This CVPR 2020 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Adversarial Latent Autoencoders

Stanislav Pidhorskyi

Donald A. Adjeroh

Gianfranco Doretto

Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV 26506
{ stpidhorskyi, daadjeroh, gidoretto }@mix.wvu.edu

Abstract

Autoencoder networks are unsupervised approaches
aiming at combining generative and representational prop-
erties by learning simultaneously an encoder-generator
map. Although studied extensively, the issues of whether
they have the same generative power of GANS, or learn dis-
entangled representations, have not been fully addressed.
We introduce an autoencoder that tackles these issues
jointly, which we call Adversarial Latent Autoencoder
(ALAE). It is a general architecture that can leverage re-
cent improvements on GAN training procedures. We de-
signed two autoencoders: one based on a MLP encoder,
and another based on a StyleGAN generator, which we
call StyleALAE. We verify the disentanglement properties
of both architectures. We show that StyleALAE can not only
generate 1024 x 1024 face images with comparable quality
of StyleGAN, but at the same resolution can also produce
face reconstructions and manipulations based on real im-
ages. This makes ALAE the first autoencoder able to com-
pare with, and go beyond the capabilities of a generator-
only type of architecture.

1. Introduction

Generative Adversarial Networks (GAN) [13] have
emerged as one of the dominant unsupervised approaches
for computer vision and beyond. Their strength relates to
their remarkable ability to represent complex probability
distributions, like the face manifold [33], or the bedroom
images manifold [53], which they do by learning a gener-
ator map from a known distribution onto the data space.
Just as important are the approaches that aim at learning an
encoder map from the data to a latent space. They allow
learning suitable representations of the data for the task at
hand, either in a supervised [29, 46, 40, 14, 52], or unsuper-
vised [37, 58, 19, 25, 4, 3] manner.

Autoencoder (AE) [28, 41] networks are unsupervised
approaches aiming at combining the “generative” as well
as the “representational” properties by learning simultane-
ously an encoder-generator map. General issues subject of

investigation in AE structures are whether they can: (a) have
the same generative power as GANs; and, (b) learn disen-
tangled representations [1]. Several works have addressed
(a) [35, 31, 6,9, 20]. An important testbed for success has
been the ability for an AE to generate face images as rich
and sharp as those produced by a GAN [23]. Progress has
been made but victory has not been declared. A sizable
amount of work has addressed also (b) [19, 25, 10], but not
jointly with (a).

We introduce an AE architecture that is general, and has
generative power comparable to GANs while learning a less
entangled representation. We observed that every AE ap-
proach makes the same assumption: the latent space should
have a probability distribution that is fixed a priori and the
autoencoder should match it. On the other hand, it has been
shown in [24], the state-of-the-art for synthetic image gen-
eration with GANSs, that an intermediate latent space, far
enough from the imposed input space, tends to have im-
proved disentanglement properties.

The observation above has inspired the proposed ap-
proach. We designed an AE architecture where we allow
the latent distribution to be learned from data to address en-
tanglement (A). The output data distribution is learned with
an adversarial strategy (B). Thus, we retain the generative
properties of GANs, as well as the ability to build on the
recent advances in this area. For instance, we can seam-
lessly include independent sources of stochasticity, which
have proven essential for generating image details, or can
leverage recent improvements on GAN loss functions, regu-
larization, and hyperparameters tuning [2, 30, 38, 34, 36, 3].
Finally, to implement (A) and (B) we impose the AE reci-
procity in the latent space (C). Therefore, we can avoid us-
ing reconstruction losses based on simple #2 norm that op-
erate in data space, where they are often suboptimal, like
for the image space. We regard the unique combination of
(A), (B), and (C) as the major techical novelty and strength
of the approach. Since it works on the latent space, rather
than autoencoding the data space, we named it Adversarial
Latent Autoencoder (ALAE).

We designed two ALAEs, one with a multilayer per-
ceptron (MLP) as encoder with a symmetric generator, and
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another with the generator derived from a StyleGAN [24],
which we call StyleALAE. For this one, we designed a com-
panion encoder and a progressively growing architecture.
We verified qualitatively and quantitatively that both archi-
tectures learn a latent space that is more disentangled than
the imposed one. In addition, we show qualitative and quan-
titative results about face and bedroom image generation
that are comparable with StyleGAN at the highest resolu-
tion of 1024 x 1024. Since StyleALAE learns also an en-
coder network, we are able to show at the highest resolution,
face reconstructions as well as several image manipulations
based on real images rather then generated.

2. Related Work

Our approach builds directly on the vanilla GAN ar-
chitecture [12]. Since then, a lot of progress has been
made in the area of synthetic image generation. LAP-
GAN [5] and StackGAN [55, 56] train a stack of GANs
organized in a multi-resolution pyramid to generate high-
resolution images. HDGAN [57] improves by incorporat-
ing hierarchically-nested adversarial objectives inside the
network hierarchy. In [51] they use a multi-scale generator
and discriminator architecture to synthesize high-resolution
images with a GAN conditioned on semantic label maps,
while in BigGAN [3] they improve the synthesis by apply-
ing better regularization techniques. In PGGAN [23] it is
shown how high-resolution images can be synthesized by
progressively growing the generator and the discriminator
of a GAN. The same principle was used in StyleGAN [24],
the current state-of-the-art for face image generation, which
we adapt it here for our StyleALAE architecture. Other
recent work on GANSs has focussed on improving the sta-
bility and robustness of the training [44]. New loss func-
tions have been introduced [2], along with gradient reg-
ularization methods [39, 36], weight normalization tech-
niques [38], and learning rate equalization [23]. Our frame-
work is amenable to these improvements, as we explain in
later sections.

Variational AE architectures [28, 41] have not only been
appreciated for their theoretical foundation, but also for
their stability during training, and the ability to provide in-
sightful representations. Indeed, they stimulated research in
the area of disentanglement [ ], allowing learning represen-
tations with controlled degree of disentanglement between
factors of variation in [19], and subsequent improvements
in [25], leading to more elaborate metrics for disentangle-
ment quantification [10, 4, 24], which we also use to ana-
lyze the properties of our approach. VAEs have also been
extended to learn a latent prior different than a normal dis-
tribution, thus achieving significantly better models [48].

A lot of progress has been made towards combining the
benefits of GANs and VAEs. AAE [35] has been the pre-
cursor of those approaches, followed by VAE/GAN [31]

with a more direct approach. BiGAN [6] and ALI [9] pro-
vide an elegant framework fully adversarial, whereas VEE-
GAN [47] and AGE [49] pioneered the use of the latent
space for autoencoding and advocated the reduction of the
architecture complexity. PIONEER [15] and IntroVAE [20]
followed this line, with the latter providing the best genera-
tion results in this category. Section 4.1 describes how the
proposed approach compares with those listed here.

Finally, we quickly mention other approaches that have
shown promising results with representing image data dis-
tributions. Those include autoregressive [50] and flow-
based methods [27]. The former forego the use of a latent
representation, but the latter does not.

3. Preliminaries

A Generative Adversarial Network (GAN) [13] is com-
posed of a generator network G mapping from a space Z
onto a data space X, and a discriminator network D map-
ping from X onto R. The Z space is characterized by a
known distribution p(z). By sampling from p(z), the gen-
erator G produces data representing a synthetic distribution
q(x). Given training data D drawn from a real distribution
pp(x), a GAN network aims at learning G so that g(x) is
as close to pp(z) as possible. This is achieved by setting
up a zero-sum two-players game with the discriminator D.
The role of D is to distinguish in the most accurate way data
coming from the real versus the synthetic distribution, while
G tries to fool D by generating synthetic data that looks more
and more like real.

Following the more general formulation introduced
in [39], the GAN learning problem entails finding the min-
imax with respect to the pair (G,D) (i.e., the Nash equilib-
rium), of the value function defined as

V(G,D) = Epp(a) [f (D(2))] + Ep(z) [/ (=D(G(2)))] , (1)

where F[-] denotes expectation, and f : R — R is a con-
cave function. By setting f(t) = —log(l + exp(—t))
we obtain the original GAN formulation [13]; instead, if
f(t) =t we obtain the Wasserstein GAN [2].

4. Adversarial Latent Autoencoders

We introduce a novel autoencoder architecture by modi-
fying the original GAN paradigm. We begin by decompos-
ing the generator G and the discriminator D in two networks:
F, G, and F, D, respectively. This means that

G=GoF, and D=DoF, 2)
see Figure 1. In addition, we assume that the latent spaces
at the interface between F' and G, and between E and D are
the same, and we indicate them as V. In the most general
case we assume that F' is a deterministic map, whereas we
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Figure 1: ALAE Architecture. Architecture of an Adver-
sarial Latent Autoencoder.

Inference

allow E and G to be stochastic. In particular, we assume
that G might optionally depend on an independent noisy
input 7, with a known fixed distribution p, (7). We indicate
with G(w, n) this more general stochastic generator.

Under the above conditions we now consider the distri-
butions at the output of every network. The network F' sim-
ply maps p(z) onto gr(w). At the output of G the distribu-
tion can be written as

4(x) = / / 46 (alw, m)gr(w)py(n) dndw ,  3)

where q¢(z|w,n) is the conditional distribution represent-
ing G. Similarly, for the output of E the distribution be-
comes

g5 (w) = / gp(wlz)g(x)dz 4

where ¢ (w|z) is the conditional distribution representing
E. In (4) if we replace ¢(z) with pp(x) we obtain the dis-
tribution ¢z p(w), which describes the output of E when
the real data distribution is its input.

Since optimizing (1) leads toward the synthetic distri-
bution matching the real one, i.e., ¢(z) = pp(x), it is
obvious from (4) that doing so also leads toward having
gr(w) = gg,p(w). In addition to that, we propose to en-
sure that the distribution of the output of E' be the same as
the distribution at the input of G. This means that we set up
an additional goal, which requires that

qr(w) = qe(w) . (5)

In this way we could interpret the pair of networks (G, E)
as a generator-encoder network that autoencodes the latent
space W.

If we indicate with A(p||q) a measure of discrepancy be-
tween two distributions p and ¢, we propose to achieve the
goal (5) via regularizing the GAN loss (1) by alternating the
following two optimizations

minp cmaxg p V(Go F,Do E) (6)
ming ¢ A(F||EFoGoF) (7

where the left and right arguments of A indicate the dis-
tributions generated by the networks mapping p(z), which

Autoencoder (a) Data (b) Latent (c) Reciprocity
Distribution| Distribution Space
VAE [28, 41] similarity imposed/divergence | data
AAE [35] similarity imposed/adversarial | data
VAE/GAN [ similarity imposed/divergence | data
VampPrior [48]| similarity learned/divergence data
BiGAN [0] adversarial | imposed/adversarial | adversarial
ALI [9] adversarial | imposed/adversarial | adversarial
VEEGAN [47]|| adversarial | imposed/divergence | latent
AGE [49] adversarial | imposed/adversarial | latent
IntroVAE [20] || adversarial | imposed/adversarial | data
ALAE (ours) adversarial | learned/divergence latent

Table 1: Autoencoder criteria used: (a) for matching the
real to the synthetic data distribution; (b) for setting/learn-
ing the latent distribution; (c) for which space reciprocity is
achieved.

correspond to ¢r(w) and g (w), respectively. We refer to
a network optimized according to (6) (7) as an Adversar-
ial Latent Autoencoder (ALAE). The building blocks of an
ALAE architecture are depicted in Figure 1.

4.1. Relation with other autoencoders

Data distribution. In architectures composed by an en-
coder network and a generator network, the task of the en-
coder is to map input data onto a space characterized by a
latent distribution, whereas the generator is tasked to map
latent codes onto a space described by a data distribution.
Different strategies are used to learn the data distribution.
For instance, some approaches impose a similarity criterion
on the output of the generator [28, 41, 35, 48], or even learn
a similarity metric [31]. Other techniques instead, set up
an adversarial game to ensure the generator output matches
the training data distribution [6, 9, 47, 49, 20]. This latter
approach is what we use for ALAE.

Latent distribution. For the latent space instead, the
common practice is to set a desired target latent distribution,
and then the encoder is trained to match it either by mini-
mizing a divergence type of similarity [28, 41, 31, 47, 48],
or by setting up an adversarial game [35, 6, 9, 49, 20]. Here
is where ALAE takes a fundamentally different approach.
Indeed, we do not impose the latent distribution, i.e., g (w),
to match a target distribution. The only condition we set, is
given by (5). In other words, we do not want F' to be the
identity map, and are very much interested in letting the
learning process decide what F' should be.

Reciprocity. Another aspect of autoecoders is whether
and how they achieve reciprocity. This property relates to
the ability of the architecture to reconstruct a data sample x
from its code w, and viceversa. Clearly, this requires that
x = G(E(z)), or equivalently that w = E(G(w)). In the
first case, the network must contain a reconstruction term
that operates in the data space. In the latter one, the term
operates in the latent space. While most approaches follow
the first strategy [28, 41, 35, 31, 20, 48], there are some that
implement the second [47, 49], including ALAE. Indeed,
this can be achieved by choosing the divergence in (7) to be
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Figure 2: StyleALAE Architecture. The StyleALAE en-
coder has Instance Normalization (IN) layers to extract mul-
tiscale style information that is combined into a latent code
w via a learnable multilinear map.

the expected coding reconstruction error, as follows
A(F||EcGoF) = By [||IF(2) = EoGo F(2)|3] (8)

Imposing reciprocity in the latent space gives the significant
advantage that simple /5, ¢; or other norms can be used ef-
fectively, regardless of whether they would be inappropri-
ate for the data space. For instance, it is well known that
element-wise ¢ norm on image pixel differences does not
reflect human visual perception. On the other hand, when
used in latent space its meaning is different. For instance,
an image translation by a pixel could lead to a large ¢ dis-
crepancy in image space, while in latent space its represen-
tation would hardly change at all. Ultimately, using ¢ in
image space has been regarded as one of the reasons why
autoencoders have not been as successful as GANs in re-
constructing/generating sharp images [31]. Another way to
address the same issue is by imposing reciprocity adversar-
ially, as it was shown in [0, 9]. Table | reports a summary
of the main characteristics of most of the recent generator-
encoder architectures.

5. StyleALAE

We use ALAE to build an autoencoder that uses a Style-
GAN based generator. For this we make our latent space W
play the same role as the intermediate latent space in [24].
Therefore, our G network becomes the part of StyleGAN
depicted on the right side of Figure 2. The left side is a
novel architecture that we designed to be the encoder E.

Since at every layer, G is driven by a style input, we
design EX symmetrically, so that from a corresponding layer
we extract style information. We do so by inserting Instance
Normalization (IN) layers [21], which provide instance av-
erages and standard deviations for every channel. Specifi-
cally, if yZ is the output of the i-th layer of E, the IN mod-

ule extracts the statistics p(y”) and o(y”) representing the
style at that level. The IN module also provides as output
the normalized version of the input, which continues down
the pipeline with no more style information from that level.
Given the information flow between E and G, the archi-
tecture is effectively mimicking a multiscale style transfer
from E to G, with the difference that there is not an extra
input image that provides the content [21, 22].

The set of styles that are inputs to the Adaptive Instance
Normalization (AdalN) layers [21] in G are related linearly
to the latent variable w. Therefore, we propose to combine
the styles output by the encoder, and to map them onto the
latent space, via the following multilinear map

N

w2l

where the C;’s are learnable parameters, and N is the num-
ber of layers.

Similarly to [23, 24] we use progressive growing. We
start from low-resolution images (4 x 4 pixels) and progres-
sively increase the resolution by smoothly blending in new
blocks to £/ and G. For the F' and D networks we imple-
ment them using MLPs. The Z and WV spaces, and all layers
of I’ and D have the same dimensionality in all our experi-
ments. Moreover, for StyleALAE we follow [24], and chose
F to have 8 layers, and we set D to have 3 layers.

6. Implementation

Adversarial losses and regularization. We use a non-
saturating loss [ 13, 36], which in (1) we introduce by setting
f() to be a SoftPlus function [11]. This is a smooth ver-
sion of the rectifier activation function, defined as f(t) =
softplus(t) = log(1 + exp(t)). In addition, we use gradi-
ent regularization techniques [8, 36, 43]. We utilize R; [44,

Algorithm 1 ALAE Training

1: 0p,0G,0E,0p < Initialize network parameters
2: while not converged do
3: Step I. Update E, and D

4: < Random mini-batch from dataset

5: z < Samples from prior A'(0, I)

6: Lfo’lUD <+ softplus(DoEoGoF(z)))+softplus(—DoE(x))+
3 Epp (o) [IVD 0 E(2)]?]

7. 05,0p « ADAM(Vop 05 Lig, 10D, 05, o B1, B2)
8: Step II. Update F, and G

9: z < Samples from prior N'(0, I)

10: LP% « softplus(—D o E 0 G o F(2)))

11:  0p,0G < ADAM(Vo, 0o LS 0p,0c, o, B1, B2)
12: Step III. Update E, and G

13: z < Samples from prior A/(0, I)

14 LES, « |F(z) —EoGoF(2)|3

15:  0g,0q ADAM(V@EﬁGLgEr"For,OE»GG’amgl)ﬁ?)
16: end while
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Figure 3: MNIST reconstruction. Reconstructions of the
permutation-invariant MNIST. Top row: real images. Mid-
dle row: BiGAN reconstructions. Bottom row: ALAE re-
constructions. The same MLP architecture is used in both
methods.

ALAE

], a zero-centered gradient penalty term which acts only
on real data, and is defined as 3 E,_ ) [|[VD o E(z)[]?],
where the gradient is taken with respect to the parameters
0 and Op of the networks F and D, respectively.

Training. In order to optimizate (6) (7) we use alternat-
ing updates. One iteration is composed of three updating
steps: two for (6) and one for (7). Step I updates the dis-
criminator (i.e., networks £ and D). Step II updates the
generator (i.e., networks F' and ). Step III updates the la-
tent space autoencoder (i.e., networks G and F). The proce-
dural details are summarized in Algorithm 1. For updating
the weights we use the Adam optimizer [26] with 31 = 0.0
and 2 = 0.99, coupled with the learning rate equalization
technique [23] described below. For non-growing architec-
tures (i.e., MLPs) we use a learning rate of 0.002, and batch
size of 128. For growing architectures (i.e., StyleALAE)
learning rate and batch size depend on the resolution.

7. Experiments

Code and uncompressed images are available at
https://github.com/podgorskiy/ALAE.

7.1. Representation learning with MLP

We train ALAE with MNIST [32], and then use the
feature representation for classification, reconstruction, and
analyzing disentanglement. =~ We use the permutation-
invariant setting, where each 28 x 28 MNIST image is
treated as a 784D vector without spatial structure, which
requires to use a MLP instead of a CNN. We follow [7] and
use a three layer MLP with a latent space size of 50D. Both
networks, E and GG have two hidden layers with 1024 units
each. In [7] the features used are the activations of the layer
before the last of the encoder, which are 1024D vectors. We

Figure 4: MNIST traversal. Reconstructions of the inter-
polations in the Z space, and the WV space, between the
same digits. The latter transition appears to be smoother.

Table 2: MNIST classification. Classification accuracy
(%) on the permutation-invariant MNIST [32] using 1NN
and linear SVM, with same writers (SW) and different writ-
ers (DW) settings, and short features (sf) vs. long features
(If), indicated as sf/If.

INNSW  Linear SVMSW  INNDW  Linear SVM DW
AE(4y) 97.15/97.43 88.71/97.27 96.84/96.80 89.78/97.72
AE({2) 97.52/97.37 88.78/97.23 97.05/96.77 89.78/97.72
LR 92.79/97.28 89.74/97.56 91.90/96.69 90.03/97.80
JLR 92.54/97.02 89.23/97.19 91.97/96.45 90.82/97.62
BiGAN [7] 95.83/97.14 90.52/97.59 95.38/96.81 91.34/97.74
ALAE (ours)  93.79/97.61 93.47/98.20 94.59/97.47 94.23/98.64

refer to those as long features. We also use, as features, the
50D vectors taken from the latent space, V. We refer to
those as short features.

MNIST has an official split into training and testing sets
of sizes 60000 and 10000 respectively. We refer to it as
different writers (DW) setting since the human writers of
the digits for the training set are different from those who
wrote the testing digits. We consider also a same writers
(SW) setting, which uses only the official training split by
further splitting it in two parts: a train split of size 50000
and a test split of size 10000, while the official testing split
is ignored. In SW the pools of writers in the train and test
splits overlap, whereas in DW they do not. This makes SW
an easier setting than DW.

Results. We report the accuracy with the 1NN classifier
as in [7], and extend those results by reporting also the ac-
curacy with the linear SVM, because it allows a more direct
analysis of disentanglement. Indeed, we recall that a dis-
entangled representation [45, 42, 1] refers to a space con-
sisting of linear subspaces, each of which is responsible for
one factor of variation. Therefore, a linear classifier based
on a disentangled feature space should lead to better per-
formance compared to one working on an entangled space.
Table 2 summarizes the average accuracy over five trials for
ALAE, BiGAN, as well as the following baselines proposed
in [7]: Latent Regressor (LR), Joint Latent Regressor (JLR),
Autoencoders trained to minimize the /5 (AE(¢3)) or the ¢4
(AE(4y)) reconstruction error.

The most significant result of Table 2 is drawn by
comparing the 1NN with the corresponding linear SVM
columns. Since INN does not presume disentanglement in
order to be effective, but linear SVM does, larger perfor-
mance drops signal stronger entanglement. ALAE is the ap-
proach that remains more stable when switching from 1NN
to linear SVM, suggesting a greater disentanglement of the
space. This is true especially for short features, whereas for
long features this effect fades away because linear separa-
bility grows.

We also note that ALAE does not always provide the
best accuracy, and the baseline AE (especially AE(¢5)) does
well with INN, and more so with short features. This might
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Method ‘ FFHQ ‘ LSUN ‘

Bedroom
StyleGAN [24] 4.40 2.65
PGGAN [23] - 8.34
IntroVAE [20] - 8.84
Pioneer [16] - 18.39
Balanced Pioneer [17] - 17.89
StyleALAE Generation 13.09 17.13
StyleALAE Reconstruction | 16.52 15.92

Table 3: FID scores. FID scores (lower is better) measured
on FFHQ [24] and LSUN Bedroom [54].

be explained by the baseline AE learning a representation
that is closer to a discriminative one. Other approaches in-
stead focus more on learning representations for drawing
synthetic random samples, which are likely richer, but less
discriminative. This effect also fades for longer features.

Another observation is about SW vs. DW. INN gener-
alizes less effectively for DW, as expected, but linear SVM
provides a small improvement. This is unclear, but we spec-
ulate that DW might have fewer writers in the test set, and
potentially slightly less challenging.

Figure 3 shows qualitative reconstruction results. It can
be seen that BIGAN reconstructions are subject to semantic
label flipping much more often than ALAE. Finally, Fig-
ure 4 shows two traversals: one obtained by interpolating in
the Z space, and the other by interpolating in the W space.
The second shows a smoother image space transition, sug-
gesting a lesser degree of entanglement.

7.2. Learning style representations

FFHQ. We evaluate StyleALAE with the FFHQ [24]
dataset. It is very recent and consists of 70000 images of
people faces aligned and cropped at resolution of 1024 x
1024. In contrast to [24], we split FFHQ into a training set
of 60000 images and a testing set of 10000 images. We do
so in order to measure the reconstruction quality for which
we need images that were not used during training.

We implemented our approach with PyTorch. Most of
the experiments were conducted on a machine with 4x
GPU Titan X, but for training the models at resolution
1024 x 1024 we used a server with 8x GPU Titan RTX.
We trained StyleALAE for 147 epochs, 18 of which were
spent at resolution 1024 x 1024. Starting from resolution
4 x 4 we grew StyleALAE up to 1024 x 1024. When grow-
ing to a new resolution level we used 500k training samples
during the transition, and another 500k samples for train-
ing stabilization. Once reached the maximum resolution of
1024 x 1024, we continued training for 1M images. Thus,
the total training time measured in images was 10M. In con-
trast, the total training time for StyleGAN [24] was 25M im-
ages, and 15M of them were used at resolution 1024 x 1024.
At the same resolution we trained StyleALAE with only 1M
images, so, 15 times less.

Table 3 reports the FID score [18] for generations and

Path length
Method ful |  end
StyleGAN zZ 412.0 415.3
StyleGAN no mixing W 200.5 160.6
StyleGAN w 231.5 182.1
StyleALAE zZ 300.5 292.0
StyleALAE w 134.5 103.4

Table 4: PPL. Perceptual path lengths on FFHQ measured
in the Z and the W spaces (lower is better).

reconstructions. Source images for reconstructions are from
the test set and were not used during training. The scores
of StyleALAE are higher, and we regard the large training
time difference between StyleALAE and StyleGAN (1M vs
15M) as the likely cause of the discrepancy.

Table 4 reports the perceptual path length (PPL) [24]
of SyleALAE. This is a measurement of the degree of
disentanglement of representations. We compute the val-
ues for representations in the VV and the Z space, where
StyleALAE is trained with style mixing in both cases. The
StyleGAN score measured in Z corresponds to a traditional
network, and in W for a style-based one. We see that the
PPL drops from Z to W, indicating that WV is perceptually
more linear than Z, thus less entangled. Also, note that for
our models the PPL is lower, despite the higher FID scores.

Figure 6 shows a random collection of generations ob-
tained from StyleALAE. Figure 5 instead shows a collection
of reconstructions. In Figure 9 instead, we repeat the style
mixing experiment in [24], but with real images as sources
and destinations for style combinations. We note that the
original images are faces of celebrities that we downloaded
from the internet. Therefore, they are not part of FFHQ, and
come from a different distribution. Indeed, FFHQ is made
of face images obtained from Flickr.com depicting non-
celebrity people. Often the faces do not wear any makeup,
neither have the images been altered (e.g., with Photoshop).
Moreover, the imaging conditions of the FFHQ acquisitions
are very different from typical photoshoot stages, where
professional equipment is used. Despite this change of im-
age statistics, we observe that StyleALAE works effectively
on both reconstruction and mixing.

LSUN. We evaluated StyleALAE with LSUN Bed-
room [54]. Figure 7 shows generations and reconstructions
from unseen images during training. Table 3 reports the FID
scores on the generations and the reconstructions.

[ [ FID [ PPLfull |

PGGAN [23] 8.03 229.2
GLOW [27] 68.93 219.6
PIONEER [10] 39.17 155.2
Balanced PIONEER [17]| 25.25 146.2
StyleALAE (ours) 19.21 33.29

Table 5: Comparison of FID and PPL scores for CelebA-
HQ images at 256 x 256 (lower is better). FID is based on
50,000 generated samples compared to training samples.
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Figure 6: FFHQ generations. Generations with
StyleALAE trained on FFHQ [24] at 1024 x 1024.

Figure 7: LSUN generations and reconstructions. Gen-
erations (first row), and reconstructions using StyleALAE
trained on LSUN Bedroom [54] at resolution 256 x 256.

CelebA-HQ. CelebA-HQ [23] is an improved subset
of CelebA [33] consisting of 30000 images at resolution
1024 x 1024. We follow [16, 17, 27, 23] and use CelebA-
HQ downscaled to 256 x 256 with training/testing split
of 27000/3000. Table 5 reports the FID and PPL scores,
and Figure 8 compares StyleALE reconstructions of unseen
faces with two other approaches.

8. Conclusions

We introduced ALAE, a novel autoencoder architecture
that is simple, flexible and general, as we have shown to

Figure 8: CelebA-HQ reconstructions. CelebA-HQ re-
constructions of unseen samples at resolution 256 x 256.
Top row: real images. Second row: StyleALAE. Third
row: Balanced PIONEER [17]. Last row: PIONEER [16].
StyleALAE reconstructions look sharper and less distorted.

be efective with two very different backbone generator-
encoder networks. Differently from previous work it al-
lows learning the probability distribution of the latent space,
when the data distribution is learned in adversarial settings.
Our experiments confirm that this enables learning repre-
sentations that are likely less entangled. This allows us to
extend StyleGAN to StyleALAE, the first autoencoder ca-
pable of generating and manipulating images in ways not
possible with SyleGAN alone, while maintaining the same
level of visual detail.
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Source set

Destination set

Coarse styles from Source set

Middle styles from Source set

Fine from Source

Figure 9: Two sets of real images were picked to form the Source set and the Destination set. The rest of the images were
generated by copying specified subset of styles from the Source set into the Destination set. This experiment repeats the one
from [24], but with real images. Copying the coarse styles brings high-level aspects such as pose, general hair style, and face
shape from Source set, while all colors (eyes, hair, lighting) and finer facial features resemble the Destination set. Instead,
if we copy middle styles from the Source set, we inherit smaller scale facial features like hair style, eyes open/closed from
Source, while the pose, and general face shape from Destination are preserved. Finally, copying the fine styles from the
Source set brings mainly the color scheme and microstructure.
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