L, p1,p2). A Heegaard
diagram for H is given in Figure 4.

Y2

)

<1

()

Ya

FIGURE 4. Heegaard diagram for the Hopf link, where the Heegaard surface is S2,
the red curve is an « curve and the blue curve is a 8 curve.
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This diagram is equipped with the A’-coloring which maps z; and z3 to u and v, respectively,
while mapping w; and ws to w. Therefore,
0 w
, u+v u
(1) CF(H,p1,p2) = | (Y1 +y2,42)ar —— (Y3, ) |,

and so the claim follows from the connected sum formula.
O

Corresponding to the above chain homotopy equivalences, we may present g~ and g™ as 4 x 2
and 2 x 4 matrices (g;;)i; and (gﬁ)ji, where

g;; : CF(K) @y A" — CF(K') @4 A" and g); : CF(K') @5 A" — CF(K) @4 A,

Let us denote u + v by o and regard A" as A[o]. For each 1 <14, j < 2, we decompose

- _ - - +_ o+ +
9ij = 8450 T th‘j and 95i = 850t Uhji?

where the maps gfj o do not use the variable 0. We will find chain homotopies such that

il—l’o 8 0o O 0 0
@ g = 92:2 0 and gt = E&ig 9;2,0 9;3,0 9;4,0 '
91,0 9110
First, we deduce from g~ and g* being chain maps that
ogp=gneod+dogy 0.9{y = 0.03, + g3 0d+d o g3y
095 =0y 0d+dogy g T2 =Wz tugy oy odtdogy,
.03 = W.gyy + 85 0d+dogy 0.9(3 =033 0d +do gy
0.9 =007 Hugy +gnod+dogy o.9{y =03 0d+dogy

The differentials d of the complexes do not use the variable v, hence are not in the image of 0 = u+v
and the above equations imply

g =byod+doby 911 = 034 + b3y 0d 4+ do b3,
Oy = by 0od+doby and iy = w.h3y + u.hgy + b3y 0d+do by,
937 = W.hgy + b3 0d+doby g3 = bz od+dohg
G190 = 911 T uby by od+doby g1, = by od +dobs,
Then, it is easy to check that
0 hu + ot pt opt
~_ |0 by +_ |ba1 bap Doz by
Ho=Ho pyy| ™ #7=10 0 0 0
0 by

are the chain homotopies for g~ and g which result in Equation 2, respectively. Abusing the
notation we keep denoting the new matrixes by g~ = (g;;) and gt = (g;;)

We now set o = 0, or equivalently v = u. Then, g;; and gﬁ induce chain maps
gy, : CF(K) — CF(K') and g, : CF(K') — CF(K),

and we define f~ = gj; and §© = g;. Note that (g7 og™)11 = gf; ogy; and (g~ o g™ )11 = g7 0971
So, both T o~ and §~ o f* are chain homotopic to multiplication by w.

If K’ is obtained from K by a negative crossing change, a similar argument may be used to arrive
at the same conclusion. The above discussion implies the following theorem.
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Theorem 2.3. If K' C S? is obtained from K C S® by a crossing change, there exist chain maps
f~:CF(K) — CF(K') and {':CF(K') — CF(K)
such that f* 0§~ and §~ o " are chain homotopic to multiplication by w.

Given a knot K C S3, the knot Floer chain complex CF(K) (which is generated over A = F[u, w])
is Z-bigraded. It has a Maslov grading p and an Alexander grading A, as defined in [OS04a).
Multiplication by u and w changes these gradings by

p(uwW’x) = pu(x) — 20 and  A(uw’x) = A(x) —a+b
Subsequently, we may write
CF(K) = € CF4(K,s),
d,s€Z
where d and s denote the Maslov and Alexander grading, respectively. For instance, for the unknot
we obtain
CF(Unknot) = Flu,w] = @Ao(s), where Ag(s) = (u™wW® | b —a = s).
SEZ

Proposition 2.4. Both T and f~ are homogeneous maps. If K’ is obtained from K by a positive
crossing change then = and f+ have bidegree (u, A) = (0,0) and (0,1), respectively. Similarly, if
K’ is obtained from K by a negative crossing change then §~ and f+ have bidegree (0,1) and (0,0),
respectively.

Proof. Suppose K’ is obtained from K by a positive crossing change. In the situation of Lemma 2.1,
the chain maps g~ and g are homogeneous, [AE, Lemma 7.8], and it follows from [Zem, Lemma
7.2] that g~ and g are homogeneous of bidegree (0,1/2). Furthermore, considering the bigradings,

CF(K7p17p2) ®A’ A= CF(K) ®A V

where V' is a free A-module with two generators in bigradings (%, %) and (—%, —%) In addition,

CF(L1p17p2) Qa A= CF(K/) X W7
where W = CF(H, p1,p2) and H is the right-handed Hopf link. Specifically, it is the chain complex
given in Equation 1 with bigradings
1

(), Alys) = (3, =1), (o), Alw) = (5 1)

and - (u(y), Aly)) = (1u(v2), A(w2) = (=3,0),

Then, for every a € CF(K) we have

(10 1(@) A g™ o @) = ((0) - .40

where i : CF(K) — CF(K, p1, p2) denotes the inclusion in the first summand. Since (u(y;), A(y:)) =
(—%, 0) for i = 1,2, this implies that f~ preserves the Maslov and Alexander grading. On the other
hand, if a € CF(K”), the above bigradings imply that

(1" 0 @) A (5 0 14@) = (1(a) + 5, 4(0) + 3 )

and so f* has bidegree (0,1). Here, ¢y : CF(K’) — CF(L,p1,2) is the inclusion in the fourth
summand. The proof for a negative crossing change is analogous. ([l

Since the crossing change chain maps f* and f~ do not change the Maslov index, we will drop
it from the notation in the rest of the paper. Moreover, by degree of a homogeneous chain map f,
denoted by deg(f), we mean the Alexander grading degree of f.
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3. THE DEPTH OF A KNOT AND BOUNDING THE UNKNOTTING NUMBER

Let K and K’ be knots in S? and I denote a sequence of crossing changes which modifies K to
K'. We denote the length of I by |I|, and the number of positive (resp. negative) crossing changes
in I by m™(I) (resp. m~(I)). For e € {+,—}, let u®*(K, K’) denote the minimum of m®(I) over all
such sequences I of crossing changes. Futher, the Gordian distance u(K, K') between K and K’ is
defined as the minimum number of crossing changes required for modifying K to K’. Therefore,

WK, K'Y >u (K,K") +ut (K, K').

Define u®(K) = u®(K,U), where U denotes the unknot. Note that in principle it is possible that
ut(K) and/or v~ (K) are realized in an unknotting sequence which does not have minimal length.
The knot K’ is called Gordian adjacent to K if there exists a minimal unknotting sequence for K
containing K'. Equivalently, the Gordian distance u(K, K’) from K to K’ is u(K) — u(K'). Based
on Theorem 2.3 we make the following definition.

Definition 3.1. Given the knots K, K’ C S3, consider all pairs of homogeneous chain maps

§~: CF(K) — CF(K') and f{':CF(K') — CF(K)
of degrees m~ = deg(f~) and m™* = deg(f") such that f~ o f* and f* o = are chain homotopic to
multiplication by w™, where m™ +m™ = m. Define [T (K, K'),[T(K, K’') and [(K, K') as the least

values for the integers deg(f~),deg(f*) and m = deg(f~) + deg(f*) (respectively) among all such
pairs. In particular, define I[*(K) = [*(K,U) and [(K) = [(K,U), where U denotes the unknot.

When K’ = U, the chain complex CF(U) is chain homotopic to A (with trivial differentials).
For defining [*(K) and [(K), we are thus lead to consider all pairs of homogeneous chain maps

f7:CF(K) — A and f§":A — CF(K)
of degrees m~ = deg(f~) and m™ = deg(f") such that f~ of" is multiplication by w™ and f* of™ is

chain homotopic to multiplication by w”". The discussion of the previous section, and in particular
Theorem 2.3 and Proposition 2.4, imply the following theorem.

Theorem 3.1. Given a pair of knots K, K' C S3, u®(K, K') is bounded below by *(K,K') for
o c {—,+}, while u(K, K') is bounded below by (K, K').

Remark 3.2. Let K and K' be knots in S3. Given chain maps §~ and {+ satisfying the assumptions
of Definition 3.1, their adjoints are chain maps

i :CF(-K') = CF(-K) and | :CF(-K)— CF(-K)
of degrees m~ and m™, respectively, satisfying
Fof ~w" and T of ~w™
Thus,
C(—K,—K') = ["(K,K'), MK, ~K')="(K,K') and I(K,K')=I(-K,—K').
Let us denote the homology of CF (K, s) by H(K, s) for every s € Z, and set H(K') = @, H(K, s).
Then H(K) is a module over A = F[u,w]. Let T(K) denote the torsion submodule of H(K), i.e.
T(K) ={z € H(K) | 3a € A — {0} s.t. axz = 0}.
It is clear that T(K) is a sub-module of H(K'), and there is a short exact sequence

KL (K T AK)
where A(K), defined by the above exact sequence, is the torsion-free part of H(K). Fix a se-
quence I of crossing changes which modify K to the unknot. Correspondingly, we obtain the A-
homomorphisms f; : H(K) — A and ;" : A — H(K). The map f; induces a map fyp : T(K) — A,
while f; induces the map f© : A — A(K).

0

T(K)

0,
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Lemma 3.3. The map {* : A — A(K) induced by §{ is injective, while the map frp s T(K) — A

is trivial. We thus have a map §~ : A(K) — A induced by f; , which is injective. The induced maps
are homogeneous with respect to the Alexander grading.

Proof. Let m~ = deg(f; ) and m™ = deg(f;{"). If z € T(K) and azx = 0 for 0 # a € A, it follows
that afy (z) = 0 in A, implying that f; (z) = 0. Since the restriction fy of f; to T(K) is trivial,
amap = : A(K) — A is induced by f; . Let us now assume that x € H(K) is in the kernel of f; .
Then w™xz = §{” o f; (¥) = 0, implying that z € T(K). In particular, §~ : A(K) — A is injective.
On the other hand, if a € A and = = §{ (a) € T(K), it follows that 0 = f; (z) = w™a, implying that
a =0. Thus f© : A — A(K) is injective. This completes the proof of the lemma, as the statement
about the Alexander grading follows immediately from our previous discussions. O

Proposition 3.4. There is a sequence 0 = ig(K) < i1(K) < - -+ < i,(K) = v (K) associated with
every knot K C S2, and an identification

(3) A(K) = <uik<K)winfk<K> | ke {o,1,... ,n}>A.
Moreover, the identification of Equation 8 preserves the Alexander grading.

Proof. For each s, CF(K,s) is a chain complex of F[U]-modules for U = uw and multiplication by
w and u induce chain maps

w:CF(K,s) - CF(K,s+1) and u:CF(K,s+1)— CF(K,s)

respectively. Moreover, for s sufficiently large (resp. small), CF(K, s) is isomorphic to CF~(S3)
and multiplication by w (resp. u) is an isomorphism. Let sy >> 0 (resp. s— << 0) denote such a
sufficiently large (resp. small) s.

For any s < sy, let vs denote the homomorphism induced by w®+~* from H(K, s) to H(K, sy ) =
F[U]. The kernel of vy is equal to T(K, s) and so the restriction of vs to A(K, s) = F[U] is injective.

The smallest s < sy such that v, is a surjective homomorphism, equivalently vs|s(x ) is an
isomorphism, is the invariant vt = v (K) = v~ (K) defined by Hom-Wu [HW16], based on
Rasmussen’s work [Ras04], and also Ozsvéath-Szabé [OSS17]. Note that this invariant is a lower
bound for the slice genus. For all s > v+, multiplication by w is an isomorphism from A (K, s) to
A(K,s+1). Suppose s < vt and let b € A(K, s) be the generator. Then, w”' ~5b € A(K,v") and
so w”' ~$h = p(U)a where a is the generator of A(K,v") and p(U) € F[U]. Thus,

U =5b = p(U)u”" ~5a = p(U)p (U)b,

and consequently p(U) = U’ for some 0 < j, < vT — s. By definition, js is equal to the invariants
Vs defined by Ni and Wu [NW15] and hs defined by Rasmussen [Ras03]. See Remark 3.5 for more
details.

Additionally, H(K) is symmetric under exchanging the variables u and w, which gives an isomor-
phism between H(K, s) and H(K, —s). Thus, for all s < —v™ multiplication by u is an isomorphism
from A(K,s) to A(K,s —1). Moreover, if b € A(K,s) is the generator for some s > —v™", then
ust b = Ulia/ where j, = j_, and o is the generator of A(K,—vT). By [HLZ15, Lemma 2.5]

je=Hs=Vi+s=js+s.

Consequently, j,+ = j" . =0 implies j_,+ =5/ = vt ie.
W a=0U""d and w¥ d =U""a.
Then, we define a grading preserving A-module homomorphism
1: AK) = @:A(K,s) — A

by setting +(b) = u/sw’s for the generator b € A(K,s). For instance, if s > vt then o(b) = w*,
while if s < —vT then 2(b) = u™*. It is clear that 1 is injective and it identifies A(K) with an ideal



10 AKRAM ALISHAHI AND EAMAN EFTEKHARY

generated by at most 20T + 1 monomial of the form u'w/ with 0 < i,5 < v+ in A. This set of
generators contains a unique minimal subset

{uttwik | 0 =g < iy < ... <ip, =vT and v = jo > j1 > ... > j, = 0}

that generates the image of . The symmetry of H(K) implies that ji = i, for all £ =0, ..., n.
O

Definition 3.2. Under the identification of Equation 3, for every knot K C S® the sequence
1K) = (0=1ip(K) <i1(K) < <ip)(K) =vH(K))
is called the ideal sequence associated with the knot K. The ideal A(2) associated with a sequence
1=(0=1ip <iy <---<iy) is defined as
A(r) = (u*wr | k€ {0,1,...,n}),
and we identify A(K) = A(x(K)).
Remark 3.5. For every knot K in S®, if we set w = 1 and consider CF(K) as a chain complex

filtered by the Alexander filtration, we obtain an identification of CF(K,s) and C{max(i,j—s) < 0}
as chain complezes of F[U| — modules. Under this identification, the inclusion

C{max(i,j —s) <0} — C{max(i,j —s—1) <0}

corresponds to the multiplication by w. Moreover, CF(K, sy ) is identified with C{i < 0}. Conse-
quently, vT is the smallest s such that the map

vs + Hy (C{max(i,j — s) < 0}) — H, (C{i <0}) =F[U]

induced by inclusion is surjective, which by definition is v~ (K) = v (K). Similarly, considering
the definitions of Vs and Hs using HF™ we have js = Vi and j., = H,.
Consequently, the ideal sequence

1(K) = (ig < i1 < ... <ip)C{Vs| —vT <s<v'}

is determined as follows. First, let {—vT = ko < k1 < ... < ky, = v} indicate the places of jumps

in the sequence {Vs}gi_y, i.e.

Vi, [0<i<m}={Vi| —v" <s<uv'}

and Vi, < Vi,—1 for all i. Then, «(K) is the subset of {Vi} consisting of every Vi, such that
V—ki < V—ki+1~

For finite increasing sequences 1,7’ of non-negative integers as above define the distance ¢(1,1")
from ¢ to o/ as the smallest value for p such that wPA(2') C A(z). Given the knots K, K’ C 53,
define the positive distance (T (K, K') as £(1(K),2(K")). Define the negative distance by £~ (K, K') =
(T (—K,—K'"), where —K denotes the mirror image of K. Define the positive/negative depth of a
knot K by (*(K) = ¢*(K,U), where U denotes the unknot.

Note that under the identification of Equation 3, the positive depth of K is equal to v+ (K).
Proposition 3.6. Let K and K' be knots in S3. Then
(MK, K') > max{¢T(K,K"), ¢~ (K',K)} and 7 (K,K') > max{¢ (K,K'),(T(K' K)}.
Before proving this Proposition, we need to make an algebraic observation.

Lemma 3.7. Given integer sequences 1= (0 =1ig < i1 < ... <'ip) and?/ = (0 =1 <} < .. <1il,),
every A-homomorphism [ : A1) — A(Y) is equal to the restriction of an A-homomorphism from A
to A and so it is defined by multiplication with some polynomial p € A.
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Proof. Let i : A(+') — A be the inclusion map, and F' =i o f. First,
F(u»w) = u" F(w') = w' F(u'™)
implies F(u'n) = pu’ and F(w') = pw'* for some p € A. Consequently,
ukwinp = F(uhw'n) = win =ik F(ylkwin-r),
Therefore, F(u*w'n—*) = u**w’»—*p and we are done. O
Proof of Proposition 3.6. It is straightforward corollary of the definition, that [~ (K, K') = [T(K’, K).

So, remark 3.2 implies that it suffices to show that [T(K, K') > ¢7 (K, K'). By definition, there
exists A-homomorphisms

f:AK) - AK') and g¢:A(K') —» A(K)

such that fog and go f are equal to multiplication by w, and deg(g) = [T (K, K’). Under the iden-
tification of Equation 3, Lemma 3.7 implies that f and g are the restriction of A-homomorphisms
from A to A defined by multiplication with polynomials p and ¢ in A. Since, p¢g = w™ and
deg(g) = [T (K, K'), we have g = w' 5K and so [1(K, K') > (1 (K, K'). O

Theorem 3.1 and the above proposition imply that ¢+ (K, K') < u* (K, K').
Corollary 3.8. For any knot K C S®, we have
u(K) >N (K)>vT(K)>7(K) and uw (K)>1(K)>vH(-K) > —7(K).
Therefore, for 0 <t <1, we have —tIT(K) < T (t) < tI7(K).
Proof. The first two claims follow from Proposition 3.6 and the inequality v (K) > 7(K) from

[HW16, Proposition 2.3]. The last claim follows from the inequality —tv™(K) < Tg(t) from
[OSS17, Proposition 4.7]. O

4. THE TORSION OBSTRUCTION

Let us assume that a sequence I of crossing changes is used to unknot K C S3. Let us further
assume that m™ = m™(I) and m~ = m~(I), while m = m™ +m~ = |I|. The argument of
Lemma 3.3 then implies that multiplication by w™ trivializes all of T(K'). This observation gives
a weaker obstruction to the unknotting number.

Definition 4.1. Define the positive torsion depth t(K) of a knot K C S3 to be the smallest
integer m such that multiplication by w™ is trivial on T(K). Let t~(K) = t"(—K). Then t(K) =
max{t™ (K),t"(K)} is called the torsion depth of K.

Consider the homomorphism ¢ : A — Flw] defined by ngb(u) =0 and gg(w) = w. This homomor-
phism makes F|w| into an A-module. We define

CF(K) = CF(K) @;F[w] and H(K) = H,(CF(K)).

Note that after replacing w with U, @(K) and ]ﬁI(K) are isomorphic to CFK™(K) and HFK™ (K),
respectively. Thus, H(K) is a F[w]-module, with a free summand isomorphic to Flw]| and a torsion
summand denoted by T(K). Define t(K) as the smallest m such that multiplication by w™ is

trivial on ﬁ(K ). The following proposition is a straightforward corollary of previous definitions and
discussions.

Proposition 4.1. For any knot K C S3, the torsion classes {(K), t(—K), and t(K) are lower
bounds for I(K), and thus for the unknotting number u(K).

Proposition 4.2. If the genus g(K) of a knot K C S is strictly bigger than 7(K) then T(K) # 0,
and in particular, t7(K) > 1.
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Proof. The differential d of the chain complex CF(K) may be written as d =}, ;5 u‘w’/dI. Using
a spectral sequence determined by (CF(K),d), we can replace CF(K') with page 1 of the aforemen-

tioned spectral sequence and assume that d®Y = 0. Let = denote a generator of @(K ,9(K)). If
a generator y appears in d*%(z) (where i > 0), it follows that

9(K) = A(z) = A(u'y) = A(y) —i < A(y).

Since @(K, s) = 0 for s > g(K), the above observation implies that d*"(z) = 0. In particular,
d(z) = wPz for some p > 0 and some z representing a class [z] € H(K). Clearly, wP[z] = 0 in H(K).
If z = d(a') for some 2’ € CF(K), then d(x +wPz’) = 0. Since 7(K) < g(K), the image of = + wPz’
under the chain map CF(K) — CF (K) represents a trivial homology class. Thus, = appears in
d%(y) (where i > 0) for some generator y € @(K) So,

Aly) = A(w'z) = A(z) +i > g(K)

which is a contradiction. In particular, [z] is non-zero in T(K). t

~

Corollary 4.3. If K is a non-trivial knot then both t(K) and t(K) are strictly bigger than zero.

~

Proof. First t(K) > 0 is a trivial consequence of the definition and genus and unknot detection of
knot Floer homology. Second, either 7(K) < g(K) or 7(—K) = —g(K) < g(—K). Thus, t(K) > 0
follows from Proposition 4.2. O

Proposition 4.4. Suppose K and K' are knots in S>. Then,
WK#K') = max{t(K), t(K")}.
Proof. By Kiinneth theorem for homology, there is a split exact sequence

0 —— H(K) @ H(K') — H(K#K') — Torg, (H(K), H(K’)) 0.

Thus, {(K#K") is equal to the maximum order of w-torsions in H(K)®H(K') and Torgp, (H(K),H(K")),
which is equal to max{t(K), t(K’)}.
U

Remark 4.5. One can construct a similar lower bound t,,, by sending u and w to vP and v? in
F[v], respectively, which satisfy a statement similar to Proposition 4.4.

5. EXAMPLES AND APPLICATIONS

Example 5.1. Let K = T}, , be the (p,q) torus knot with 0 < p < ¢. The chain homotopy type
of CF(K) is specified by the Alexander polynomial of K [OS05]. Specifically, the symmetrized
Alexander polynomial of K is equal to

ICEINCES (P4 —1)(t — 1)
=D —1)

n

= (1" 4+ Y ()" )

=1

A(t) =t

where 0 < a1 < ag < ... < a, = (}’_1)2&. The chain complex CF(K) which is determined by

the Alexander polynomial is a staircase, freely generated over A with generators {x;} _, and
differential
dx; — {w“i‘”lxi_l + uditr T, g if n — i is odd
0 if n — 1 is even.

where ap = 0 and a_; = —a;, see Figure 5. Consequently, T(K) = 0 and A(K) = H(K) is generated
by [xp—2i] for i =0, ...,n. Moreover, for each j =n — 2i

u%i+2—a5+1 [Xj+2] = wht+t174 [Xj]_
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Xy é—o Xp—1

Xni2 “-I Xn—3
Xn—4

FiGurE 5. Each horizontal arrow from x; to x;41 has length a;4+1 — a;, while each
vertical arrow from x; to x;—1 has length a; — a;_1.

Let 7; denote the first coordinate of x,,_2;, so
2j—1
(4) ij = Z (_1)kan—k'
k=0
It is easy to check that the second coordinate of x,,_9; is equal to 4,,—j. Moreover, mapping [x,,—2;]
to uliwn=i gives an isomorphism between H(7T} ,) = A(T},,) and A(ig =0 < iy < iz < ... < iy = g).
Additionally, we may describe 2(K) in terms of the Ni-Wu’s invariants Vs(K) [NW15] (or Ras-
mussen’s local h-invariants [Ras03]). Using Remark 3.5, we will show that i; = V;, _,. and so

(K)=0=ip<i1 <..<in=9)=(0=Va, <Vapy <Vaps <. <Va_,=g).
First, it follows from the computations in [OS04b] that V, = 0 for s > a,, and

0 ifa,_9 <s<ap_9 for 1<i1<n
Vvsl_vvs:{ n—2i > Unp—2i+1 >~ 6 x> T

1 otherwise.

In particular, if Vs_1—Vs = 1then V_;—V_,11 = 0. Suppose Vy € o(K) and Vs < Vs_1. If s # ap_9;
for any 7, then Vi41 < V5 and thus V_g = V_,_;. Note that by Remark 3.5, this contradicts with
Vs € 1(K).

Consider CF(K) = CF(K) ®; F[w], where as before ¢ : A — Flw] is the homomorphisms defined
by gg(u) =0 and qAS(w) = w. Recall that ]ﬁl(K) is isomorphic to HFK™ (K) after switching w with
U. By the above discussion, H(K) has a free summand generated by [x,]. Moreover, for each
Jj =mn— 2i, [x;] is a torsion class of order aj;+1 — a;. It is easy to check that

p—1—ap—2=p—1 and aj41 —a; <p—1 forevery j=n—2iand2<i<n.

Therefore, H(T},,) = p — 1.

To calculate (7, ,) we need to find t*(—7},,). For any knot K, CF(—K) ~ CF(K)*. So for
—T1y.q = Tp,—q, the above discussion implies that CF(—17},,) is chain homotopic to the chain complex
freely generated over A with generators {x;}?", and differential

o {0 if i is odd

UGl 4 wE TR if 7 is even.
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Thus, A(=T},4) = A is generated by >}, uln—kwikxop, while [xary1] is torsion of order iy, for
k=0,...,n — 1. Therefore,
(p—1(¢g—1)
5 .
Special case: p =2, ¢ = 2n + 1. For the torus knot 75 2,11 we have

t(Tp,q) =t" (Tp,q) =1ip = V+(Tp,q) =

AT2,2n+1 = "4 Z n ‘ tz +t )

So, a; =1 for —n < i < n, and thus V,,_o; = Vn,giﬂ =4 for 0 < i < n. Therefore,
(T2 2n+1) (0 <l<2<..< ’I’L) and A(T272n+1) = <Uin | 145 > TL>A.

Special case: p =3, ¢ = 3k £ 1. Suppose ¢ = 3k + 1. First, we compute the symmetrized
Alexander polynomial of T3 3541:

AT (t) _ t73k (t3(3k+1) o ].)(t . 1) _ t—3k t2(3l€+1) + t3k+1 + 1
3,3k+1 = =

(L3FH — 1) (3 — 1) t2+t+1
B 24+t+1
k -1
Z t3’b t31 1 + 1+ Z t3z t31+1)
i=1 i=—k

Therefore, 1(K) = (0 = Vap, < Vi—3 < ... < V_g = 3k). Furthermore,

v o 7 for 0<i<k
SRS 9i _k for k< < 2k

Consequently,
A(T33111) = (u'w! | 20+ > 3k and i + 2j > 3k),.

For ¢ = 3k — 1, an analogous argument implies that
A(T33,-1) = (u'w! | 20+ 4 >3k — 2 and i +2j > 3k — 2),

More generally, the ideal sequence for the torus knot T}, 41 takes the explicit form

2
k k
or equivalently, i = (k‘ _n {J) <{J + 1> , fork=0,1,...,n(p—1).
2| n n

Let a(K) denote the minimum degree of a monomial in A(K'). Then, for T}, ,n4+1 we have:

(5)
Ln(pgl)J [n(pgl)J

n n

Ty pnt1) = <0<1<~~-<n<n+2<--~<3n<3n+3<-~-< (p>n>

+1

|3

; ' n(p—1)
U Tppnt1) = Unp-1)/2) T ifn(p-1)/2] = {2J -

+1

K [ (]

n n
=N p—2
4 .

In general, a(K) is determined by the concordance homomorphism upsilon [OSS17], and one can
derive this invariant for the torus knot 7T}, , from the ideal A(T}, ;) as follows.



KNOT FLOER HOMOLOGY AND THE UNKNOTTING NUMBER 15

Lemma 5.1. For every torus knot T), ; with 0 < p < q we have

t t .
TTp,q (t) = Tp#l(t) = —2min {22 + <1 - 2) J ‘ u'w’ € A(Tp’q)}

Proof. Note that

t t - t t
mm{2ﬁ+<1—2>j)mwﬂgAHhJ}:mm{2@+(l—2>%j‘OSan}.

The claim follows from the description of Y, 4(t) in [Liv17] and the fact that (ij,i,—;) are the
coordinates of x,,_2; in Figure 5. ]

Corollary 5.2. For any pair of coprime integers 0 < p < q, we have a(T),4) = —Tp4(1) and so

g—1|p?
T, > — | — .
a(Tpq) > o {4J

Proof. The first part follows from Lemma 5.1 by setting t = 1. For proving the inequality we use
induction with the inductive formula

Tp,q(t) = Tp,qﬂo(t) + Tp,erl(t)
2

from [FK]. First, it follows from the Equation 5 that =Y, ,11(1) = VIJ for all p. Assume the
inequality holds for T}, ,—,. If p < ¢ — p, then

q—p—11p° p? q—1|p?
2 2
=l J
r-
4
where the second inequality follows from

S Lk
Ay

This will finish the proof. O

Otherwise, p > ¢ — p and

—Tp7q(1)

| \/

Proposition 5.3. If a torus knot K =T, ,; with 0 < p < p’ is Gordian adjacent to a torus knot
K' =T,y with0<q<d, then

AT, ) <ATpy) and W'A(T, ) < AT, ),

where u = u(K') —u(K) = (qfl)éqlfl) - (pfl)éplfl). In particular, a(Ty ) > a(Tp,y).

Proof. Since T, is Gordian adjacent to Ty ., there exists A-homomorphisms
fH(Tyq) = H(T,y) and g:H(T,,y) — H(T, )

such that fog = go f = w". Note that H(7},,) = A(T,,) and H(T ) = A(T, ). So, f and
g are defined by multiplication with polynomials p,q € A = Flu,w]. Thus, fog =go f = w"
implies that f =w™ and g = w™" such that m™ +m~ = u. On the other hand, by Corollary 3.8,
a minimal unknotting sequence for a torus knot only consists of positive crossing changes. Thus,

deg f = m~ = 0 and degg = m™ = u. Therefore, f is multiplication by 1, g is multiplication by
w" and A(T, o) < A(Tp ) and w*A(T), ) < A(T, 4 ). O

The computations in Example 5.1 and the Proposition 5.3 have a number of quick consequences.
One outcome is the following corollary that was suggested to us by Jennifer Hom. This result was
first proved by Borodzik and Livingston in [BL16].
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Corollary 5.4. If a torus knot T, ,y with 0 < p < p’ is Gordian adjacent to a torus knot Ty o with
0<qg<d, thenp<q.
Proof. Assume that
1(Tpy) = (ig < -+ <ip) and o(Tgq) = (Jo <+ < Jm)
Proposition 5.3 implies that w/m = A(T,, /) < A(T, ). Thus,
wim—intin-1 it — (K —u(K) yin1 it ¢ A(Tyq).

Note that i1 =51 =1 and

2n—1 2n—3

. . k k

n —lpn—-1= g (_1) An—k — E (_1) apn—fk = Q@—n42 — Q—p4+1 = Qp—-1 — Ap—2 =P — 1.
k=0 k=0

Thus, jm — Jm—1=¢q— 1, and

. . . . g—1)(¢ -1
Jm —in +tin_1 2 Jm—1 < ()2()—10+1Z

completing the proof. O

-q+1 & gq>p,

(¢—1)(d —-1)
2

We also obtain a proof of the following corollary. The second statement of the corollary was first
proved by Peter Feller in [Fell4].

Corollary 5.5. If the torus knot Tp, ,n+1 is Gordian adjacent to the torus knot Ty gm+1, then

2 2
p q
If T ,, is Gordian adjacent to T3 ,,, where n is odd and m is not a multiple of 3, then n < %m + %

Proof. Proposition 5.3 implies that a(Tp pnt1) < a(Tggm+1). So, following the computations of

Example 5.1 we have
2 2
p q
< 0.

Moreover, from the same example we know that A(T3,,) < A(T»,,) if and only if for any pair (i, j)
such that i +2j >m —1and j+2i >m — 1, we have 1 + j > ”T_l It is clear that

2(m — 1 om 1
min{i+j|i+2j2m—1and2i+j2m—1}:{(mg)-‘:{;n—ng.

Thus,”T_lg%—%andnS%m—i—%. O

Example 5.2. An interesting example is the case of the figure 8 knot, where the chain complex
is generated by 5 generators X,Y, Z, W and B, where d(B) = d(X) = 0 while d(W) = uZ + wY,
d(Y) =uX and d(Z) = wX. Thus, T(K) is generated by x = [X] and ux and wx are both zero.
Moreover, A(K) is generated by [B] and is isomorphic with A. In particular, v+ (K) = v (-K) =0,

while t(K) = t(K) = 1. The sub-complex generated by X,Y,Z and W will be referred to as a
square.

Example 5.3. Alternating knots are known to have simple knot Floer chain complexes. The
restriction on the Alexander and Maslov grading of generators (that their difference is a con-
stant number) implies that the chain complex decomposes as the (shifted) direct sum of a copy of
CF(£T%2n41) and several squares. In particular, if K is an alternating knot with 7(K) > 0 then
Z(K) = Z(T272n+1) = (0 <l<2<---< T(K)),
while t7(K) < 1. Moreover, t (K) = t"(—K) = t" (=T 2,4+1) = n. So t(K) = n.
On the other hand, Since ((Ts2,41) = [T (T2.2n4+1) = u (To2n41) = n, there are chain maps

f= : CF(T22n41) > A and fToA — CF(T22n+1)
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such that both T o~ and f~ o f* are chain homotopic to multiplication by w”. Further, for each
square summand, it is easy to check that multiplication by w is nullhomotopic. Thus, we can
extend f~ to a map from CF(K) by defining it to be zero on all square summands, and compose '
with the inclusion of CF (T2 2,41) in CF(K) and both f* o§~ and §~ o f remain chain homotopic
to multiplication by w™. Therefore,

n>I(K)>IT(K)>vT(K)=n
and so [(K) =[T(K) =vT(K) =n.

Example 5.3 gives interesting bounds on the alternation number alt(K) of a knot K, defined as
the minimum Gordian distance between K and an alternating knot. The first bound is very similar
to, yet different from, the bound constructed in [FPZ18, Corollary 2.2].

Proposition 5.6. The alternation number alt(K) of a knot K C S® satisfies
alt(K) > vH(K) —a(K), alt(K)>tK)—1 and alt(K)>min{t"(K) - 1,07 (K)}.

Proof. Let us assume that K is modified to an alternating knot K’ using a sequence of m™ positive
crossing changes and m™ negative crossing changes and that alt(K) = m™ +m™. It follows that
vH(K') > vH(K) —m". Since w™ A(K) is a subset of A(K"), it follows that A(K’) includes a
monomial of degree m™ + a(K). However, every monomial in A(K’) has degree at least v (K").
This means that

a(K)+m~ >vH(K)>vH(K)-mT = mt+m” >vH(K)-a(K),

and completes the proof of the first inequality. The second and third inequalities are easier. For
the second equality note that in the above situation,

o~ ~

uw(K,K') > HK) —tK") =t{K) - 1.
For the third inequality, we have
vH(K) <vT(K)+m' and t7(K) <t"(K)+mt+m"™.

If v7(K') = 0 then vT(K) < m* < alt(K). Otherwise, 7(K’) = vT(K’) > 0 and T(K’) can
only include torsion elements trivialized by w. In particular, t"(K’) < 1 and alt(K) = m* +m~ >
() — 1. 0

For torus knots, we obtain the following corollary from our computations in Example 5.1. Similar
bounds may also be obtained using upsilon invariants, see [FPZ18] for the case p < 5.

Corollary 5.7. The alternation number of the torus knot T), pny1 15 at least n {

Proof. Using the first inequality in Proposition 5.6 we have

2 -1 2
alt(Tppn+1) = v (Tppns1) — a(Tppnt1) = n(g) -n {pJ =n VP)J .
This completes the proof. O

Example 5.4. The knot 12n494, which is a (1, 1) knot, is illustrated in Figure 6. Using Rasmussen’s
notation [Ras05, page 14], it is given by the quadruple [29,7,14,1]. The corresponding chain
complex CF(12n494) may be computed combinatorially, e.g. using Krcatovich’s computer program
[Krc]. After a straight-forward change of basis, we arrive at the chain complex illustrated in
Figure 7.

Each dot represents a generator of CF(12n404). An arrow which connects a dot corresponding
to a generator x to a dot representing a generator y and cuts ¢ vertical lines and j horizontal
lines corresponds to the contribution of u‘w/y to d(x). The blue dots and the black dots in the
diagram generate subcomplexes C' and C’ of the knot chain complex, respectively, and we obtain a
decomposition CF(12n494) = C' & C’'. We may then identify

C=(X,Yy,Y1,Y2,Z0,Z1)a, dY;)=u'w?™"X and d(Z;)=uY;+wYi.



18 AKRAM ALISHAHI AND EAMAN EFTEKHARY

FIGURE 6. The knot 12n404

FI1cURE 7. The chain complex associated with the knot 12n4q4.

The homology of C' is generated by x = [X], with w?x = wux = u?x = 0.

For C’, the same argument as in Example 5.3 implies that there are chain maps
f7:C"—=A and fT:A—=C
such that deg f~ = 0, deg f = 1 and both f~of ™ and fTof~ are chain homotopic to multiplication

by w. Thus, tT(12n404) = 2. In fact, it is straightforward from the above presentation of chain

complex to conclude that (12n404) = t(12n404) = 2.
On the other hand, the map h : C' — C defined as

h(X)=Yy, h(Y1)=wZy, h(Yo)=uZp+wZ, and h(Yy)=h(Zy) =h(Z;)=0.

gives a homotopy between multiplication with w? and 0. So we can extend wf~ trivially to a map
from CF(12n494) and compose fT with the inclusion map to get chain maps

§~: CF(12n404) = A and 7 : A — CF(12n404)
such that {7 o = and f~ o f* are chain homotopic to multiplication by w?. Therefore,
(T (12n404) = v (12n404) = 1, and  [(12n404) = t(12n404) = 2.
Similarly, we may use f~ and wf™ to construct another pair = and f*. This implies
[T (12n404) = 0.

The knot 12n494 may be unknotted by changing 3 crossings. It is not known, however, whether
u(12n404) is equal to 3 or not [CL18]. The alternation number alt(12n494) is 1, which matches the
lower bound given by the last two inequalities in Proposition 5.6.
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Example 5.5. Consider the (2, —1) cable of the torus knot 73 3, which is denoted by 75 3.2 —1. The
chain complex associated with this knot is computed in [HW19] and is illustrated in Figure 8.

The chain complex is generated over F[u,w]| by the 9 generator X, Xo, Y1, Ys, Z1, Zo, Z3,T1 and
T5. The differential is given by d(7;) = 0, d(Y;) = uwTj, for i = 1,2 and

d(Zy) =wTy, d(Z3) =uly+wly, d(Zs) = uly,
d(X1) = uY1 + uwZs + w?Zs and d(X2) = u?Z; + uwZs + wYa,

The generators of homology may then be specified as t; = [T1],t2 = [Tb],y1 = [Y1 + uZ;] and
y2 = [Y2 + wZs], where we have

ut; =wts, wt; =ute =0 and uy; = wys.
It thus follows that

(u,w)p
(U2, w2y,

In particular, t+(T273;27_1) I/{(T273;27_1) = 2, and V+(T273;27_1) = 1. Therefore, [(T273;2’_1) > 2. Let
f_ : CF(TQ’3;2’_1) — F[U,W] and f+ : F[U,W] — CF(T273;2’_1)

H(T2,3,2,-1) = A(T232,-1) © T(Ta3.2,-1) = (u,w)a &

be the chain maps defined by
f(Y1) =w?, §(Z3) =w, f(Y2) =uw and
fr(X1) =7 (Xo) =1 (Z1) =§ (22) =F (Th) =1 (12) =0,
and f+(1) = Y7 + uZ;. Then, §~ o ft = w? and f* o f~ ~ w? where the chain homotopy is given by

h(Tl) = WZ1, h(TQ) = Y1 + WZ3, h(ZQ) = Xl, h(YQ) = WXQ and

h(X1) = h(X2) = h(Y1) = h(Z1) = h(Z3) = 0.
Thus, [(T32,-1) = 2. Since the torsion invariant t*(7%3) is zero, it follows that the Gordian
distance between 15 3.0 1 and the trefoil 75 3 is at least 2.

Example 5.6. Let us now consider the (2, —3) cable of the torus knot 75 3, which is denoted by
T5 3.2, 3. We focus on the mirror image K = —T53.2 _3 of the aforementioned knot. The chain
complex associated with K is illustrated in Figure 9 (See [HLL18]).

The chain complex is generated over Flu, w| by 11 generators 17,15, X1, X2, X3, Y1, Ys, Z1, Zo, Z3
and Z4. The differential is given by d(7}) = d(72) = 0 and

d(Yl) =uT, d(Yg) = wTh, ,d(Zl) = W2T1, d(ZQ) = UQTQ’ d(Z3) = uwTi, d(Z4) = uwTh,
d(Xl) = u/i + w2z, d(XQ) =wZy +uZy and d(Xg) =ul3+wZy+ UW(Yl -+ YQ)

FIGURE 8. The chain complex associated with the knot 75 3.2 _1.
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FIGURE 9. The chain complex associated with the knot —75 3.9 _3.

The homology of the above chain complex is generated by t; = [T1],t2 = [Tb],y1 = [Z3 + wY7] and
y2 = [Z4 + uYs], while we also have

ut; = w2t = wty = u’to =0 and uyp = wyo.

It thus follows that

A A
H(-T53:2,—3) = A(=T23:2,—3) ® T(—=T23:2,—3) = (u, W) B ( &) ) .

By considering the dual complex, one can show that

(u, W

H(Th 5.9 _3) = A .
(T2,3;2,-3) ® T wihy

In particular, we have vt (=T 32 _3) = 1 and v*(Th3.2,3) = 0 while the torsion invariants are
non-trivial:

T (Th30,3) =t (Th30,-3) = (Toz2_3) = t(~Th32_3) = 2.

Example 5.7. This example illustrates that H(K) is not necessarily the direct sum of A(K) and
T(K). Let K = Tys# — T 3.05# 12 3. The chain complex CF(7T53.25) is given in [Hom16], and
using that one could show CF(K) = C & C’, where C is illustrated in Figure 10 and C” is a direct
sum of acyclic pieces. Moreover, the homology of C” is freely generated by torsion elements t; such
that ut; = wt; = 0.

The chain complex C is generated over Flu,w| by the 9 generators X, Xo, Y1, Ys, Z1, Zo, Z3, Zy
and T'. The differential is given by d(Z;) =0 for i = 1,2,3,4 and

dY1) =uZy +wZy, d(Ye) =uZs+wZy, d(T)=uX;+wXs
d(X1) = uwZy +w?Z3 and d(X3) = u?Zy + uwZs.
The homology of C' is then generated by the classes z; = [Z;] for i = 1,2,3,4, while we have
UzZ] = wzo, UZ3 =wzy, uwzy =w>z3 and u’zy = uwzs.

In particular, t = uze — wzs is a torsion element, and ut = wt = 0. We then have a short exact
sequence

A
0 H,(C) — A(K) = (u®, ui®w, uw? w3)y — 0,
<LI, W>A
which does not split. The chain complex C' is an illustration of pieces which may appear in a knot
chain complex and make the homology and the unknotting invariants interesting. The next virtual

example gives another instance of this phenomenon.
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FIGURE 10. The chain complex C associated with the knot Ty s# — 15 3.2 5#15 3.

Example 5.8. Let C' = (};; denote the chain complex generated over A by the generators
X1,X9,Y1,Ys and Z with

A(X))=—-A(X2) =14, A1) =-AY2)=j and A(Z)=0.
The differential d = d; j of C is defined by setting d(X;) = d(X2) = 0 and
d(Y1) = u'w/ X| + wti X, d(Ys) = u" X 4+ vwi Xy, d(Z) = Y] +wYs.
Figure 11 illustrates this chain complex. We treat C; ; as a direct summand in a knot chain complex,
or a virtual knot chain complex.

It is then not hard to check that the homology group H = Hj ; of C' is generated by the homology
classes x1 = [X1] and x5 = [X5]. Furthermore, t = u’x; 4+ w'xs is a torsion element in H. In fact,

wit =[dY1] =0 and o't =[dYs]=0.
Thus, tT(C) = j. Assume = : H — A and f* : A — H are homogeneous maps of degrees m~ and

m™, respectively, so that §~ o+ and f* o f~ are multiplication by w™ ™™ . Let m = m™ +m™,

and
PO =fx+fix FE)=f, ad f(x)=f
where f;',fi_ € A for i = 1,2. Then, f; fi + f5 fi = w™ and so

FT o (x1) = wxy + f;(f{xl + f1 x2) and 1o (x2) = wxg + ffr(fz_xl + f1 x2).

FIGURE 11. The chain complex Cj ;.
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Consequently, f; x; + f; X2 is a multiple of t, which implies that f, = w™ u’g and f; =w™ Tig
for some g € A. On the other hand, since f; fi"+f; f- = w™ we have g(0,0) = 1 and f;” = wm =i
for some h € A such that h(0,0) = 1. Therefore,

ST %1+ frxa) =w™ “h(w™ g-t) = (W™ Thg)t = 0,

which implies that m — i > j and so m > i+ j. In other words, [((C) > i+ j.
Moreover, we show that [(C) = i + j by finding explicit chain maps. Let f~ : C — A and
T : A — C be chain maps defined as

(X)) =w, §f(X2)=0u', andf (V1)=f (Y2) = (2) =0,
Fr(1) = X1

It is easy to check that w/(f* o f7) is chain homotopic to multiplication by wi*/. In fact, chain
homotopy is given by

hX2)=Y1, h(Y2)=w'Z, and h(X;)=h(1)="h(Z)=0.
Further, ‘wj (F oft) is equal to multiplication by witJ. Therefore, [(C) = i+ j, while considering the
pairs (W/f~, ") and (f~,w’/§T) we have [T(C) = v+ (C) =i and [7 (C) = 0, respectively. Moreover,
t(C) = j. Thus, C gives an example with [(C) = vT(C) + t(C). Tt is interesting to note that in

~

this example, t(C') =i+ j.
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