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a b s t r a c t 

Mobile devices are considerably pervasive in society, but also increase their vulnerability to 

worm attacks from mobile networks. In this paper, we propose a new Vulnerable-Exposed- 

Infectious-Quarantined-Secured worm propagation model with saturated incidence and 

strategies of both vaccination and quarantine. We obtain that the basic reproduction num- 

ber R 0 is a sharp threshold parameter such that the worm-free equilibrium is asymp- 

totically stable for R 0 ≤ 1, implying that the worm dies out eventually and its attack re- 

mains under control; the worm-existence equilibrium is asymptotically stable when R 0 > 1, 

namely, the worm is always persistent and spreading within a population. This paper pro- 

vides some novel insights to cyber security by that (a) the stability of worm-free equilib- 

rium establishes the control strategies to reduce the intensity of worm attacks, and the 

optimal control strategy is proposed by using Pontryagins Minimum Principle; (b) the sta- 

bility of worm-existence equilibrium predicts the tendency of worm propagation in a long 

run and assesses the level of the worm popularity by the final scale of infected devices. 

Numerical simulations are implemented to illustrate the feasibility of the theoretical re- 

sults and the effectiveness of the control strategies. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In today’s world, mobile devices (e.g., smartphone, laptop, and tablet) have been increasingly pervasive and considerably

facilitated our daily life. For example, a smartphone can access a large variety of services, including surfing the web, on-

line shopping or banking, mobile payment, and instant messaging. However, the services provided by these mobile devices

increase their risks of exposure to worm attacks from mobile networks, such as the ones based on Bluetooth, SMS/MMS

and Internet access. In high-speed networks, malicious worms breakout and spread fast due to their sophisticated spreading

mechanisms. The time taken for the infection of global targets has shrunk from days to minutes [1] . Meanwhile, the majority

of mobile devices have not been designed to guard against worm attacks, making them vulnerable to such attacks and then

become an attractive target and victim for worms. In 2004, the first Bluetooth-based worm, named Cabir, was launched.

Once two Bluetooth-enabled devices are in range, the compromised device pairs with its target using default passwords and

then sends malicious contents [2] . In 2008, Commwarrior, a SMS/MMS-based worm which delivers malicious content and

maintains communication with an attacker, appeared on the Internet [3] . The malicious worms can rapidly infect millions of
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mobile devices and bring huge economic losses [4,5] . A new Wi-Fi worm, called Chameleon, which could spread in a manner

similar to that of airborne diseases, appeared in 2014 [6] . If a mobile device has been compromised by the worms based

on Internet access, it may cause great disruption to its user, including data leakage, system damage, financial losses, and

privacy leakage [7] . Hence, the outbreak of malicious worms is considered by network experts as one of the most critical

threats to cyber security, functionality, and assets. 

It is a research topic of considerable interest not only to accurately model the dynamic behavior of the worm propa-

gation in mobile networks, but also to effectively fight against this worm prevalence among mobile devices. In the past

decades, researchers have proposed many mathematical models by ordinary differential equations (ODEs), see [8–12] and

the references therein. An important quarantine strategy was taken into account in the DQ model [13] , PWDQ model [14] ,

SEIQV model [15,16] , SEIQRS model [17] , and SEIQR model [18] . The Internet access station (e.g., Wi-Fi base station) could

easily quarantine infectious devices by cutting off their connection to other devices [18] , which can save the susceptible

devices from the attack of worms. Also in [19] , the process of protecting devices from infection by vaccination has substan-

tial historical success in reducing both morbidity and mortality. Due to the high similarity between network worms and

biological viruses, vaccination by installing efficient antivirus software or immunization procedures has been an effective

defense mechanism to control the attack of worms, and the vaccination is assumed to have full efficacy and permanent

immunity [15,16,20,21] . But in reality, the efficacy of such software does not reach 100% [22,23] . Thus, this research aims

at an ODE worm propagation model with both the quarantine strategy for infectious devices and the vaccination strategy

towards vulnerable devices, where an imperfect vaccine effectiveness is considered. 

The studies on epidemic models for biological viruses and network worms have demonstrated that the incidence rate

plays a critical role to describe the virus transmission or the worm propagation, where a bilinear incidence rate is frequently

used [9,11,15,17,18,23] . However, the bilinear incidence rate appears unrealistic so that it limits the usefulness of obtained

results in most practical situations. Then, many nonlinear incidence rates of more general forms have been proposed [16,24–

28] . The saturated incidence rate, a nonlinear incidence rate, tends to a saturation level as the number of susceptible devices

increases or the number of infectious devices gets larger. This incidence rate is more reasonable than the bilinear incidence

rate because it includes the inhibition effect from the behavioral change of susceptible devices and the crowding effect of

the infectious devices, and also prevents the unboundedness of contact rate by choosing suitable parameters, which, clearly,

can reduce the intensity of worm attack. In this study, an ODE mathematical model with the saturated incidence rate is

developed to simulate more accurately the dynamic behavior of the worm propagation and to effectively mitigate the worm

attack in mobile networks. 

Inspired by the above-mentioned references, we propose a new VEIQS (Vulnerable-Exposed-Infectious-Quarantined- 

Secured) worm propagation model with the saturated incidence rate, which focuses on the dynamics of the worm prop-

agation and the control strategies for worm attack by mitigating its magnitude and speed. The novel idea in the proposed

model is to combine both vaccination and quarantine strategies. In comparison to the existing results, the topological struc-

tures of the VEIQS model may be very complex, and then the theoretical analysis has considerable difficulty to some extent.

Using the basic reproduction number, the local and global stabilities in both the worm-free and worm-existence equilibria

are derived, along side efficient worm-epidemic control strategies for the worm attacks. An optimal control strategy (or

impulse control) is also considered to minimize the systemic cost of vaccination and quarantine as well as minimize the

infected mobile devices and maximize the secured devices. It is worth emphasizing that the stability for the worm-free

equilibrium is the theoretical basis of these control strategies; and the stability for the worm-existence equilibrium can give

a prediction of the tendency of worm propagation in a long run, and can obtain the final scale of infected devices (includ-

ing exposed, infectious, and quarantined devices). Meanwhile, some numerical simulations are carried out to illustrate the

feasibility of our theoretical results and the effectiveness of the obtained control strategies. 

The remaining part of this paper is organized as follows: Section 2 proposes a new VEIQS worm propagation model with

a saturated incidence rate and security countermeasures; Section 3 presents the stability analysis of the worm-free and

worm-existence equilibria; Section 4 covers the numerical analysis and the simulation; Section 5 gives the optimal control

strategy and some other control strategies to mitigate of worm attacks; Section 6 concludes the paper with future research

directions. The corresponding proofs of this study are available in Appendix. 

2. VEIQS worm propagation model 

Recently, Xiao et al. [18] developed an SEIQR (Susceptible-Exposed-Infectious-Quarantined-Recovered) worm propagation 

model, which describes the dynamic behaviors and characteristics of the worm spreading in a Wi-Fi environment. An effec-

tive quarantine strategy was also presented to control the prevalence of the Wi-Fi-based worms. But in practice, the scenario

described in the SEIQR model does not coincide with a real mobile network. Particularly, there are two problematical issues.

Firstly, mobile devices can access the Web not only via Wi-Fi networks but also via other Internet access; e.g., 4G networks.

Then, Internet access including Wi-Fi networks and 4G networks should be considered as one of the most widely used

means to connect to the mobile Internet among the mobile devices. Secondly, besides the quarantine strategy, the vaccina-

tion strategy with antivirus treatment is usually employed to protect from the worm propagation among mobile devices and

decrease the intensity of worm attacks in mobile networks. Also, the effects of other control strategies are analyzed on the

exposed and infectious states to prevent worm propagation in a short period immediately after detecting the worm attack,

which greatly mitigates the possibility of worm outbreak in early stage among mobile devices. 
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Fig. 1. State transition diagram of the VEIQS model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The SEIQR model only adopted the concept of natural death, and dysfunction occurs in all susceptible, exposed, in-

fectious, quarantined, and recovered states. However, the majority of mobile devices crash due to the attack of malicious

worms, so the more abnormal functioning of devices arises in the infectious and quarantined states which contain mo-

bile devices infected by these malicious worms. Furthermore, the SEIQR model is accompanied with the bilinear incidence

rate, which appears far too unrealistic in most practical situations to achieve the usefulness of obtained results. This paper

analyzes a worm propagation model with the saturated incidence rate, a more reasonable nonlinear incidence rate, to con-

sider the crowding effect of the infectious devices and prevent the unboundedness of the contact rate by choosing suitable

parameters, where the saturated incidence rate can be used to reduce the intensity of worm attack. 

The arguments above motivate us to develop a more suitable VEIQS model, where we take information terminology and

control strategies into account for mobile devices to prevent the worm propagation in mobile networks and further defend

against the worm attacks among mobile devices. Thus, we use the state names, “vulnerable” instead of “susceptible”, and

“secured” instead of “recovered”. The states of mobile devices are defined as follows: Vulnerable state (V) includes those

devices which are vulnerable to worm attacks in mobile networks, but have not been infected by the malicious worm;

Exposed state (E) includes those devices which are exposed to the attacks and have been infected, but not actively infectious

due to the latent time requirement; Infectious state (I) includes those exposed devices which are actively searching and

targeting new victims; Quarantined state (Q) includes those infectious devices which are quarantined by the Internet access

station; Secured state (S) includes those devices which gained one or more security countermeasures, providing the devices

with a permanent immunity against the malicious worms. The block diagram of VEIQS model state transition and model

parameters involved are shown in Fig. 1 . Table 1 shows notation used in this paper and baseline parameter values used in

Section 4 . Table 2 shows a summary of the state transitions and rates of devices in the VEIQS model. 

Combining Fig. 1, Tables 1 and 2 , the state transitions of devices in VEIQS model are detailed as follows: 

1. Using vaccination strategy via antivirus treatment in V-state to improve their immunity capability to control worm

attack, vulnerable devices can be vaccinated at a vaccine coverage rate of ν (0 ≤ν < 1). Due to the partial efficiency

of the vaccine, only σ (0 ≤σ ≤ 1) fraction of the vaccinated vulnerables, namely σνV vulnerable devices in all, move

to the S-state, where σ (0 ≤σ ≤ 1) represents the vaccine efficacy. When σ = 0 , the vaccination strategy has no effect

at all; when σ = 1 , the vaccination strategy is perfectly effective. 

2. The remaining (1 − ν) fraction of vulnerable devices and the remaining (1 − σ ) fraction of vaccinated vulnerables

both have no immunity to worm attacks, and then have to go to the E-state. In other words, (1 −σν) βV I 
1+ αI ( i . e ., (1 −ν) βVI 

1+ αI +
(1 −σ ) νβVI 

1+ αI ) vulnerable devices transition to the E-state, where βV I 
1+ αI denotes the saturated incidence rate, βI 

1+ αI tends

to a saturation level when I gets larger, βI measures the infection force when the worm is entering a fully vulnerable

population, and 

1 
1+ αI measures the inhibition from the crowding effect of the infectious devices and prevents the

unboundedness of the contact rate by choosing suitable parameters. 

3. The exposed devices transit into infectious state with rate η when the worm begins actively scanning the networks

for new victims, where 1/ η is the mean latent period. As η → ∞ , the latent period becomes negligible, and the VEIQS

model degenerates to a VIQS model. 
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Table 1 

Notation and parameter values in the model. 

Notation Explanation Initial values 

N( t ) Total number of devices at time t N(0) = 75,000 

V( t ) Number of vulnerable devices at time t Not fixed 

E( t ) Number of exposed devices at time t Not fixed 

I( t ) Number of infectious devices at time t Not fixed 

Q( t ) Number of quarantined devices at time t Q(0) = 0 

S( t ) Number of secured devices at time t S(0) = 0 

� Recruitment rate 0.75 

μ Natural death rate 0.00001 

θ Worm-related death rate 0.001 

σ Vaccination effective rate 0.6 

ν Vaccination coverage rate Not fixed 

α Constant parameter in saturated incidence rate 0.8 

β Infection rate of vulnerable devices by infectious devices 0.053 

η State transition rate from E to I 0.008 

ε State transition rate from E to S 0.0008 

γ State transition rate from I to S 0.05 

ξ State transition rate from I to Q 0.05 

ϕ State transition rate from Q to S 0.005 

Table 2 

State transition events and transition rates. 

Events including intermediate control strategies Rate of transition 

V → E (1- σ v ) βV( t )I( t )/(1+ αI( t )) 

V → S σ v V( t ) 

E → I ηE( t ) 

E → S εE( t ) 

I → Q ξ I( t ) 

Q → S ϕQ( t ) 

V → Dysfunctional μV( t ) 

E → Dysfunctional μE( t ) 

I → Dysfunctional ( μ + θ )I( t ) 

Q → Dysfunctional ( μ + θ )Q( t ) 

S → Dysfunctional μS( t ) 

Replaced → V �

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Considering the quarantine strategy imposed in the I-state, the infectious devices can be quarantined into the Q-

state with a quarantine rate ξ . When ξ = 0 , the quarantine strategy is not considered and no infectious device is

quarantined. Thus the VEIQS model degenerates to a VEIS model [21,23,27] . 

5. Using some sufficient defense mechanisms, a portion of the exposed, infectious, and quarantined devices in the net-

works become secured with an acquired permanent immunity, at rates ε, γ , and ϕ, respectively. The constant 1/ ϕ is

the mean quarantine period. As ϕ → ∞ , the quarantine period becomes negligible, and then the VEIQS model degen-

erates to a VEIS model [21,23,27] . 

6. Device dysfunction occurs in all states because of the natural death, but more importantly, the dysfunction mainly

arises in the states I and Q due to the attacks of malicious worms. The replacement of dysfunctional devices is done

in V-state and its rate in the total devices is denoted by �. 

Compared to the existing literature, the proposed VEIQS model combines worm-epidemic control strategies to prevent

the worm propagation in mobile networks and reduce the intensity of worm attacks to mobile devices, and also evaluates

the effect of these strategies on all the states except the S-state. As shown in Fig. 1 , the recovery routes for states V, E, I,

and Q are designed to estimate the recovery rate for each state in a real network worm attack. From the recovery routes,

we consider the control measures as follows: 

1. The recovery route from V-state (V-S) is obtained from the vaccination strategy taken in the V-state to prevent the

attack of worms. 

2. The recovery route from E-state (E-S) is obtained from a certain control measure taken in the E-state after detecting

the worm attack. 

3. The recovery route from I-state (I-S) is obtained from a control measure taken in I-state after the worm became active.

4. Another recovery route from I-state (I-Q) is obtained from the quarantine strategy taken in I-state to quarantine in-

fectious devices by the Internet access station. 

5. The recovery route from Q-state (Q-S) is obtained from the security countermeasure taken in Q-state after the infec-
tious devices are quarantined. 
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Based on the statements above, the VEIQS model with a saturated incidence rate and control strategies can be formulated

by the following non-linear ODEs: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

V 

′ (t) = � − (1 − σν) βV I 

1 + αI 
− (σν + μ) V, 

E ′ (t) = 

(1 − σν) βV I 

1 + αI 
− ( η + ε + μ) E, 

I ′ (t) = ηE − (ξ + γ + μ + θ ) I, 

Q 

′ (t) = ξ I − (ϕ + μ + θ ) Q, 

S ′ (t) = σνV + εE + γ I + ϕQ − μS. 

(1)

Let N ( t ) be the total number of mobile devices at time t , which satisfies 

N(t) = V (t) + E(t) + I(t) + Q(t) + S(t) . 

Note that N ( t ) varies with time since mobile devices enter and leave the system either through migration, natural death or

worm-induced death, which imbalances the inflows and outflows of a given system. Summing the equations in (1) gives 

N 

′ (t) = � − μN − θ (I + Q ) ≤ � − μN. 

After a simple computation, we have 

N(t) ≤
(

N(0) − �

μ

)
e −μt + 

�

μ
, 

and then 

lim 

t→∞ 

N(t) = 

�

μ
, 

which means that N ( t ) approaches to the stable equilibrium point �/ μ as t → ∞ . Denote the feasible region of system

(1) by 

� = 

{
(V, E, I, Q, S) ∈ R 

5 
+ | 0 ≤ V + E + I + Q + S ≤ �

μ

}
. 

To enrich the plausibility of our VEIQS model proposed by system (1) , we need to make non-negativity analysis. In fact,

the first equation of (1) implies that 

V 

′ (t) ≤ � − (σν + μ) V, 

which leads to 

V (t) ≤ �

σν + μ
+ 

(
V (0) − �

σν + μ

)
e −(σν+ μ) t . 

For a long time, we have 

V (t) ≤ �

σν + μ
=: �1 . 

This, along with the second equation of (1) , yields that 

E ′ (t) ≤ (1 − σν) β�1 

α
− ( η + ε + μ) E, 

It follows that 

E(t) ≤ (1 − σν) β�1 

α( η + ε + μ) 
+ 

(
E( 0) − ( 1 − σν) β�1 

α( η + ε + μ) 

)
e −(η+ ε+ μ) t , 

which, for a long time, shows that 

E(t) ≤ (1 − σν) β�1 

α( η + ε + μ) 
=: �2 . 

By the similar derivations as above, we still obtain that 

I(t) ≤ η�2 

ξ + γ + μ + θ
= �3 , 

Q(t) ≤ ξ�3 

ϕ + μ + θ
= �4 , 
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S(t) ≤ σν�1 + ε�2 + γ�3 + ϕ�4 

μ
. 

Hence from the above discussion, we obtain the following proposition. 

Proposition 1. The solutions of system (1) with initial conditions satisfy V ( t ) > 0, E ( t ) > 0, I ( t ) > 0, Q ( t ) > 0, and S ( t ) > 0 for all

t > 0, and the feasible region � is a positively invariant and attracting set with respect to system (1) . 

3. Stability analysis 

In this section, we firstly present the worm-free and worm-existence equilibria and the basic reproduction number of

the VEIQS model proposed in this paper. Secondly, we provide the local and global stabilities of the worm-free equilibrium,

which establish the theoretical basis of the control strategies for worm attacks. Thirdly, we explore the uniform persistence

of system (1) . Finally, the local and global stabilities of the worm-existence equilibrium are in detail analyzed to predict the

tendency of the worm propagation in a long run and to measure the level of the popularity of worm attacks by the final

scale of the infected devices (including exposed, infectious, and quarantined devices). 

3.1. Equilibria and basic reproduction number 

The basic reproduction number, denoted by R 0 , is a fundamental concept in epidemic dynamics of biological diseases and

network worms, which refers to “the average number of secondary cases generated by one primary case at the start of the

epidemic in a completely susceptible population” [29,30] . And the number R 0 essentially determines the dynamic behavior

of an epidemic and how intensive a policy will need to be to control the epidemic [30] . 

According to the theory of the next generation operator [31] , we determine the expression for the number R 0 . Firstly, we

establish the worm-free equilibrium, where the total number of the infected devices, namely, E(t) + I(t) + Q(t) , tends to 0

as the time t goes to infinity. Then it is easy to obtain that the system (1) always has the worm-free equilibrium: 

P 0 = (V 0 , E 0 , I 0 , Q 0 , S 0 ) = 

(
�

σν + μ
, 0 , 0 , 0 , 

σν

μ
V 0 

)
. (2)

Let E ′ (t) = 

(1 −σν) βV I 
1+ αI − (η + ε + μ) E = 0 , we have E = 

(1 −σν) βV 0 I 

(1+ αI)(η+ ε+ μ) 
, where V 0 = 

�
σν+ μ . Thus, 

D I (I ′ (t)) = D I 

[
(1 − σν) βη�I 

(1 + αI)(η + ε + μ)(σν + μ) 
− (ξ + γ + μ + θ ) I 

]

= 

(1 − σν) βη�

(σν + μ)(η + ε + μ) 

1 

(1 + αI) 2 
− (ξ + γ + μ + θ ) , 

and then at I 0 = 0 , 

A = D I | I= I 0 = 

(1 − σν) βη�

(σν + μ)(η + ε + μ) 
− (ξ + γ + μ + θ ) =: M − D 

Subsequently, we obtain the basic reproduction number R 0 as 

R 0 = 

M 

D 

= 

(1 − σν) βη�

(σν + μ)(η + ε + μ)(ξ + γ + μ + θ ) 
. (3) 

In fact, the basic reproduction number can also be derived with the method of next generation matrix [29] . To study the

dynamic behavior of the VEIQS model described by system (1) , we now present the following results on the worm-free and

worm-existence equilibria. 

Theorem 1. When R 0 ≤ 1, the worm-free equilibrium P 0 is the only equilibrium in � of the form (2) ; when R 0 > 1, the unique

worm-existence equilibrium P ∗ = (V ∗, E ∗, I ∗, Q 

∗, S ∗) exists in int( �) with coordinates satisfying ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

I ∗ = 

(1 − σν) βη� − (σν + μ)(η + ε + μ)(ξ + γ + μ + θ ) 

(η + ε + μ)(ξ + γ + μ + θ )[(1 − σν) β + α(σν + μ)] 
, 

V 

∗ = 

(η + ε + μ)(ξ + γ + μ + θ )(1 + αI ∗) 
(1 − σν) βη

, 

E ∗ = 

ξ + γ + μ + θ

η
I ∗, 

Q 

∗ = 

ξ

ϕ + μ + θ
I ∗, 

S ∗ = 

σνV 

∗ + εE ∗ + γ I ∗ + ϕQ 

∗

μ
. 

(4) 
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Also, N 

∗ = V ∗ + E ∗ + I ∗ + Q 

∗ + S ∗. 

Remark 1. The worm-existence equilibrium with its coordinates ( V 

∗, E ∗, I ∗, Q 

∗, S ∗) can give the final scales of the vulnerable,

exposed, infectious, quarantined, and secured devices, respectively, as the time t tends to infinity. In particular, the final scale

of infected devices, i.e., E ∗ + I ∗ + Q 

∗, can be used to measure the level of the worm popularity. 

Note here that the basic reproduction number R 0 is a sharp threshold parameter that determines the existence of the

worm-free and worm-existence equilibria. For the proof of Theorem 1 , refer to Appendix A1 . 

3.2. Stability of worm-free equilibrium 

In the subsection, we present two theorems regarding the dynamic behavior of the worm-free equilibrium. See

Appendixes A2 and A3 for their proofs. The first theorem is concerned with the local and asymptotical stability. 

Theorem 2. When R 0 ≤ 1, the worm-free equilibrium P 0 is locally asymptotically stable with respect to �; otherwise, P 0 is un-

stable. 

Further, we discuss the global and asymptotical stability of the worm-free equilibrium, which, along with Theorem 2 ,

shows that the local and global stabilities are equivalent. 

Theorem 3. When R 0 ≤ 1, the worm-free equilibrium P 0 is globally asymptotically stable with respect to �; otherwise, P 0 is

unstable. 

Remark 2. In Theorems 2 and 3 , the local and global stabilities of the worm-free equilibrium P 0 mean that when R 0 ≤ 1, V ( t )

and S ( t ) approach to their steady states �
σν+ μ and 

σν
μ V 0 , but the infected states (i.e., E 0 , I 0 , and Q 0 ) all approach to 0, as the

time t goes to infinity, which implies that R 0 ≤ 1 guarantees the worm is dying out in the end and then its attack remains

under control. Hence, in order to bring the worm attack under control, we adopt some feasible and effective strategies to

reduce R 0 to be less than unity, where these strategies are the control strategies, appearing in Section 5 , to reduce the

intensity of worm attack. From the arguments above, Theorems 2 and 3 are the theoretical basis of these control strategies.

Note also that the basic reproduction number R 0 not only determines the local and global stabilities of the worm-free

equilibrium P 0 , but also governs whether the infected devices disappear in time locally and globally, respectively, which

implies that the number R 0 will play an important role in the control of an epidemic of worm in mobile networks. See

Section 5 for more details. 

3.3. Uniform worm persistence 

In this subsection, we explore the uniform persistence of system (1) when the basic reproduction number R 0 > 1, by the

acyclicity theorem [ 32 , P. 18], and its proof is delayed to Appendix A4 . 

Definition 1. [33] The system (1) is said to be uniformly persistent in �, if there exists a constant 0 < c < 1 such that any

solution ( V ( t ), E ( t ), I ( t ), Q ( t ), S ( t )) of system (1) with initial value ( V (0), E (0), I (0), Q (0), S (0)) ∈ int( �) satisfies 

min 

{ 

lim inf 
t→∞ 

V (t) , lim inf 
t→∞ 

E(t) , lim inf 
t→∞ 

I(t) , lim inf 
t→∞ 

Q(t) , lim inf 
t→∞ 

S(t) 
} 

≥ c. 

Theorem 4. System (1) is uniform persistent in � if and only if R 0 > 1 . 

Remark 3. The uniform persistence of (1) in the bounded set � is equivalent to the existence of a compact set K ⊂� that

is absorbing for (1) (see [34] ). 

3.4. Stability of worm-existence equilibrium 

In this subsection, we analyze the asymptotical stability of the worm-existence equilibrium P ∗, which is of more impor-

tance to investigate than the worm-free equilibrium P 0 from the epidemiological perspective. The proofs of main results are

presented in Appendixes A.5 and A6 . 

Theorem 5. When R 0 > 1, the worm-existence equilibrium P ∗ is locally asymptotically stable with respect to �. 

As generally acknowledged, the local and asymptotical stability of worm-existence equilibrium P ∗ may be of no practical

significance for a real network system since it merely guarantees this stability relative to small perturbation of the initial

state from the equilibrium. Thus in what follows, by using the Li–Muldowney geometric approach [35] , we aim to establish

the global and asymptotical stability of the equilibrium P ∗ for system (1) when R 0 > 1. 

Theorem 6. When R 0 > 1, the worm-existence equilibrium P ∗ is globally asymptotically stable in int( �) . 

Remark 4. The global and asymptotical stability of P ∗ in int( �) means that the region � − { (V, E, I, Q, S) | I = 0 } is a globally

asymptotically stable region for the worm-existence equilibrium P ∗. 
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Table 3 

The conditions of asymptotical stability (basic reproduction number). 

[16] [12] [10] [19] This paper 

Worm-free Local N/A R 0 ≤ 1 R 0 ≤ 1 R 0 < 1 R 0 ≤ 1 

Worm-free Global R 0 ≤ 1 R 0 ≤ 1 R 0 ≤ 1 R 0 < 1 R 0 ≤ 1 

Worm-existence Local N/A R 0 > 1 R 0 > 1 R 0 > 1 R 0 > 1 

Worm-existence Global N/A N/A R 0 > 1 N/A R 0 > 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remark 5. The local and global stabilities of the worm-existence equilibrium P ∗ established in Theorems 5 and 6 tell us

that when R 0 > 1, all the states V ( t ), E ( t ), I ( t ), Q ( t ), and S ( t ) approach to their steady states V 

∗, E ∗, I ∗, Q 

∗, and S ∗, respectively,

appearing in system (4) , as the time t goes to infinity. These results show that R 0 > 1 guarantees the network worm is per-

sistent and always spreading within a population, where we can make a prediction of the tendency of the worm propagation

in a long run, and assess the level of the popularity of worm attack through the final scale of the infected devices, that is

E ∗ + I ∗ + Q 

∗. 

Note here that the basic reproduction number R 0 , as a threshold number, can completely determine the local and global

stabilities of the worm-existence equilibrium P ∗ and govern whether or not the malicious worm is always persistent in time

locally and globally among mobile devices. 

Finally, we compare the performance of the proposed VEIQS model to those of some existing worm propagation models

in terms of asymptotical stability. Refer to Table 3 , the stability obtained in our model is similar to those of the existing

models. 

4. Numerical analysis 

In this section, we conduct numerical simulations to analyze the performance and the dynamic behaviors of the VEIQS

model, which illustrates the feasibility of the obtained theoretical results. 

4.1. Simulation setting 

In the real world, it is very difficult to obtain worm traffic traces or realistic parameters. Even in literature (e.g. [36] ),

some traffic traces are not public. Also, most available traces from CAIDA ( www.caida.org ) or MIT do not contain the legiti-

mate traffic flow on links since the traces were deliberately filtered before making them available. Then, we are not able to

find proper parameters between the worm traffic and the legitimate traffic flow on the same link at the same time. However

in this paper, we attempt to determine the parameters from the Slammer worm in next two paragraphs. 

Refer to Tables 1 and 2 , where the initial parameter values are calculated and chosen carefully to suit a real malicious

worm attack scenario. Slammer, one of the fastest-spreading worms, infected 75,0 0 0 devices in the first 30 min in Jan-

uary 2003 [1] . Thus, we assume that the total number of devices is N(0) = 75 , 0 0 0 . Based on the fact that Slammer is a

bandwidth-limited worm with an average scan rate s = 40 0 0 scans/s [15] , the infection rate of the malicious worm can

be calculated as β = 0 . 053 . The natural death rate not due to worm is μ = 0 . 0 0 0 01 , and the death rate due to worm is

θ = 0 . 001 ; the state transition rates from E to I, from I to S, and from Q to S, are η = 0 . 008 , γ = 0 . 05 , and ϕ = 0 . 005 ,

respectively. The results are based on the average of at least 10 simulation runs [15] . 

The other parameters in these simulations are given as follows. By the definition of the feasible region �, the recruitment

rate of all devices is set as � = 0 . 75 . Considering the quarantine control strategy, the quarantine rate of infectious devices is

set as ξ = 0 . 05 [18] . The average time for exposed devices to be secured is 1,200 seconds [11] , the transition rate from states

E to S is ε = 1 / 1200 
. = 0 . 0008 . To measure the efficiency of the vaccination in a real network environment, the vaccination

effective rate is set as σ = 0 . 6 . Finally, the constant parameter α in the saturated incidence rate is assumed to be 0.8. 

4.2. Performance comparison of VEIQS and existing models 

To evaluate the performance of the VEIQS model, it is compared by a numerical method with the existing SEIQV [15,16] ,

SEIQR [18] , and SEIRS [9] models. All models share the same parameters as those in Section 4.1 , and the initial numbers

of vulnerable, exposed, infected, quarantined, and secured devices are V (0) = 74 , 990 , E(0) = 0 , I(0) = 10 , Q(0) = 0 , and

S(0) = 0 , respectively. In order to measure the impact of the vaccination control strategy, the vaccination coverage rate is

set for the vulnerable devices to be ν = 0 . 5 . In Fig. 2 , we draw the curves of the numbers of the infectious and secured

devices for each of the four models, among which Fig. 2 (a) shows that the number of infectious devices and the time it

takes to combat the worm in our VEIQS model are both much smaller than those in the other models; Fig. 2 (b) shows

a noticeable increase and a rapid propagation speed for the secured devices in the VEIQS model than those of the other

models. Clearly, the results shown in Fig. 2 validate that the proposed model can more effectively control worm attacks in

mobile networks than the other three models. 

http://www.caida.org
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4.3. Sensitivity analysis of parameter α in saturated incidence rate 

In this subsection, we perform a numerical simulation to analyze the sensitivity of constant parameter α in the saturated

incidence rate, where we choose α = 0 , 0.8, and 3, while keeping other parameters of our model the same as those in

Section 4.2 . See Fig. 3 , the effect of the parameter α on the number of infectious devices is depicted in Fig. 3 (a), which

shows that the larger the parameter α is, the smaller the number of the infectious devices is and the slower the worm

spreads at the early stage; the effect of the parameter α on the number of secured devices is depicted in Fig. 3 (b), which

shows that a larger parameter α can cause a larger number of devices to become secured at a much faster speed. This

analysis indicates that by enlarging the parameter α, we can effectively reduce the intensity of worm outbreak. 

In particular, when α = 0 , namely that the proposed VEIQS model is equipped with a bilinear incidence rate, not the

saturated incidence rate, it can be seen from Fig. 3 that the worm can propagate more quickly and last much longer in the
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Fig. 4. Dynamics of the worm-free equilibrium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mobile networks, and the number of infectious devices are much greater; meanwhile, the number of the devices becoming

secured from all states is smaller and reaches its maximum in a longer term. The argument tells us that the saturated

incidence rate is more reasonable and effective than the bilinear incidence rate to mitigate the worm attack in mobile

networks. 

4.4. Stabilities of worm-free and worm-existence equilibria 

In this subsection, we conduct a numerical experiment for two sets of parameters that illustrate the dynamic behavior

of the VEIQS model depending on the value of the basic reproduction number. 

Firstly, the initial numbers of modelling states are set as V (0) = 45 , 0 0 0 , E(0) = 20 , 0 0 0 , I(0) = 10 , 0 0 0 , Q(0) = 0 , and

S(0) = 0 , and the parameters are set as the same as those in Section 4.2 . By using Eq. (2) , the worm-free equilibrium

P 0 = (2 . 5 , 0 , 0 , 0 , 74997 . 5) , and by Eq. (3) , the basic reproduction number R 0 = 0 . 8338 < 1 . Thus by Theorems 2 and 3 , the

worm-free equilibrium (2.5, 0, 0, 0, 74997.5) is locally and globally asymptotically stable, which means that as the time t

goes to infinity, V ( t ) and S ( t ) approach to their steady states 2.5 and 74997.5, but E ( t ), I ( t ), and E ( t ) approach to 0. Especially,

the final scale of the infected devices, namely, E 0 + I 0 + Q 0 , is equal to 0, which suggests that the worm is dying out, the

infected devices will gradually disappear, and the worm attack is under control eventually. From Fig. 4 , we observe that the

tendency of the worm propagation is depressive in a long run, and the final size of infected devices is gradually vanishing

in the end, which is consistent with the theoretic results as those in Theorems 2 and 3 . 

Secondly, we set the vaccination coverage rate as ν = 0 . 1 , and the initial numbers of modelling states and the other

parameters as those in Section 4.2 . Based on these numerical values, we obtain, by Eq. (4) , that the unique worm-existence

equilibrium P ∗ = (7 . 27 , 35 . 61 , 2 . 82 , 23 . 46 , 72298 . 8) , and by Eq. (3) , the basic reproduction number R 0 = 5 . 597 > 1 . Hence by

Theorems 5 and 6 , the worm-existence equilibrium (7.27, 35.61, 2.82, 23.46, 72298.8) is locally and globally asymptotically

stable, which shows that as the time t goes to infinity, V ( t ), E ( t ), I ( t ), Q ( t ), and S ( t ) all approach to their steady states 7.27,

35.61, 2.82, 23.46, and 72298.8, respectively. The local and global stability of worm-existence equilibrium gives a prediction

of the tendency of the worm propagation among mobile devices, see Fig. 5 . From this analysis, the final scale of the infected

devices, E ∗ + I ∗ + Q 

∗, is derived as 61.89, and the worm is always spreading in a population 61.89, which can be used to

assess the level of the popularity of worm attacks in mobile networks. The numerical simulation results are shown in Fig. 5 ,

in which Fig. 5 (a) gives roughly the curves of V ( t ), E ( t ), I ( t ), Q ( t ), and S ( t ) in a short period; Fig. 5 (b) presents further details

of V ( t ), E ( t ), I ( t ), and Q ( t ), and plots the tendency of the worm propagation in a later period, which are consistent with the

theoretic results in Theorems 5 and 6 . 

Besides, for the global stability, we incorporate two 3-dimensional figures by considering different initial

numbers of modelling states, namely, (V (0) , E(0) , I(0) , Q(0) , S(0)) = (74 , 990 , 0 , 10 , 0 , 0) , (68 , 0 0 0 , 20 0 0 , 50 0 0 , 0 , 0) , or

(59 , 0 0 0 , 60 0 0 , 10 , 0 0 0 , 0 , 0) . The model parameters are the same as those in the above second case for the global stability.

See Fig. 6 (a) and (b), we see that the system (1) ultimately reaches the worm-existence equilibrium point. Precisely, Fig. 6 (a)

indicates that for different initial values, ( V ( t ), E ( t ), S ( t )) ultimately converges to the point ( V 

∗, E ∗, S ∗); while in Fig. 6 (b), ( I ( t ),
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Fig. 5. Dynamics of the worm-existence equilibrium. 
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Q ( t ), S ( t )) converges to the point ( I ∗, Q 

∗, S ∗). Consequently, Fig. 6 can enable us to evaluate the unique worm-existence

equilibrium numerically. 

As shown in Figs. 4–6 , the infected devices (including exposed, infectious, and quarantined devices) will gradually dis-

appear or tend to a minuscule scale, and almost all devices in the system become secured after a period of time. This

illustrates that the worm attack does exist but be of small size, which is mainly thanks to the control strategies of vaccina-

tion, quarantine and others adopted in the proposed VEIQS model. The simulation results show the feasibility and rationality

of our VEIQS model with control strategies. 

5. Control strategies 

It is well-known that “optimal control strategy” or “impulse control strategy” is commonly used by mathematical ap-

proaches to control some disease, see [37–39] , and the corresponding region plot, an improved numerical simulation, can
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be found in literature [37,40,41] . Also, for discrete-time systems, a new output feedback H ∞ 

control method is mentioned in

[42,43] . So in this paper, we firstly present the optimal control strategy based on Pontryagin’s Minimum Principle [44] , and

secondly from the explicit expression (3) of the basic reproduction number R 0 , we give some control strategies to prevent

the worm propagation through mobile networks. Besides, we carry out the corresponding numerical simulations to illustrate

the effectiveness of these obtained control strategies. 

5.1. The optimal control strategy (or impulse control) 

In this subsection, we construct an optimal control strategy to minimize the systemic cost of vaccination and quarantine

as well as minimize the infected mobile devices (including exposed and infectious ones) and maximize the secured devices.

So in the VEIQS model described by (1) , we choose two control variables u 1 ( t ) and u 2 ( t ), which, respectively, represent the

inhibiting effect on worm infection in mobile networks by the vaccination and quarantine strategies satisfying 0 ≤ u i ( t ) ≤ 1,

i = 1 , 2 . In particular, u 1 (t) = 1 (or u 2 (t) = 1 ) means the maximal use of vaccination (or quarantine), and u 1 (t) = 0 (or

u 2 (t) = 0 ) means no vaccination (or quarantine). The optimal control problem is formulated as 

J(u 1 , u 2 ) = 

∫ t f 

t 0 

[ Ku 

2 
1 (t) + Lu 

2 
2 (t) + E(t) + I(t) − S(t )] dt , 

subject to the state system ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

V 

′ (t) = � − (1 − u 1 (t)) βV I 

1 + αI 
− (u 1 (t) + μ) V, 

E ′ (t) = 

(1 − u 1 (t)) βV I 

1 + αI 
− ( η + ε + μ) E, 

I ′ (t) = ηE − (u 2 (t) + γ + μ + θ ) I, 

Q 

′ (t) = u 2 (t) I − (ϕ + μ + θ ) Q, 

S ′ (t) = u 1 (t) V + εE + γ I + ϕQ − μS, 

(5) 

where the parameters K ≥ 0 and L ≥ 0 are the weights on the benefits of the cost of vaccination and quarantine, respectively.

Our main goal is to seek the optimal control pair (u ∗
1 
, u ∗

2 
) such that 

J(u 

∗
1 , u 

∗
2 ) = min { J(u 1 , u 2 ) : (u 1 , u 2 ) ∈ U} , (6)

where U is the control set defined by U = U 1 × U 2 = { (u 1 (t) , u 2 (t)) : u 1 (t) and u 2 (t) are measurable , 0 ≤ u 1 (t) ≤ 1 , 0 ≤
u 2 (t) ≤ 1 , t ∈ [ t 0 , t f ] } . 

In order to determine the optimal control pair (u ∗1 , u 
∗
2 ) , we first discuss its existence by Fleming and Rishel [45] . 

Theorem 7. There exists an optimal control pair (u ∗
1 
, u ∗

2 
) ∈ U such that (6) subject to the state system (5) with the initial condi-

tions at time t 0 . 

For the state system (5) , we derive the Hamiltonian as follows: 

H = Ku 

2 
1 + Lu 

2 
2 + E + I − S + w 1 

[
� − (1 − u 1 ) βV I 

1 + αI 
− (u 1 + μ) V 

]
+ w 2 

[
(1 − u 1 ) βV I 

1 + αI 
− (η + ε + μ) E 

]
+ w 3 [ ηE − (u 2 + γ + μ + θ ) I ] + w 4 [ u 2 I − (ϕ + μ + θ ) Q ] + w 5 [ u 1 V + εE + γ I + ϕQ − μS ] . (7) 

Then by applying the Pontryagin’s Minimum Principle [44] to the Hamiltonian (7) , we obtain the following theorem. 

Theorem 8. Given an optimal control pair ( u 1 , u 2 ) and corresponding solution of the state system (5) , there exist adjoint variables

w i , i = 1 , . . . , 5 , satisfying the adjoint system of equations as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

w 

′ 
1 (t) = −∂H 

∂V 

= 

(w 1 − w 2 )(1 − u 1 ) βI 

1 + αI 
+ (w 1 − w 5 ) u 1 + w 1 μ, 

w 

′ 
2 (t) = −∂H 

∂E 
= −1 + (w 2 − w 3 ) η + (w 2 − w 5 ) ε + w 2 μ, 

w 

′ 
3 (t) = −∂H 

∂ I 
= −1 + 

(w 1 − w 2 )(1 − u 1 ) βV 

(1 + αI) 2 
+ (w 3 − w 4 ) u 2 + (w 3 − w 5 ) γ + w 3 (μ + θ ) , 

w 

′ 
4 (t) = −∂H 

∂Q 

= (w 4 − w 5 ) ϕ + w 4 (μ + θ ) , 

w 

′ 
5 (t) = −∂H 

∂S 
= 1 + w 5 μ, 

(8) 

with boundary conditions w i (t f ) = 0 , for i = 1 , . . . , 5 . Furthermore, the optimal control pair (u ∗
1 
, u ∗

2 
) for (5) such that (6) is

characterized by 
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⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

u 

∗
1 = max 

{
0 , min 

{
1 , 

1 

2 K 

[
(w 2 − w 1 ) βV I 

1 + αI 
+ (w 1 − w 5 ) V 

]}}
, 

u 

∗
2 = max 

{
0 , min 

{
1 , 

(w 3 − w 4 ) I 

2 L 

}}
. 

(9)

Remark 6. The optimality system consists of the state system (5) , the adjoint system (8) with the initial and boundary

conditions, and the optimal control pair (u ∗1 , u 
∗
2 ) characterized by (9) , which means that the optimality system is shown as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

V 

′ (t) = � − (1 − u 

∗
1 ) βV I 

1 + αI 
− (u 

∗
1 + μ) V, 

E ′ (t) = 

(1 − u 

∗
1 ) βV I 

1 + αI 
− ( η + ε + μ) E, 

I ′ (t) = ηE − (u 

∗
2 + γ + μ + θ ) I, 

Q 

′ (t) = u 

∗
2 I − (ϕ + μ + θ ) Q, 

S ′ (t) = u 

∗
1 V + εE + γ I + ϕQ − μS, 

w 

′ 
1 (t) = −∂H 

∂V 

= 

(w 1 − w 2 )(1 − u 

∗
1 ) βI 

1 + αI 
+ (w 1 − w 5 ) u 

∗
1 + w 1 μ, 

w 

′ 
2 (t) = −∂H 

∂E 
= −1 + (w 2 − w 3 ) η + (w 2 − w 5 ) ε + w 2 μ, 

w 

′ 
3 (t) = −∂H 

∂ I 
= −1 + 

(w 1 − w 2 )(1 − u 

∗
1 ) βV 

(1 + αI) 2 
+ (w 3 − w 4 ) u 

∗
2 + (w 3 − w 5 ) γ + w 3 (μ + θ ) , 

w 

′ 
4 (t) = −∂H 

∂Q 

= (w 4 − w 5 ) ϕ + w 4 (μ + θ ) , 

w 

′ 
5 (t) = −∂H 

∂S 
= 1 + w 5 μ, 

with boundary conditions, w i (t f ) = 0 , for i = 1 , . . . , 5 , and initial conditions at time t 0 . 

For the proofs of Theorems 7 and 8 , the readers are referred to Appendixes A.7 and A8 . Using Lemma 4.1 of Joshi [46] and

following the proof of Theorem 2 of [39] , the uniqueness of the optimality system is obtained immediately. 

Theorem 9. The solution of the optimality system is unique for sufficient small t f . 

Finally, we conduct some numerical simulations to illustrate the effectiveness of the optimal control theoretic approach.

The initial numbers and the parameters of model (1) are taken as the same as those in Section 4.2 . As shown in Fig. 7 , we

give the system dynamics with control and without control, of which more details are presented as follows: 

1. Fig. 7 (a) depicts the trend of the number of vulnerable devices over time with control and without control. It is seen

that in absence of control, the number of vulnerable devices is negligible all the time, which means that almost all the

vulnerable ones will be infected immediately by the malicious worms once they are caught in the mobile networks. 

2. Fig. 7 (b) depicts the trend of the number of exposed devices over time with control and without control, where we

observe that the number of exposed devices with control is much smaller than that without control, and also in

presence of the optimal control, the exposed devices last shorter in mobile environment. 

3. Fig. 7 (c) depicts the trend of the number of infectious devices over time with control and without control, where

we find that without control, the maximum number of infectious devices is nearly 80 0 0, while with control, the

maximum number of infectious ones is much smaller, namely 600, and the worm will disappear soon once it breaks

out. 

From Fig. 7 (b) and (c), we conclude that by using the optimal control, the worm lasts much shorter in mobile net-

works, and the mobile devices infected by this worm (including exposed and infectious ones) becomes fewer. 

4. Fig. 7 (d) depicts the trend of the number of secured devices over time with control and without control, which

indicates that the number of secured devices with control is larger and reaches its maximum much faster than that

without control. So in presence of control, a larger number of mobile devices become secured at much faster speed. 

In conclusion, the numerical results of Fig. 7 demonstrates that by introducing an optimal control into a system can have

a profound effect on mobile devices, and the optimal control techniques provide effective tools to defend against worm

attacks. 

5.2. Control strategies based on R 0 

As was stated in Section 3 and 4.4, the basic reproduction number R 0 is a sharp threshold value completely determining

the dynamic behaviors of the VEIQS model in the feasible region. Besides, this threshold value plays a critical role to control
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Fig. 7. System dynamics with control and without control. 

 

 

 

 

 

 

an epidemic of worm among mobile devices. In fact, by Theorems 2 and 3 , we obtain the local and global stabilities of the

worm-free equilibrium P 0 under the condition that R 0 ≤ 1. Thus, in order to prevent a mobile-network based worm outbreak

from becoming an epidemic and then mitigate the intensity of the epidemic, we control the corresponding parameters to

make R 0 ≤ 1. From Eq. (3) , the basic reproduction number R 0 depends on the parameters as follows: the recovery coefficients

ε and γ , the infection rates β and η from states V and E, the natural and worm-related death rates μ and θ , the quarantine 

rate ξ , vaccination effective and coverage rates σ and ν , and recruitment rate �. Note that the threshold parameter does

not depend on the recovery rate ϕ from states Q to S . 

Based on Theorems 2 and 3, we have a statement below regarding the parameters in (3) , in order to prevent the

widespread of worms and decrease its attack through mobile networks. We delay its proof to Appendix A9 . 

Corollary 1. To stop the worm attack in mobile networks, the parameters should satisfy the following conditions: 

� < 

(σν + μ)(ξ + γ + θ + μ) 

(1 − σν) β
; β < 

(σν + μ)(ξ + γ + θ + μ) 

(1 − σν)�
; σν > 

β� − μ(ξ + γ + θ + μ) 

ξ + γ + θ + μ + β�
;

γ > 

(1 − σν) β�

σν + μ
− (ξ + θ + μ) ; ξ > 

(1 − σν) β�

σν + μ
− (γ + θ + μ) ; θ > 

(1 − σν) β�

σν + μ
− (ξ + γ + μ) ;

ε > 

(1 − σν) βη�

(σν + μ)(ξ + γ + θ + μ) 
− (η + μ) ;

and 

η < 

(σν + μ)(ε + μ)(ξ + γ + θ + μ) 

(1 − σν) β� − (σν + μ)(ξ + γ + θ + μ) 
, i f (1 − σν) β� > (σν + μ)(ξ + γ + θ + μ) ;

or 
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η > 

(σν + μ)(ε + μ)(ξ + γ + θ + μ) 

(1 − σν) β� − (σν + μ)(ξ + γ + θ + μ) 
, i f (1 − σν) β� < (σν + μ)(ξ + γ + θ + μ) . 

Taking into account the numeric values for the parameters as the same as those in Section 4.2 except σ and ν , we

conclude that the transition from the worm-free regimen to the worm-existence regimen occurs when σν = 0 . 1787 , which

matches well with the lower-bound of σν appearing in Corollary 1. The same concerns the other parameters. 

Taking partial derivatives of R 0 in Eq. (3) , we have 

∂R 0 

∂σ
< 0 , 

∂R 0 

∂ν
< 0 , 

∂R 0 

∂β
> 0 , 

∂R 0 

∂η
> 0 , 

∂R 0 

∂�
> 0 , 

∂R 0 

∂μ
< 0 , 

∂R 0 

∂ε
< 0 , 

∂R 0 

∂ξ
< 0 , 

∂R 0 

∂γ
< 0 , and 

∂R 0 

∂θ
< 0 , 

which show that if we set all variables of R 0 constant except only one, the function R 0 decreases as the parameters β , η,

and � decrease or the parameters σ , ν , μ, ε, ξ , γ , and θ increase. Thus, to reduce the value of R 0 , we could reduce the

numeric values of β , η, and �, or increase the values of σ , ν , μ, ε, ξ , γ , and θ . See, for example, the 3-dimensional plot

and Contour plot in Fig. 8 , which further describes the trend of R 0 over time with different transmission rates β and ξ . It

can be seen that R 0 increases in β and decreases in ξ . The same concerns the other transmission rates. 

From the above analysis of the basic reproduction number, the following control measures are obtained to prevent the

worm propagation through mobile networks and then control the worm outbreak among mobile devices. Meanwhile, the

corresponding numerical simulations are carried out to illustrate the effectiveness of the obtained measures, especially the

impacts of the given parameters on the number of infectious devices and the speed of worm propagation. Notice here that

the infectious number and the propagation speed are two key factors in determining the intensity of worm attack. 

1. Reducing the infection rate β of vulnerable devices by installing efficient antivirus softwares or immunization pro-

cedures. A numerical experiment of this strategy is conducted to evaluate the impact on the infectious devices with

different inf ection rates β = 0 . 1 , 0.053, and 0.01. The initial numbers of modelling states and the other parameters

are set as the same as those in Section 4.2 . From Fig. 9 (a), we see that as the infection rate β decreases, the number

of infectious devices and the time taken to combat the worm become much smaller. 

2. Reducing the infectious rate η from the exposed state. In order to investigate the impact of this infectious rate on

the infectious devices, we set the different values for η as 0.0 08, 0.0 03, and 0.0 01, and set the initial numbers of

modelling states and the other parameters as those in Section 4.2 . As shown in Fig. 9 (b), the smaller the infectious

rate η is, the fewer vulnerable devices are infected in a long run, which indicates that the worm propagates more

slowly with the reduction of infectious rate. 

3. Increasing the quarantine rate ξ by enhancing the quarantine capabilities. In the following numerical experiment,

we consider the effect of changing the quarantine rate on the worm propagation. Set ξ = 0 . 03 , 0.05, and 0.09, and

the initial numbers of modelling states and the other modelling parameters are the same as those in Section 4.2 .

See Fig. 9 (c), a higher quarantine rate results in lowering the number of infectious devices, diminishing the worm
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Fig. 9. Impacts of the modelling parameters on the infectious devices. 
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propagation speed, and shortening the time taken to combat the worm. Clearly, the quarantine strategy is pretty

effective to mitigate the worm attack, which is because the higher quarantine rate causes fewer infectious devices

able to infect other devices, so that fewer devices can be infected at every time. 

4. Increasing the vaccination coverage rate ν by enlarging the user scale of antivirus software. Conduct a numerical

experiment to show the impact of the vaccination coverage rate on the infectious devices with different values ν =
0 . 5 , 0.7, and 0.9, where the initial numbers of modelling states and the other parameters are the same as those in

Section 4.2 . From the curves plotted in Fig. 9 (d), we observe that with the increase of the vaccination coverage rate,

the total number of infectious devices become smaller, the worm propagation speed become lower, and the time

taken to combat the worm propagation is shorter. 

5. Increasing the vaccination effective rate σ of antivirus software by improving the quality of antivirus software. Set

σ = 0 . 6 , 0.7, and 0.9, and the initial numbers of modelling states and the other parameters as those in Section 4.2 .

The impact of the vaccination efficiency on the infectious devices is shown in Fig. 9 (e), in which when σ = 0 . 6 , the

maximum number of infectious devices is nearly 800; when σ = 0 . 9 , the number of infectious devices is negligible,

and the worm will die out soon after it breaks out. Then, improving the vaccination efficiency of antivirus software

can reduce the number of infectious devices and the time it takes to combat the worm propagation in mobile net-

works. 

6. Increasing the recovery rate ε from the exposed state by sensitizing users to install security countermeasures. In this

experiment, we consider the effect of the recovery rate on the infectious devices with different values ε = 0 , 0.0 0 08,

and 0.0018. The initial numbers of modelling states and the other parameters are the same as those in Section 4.2 .

From Fig. 9 (f), it can be seen that the larger the recovery rate is, the fewer devices are infected in a shorter time,

which shows that the worm propagates more slowly in the mobile networks with the increase of recovery rate ε. 

7. Increasing the recovery rate γ from the infectious state by improving the performance of antivirus software. Now

we vary the recovery rate γ to study its impact on the infectious devices, where γ = 0 . 05 , 0.10, and 0.15, and the

initial numbers of modelling states and the other parameters are the same as those in Section 4.2 . Fig. 9 (g) illustrates

that the worm propagates in a shorter term and infects fewer devices in mobile networks as the recovery rate γ
increases, which can decrease the intensity of worm attack since a larger recovery rate γ can reduce the number of

the infectious devices that are able to infect other devices; so that fewer devices can be infected at every time. 

8. Increasing the death rate θ that is related to worm. Set three values for θ = 0 . 001 , 0 . 01 , and 0.09, to analyze their

impact on the infectious devices, where the initial numbers of modelling states and the other parameters are set as

those in Section 4.2 . The curves in Fig. 9(h) show that as the worm-related death rate increases, the worm propagates

more slowly and lasts much shorter in mobile networks, and the mobile devices infected by this worm becomes

fewer. 

Theoretically, increasing the natural death rate μ can reduce the basic reproduction number and thus control the worm

breakout. By a simple calculation, the elasticity of the basic reproduction number R 0 with respect to μ is 

E μ = 

∂R 0 

∂μ
· μ

R 0 

= −μ

(
1 

σν + μ
+ 

1 

η + ε + μ
+ 

1 

ξ + γ + θ + μ

)
. 

Considering the parameters as the same as those in Section 4.2 , we have E μ=0 . 0 0 0 01 = 0 . 001 , which means that as the

natural birth rate increases 1% at μ = 0 . 0 0 0 01 , the basic reproductive number R 0 only decreases 0.001% correspondingly.

From this, we conclude that the worm propagation is less sensitive to the natural death rate μ. Hence, the control strategy

by increasing the natural death rate μ is not effective and feasible strategies to defend against the attack of worms. 

6. Conclusions and future research direction 

In this paper, we propose a new VEIQS model for worm propagation with a saturated incidence rate in mobile networks,

where the saturated incidence rate is more reasonable and effective than a bilinear incidence rate, since it considers the

crowding effect of the infectious devices and prevents the unboundedness of the contact rate by choosing suitable parame-

ters. Besides, the novel idea in the proposed model is to combine the control strategies of vaccination, quarantine and others

for preventing, detecting, and defending against the intensity of an outbreak of worm through mobile networks. 

The basic reproduction number R 0 is obtained to completely determine the global and local stabilities of worm propaga-

tion and how intensive a policy will need to be to control the worm attack. Our results show that when R 0 ≤ 1, the worm-

free equilibrium is locally and globally asymptotically stable, implying that the worm is dying out, the infected devices will

gradually disappear, and the worm attack remains under control eventually; when R 0 > 1, by using the Li–Muldowney geo-

metric approach, the unique worm-existence equilibrium is locally and globally asymptotically stable, namely that the worm

is always persistent and spreading within a population. This paper provides some novel insights to cyber security, including

establishing the control strategies to fight against worm attack, predicting the tendency of worm propagation and measuring

the level of the worm popularity by the final scale of the infected devices. Numerical simulations are also implemented to

illustrate the feasibility of the theoretical results. 

Based on Pontryagin’s Minimum Principle [44] , we present an optimal control strategy to minimize the systemic cost

of vaccination and quarantine as well as minimize the infected mobile devices (including exposed and infectious ones)
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and maximize the secured devices. Also, by the explicit expression of the basic reproduction number, we give the efficient

worm-epidemic control strategies to prevent the worm propagation through mobile networks and then mitigate the risk of

the worm outbreak among mobile devices, including the reduction of the infection rates from vulnerable and exposed sates,

and the increase of the quarantine rate, vaccination effective and coverage rates, worm-related death rate, and the recovery

rates from exposed and infectious states. And by enlarging the parameter in the saturated incidence rate, we can control

the worm attack. Meanwhile, the corresponding numerical simulations are carried out to illustrate the effectiveness of the

obtained strategies. 

The numerical values of the model parameters used in this paper are collected from different existing papers, see

Section 4.1 . However in the real world, most available traces from CAIDA ( www.caida.org ) or MIT do not contain the le-

gitimate traffic flow on links since the traces were deliberately filtered before making them available, we have to say that

it is very hard to use some real-world worm traffic traces or realistic parameters for research. In the further work, we will

consider the dynamic quarantine strategy employed simultaneously in the vulnerable, exposed, and infectious states, not

only in the infectious state. The quarantine time and the delay of the mobile networks may be taken into consideration. 
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Appendix A. Proofs of theorems and corollary 

A1. Proof of Theorem 1. The equilibrium points are the solutions of the following system: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

V 

′ (t) = 0 , 

E ′ (t) = 0 , 

I ′ (t) = 0 , 

Q 

′ (t) = 0 , 

S ′ (t) = 0 . 

From I ′ (t) = 0 , we have 

E = 

ξ + γ + μ + θ

η
I. 

Substituting this into E ′ (t) = 0 leads to [
(1 − σν) βV 

1 + αI 
− (η + ε + μ)(ξ + γ + μ + θ ) 

η

]
I = 0 . 

Then, the equilibrium occurs at: 

I = 0 , or I > 0 and V = 

(η + ε + μ)(ξ + γ + μ + θ )(1 + αI) 

(1 − σν) βη
. (A.10) 

For I = 0 , it is easy to see that system (1) always has a unique worm-free equilibrium point of the form (2) . For I > 0, we

substitute the expression of V in (A.10) into V ′ (t) = 0 to get 

(η + ε + μ)(ξ + γ + μ + θ )[(1 − σν) β + α(σν + μ)] I + (σν + μ)(η + ε + μ)(ξ + γ + μ + θ ) − (1 − σν) βη� =
Recalling the expression (3) of the basic reproduction number R 0 , we derive that, if R 0 ≤ 1, there is no positive equilib-

rium, and the worm-free equilibrium is the only equilibrium in �; if R 0 > 1, there exists a unique positive equilibrium

P ∗ = (V ∗, E ∗, I ∗, Q 

∗, S ∗) , called worm-existence equilibrium, in int( �), where 

I ∗ = 

(1 − σν) βη� − (σν + μ)(η + ε + μ)(ξ + γ + μ + θ ) 

(η + ε + μ)(ξ + γ + μ + θ )[(1 − σν) β + α(σν + μ)] 
, 

http://www.caida.org
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100010008
https://doi.org/10.13039/501100010246
https://doi.org/10.13039/100000001
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and then V 

∗, E ∗, Q 

∗, S ∗ satisfy ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

V 

∗ = 

(η + ε + μ)(ξ + γ + μ + θ )(1 + αI ∗) 
(1 − σν) βη

, 

E ∗ = 

ξ + γ + μ + θ

η
I ∗, 

Q 

∗ = 

ξ

ϕ + μ + θ
I ∗, 

S ∗ = 

σνV 

∗ + εE ∗ + γ I ∗ + ϕQ 

∗

μ
. 

�

A2. Proof of Theorem 2. According to System (1) and Eq. (2) , the Jacobian matrix at the worm-free equilibrium P 0 is 

J(P 0 ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−(σν + μ) 0 − (1 − σν) β�

σν + μ
0 0 

0 −(η + ε + μ) 
(1 − σν) β�

σν + μ
0 0 

0 η −(ξ + γ + μ + θ ) 0 0 

0 0 ξ −(ϕ + μ + θ ) 0 

σν ε γ ϕ −μ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

and its characteristic equation is 

| λI − J(P 0 ) | = 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + σν + μ 0 

(1 − σν) β�

σν + μ
0 0 

0 λ + η + ε + μ − (1 − σν) β�

σν + μ
0 0 

0 −η λ + ξ + γ + μ + θ 0 0 

0 0 −ξ λ + ϕ + μ + θ 0 

−σν −ε −γ −ϕ λ + μ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ + μ)(λ + σν + μ)(λ + ϕ + μ + θ ) 

[
(λ + η + ε + μ)(λ + ξ + γ + μ + θ ) − (1 − σν) βη�

σν + μ

]
= 0 . 

Obviously, Jacobian matrix J ( P 0 ) has three negative eigenvalues λ1 = −μ, λ2 = −(σν + μ) , and λ3 = −(ϕ + μ + θ ) ; the other

eigenvalues of J ( P 0 ) are determined by the following equation: 

λ2 + (2 μ + η + ε + ξ + γ + θ ) λ + (η + ε + μ)(ξ + γ + μ + θ ) − (1 − σν) βη�

σν + μ
= 0 . (A.11)

When R 0 > 1, we have (η + ε + μ)(ξ + γ + μ + θ ) − (1 −σν) βη�
σν+ μ < 0 , which implies that Eq. (A.11) has both positive and neg-

ative roots. Therefore, the worm-free equilibrium P 0 is unstable saddle point. Otherwise, when R 0 ≤ 1, then by Hurwitz crite-

rion [47] , all roots of Eq. (A.11) have negative real parts, and so all eigenvalues of J ( P 0 ) have negative real parts. Then, using

the stability theory [48] , when R 0 ≤ 1, the worm-free equilibrium P 0 is locally asymptotically stable, which completes the

proof. �

A3. Proof of Theorem 3. From the first equation of system (1) , it follows that 

V 

′ (t) ≤ � − (σν + μ) V, 

and by a simple computation, we have 

V (t) ≤ e −(σν+ μ) t + �

σν + μ
, 

which yields that, as t → ∞ , 

V (t) ≤ �

σν + μ
= V 0 . (A.12)

Consider the Lyapunov function as 

L (E, I) = ηE + (η + μ + ε) I. 
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Then, the derivative of L ( E, I ) with respective to t gives 

dL (E, I) 

dt 
= ηE ′ (t) + (η + ε + μ) I ′ (t) 

= η

[
(1 − σν) βV I 

1 + αI 
− (η + ε + μ) E 

]
+ (η + ε + μ)[ ηE − (ξ + γ + μ + θ ) I] 

= 

[
(1 − σν) βηV 

1 + αI 
− (η + ε + μ)(ξ + γ + μ + θ ) 

]
I 

≤ [(1 − σν) βηV 0 − (η + ε + μ)(ξ + γ + μ + θ )] I 

= 

(1 − σν) βηV 0 

R 0 

(R 0 − 1) I, 

where the second last step is due to (A.12) . Hence when R 0 ≤ 1, dL (E,I) 
dt 

is negative semi-definite. 

Furthermore, dL (E,I) 
dt 

= 0 if and only if I = 0 . In fact, if dL (E,I) 
dt 

= 0 , then [
(1 − σν) βηV 

1 + αI 
− (η + ε + μ)(ξ + γ + μ + θ ) 

]
I = 0 , 

and consequently either I = 0 or V = 

(η+ ε+ μ)(ξ+ γ + μ+ θ )(1+ αI) 
(1 −σν) βη

. For the second case, we show that, when R 0 < 1, 

0 = V 

′ (t) = �
(

1 − 1 

R 0 

)
− (η + ε + μ)(ξ + γ + μ + θ ) 

η

[
1 + 

α(σν + μ) 

(1 − σν) β

]
I < 0 , 

which is a contradiction. On the other hand, if I = 0 then 0 = I ′ (t) = ηE, and consequently E = 0 . Hence, when R 0 ≤ 1,

the largest compact invariant set in { (E, I) ∈ �| ̇ L (E, I) = 0 } is a singleton containing the origin. Moreover, it follows from

(A.12) that lim t→∞ 

(V (t) , E(t) , I(t) , Q(t) , S(t)) = P 0 , and applying the LaSalles invariance principle [49] , the worm-free equi-

librium P 0 is globally asymptotically stable in � when R 0 ≤ 1. 

When R 0 > 1, we have dL (E,I) 
dt 

> 0 for V sufficiently close to �
σν+ μ except when E = I = 0 . Solutions starting sufficiently

close to P 0 leave a neighborhood of P 0 except those on the invariant V -axis, on which (1) reduces to V ′ = � − (σν + μ) V,

and then V (t) → 

�
σν+ μ as t → ∞ . �

It is pointed out here that the unstable property of the worm-free equilibrium P 0 when R 0 > 1 can also be derived by

the eigenvalue analysis in Appendix A2 . 

A4. Proof of Theorem 4. Considering that P 0 is unstable if R 0 > 1 and P 0 ∈ ∂�, we prove from Theorem 4.3 of [50] that

system (1) is uniform persistent in � if and only if R 0 > 1. �

A5. Proof of Theorem 5. According to P ∗ = (V ∗, E ∗, I ∗, Q 

∗, S ∗) with its coordinates satisfying (4) , the Jacobian matrix of

system (1) at the worm-existence equilibrium P ∗ is 

J(P ∗) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

− (1 − σν) βI ∗

1 + αI ∗
− (σν + μ) 0 − (1 − σν) βV 

∗

(1 + αI ∗) 2 
0 0 

(1 − σν) βI ∗

1 + αI ∗
−(η + ε + μ) 

(1 − σν) βV 

∗

(1 + αI ∗) 2 
0 0 

0 η −(ξ + γ + μ + θ ) 0 0 

0 0 ξ −(ϕ + μ + θ ) 0 

σν ε γ ϕ −μ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

The characteristic equation of the above matrix is 

| λI − J(P ∗) | = 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + 

(1 − σν) βI ∗

1 + αI ∗
+ σν + μ 0 

(1 − σν) βV 

∗

(1 + αI ∗) 2 
0 0 

− (1 − σν) βI ∗

1 + αI ∗
λ + η + ε + μ − (1 − σν) βV 

∗

(1 + αI ∗) 2 
0 0 

0 −η λ + ξ + γ + μ + θ 0 0 

0 0 −ξ λ + ϕ + μ + θ 0 

−σν −ε −γ −ϕ λ + μ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ + μ)(λ + ϕ + μ + θ ) 

{ 

(λ + η + ε + μ)(λ + ξ + γ + μ + θ ) 
[ 
λ + σν + μ + 

(1 − σν) βI ∗

1 + αI ∗

] 
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− (1 − σν) βηV 

∗

(1 + αI ∗) 2 

[ 
λ + σν + μ + 

(1 − σν) βI ∗

1 + αI ∗

] 
+ 

(1 − σν) 2 β2 ηV 

∗I ∗

(1 + αI ∗) 3 

} 

= 0 . 

It is obvious that the matrix J ( P ∗) has two negative eigenvalues λ1 = −μ, and λ2 = −(ϕ + μ + θ ) . Therefore, we only need

to consider the roots of the following equation: 

λ3 + B 1 λ
2 + B 

2 
λ + B 3 = 0 , (A.13)

where 

B 1 = η + ε + ξ + γ + θ + 3 μ + σν + 

(1 − σν) βI ∗

1 + αI ∗
, 

B 2 = (η + ε + ξ + γ + θ + 2 μ) 

[
σν + μ + 

(1 − σν) βI ∗

1 + αI ∗

]
+ (η + ε + μ)(ξ + γ + μ + θ ) − (1 − σν) βηV 

∗

(1 + αI ∗) 2 
, 

and 

B 3 = 

(1 − σν) βI ∗

1 + αI ∗
(η + ε + μ)(ξ + γ + μ + θ ) + (σν + μ) 

[
(η + ε + μ)(ξ + γ + μ + θ ) − (1 − σν) βηV 

∗

(1 + αI ∗) 2 

]
. 

Clearly, B 1 > 0; and based on the following relation 

(1 − σν) βηV 

∗

1 + αI ∗
= (η + ε + μ)(ξ + γ + μ + θ ) , 

we have that B 2 > 0 and B 3 > 0. Further by a direct computation, we show that B 1 B 2 − B 3 > 0 . Then by the Hurwitz criterion

[47] , all roots of Eq. (A.13) have negative real parts, and so all eigenvalues of J ( P ∗) have negative real parts. Hence by the

stability theory [48] , the worm-existence equilibrium P ∗ is locally asymptotically stable with respect to � when R 0 > 1. �

A6. Proof of Theorem 6. We now prove Theorem 6 by using the Li–Muldowney geometric approach, where we omit the

detailed introduction of this approach and refer readers to [35] . 

Firstly, we deal with the sub-system of (1) : ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

V 

′ (t) = � − (1 − σν) βV I 

1 + αI 
− (σν + μ) V, 

E ′ (t) = 

(1 − σν) βV I 

1 + αI 
− ( η + ε + μ) E, 

I ′ (t) = ηE − (ξ + γ + μ + θ ) I. 

(A.14)

The Jacobian matrix of system (A.14) is 

J = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

− (1 − σν) βI 

1 + αI 
− (σν + μ) 0 − (1 − σν) βV 

(1 + αI) 2 

(1 − σν) βI 

1 + αI 
−(η + ε + μ) 

(1 − σν) βV 

(1 + αI) 2 

0 η −(ξ + γ + μ + θ ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

and its second additive compound matrix is 

J [2] = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

− (1 − σν) βI 

1 + αI 
− m 

(1 − σν) βV 

(1 + αI) 2 
(1 − σν) βV 

(1 + αI) 2 

η − (1 − σν) βI 

1 + αI 
− n 0 

0 

(1 − σν) βI 

1 + αI 
−k 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where m = σν + η + ε + 2 μ, n = σν + ξ + γ + θ + 2 μ, and k = η + ε + ξ + γ + θ + 2 μ. Define a function A = A (V, E, I) =
diag (1 , E I , 

E 
I ) , we obtain its directional derivative along ( V, E, I ) as 

A f = diag 

(
0 , 

E ′ I − I ′ E 
I 2 

, 
E ′ I − I ′ E 

I 2 

)
. 

Then, 

A f A 

−1 = diag 

(
0 , 

E ′ 
E 

− I ′ 
I 
, 

E ′ 
E 

− I ′ 
I 

)
, 
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and 

AJ [2] A 

−1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

− (1 − σν) βI 

1 + αI 
− m 

(1 − σν) βV I 

E(1 + αI) 2 
(1 − σν) βV I 

E(1 + αI) 2 

ηE 

I 
− (1 − σν) βI 

1 + αI 
− n 0 

0 

(1 − σν) βI 

1 + αI 
−k 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Set B = A f A 

−1 + AJ [2] A 

−1 , which can be written in matrix form: 

B = 

(
B 11 B 12 

B 21 B 22 

)
, 

with 

B 11 = − (1 − σν) βI 

1 + αI 
− m, 

B 12 = 

(
(1 − σν) βV I 

E(1 + αI) 2 
, 
(1 − σν) βV I 

E(1 + αI) 2 

)
, 

B 21 = 

(
ηE 

I 
, 0 

)T 

, 

B 22 = 

⎛ 

⎜ ⎝ 

E ′ 
E 

− I ′ 
I 

− (1 − σν) βI 

1 + αI 
− n 0 

(1 − σν) βI 

1 + αI 

E ′ 
E 

− I ′ 
I 

− k 

⎞ 

⎟ ⎠ 

. 

Let ( u, v, w ) be a vector in R 

3 with its norm defined by 

|| (u, v , w ) || = max {| u | , | v | + | w |} . 
Let μ( B ) be the Lozinski ̆l measure with respect to this norm. Then as described in [51] , we choose 

μ(B ) ≤ sup { g 1 , g 2 } , 
where g 1 = μ1 (B 11 ) + | B 12 | , g 2 = | B 21 | + μ1 (B 22 ) , | B 12 |, | B 21 | are matrix norms with respect to the l 1 vector norm, and μ1 is

the Lozinski ̆l measure with respect to l 1 norm. As a result, we get 

μ1 (B 11 ) = − (1 − σν) βI 

1 + αI 
− m, | B 21 | = 

ηE 

I 
, | B 12 | = 

(1 − σν) βV I 

E(1 + αI) 2 
, 

and 

μ1 (B 22 ) = max 

{
E ′ 
E 

− I ′ 
I 

− n, 
E ′ 
E 

− I ′ 
I 

− k 

}
= 

E ′ 
E 

− I ′ 
I 

− min { n, k } . 

Therefore, 

g 1 = − (1 − σν) βI 

1 + αI 
− m + 

(1 − σν) βV I 

E(1 + αI) 2 
, 

and 

g 2 = 

ηE 

I 
+ 

E ′ 
E 

− I ′ 
I 

− min { n, k } . 
From (A.14) , we have 

E ′ 
E 

= 

(1 − σν) βV I 

E(1 + αI) 
− (η + ε + μ) , 

and 

I ′ 
I 

= 

ηE 

I 
− (ξ + γ + μ + θ ) . 

Then, 

g 1 = − (1 − σν) βI 

1 + αI 
− m + 

(1 − σν) βV I 

E(1 + αI) 
+ 

[
(1 − σν) βV I 

E(1 + αI) 2 
− (1 − σν) βV I 

E(1 + αI) 

]
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= 

E ′ 
E 

− μ − (1 − σν) βV I 

(1 + αI) 
− σν + 

[
(1 − σν) βV I 

E(1 + αI) 2 
− (1 − σν) βV I 

E(1 + αI) 

]

≤ E ′ 
E 

− μ, 

and 

g 2 = 

E ′ 
E 

+ (ξ + γ + μ + θ ) − min { n, k } 

= 

E ′ 
E 

− μ − min { σν, η + ε} 

≤ E ′ 
E 

− μ. 

Further, we obtain 

μ(B ) ≤ sup { g 1 , g 2 } ≤ E ′ 
E 

− μ. 

In the light of the fact that there exists a sufficiently large T > 0 such that for all t > T , E(t) 
E(0) 

< e 
μt 
2 ; namely, 1 

t ln 

E(t) 
E(0) 

< 

μ
2 , it

follows that for all t > T , 

1 

t 

∫ t 

0 

μ(B ) d s ≤ 1 

t 

∫ t 

0 

(
E ′ 
E 

− μ

)
d s = 

1 

t 
ln 

E(t) 

E(0) 
− μ < −μ

2 

, 

which leads to 

q = lim sup 

t→∞ 

sup 

(V (0) ,E(0) ,I(0)) ∈ int (�) 

1 

t 

∫ t 

0 

μ(B ) ds ≤ −μ

2 

< 0 . 

Hence by Theorem 3.5 of [35] , the worm-existence equilibrium ( V 

∗, E ∗, I ∗) is globally asymptotically stable. 

Next, we consider the following sub-system of system (1) : {
Q 

′ (t) = ξ I − (ϕ + μ + θ ) Q, 

S ′ (t) = σνV + εE + γ I + ϕQ − μS. 
(A.15)

The limit system of (A.15) is {
Q 

′ (t) = ξ I ∗ − (ϕ + μ + θ ) Q, 

S ′ (t) = σνV 

∗ + εE ∗ + γ I ∗ + ϕQ − μS. 

Then, we get { 

Q(t) = e −(ϕ+ μ+ θ ) t 
[
Q(0) + ξ I ∗

∫ t 
0 e 

(ϕ+ μ+ θ ) s ds 
]
, 

S(t) = e −μt 
[
S(0) + 

∫ t 
0 [ σνV 

∗ + εE ∗ + γ I ∗ + ϕQ(s )] e μs ds 
]
, 

which implies that, as t → ∞ , 

Q(t) → 

ξ I ∗

ϕ + μ + θ
= Q 

∗, and R (t) → 

σνV 

∗ + εE ∗ + γ I ∗ + ϕQ 

∗

μ
= S ∗. 

Consequently, the worm-existence equilibrium P ∗ is globally asymptotically stable in int( �) when R 0 > 1, which completes

the proof. �

A7. Proof of Theorem 7. To prove the existence of an optimal control pair, it is easy to verify that 

1. Since the state system (5) has bounded coefficient, the set of controls and corresponding state variables is nonempty.

2. Note that the solution of system (5) are bounded, the control set U is convex and closed. 

3. Since the state system (5) is bilinear in u 1 and u 2 , the right hand side of (5) is bounded by a linear function in the

state and control variables, where we use the boundedness of these solutions. 

4. The integrand of the objective cost function, Ku 2 
1 
(t) + Lu 2 

2 
(t) + E(t) + I(t) − S(t) , is clearly convex on U . 

5. There exists constants c 1 > 0, c 2 > 0, and π > 1 such that the integrand of the objective cost function satisfying 

Ku 

2 
1 (t) + Lu 

2 
2 (t) + E(t) + I(t) − S(t) ≥ c 1 (| u 1 | 2 + | u 2 | 2 ) π/ 2 − c 2 , 
where c 2 depends on the boundedness of E ( t ), I ( t ) and S ( t ), and c 1 > 0 is due to K > 0 and L > 0. 
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Hence, the existence of optimal control pair follows directly from Fleming and Rishel [45] . �

A8. Proof of Theorem 8. The expression of adjoint equations and boundary conditions are standard results from Pontrya-

gin’s Minimum Principle [44] . By the differentiating the Hamiltonian (7) with respective to respective states, the adjoint

equations can be written as (8) with boundary conditions w i (t f ) = 0 , for i = 1 , . . . , 5 . 

By using the optimal conditions, the unrestricted optimal control pair (u ∗
1 
, u ∗

2 
) satisfy 

∂H 

∂u 

∗
1 

= 

∂H 

∂u 

∗
2 

= 0 . (A.16) 

Note that 

H = Ku 

2 
1 + 

(w 1 − w 2 ) u 1 βV I 

1 + αI 
+ (w 5 − w 1 ) u 1 V + Lu 

2 
2 + (w 4 − w 3 ) u 2 I + other terms without u 1 and u 2 , 

which, along with (A.16) , leads to ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

∂H 

∂u 

∗
1 

= 2 Ku 

∗
1 + 

(w 1 − w 2 ) βV I 

1 + αI 
+ (w 5 − w 1 ) V = 0 , 

∂H 

∂u 

∗
2 

= 2 Lu 

∗
2 + (w 4 − w 3 ) I = 0 . 

Thus, we have ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

u 

∗
1 = 

1 

2 K 

[
(w 2 − w 1 ) βV I 

1 + αI 
+ (w 1 − w 5 ) V 

]
, 

u 

∗
2 = 

(w 3 − w 4 ) I 

2 L 
. 

Because of the boundedness of the standard control, we derive for the control u ∗
1 

that 

u 

∗
1 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 , 
1 

2 K 

[
(w 2 − w 1 ) βV I 

1 + αI 
+ (w 1 − w 5 ) V 

]
≤ 0 ;

1 

2 K 

[
(w 2 − w 1 ) βV I 

1 + αI 
+ (w 1 − w 5 ) V 

]
, 0 < 

1 

2 K 

[
(w 2 − w 1 ) βV I 

1 + αI 
+ (w 1 − w 5 ) V 

]
< 1 ;

1 , 
1 

2 K 

[
(w 2 − w 1 ) βV I 

1 + αI 
+ (w 1 − w 5 ) V 

]
≥ 1 . 

Hence, the compact form of u ∗
1 

is 

u 

∗
1 = max 

{
0 , min 

{
1 , 

1 

2 K 

[
(w 2 − w 1 ) βV I 

1 + αI 
+ (w 1 − w 5 ) V 

]}}
. 

Similarly, the control u ∗
2 

has the compact form as 

u 

∗
2 = max 

{
0 , min 

{
1 , 

(w 3 − w 4 ) I 

2 L 

}}
. 

Therefore, the proof of this theorem is completed. �

A9. Proof of Corollary 1. From Eq. (3) , we have that R 0 < 1 if and only if 

(1 − σν) βη�

(σν + μ)(η + ε + μ)(ξ + γ + μ + θ ) 
< 1 , 

which, along with Theorems 2 and 3 , shows that the worm outbreak does not become epidemic iff

(1 − σν) βη� < (σν + μ)(η + ε + μ)(ξ + γ + μ + θ ) . 

Since η < η + ε + μ, we have R 0 < 1 if 

� < 

(σν + μ)(ξ + γ + μ + θ ) 

(1 − σν) β
. 
Using the similar derivation as above, we can get the results for the other parameters. �
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