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Abstract—We introduce an approach to predict biological age
based on a 3-dimensional deep convolutional neural network
(3D-CNN), using human physical activity as recorded by a
wearable device. Results on mortality hazard analysis using both
the Cox proportional hazard model and Kaplan-Meier curves
each show that the proposed method results in an improved
performance. This work has significant implications in combining
wearable sensors and deep learning techniques for improved
health monitoring, for instance, in a mobile health environment.

Index Terms—Age estimation, aging, deep learning, biological
age, 3D CNN, physical activity, all-cause mortality.

I. INTRODUCTION

The process of aging is complex and affects all biological
systems. Age has a deep connection with health and mortality
[1], [2], [3]. In general, a younger person is expected to have
a better health condition, to be physically more active, and to
have lower mortality hazard in comparison with a relatively
older person. Although biological age is a loosely used concept
and lacks precise definition, it is often viewed as the true age
of an individual [4]. Thus, biological age provides a better
measure of the life expectancy of an individual than his or
her chronological age [5], [6]. In this work, we investigate
the question of whether human physical locomotor activity
as recorded using a wearable device can be used for reliable
estimation of biological age in adults.

Levine [1] compared the performance of five BA estimation
algorithms, and identified the Klemera and Doubal (KD)
method as the most reliable predictor for mortality. The perfor-
mance using BA was significantly better in comparison with
using chronological age. Mitnitski et al. [3] compared perfor-
mance of frailty index (FI) with biomarker-based measures of
BA. They employed the KD algorithm in predicting mortality.
Belsky et al. [7] compared different methods of BA estimation,
including genomic, epigenetic, and blood biomarker measures.
In a more recent work, Rahman and Adjeroh [8] proposed a
centroid based biological age estimation method using notion
of age neighborhoods.

Putin et al. [9] studied the use of biomarkers in a deep
learning framework for chronological age prediction. They
utilized an ensemble of multiple deep neural networks (DNNs)
and trained on blood biomarkers. The best performance by a
DNN was MAE of 6.07 years in predicting chronological age
and the ensemble learning produced MAE of 5.55 years.
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Rahman and Adjeroh [10] applied deep convolutional long
short term memory (ConvLSTM) on a week long physical
activity data measured per minute to estimate biological
age. They also compared estimated biological ages with KD
method applied on biomarkers in a common dataset. Pyrkov et
al. [11] applied a 1-dimensional convolutional neural network
on the physical activity data to estimate biological age. Cole
et al. [12] studied a deep learning framework using 3D-
CNN based approach with raw MRI data. They showed their
model can predict chronological age for healthy individuals.
Zhavoronkov et al. [13] discussed recent advances in using
artificial intelligence for studying aging and longevity.

In this work, we consider the use of physical activity data
for reliable estimation of human biological age. In particular,
we consider the temporal nature of human locomotor activity
as a key element in its use for analyzing biological age.
Thus, rather than using 1D CNN [11] to estimate biological
age, we apply a deep learning framework using 3-dimensional
Convolutional Neural Network (3D-CNN). We also consider
2D image representation of the data and apply a 2D-CNN
based approach. Using the Cox proportional hazard model
and Kaplan-Meier curves, we show comparative performance
of our proposed biological age estimation methods with the
existing deep learning approaches.

II. METHODOLOGY

A. Datasets

Activity Dataset & Preparation. We used physical activity
data from the National Health and Human Nutrition Exami-
nation Surveys (NHANES) 2003 – 2004 and 2005 – 2006 as
described in [10], [11].

Anthropometric & Biomarkers Dataset. We also used
NHANES 2003-2006 anthropometric and biomarker datasets.
These were used to study the potential relationship between
human physical activity and the biomarkers (see [10]).

B. 2D and 3D CNN for Activity Data

The convolutional neural network (CNN) is the most popu-
lar deep learning networks. The convolution operation extracts
patches from its input feature map and applies the same
transformation to all of these patches, producing an output
feature map. Convolutions are defined by two key parameters:
a) size of the patch and b) number of filters. Convolution
operation works by sliding these windows over the input
feature map, from every accessible/possible location. Each
patch is now transformed via a tensor product with learned
weight matrix called convolution kernel.
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Our approach to analyzing the human activity data build
on the concept of finding local patterns by applying the
convolution operation of an image. Two major characteristics
of convolutional neural networks (CNN) are that they learn
patterns in a hierarchical manner, and that the patterns learned
are translation invariant. Our proposed method for estimating
biological age is to apply 2D and 3D CNN. Note that this
approach is different from the 1D CNN problem. Rather we
take advantage of the structure in the sequence of 2D and
3D representations of the daily activities to learn valuable
patterns from the activity data (which may be difficult using
1D CNN, or DNN). For 2D-CNN, we consider the features
as an image of size 168×60 (DH×M) ignoring the days as
temporal information. However, for 3D-CNN, we consider the
features as a 3D volume with temporal information across the
days, where each day has 24 hours and an hour is 60 minutes.
So to break it down, we represent the features as a three
dimensional information of 7×24×60 (D×H×M) minutes.

For both the proposed 2D and 3D approach, we concatenate
two more fully connected dense layers and finally a single unit
of neuron without activation to build up a scalar regression that
estimates the biological age. Fig.1 shows the architecture of
the proposed 3D-CNN model. We also apply a 1D CNN model
[11], and a DNN model on the dataset to predict biological age.
We compare the results from these four deep neural network
models.

Fig. 1. Architecture of the proposed deep learning methods for biological
age estimation using human locomotor activity data using 3D-CNN.

III. RESULTS

A. Association of Locomotor Activity with Chronological Age

There exists a discernible association between physical
activity and chronological age. On average, physical activity
has a correlation coefficient of -0.19 (p-value = 0.00) with
chronological age (see Table I). We have grouped subjects
in the physical activity dataset based on their age ranging
from 18 to 84, to further understand the relation between
physical activity and chronological age. See Fig. 2. Average
physical activity goes up from age 18 to 45. After that we
observe a generally linear decline of average physical activity
from age 46 to 85 years. Table I also shows the correlation
between physical activity and different blood biomarkers (for
individuals with both activity and biomarker data).

Mitnitski et al. [3] defined biological age acceleration
as ∆ = CA − BA, where CA denotes chronological age
and BA denotes biological age. However, here we used

Fig. 2. Variation of average physical activity with age. Values plotted for
individuals grouped by year of age.

TABLE I
CORRELATION BETWEEN AVERAGE PHYSICAL ACTIVITY,

CHRONOLOGICAL AGE, AND BLOOD BIOMARKERS.

Average Physical Activity Age
C-reactive protein -0.083 0.048
Glycated hemoglobin -0.086 0.340
Serum Albumin 0.167 -0.090
Total Cholesterol -0.034 0.182
Serum Urea Nitrogen -0.059 0.457
Alkaline Phosphatase -0.068 0.062
Systolic blood pressure -0.110 0.535
Diastolic blood pressure 0.049 0.099
Pulse -0.084 -0.211
High density lipoprotein -0.024 -0.014
Hemoglobin 0.150 -0.024
Lymphocyte percent 0.059 -0.066
White blood cell count -0.067 -0.053
Hematocrit 0.147 -0.011
Red blood cell count 0.151 -0.133
Platelet count -0.038 -0.116
Chronological age -0.193

the normalized biological age acceleration (NBAA), denoted
η = ∆

CA = CA−BA
CA used by Rahman and Adjeroh [10]. This

normalization is performed to reduce the effect of of large ∆s.
For example, a ∆ value of 5 could have different biological
or health implications for an 18 year old (≈ 28% difference)
and for a 70 year old (≈ 7% difference).

B. Estimated BA using 3D-CNN on physical activity data
leads to improved modeling of all-cause mortality.

Biological age is a quantitative measure which is expected
to provide some general indication of the health or functional
status of an individual. Numerous approaches have used the
idea of the association of physiological variables (biomarkers,
activity) for estimating BA [2], [14], [11], [15]. However,
given a new data modality, such as the human locomotor
activity data studied in this work, a different model may be
needed. The proposed network architecture is shown in Fig. 1.
To evaluate how well the estimated BA using the proposed
deep learning approache on locomotor activity data captures
the functional status of the subjects, we considered how the
estimated BA relates to health risks. In particular, we studied
the association of all-cause mortality with the normalized
biological age acceleration (η) using the estimated BA models.

Cox PH model. We used Cox proportional hazard modeling
(Cox PH) [16], [17] and Kaplan-Meier (KM) curves [18] to
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TABLE II
RESULTS OF THE COX PROPORTIONAL HAZARD (COX PH) MODEL AND

LOG-RANK TEST APPLIED ON THE NORMALIZED BIOLOGICAL AGE
ACCELERATION η = (CA−BA)/CA FOR ESTIMATED BIOLOGICAL

AGES.

CoxPH Log Rank
HR p-value Chi-Sq p-value

1D CNN[11] 1.05 1.63E-11 33.60 2.41E-07
DNN 1.07 1.75E-19 22.10 6.22E-05
2D CNN 1.06 1.89E-14 58.13 1.48E-12
3D CNN 1.13 5.94E-20 36.79 5.09E-09

quantify the association of the proposed 2D-CNN and 3D-
CNN estimated BA with all-cause mortality. Table II shows
the results for all the approaches. We applied η as the co-
variate in the Cox model. We observe that for 1D CNN, and
DNN, the HR value is 1.05, and 1.07 respectively. The 2D-
CNN gives HR = 1.06 while the proposed 3D-CNN approach
has the best results, with HR = 1.13.

(a) 1D CNN (b) DNN

(c) 2D CNN (d) 3D CNN
Fig. 3. The Kaplan Meier curves for estimated biological ages (BA) based
on the physical activity applying η = CA−BA

CA
for (a) 1D-CNN, (b) DNN,

(c) 2D-CNN, and (d) 3D-CNN. Q1, Q2, Q3, and Q4 denote 1st, 2nd, 3rd,
and 4th quartiles, respectively. The number of individuals in each Q is 276.

KM plots and LogRank. To further study the performance
of the estimated BAs, we analysed the Kaplan-Meier (KM)
survival curves obtained using the quantile factored NBAA
(η = CA−BA

CA ). Fig. 3 shows the KM plots for the BA
estimation algorithms. A given variable is a good mortality
predictor if the Kaplan-Meier curves are easily distinguishable
(more distance between them), and the variable gives a lower
survival rates from low to high levels, with less crossing
between curves. Among the deep learning BA estimation

methods, the approach proposed by Pyrkov et al. [11] using
1D CNN performed better than using the direct DNN model
on the 1D data. However, the proposed 2D-CNN and 3D-CNN
approach produced an improved result when compared with
the 1D-CNN method [11]. The differences among the biolog-
ical age estimation methods is more evident using quantitative
measures, e.g., the χ2-distance between their respective KM
curves, as captured by the log-rank test (see Table II). 2D-CNN
estimated biological age has the highest χ2-distance followed
by 3D-CNN, 1D-CNN, and DNN.

IV. DISCUSSION

In this work we have investigated deep learning approaches
on the NHANES locomotor physical activity data. We esti-
mate biological age (BA) based on the physical activity and
chronological age (CA). To quantify how well the estimated
biological age captures the health risk, we apply the Cox
proportional hazard model with all-cause mortality. The deep
learning models (i.e., DNN, (1, 2, 3)D-CNNs) were trained to
exploit the dependence of the physiological changes with age.
All the deep learning approaches were trained to minimize the
mean squared error (MSE) between estimated BA and CA.

For 3D-CNN we have used 128 filters, a kernel size of
3×3×3 with a ”ReLU” activation function. The first dense
layer has 256 filters and second has 128 filters. 30% dropout
was performed after each dense layer. We have selected Adam
optimizer for this work empirically. Mean square error (mse)
was used as loss function.

A. Connection with General Health Status.

Another way to investigate the performance of the proposed
approaches in capturing health risks is to consider their pos-
sible relationship with known indicators of health risk or how
the estimated biological age differentiates between subjects
with known diseases and those without. Below we consider
this perspective in evaluating a BA estimation method.

TABLE III
LOG RANK RESULTS APPLYING (η = CA−BA

CA
) FOR DIFFERENT SBSI

CATEGORIES. RESULTS ARE SHOWN AS χ2DISTANCES. Q1, Q2, DENOTE
1ST QUARTILE, 2ND QUARTILE, ETC.

SBSIQ1 SBSIQ2 SBSIQ3 SBSIQ4

1D-CNN 11.13 10.22 23.47 63.8
DNN 42.27 22.95 71.61 131.52
2D-CNN 13.88 18.98 31.91 78.28
3D-CNN 10.37 7.06 17.75 48.95

Relationship with Known Health Indices. For general
indices of health status, we can consider the body mass index
(BMI), waist to height ratio, or the more recently introduced
surface based body shape index (SBSI) [19]. In particular,
we studied the normalized biological age acceleration [10]
(denoted η) computed using the estimated BA from CNNs
with variations in the SBSI categories. Rahman and Adjeroh
made an observation on the superiority of SBSI over BMI
[19]. We have also observed the performance of the CNN
models with respect to the surface based body shape index
(SBSI [19]) quartiles. Table III shows the log-rank test on the
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SBSI quartiles. The results are shown using η, for each SBSI
category. We observe that, in general the χ2 values increase
from first quartile to fourth quartile (i.e., 2D-CNN, 3D-CNN).
However, the increase is not monotonic for all the variations
of CNN. For example, the χ2-distance decreased from Q1

(11.13) to Q2 (10.22) and then increased for Q3 (23.47) for
1D-CNN. We observe a similar trend for DNN as well. The
2D-CNN produced the best result on this metric.

B. Comparison

Pyrkov et al. [11] proposed a deep learning architecture
for analyzing the physical activity data that is based on a
one dimensional convolutional neural network (CNN) archi-
tecture. We implemented a 2-dimensional convolutional neural
network (2D-CNN, our own architecture and implementation)
and a deep neural network (DNN) [10] to estimate biological
age. These models (DNN, 1D-CNN, and 2D-CNN) are used as
comparative results. The results on mortality modeling using
the Cox model and KM curves have shown the performance
of the proposed 3D-CNN in comparison with DNN and 1D
CNN by Pyrkov et al. [11]. See Tables II and Fig. 3. The
results showed that the proposed 2D-CNN, and 3D-CNN
methods generally outperformed the 1D CNN, or the DNN.
Since the deep learning methods were trained to minimize
the mean square error between the estimated and the original
chronological age, we compare the methods based on their
performance in CA estimation.

TABLE IV
RESULTS OF THE DEEP LEARNING AGE PREDICTION METHODS.

MAE RMSE CORR epoch
1D-CNN[11] 15.49 18.81 0.45 500

DNN 15.92 18.38 0.45 100
2D-CNN 14.19 17.48 0.48 50
3D-CNN 14.08 19.40 0.48 10

Table IV shows the mean absolute error (MAE), root mean
square (RMSE), and correlation (CORR) for all the deep
learning methods discussed. We observe that 3D-CNN has the
lowest MAE (14.08) and best correlation (ρ=0.48). 2D-CNN
has a correlation of 0.48 and MAE of 14.19 respectively). 3D-
CNN required fewer epochs (10 compared with 50 (2D-CNN),
100 (DNN), and 500 (1D-CNN)) to converge.

V. CONCLUSION

In this work, we studied biological age estimation using
human locomotor activity. We applied two deep learning based
frameworks to estimate biological age (BA) using 2D-CNN
and 3D-CNN. We established that these models can be used
to exploit patterns in human locomotor physical activity to
estimate biological age. The paper used different measures
to compare performance in age estimation, including the
traditional methods (namely, MAE, RMSE, and correlation).
To evaluate performance in BA estimation, we considered
the relation with known health indices (SBSI), in addition
to traditional mortality modeling using Cox PH, χ2-distance
from the log-rank test, and KM curves. Considering different
methods for quantifying the performance of the estimated BA,

the 2D-CNN and 3D-CNN have the overall best results over
1D methods.
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