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ABSTRACT Currently, a significant barrier to building predictive models of cellular self-assembly processes is that molecular
models cannot capture minutes-long dynamics that couple distinct components with active processes, whereas reaction-diffu-
sion models cannot capture structures of molecular assembly. Here, we introduce the nonequilibrium reaction-diffusion self-as-
sembly simulator (NERDSS), which addresses this spatiotemporal resolution gap. NERDSS integrates efficient reaction-
diffusion algorithms into generalized software that operates on user-defined molecules through diffusion, binding and orienta-
tion, unbinding, chemical transformations, and spatial localization. By connecting the fast processes of binding with the slow
timescales of large-scale assembly, NERDSS integrates molecular resolution with reversible formation of ordered, multisubunit
complexes. NERDSS encodes models using rule-based formatting languages to facilitate model portability, usability, and repro-
ducibility. Applying NERDSS to steps in clathrin-mediated endocytosis, we design multicomponent systems that can form lat-
tices in solution or on the membrane, and we predict how stochastic but localized dephosphorylation of membrane lipids can
drive lattice disassembly. The NERDSS simulations reveal the spatial constraints on lattice growth and the role of membrane
localization and cooperativity in nucleating assembly. By modeling viral lattice assembly and recapitulating oscillations in protein
expression levels for a circadian clock model, we illustrate the adaptability of NERDSS. NERDSS simulates user-defined as-
sembly models that were previously inaccessible to existing software tools, with broad applications to predicting self-assembly
in vivo and designing high-yield assemblies in vitro.
SIGNIFICANCE Amajor roadblock in quantitative modeling of cell biology is the need to resolve fast processes over long
timescales and individual proteins over large length scales. This is particularly evident in self-assembly processes such as
clathrin-mediated endocytosis and viral assembly, which proceed over minutes, building from often weak and short-lived
binding events. The NERDSS software presented here uses the reaction-diffusion model to simulate such self-assembly
processes, with broad applications to biological processes as they occur in the nonequilibrium cell.
INTRODUCTION

Watching the dynamics of individual molecules in the cell as
they function as part of a collective is now possible thanks to
revolutions in live-cell microscopy. Despite technical ad-
vances in mapping dynamics onto nanoscale structure for-
mation in the cell (1), resolution is still limited by events
that are too fast and combine too many distinct components.
Computer simulations offer the promise of reproducing dy-
namics using models designed from the underlying physics
and mechanics, providing high-resolution spatial and tem-
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poral predictions and exquisite control over components
and their interactions. Current tools for capturing cell-scale
complexity are a growing companion to cell biology. For
example, fields such as cell-signaling (2), developmental
biology (3,4), and systems biology (5) have benefitted
from a variety of spatial (6,7) and nonspatial tools (8,9) in
which interactions and reactions are modeled as events
parameterized by rate constants. However, many cell-scale
processes involve self-assembly, which is a challenge for
modeling because it spans similarly long length and time-
scales as biochemical signals while also depending funda-
mentally on molecular structural geometry. Although rate-
based approaches have been shown to be highly insightful
for modeling self-assembly, previous models lack explicit
spatial resolution (8,10–12), apply only to small systems
(13,14), or include potentials that prevent quantitative
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comparison to experiment (15). Here, we present the
nonequilibrium reaction-diffusion self-assembly simulator
(NERDSS), a higher-resolution rate-based software tool
with the addition of user-specified, coarse molecular struc-
ture to enable the study of self-assembly at the cell scale.

NERDSS was developed to build self-assembly into the
reaction-diffusion (RD) model because of the strength of
RD in simulating relatively slow, nonequilibrium dynamics.
The name of the software may sound somewhat redundant
(particularly NERD). The ‘‘nonequilibrium’’ is included in
the name to emphasize how self-assembly can be simulated
here in generalized, nonequilibrium systems such as the cell.
Additionally, although the RD model is commonly applied
to studying systems not at thermodynamic equilibrium
(16), it is nonetheless useful for quantifying the pathways
to and composition of equilibrium for complex multicompo-
nent systems. The standard computational approach for
studying self-assembly, using coarse-grained molecular
modeling (17–19), provides access to these pathways and
equilibria with more physically detailed models, in which
interactions emerge because of distance-dependent energy
functions rather than the rate-controlled events of RD
models. A coarse molecular model thus naturally can
accommodate a range of structures or defects (17,19,20)
and capture emergent cooperativity, strain, and localization
of components (21,22). However, they are still relatively
limited in the length and timescales of dynamics they can
access, which does not extend to the cell scale. They are
parameterized by potential energy functions, and converting
these to the binding free energies (e.g., as done here (21,23))
or rate constants (24–26) for comparison to experiment is
nontrivial. Lastly, chemical reactions require covalent
bond breaking that is not typically accessible in molecular
modeling, preventing systematic and transferable methods
for involving enzymatic or ATP-driven reactions ubiquitous
in cells. These models are unable to simulate in vivo cell
signaling, cytoskeletal dynamics, or clathrin-mediated
endocytosis, for example. Our NERDSS software addresses
this substantial application gap, and although it lacks the
detail of energy-function based models, it is able to uniquely
preserve important features of molecular assembly.

NERDSS overcomes technical challenges with adding
structure to RD and allowing large, reversible complexes to
form in a user-friendly and widely applicable way. The major
challenges for applying RD to self-assembly are expanding to
multisite, volume-excluding species and capturing orienta-
tion-dependent interactions for arbitrary species. For contin-
uum partial differential equation (PDE) approaches (6,7) to
RD and lattice-based reaction-diffusion master equation
(RDME) approaches (27–29), species have no individual co-
ordinates but are well mixed in the infinitesimal or finite grid
spacings, respectively, preventing the resolution of structural
assemblies. Capturing assembly kinetics is possible in these
methods for complexes with uniquely defined subunits,
with recent RDME-based studies of ribosome formation
2 Biophysical Journal 118, 1–15, June 16, 2020
(30) and essential steps in spliceosome assembly (31).
Although single-particle RD is considerably more computa-
tionally expensive than PDE or RDME, it does track individ-
ual coordinates (32–39), often with excluded volume,
providing a starting point for multisite species and structure
resolution. Recent methods have generated multisite species
by linking them using spherically symmetric potentials
(14,40), producing simulations that can capture effects of
clustering (41) and polymer assembly (40). However, without
orientation-dependent interactions, well-defined structural
geometries such as lattices and spherical shells will not
form. Brownian dynamics methods have been successfully
used to capture orientation-dependent, rate-controlled associ-
ation but are limited to small systems (42,43). Here, we use
our recent algorithm for structure-resolved RD of rigid
bodies, which includes and accounts for effects of rotational
as well as translational diffusion on binding reactions (44).
Instead of using potentials, orientational constraints are
applied after binding events to maintain accurate solutions
to the RD equations of motion and direct comparison to
experimental rates. With previous application of this algo-
rithm to clathrin lattice assembly in solution (44), NERDSS
generalizes these routines for orienting molecules to apply
here to arbitrary user-defined systems, including on the mem-
brane, which can act as a potent driver of self-assembly via
dimensionality reduction (45). This approach retains the flex-
ibility and the adaptability of the method to new molecules
and structures because binding is parameterized by rates
and not customized interaction potentials.

A critical feature of generalized rate-based software for
usability, model portability, and construction of conditional
and cooperative interactions is the adoption of well-defined
formatting languages for model encoding. Rule-based
modeling (46), developed for nonspatial models, supports
descriptions of species as multisite molecules in which
each site can exist in distinct states. Interactions or binding
rates can be coupled within species to capture effects of
phosphorylation, for example, on subsequent binding
events. Formatting languages such as BioNetGen Language
(46,47) and Kappa (48,49) implement rule-based modeling,
which precludes the need to define and track all possible
species and avoids the issue of combinatorial complexity
(50). The rule-based format is now available in efficient
nonspatial methods such as RuleBender (51) and NFSim
(8) and spatial methods such as Virtual Cell (52) and Smol-
dyn (34), facilitating model comparison and portability.
Rule-based encoding translates quite naturally to NERDSS
because of the spatial specification of each site. We validate
our rule-based encoding here by simulating a model of a
circadian clock (53) (and other simple models), compared
with the same model simulated in Virtual Cell (6).

To illustrate the capabilities of NERDSS as a spatial self-as-
sembly simulator,weapply it here to steps in clathrin-mediated
endocytosis (CME) and virion assembly. These examples
highlight several challenges and opportunities for modeling
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approaches, and both assembly processes have been studied
using coarse molecular modeling simulations (19,54–57).
CME is an essential pathway used by all eukaryotes for trans-
port across the plasma membrane. It is a stochastic assembly
process that depends on membrane mechanics (1,58), enzy-
matic reactions (59–61), and the stoichiometry of dozens of
distinct components (59,62–64), making it a complex system
that can benefit from integrated physics-based simulations.
Spatial simulations of clathrin, a 600 kDa trimeric protein,
assembling in solution (44,54,56,65) and on the membrane
(via recruitment by adaptor proteins) (19) have determined as-
sembly pathways, energetic and structural determinants for as-
sembly, and dependence on links to the membrane. The
clathrin models developed here for NERDSS illustrate how
rate-based models can be adapted and extended to additional
components without requiring the substantial expertise of
energy-function-based methods (19,66,67) and without sacri-
ficing spatial resolution (45,68–70). To enable nonequilibrium
simulations of immature viral lattice formation in vivo, we
introduce here a model of the retroviral Gag protein, which
assemble a spherical lattice (71), an essential component of
the HIV infection and maturation cycle (72). Viral capsid as-
sembly is widely studied using coarsemolecular modeling ap-
proaches (see (17)), but applications to studying assembly of
the precursor lattices that occur within the host cell are more
limited (55). In this study, we focus on describing the technical
features of the models necessary to produce realistic assem-
blies, leaving much of the biological implications for future
work.

In summary, NERDSS offers a distinct tool that uses the
RD model to simulate self-assembly at the cell scale, thus al-
a

b

lights where modifications to time and/or space dependent rate-based models (gr

(yellow boxes) (Methods). Reactions can be zeroth order: creation; first order:

step, every molecule either reacts or diffuses. To see this figure in color, go onl
lowing for space- and time-dependent dynamics and kinetics
that are immediately comparable to experiment by a broad
user base. Below, we first describe the operation of the soft-
ware and the features we introduced as necessary to move
beyond existing tools (Fig. 1). We provide multiple forms
of validations, including against fundamental reactions and
nonassembly problems such as a circadian clock model,
accessible to most RD software. We then present multiple
self-assembly applications, with input files provided in the
software repository. Models of clathrin lattice assembly are
chosen to highlight distinct features of models that can be
used to tune the dynamics and stability of the observed struc-
tures. We simulate clathrin assembly driven by membrane
localization and show how introducing enzymes to the sys-
tem to control the lipid populations on the membrane drives
disassembly. These clathrin models thus capture relaxation
from out-of-equilibrium starting states to an equilibrium
steady state, with or without active energy consumption.
We illustrate the model design process for the self-assembly
of Gag retroviral protein monomers into an immature lattice
in solution, in which monomers are titrated into solution and
have limited lifetimes when unbound. Finally, we discuss the
current limitations and most promising future advancements
of NERDSS software for realistic cell-scale dynamics.
METHODS

Implementation

NERDSS is written in ANSI/ISO standard Cþþ11 and is available on Li-

nux and macOS. The accompanying GUI is implemented in Java. The

source code for both can be found at https://github.com/mjohn218/
FIGURE 1 NERDSS software overview. (a)

NERDSS requires additional inputs relative to

other rate-based models, highlighted in yellow

boxes, with each species modeled as a rigid body

with coordinates for a COM (red) and its discrete

binding sites (blue) and a binding orientation for

a pair of bound species. These orientation parame-

ters include a binding radius, s, shown as a purple

line between two sites; two angles, q1 and q2; and

three dihedral angles, 41, 42, and u (see Support-

ing Materials and Methods). NERDSS uses free-

propagator reweighting (FPR) algorithms to solve

the RD model for association and dissociation

over time. These algorithms were previously

accessible in open source code but without rule-

based models and coupling to other reaction types.

In addition to coordinates of all species in the

simulation as a function of time, NERDSS can

track a variety of variables, including species

copy numbers, which are formatted for analysis

and visualization. Trajectories are output in one

of two standard formats, XYZ or PDB, which

can be visualized in software such as VMD (90)

or Ovito (91). (b) An algorithmic flowchart high-

ay) are needed because of the addition of molecular structure and assembly

death, transformations, dissociations; second order: binding. For each time

ine.
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NERDSS and is provided under the GNU general public license. A user

guide and simulation example systems can be found on the software

page. Input files are formatted according to BioNetGen Language (47),

such as are used in RuleBender (51) and the NFSim software (8) and is

compatible with Virtual Cell (6). Additional features are necessary, howev-

er, because of the spatial and structural details used in NERDSS.
Reactions

NERDSS supports the three primary types of reactions: zeroth, first, and

second order. The rates of these reactions, other than creation, can depend

on the states and/or pre-existing interactions of any participant species’

sites.

Zeroth-order reactions

De novo particle creation reactions are treated as a Poisson process. No

events occur if a uniform random number (URN) fulfills URN < exp(�l),

where l¼ k0VDt, k0 is the creation rate input in units of M/s, V is the simu-

lation volume (converted from nm3 to units of M�1 by 0.602), and Dt is the

timestep. Therefore, N events occur based on
PN�1

n¼0

ðexpð� lÞln =n!Þ<

URN%
PN
n¼0

ðexpð� lÞln =n!Þ:. Created particles are placed within the simu-

lation volume with random coordinates. Zeroth-order reactions can be used

to titrate species into the simulation volume.

First-order

First-order reactions are treated as Poisson processes, with a reaction prob-

ability per each site of p1(Dt) ¼ 1 � exp(�l), where l ¼ k1Dt, k1 is the

microscopic rate in units of s�1, and Dt is the time step. The reaction rates

can be specified either as microscopic rates or as macroscopic rates. Only

one such event can occur per time step per molecule. Four types of first-or-

der reactions are supported:

1) Creation: create a copy of a particle B from another particle A, in which

sites required such as (a) are indicated within the parentheses—exam-

ples are transcription or translation, e.g., A(a) / A(a) þ B(b).

2) Destruction: destroy a molecule and all other molecules in its complex.

If the sites (a) are specified as unbound, it will only destroy unbound

molecules, e.g., A(a) / NULL.

3) State change: change a state of a site on a molecule, e.g., A(a�p) /
A(a�u).

4) Dissociation: remove an interaction between the sites of two particles,

written as the conjugate back reaction of an association reaction. To retain

detailed balance (32), the particles are left such that the dissociating sites

are at their binding radius, e.g., A(a!1).B(b!1) / A(a) þ B(b).

Second-order reactions

Bimolecular reactions are applied to specific sites between two proteins.

Association events can be conditional on the state of the site, e.g., occurring

only when the binding site is phosphorylated, or only if the protein is bound

through another site as well.

For the free propagator reweighting (FPR) algorithm (32,44,73) used in

NERDSS, reaction probabilities are invariant with respect to orientation.

Therefore, the reacting particles are ‘‘snapped’’ into place in a predefined ge-

ometry to prevent arbitrary structures from forming, with sites always placed

at the binding radius s from one another. Thus, the rigid assemblies that form

have strict structures they can form; they do not predict emergent structures.

The geometry is defined by a set of vectors and five angles between and within

each particle (Fig. 1). If angles and/or orientations are undefined, sites bind to a

separation ofs at the orientation theywerewhen the event occurred. Bothmol-

ecules are translated and rotated into place based on their relative translational

and rotational diffusion constants. Thus, smaller complexeswill movemore to
4 Biophysical Journal 118, 1–15, June 16, 2020
orient, and complexes restricted to the membrane do not rotate out of their

membrane-localized orientation. Detailed definitions of these vectors and an-

gles can be found in the Supporting Materials and Methods.

Reaction rates can be defined either as macroscopic rates kon (i.e., rates

measured experimentally and dependent on diffusion to contact and ener-

getic barriers), in units of mM�1s�1, or as microscopic or intrinsic rates

ka, in units of nm3/ms (converts to mM�1s�1 with multiplication by

0.602). All rates are inputted as three-dimensional (3D) values, where

KD ¼ kb/ka ¼ koff/kon, where kb and koff are the corresponding unbinding

rates in units s�1. For example, reaction rates in two dimensions (2D) use

the 3D value divided by a length scale that by default is set to 2s (units

of nm) but that can be independently specified per reaction using an input

parameter. A reaction is identified as 2D when it involves two species that

have no diffusion in z (e.g., lipids) or between sites on two complexes that

are localized to 2D (Dz ¼ 0). Probabilities of each reaction are calculated

with the FPR method as previously described and are parameterized by

the intrinsic reaction rate ka, the net diffusion coefficient of the reactants

Dtot, and the binding radius s. Conversions between macroscopic rates

and the rates needed to calculate the reaction probabilities for each reaction

type are performed by the software (see Table S1). Self-binding between

molecules such as clathrin with repeated identical sites requires distinctions

between binding sites with the same versus distinct labels (see Supporting

Materials and Methods). Two types of bimolecular reactions are supported:

1) Association: form an interaction between two sites of two molecules,

which, if the association is reversible, has a conjugate first-order disso-

ciation reaction. The resulting complex is then treated as one unit for

future propagation, e.g., A(a) þ B(b) / A(a!1).B(b!1)

2) State change: change the state of a site on a particle, facilitated by

another particle, such as phosphorylation by a kinase. This is thus a com-

posite reaction that combines a bimolecular reaction with an automatic

first-order state change of one site, and both reactant species remain un-

bound. Hence, it is a simplification of Michaelis-Menten, in which

reversible binding can trigger a chemical reaction and rapid dissociation,

here assuming the chemical reaction is instantaneous; e.g., A(a) þ
B(b�u) / A(a) þ B(b�p).

Coupling reactions

NERDSS allows the completion of one reaction (such as dissociation of a

complex) to be coupled to another reaction occurring immediately. Thus,

one can readily model enzymatic reactions and Michaelis-Menten kinetics.

In particular, if an enzyme binds a substrate, the dissociation reaction can be

directly coupled to a state change on the substrate, for example, from un-

phosphorylated to phosphorylated.
Intracomplex binding and defect formation

An important consequence of forming self-assemblies is that molecules can

be capable of binding to one another through free sites when they are within

the same complex. These intracomplex binding events involve two sites

becoming a bound complex but are not truly bimolecular because they do

not involve a search to find one another—they are already colocalized.

They are thus comparable to conformational rearrangements and are depen-

dent on time (and fundamentally on the details of the atomic interactions)

and not on the system size or density. This type of unimolecular or first-or-

der reaction cannot be treated with the same binding probabilities as are

used for bimolecular events despite it involving a bond forming between

two species. In particular, for the rigid species that we model here, they

will have no motion relative to one another (Dtot ¼ 0), and as noted previ-

ously (44), this results in binding probabilities of either one or zero, with the

former violating detailed balance and the latter preventing the formation of

important stabilizing bonds. Even with flexible molecules, in which intra-

complex sites can undergo relative diffusion, constraints on mobility due

to the bonded structure would, over most time steps, require adjusted reac-

tion probabilities. We define the binding probability of these intracomplex

https://github.com/mjohn218/NERDSS
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or loop-closure events thus using a Poisson probability, similar to the first-

order reactions described above. Then, we must specify a unimolecular rate,

given a bimolecular rate constant. We define this rate such that the equilib-

rium between the bound and unbound states for a two-step process of loop

closure, that is, a bimolecular event and a unimolecular loop closure, is the

same as if the protein closed the loop in a single step, forming both bonds at

once. The rate is given by

kclose ¼ kaC0exp
�� DGcoop

�
kBT

�
;

where C0 is the standard state concentration of 1 M. For loop closure, the

user can thus specify one additional parameter, DGcoop. By default,

DGcoop ¼ 0, and loop-closure events are typically difficult to reverse,

requiring two bond-breaking events to separate the loop back into two

pieces. Positive values of this parameter render loops less stable and

more reversible or dynamic (Fig. S3). We derive this expression in the Sup-

porting Materials and Methods.

We allow these events to form when the sites are spatially proximate,

with the user able to specify a maximum distance to allow these events

to occur. The maximum distance is the binding radius, s, multiplied by a

factor, bindRadSameCom, which by default is set to 1.1, which includes

only perfectly (with numerical precision errors allowed) aligned contacts.

The primary reason to increase it is because for some self-assembly struc-

tures (such as the curved clathrin cage), the rigid structures cannot form per-

fect, defect-less structures (see Fig. S8). Allowing binding between legs that

are close together mimics structural flexibility present in the biological mol-

ecules. A more sophisticated treatment in the future could couple defects to

energetic penalties that impact reaction rates and allow relaxation within

the rigid assembly as deviations relative to the user-defined orientation an-

gles. Finally, the software prohibits binding between a pair of molecules if

they are already bound through a distinct set of sites. Hence, intracomplex

or loop-closure events must be mediated through at least a third molecule

(e.g., four molecules in the case of clathrin lattices).
Evaluation of steric overlap

Once association events occur between two sites, their two parent com-

plexes are rotated into place to generate the proper, predefined geometry

of the two binding proteins. The exception is intracomplex binding, in

which because the binding happens within a single complex, no rotation

or movement occurs. For two separate complexes, however, this rotation

into place can result in steric overlap between sites that are part of the com-

plex but not part of the binding event. We evaluate overlap after association

by measuring distances between all centers of mass (COMs) in the new

complex and defining a minimum distance, overlapSepLimit, that will

determine steric overlap. If any pair of proteins have COMs less than over-

lapSepLimit, which by default is 1 nm, the binding event is rejected, and the

two complexes instead undergo a diffusion move during the time step. This

is the simplest evaluation of steric overlap and could be improved, particu-

larly in cases of defect-forming structures (Fig. S9). Here again, more elab-

orate schemes could determine whether the full space occupied by a

molecule overlaps with other molecules, not just the COM.

A final steric overlap check is then performed between the newly bound

complex and all other binding sites of complexes present in the simulation

to ensure excluded volume is maintained. If the new complex produces ste-

ric clashes with other binding sites in the simulation volume, the binding

event is rejected.
Excluded volume

Sites that react with one another have excluded volume that is determined

by their binding radius, s. Specifically, in 3D, a reactive site excludes all

partners from entering within a sphere of radius s, and in 2D, within a

disk of radius s. By default, sites otherwise do not exclude volume with
each other but act as point particles, including the COM sites. Therefore,

if one desires sites to exclude one another, they must be specified as under-

going a bimolecular reaction, and by setting the rate to zero, they will reflect

off one another at s without ever binding. We note that the addition of re-

actions inevitably slows down the simulations.

An important consequence of having excluded volume only between

specified reactive pairs is that once a pair of sites is in the bound state,

they no longer automatically exclude volume from other sites in the system.

For proteins that are fully bound (and thus are temporarily nonreactive to

bind), they can thus pass through other proteins, which is often physically

undesirable. To maintain excluded volume, proteins can be given dummy

sites that are present purely to exclude volume with dummy sites on other

molecules, at all times. A future alternative will be to have an option for all

bimolecular reactions that sites can continue reflecting off their reaction

partners, whether they are in the free or bound states.
Boundary effects

By default, the simulation boundaries are reflecting. Rectangular and spher-

ical geometries are implemented, with no restriction on user-defined size. If

association events result in a very large lattice, it is possible for the structure

to extend beyond the physical boundaries of the simulation volume. These

moves are thus rejected. On a related note, if association events result in

very large rotational reorientation of a complex, these moves can also be

rejected because they result in an unphysical amount of displacement per

time step. Binding to lipids or sites restricted to the surface can be defined

using explicit lipids or a field-based implicit lipid model (74).
Diffusion constants of complexes

Once proteins bind to form a new complex, their translational and rotational

diffusion constants are updated to reflect the larger hydrodynamic radius of

the bound complex. Each protein molecule has a user-defined Dt and DR.

Once a bound complex forms, the new transport coefficients are then

defined based on all N components of the complex by simply assuming

the radii sum:

Dt;x ¼
"XN

i¼ 1

D�1
i;x

#�1

;

"XN #�3
DR;x ¼
i¼ 1

D
�1=3
Ri;x ;

and the same in y and z. For molecules restricted to the surface, Dt,z ¼
0 and all rotational diffusion except (if desired) DR,z are also zero. Corre-

spondingly, any complex that contains these molecules will also have that

diffusional component set at zero.
Data output

NERDSS produces restart files that ensure that when simulations are interrup-

ted for any reason, they can be restarted exactly from where they left off,

similar to molecular dynamics software. NERDSS also allows restarts to

introduce new molecules or reactions into the system using input files

formatted the same as the standard inputs. This allows systems to be prepared

or equilibrated in one state before, for example, enzymes are introduced.
Biophysical Journal 118, 1–15, June 16, 2020 5



TABLE 1 Parameters for NERDSS Simulations

Name Unit Meaning

Dt ms time step

kon mM�1s�1 macroscopic reaction rate

koff s�1 macroscopic unbinding rate

ka nm3/ms microscopic/intrinsic

reaction rate

kb s�1 microscopic/intrinsic

unbinding rate

KD mM dissociation constant

Dt nm2/ms translational diffusion

coefficient/constant

DR rad2/ms rotational diffusion

coefficient/constant

Dtot mnm2/ms net diffusion coefficient of

one reactant relative to another

s nm binding radius

Rmax nm largest distance within

which binding reactions can occur

DGcoop kBT adjustment of the free energy

during the loop-closure event

f loop cooperativity factor,

f ¼ exp(�DGcoop/kBT)

bindRadSameCom Multiplier s, sets max distance

between sites to allow the

loop-closure event to occur

overlapSepLimit nm Max distance between molecule

COMs resulting in steric overlap

Varga et al.

Please cite this article in press as: Varga et al., NERDSS: A Nonequilibrium Simulator for Multibody Self-Assembly at the Cellular Scale, Biophysical Journal
(2020), https://doi.org/10.1016/j.bpj.2020.05.002
Simulation algorithm outline

1) Initialization. Copies of rigid species are created from the provided

molecule templates, given random coordinates, and checked for place-

ment within the simulation volume and overlap with other particles. If

two reactive partners are found to be overlapping, one of the particles

is reinitialized with new random coordinates, and all particles are re-

checked for overlap.

2) Optimization. To optimize evaluation of the two-body (bimolecular)

events, the simulation volume is split intoN sub-boxes, in which the length

of each sub-box edge is at least Rmax,sys¼max
m

fsm þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6DmDt

p þ l1m þ
l2mg, where m loops over all binding reactions, s is the binding radius, D

the total diffusion coefficient of both reactants, and lim is the radius of the

reactant protein i.Molecules are assigned to boxes based on the position of

their COM. This allows for looping over all possible binding partners only

in a molecule’s current and neighboring boxes, without excluding any

partners with a nonzero reaction probability.

3) Reactions. Within each time step, reaction probabilities are calculated in

order from zeroth-, first-, and second-order reactions. Reactions are

described in detail above. We note that if a molecule is created or

involved in a reaction in any way, it cannot participate in any other re-

action during the course of the time step, nor can it diffuse. Hence,

only one site per molecule can react per step. Other diffusing molecules

will continue to include these molecules in overlap checks to prevent

overlap in subsequent steps.

4) Propagation and overlap. After all reaction checks are completed, sites

that were within Rmax of a reaction-partner during the time step are

checked for overlap. Because a multicomponent complex only moves as

a rigid unit, each complex with reactive sites within is looped over, along

with a stored list of all reaction partners. If the newly displaced positions

overlap (with displacements sampled from Gaussians for translational and

rotational diffusion for both reaction partners), the displacements of com-

plex i and its partner are resampled, and the overlap check restarts. Once a

complex’s position has been updated, it cannot be moved again.
Simulation details and parameters

Simulation parameters are listed in Table 1, and values are included in

figure legends. Transport coefficients are defined using the Einstein-Stokes

equation, using each molecule’s hydrodynamic radius estimated from its

approximate radius of gyration. Unless otherwise noted, s ¼ 1 nm for

binding.

We describe here the geometry of the molecules from the clathrin and

Gag systems and the orientation angles.

Clathrin model

For the flat clathrin molecule, each clathrin trimer has a COM and three leg

binding sites rotated 120� relative to one another, and each leg site is 10 nm
from the center such that when dimerized, the centers are 21 nm apart,

which is comparable to experimental lattices (75). When two clathrin mol-

ecules bind to each other, we suppose their leg sites are head to head and on

a line with their centers, and, to generate a flat hexagon structure, all their

centers and legs should be on the same plane. Thus, the five orientation an-

gles are [q1, q2, 41, 42, u] ¼ [p, p, nan, nan, 0] (‘‘nan’’ means no value

constraint, and see Fig. 1 and Supporting Materials and Methods for the

definition of orientation angles). For binding to adaptor proteins, each flat

clathrin includes three more leg sites, which we choose to locate directly

beneath the legs (p/4.656 angle between the long leg and short leg), as

shown in Fig. 5 a. When the clathrin binds to a linear adaptor protein,

the orientation should make the long legs parallel to the membrane, where

the adaptor and lipid site are designed to be perpendicular to membrane sur-

face. Therefore, the five orientation angles of adaptor to clathrin (adaptor is

molecule 1) should be set as [p/2, 3.656p/4.656, nan, p, p]. For the puck-
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ered clathrin, the legs are tilted below the plane (5, 10, or 20�) and rotated

120� around the molecule normal, with lleg ¼ 7.5 nm. The orientation an-

gles of two bound puckered clathrin is the same as flat clathrin [p, p,

nan, nan, 0]. The adaptor binding to the lipid is two linear molecules bind-

ing with angles [p/2, p/2, nan, nan, p].

Gag model

The Gag lattice will form a sphere of radius�50 nm because we design the

diameter of each hexamer to be�8 nm and the angle between two hexamers

is �9.2�, comparable to experimental lattices (76). Relative to the COM,

the Gag has homodimerization sites at [0, 0.5 nm, 0]. The homodimeriza-

tion angles are [q1, q2, 41, 42, u] ¼ [1.49, 1.49, 0, 0, 0]. The heterodimeri-

zation sites are set at [�2 nm, 0, 0] and [2 nm, 0, 0], such that the side of

each hexamer is�4 nm (slightly longer because of the binding radius). The

five angles are [2.62, 2.62, p, p, 0]. Our Gag monomer has been designed

with binding sites for membrane lipids and RNA binding sites, so future

work can effectively probe assembly kinetics as controlled by Gag binding

partners and membrane localization.
RESULTS

NERDSS enables self-assembly simulations

NERDSS expands beyond existing single-particle RD soft-
ware by propagating rigid, user-defined, orientable compo-
nents that assemble rigid multicomponent structures such
as hexagonal clathrin lattices (Fig. 1 a). The algorithmic el-
ements of NERDSS that are new for single-particle and
spatial RD (Fig. 1 b) arise because of this propagation of
rigid multisite molecules (44), which requires generalized
routines to orient molecules and complexes once they
bind, corresponding assessment of steric overlap and defect
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contacts, integration of rule-based control of each site, and
generalized output for visualization and analysis (see
Methods). We provide a GUI to facilitate the otherwise
cumbersome construction of rigid molecules and bound
states. The binding between molecules is independent of
their orientation before the event (44), which is true of all
single-particle methods, including those with interaction po-
tentials, because of their spherical symmetry (14,40).
NERDSS is efficient enough to simulate seconds to minutes
of assembly on a single processer (Fig. S1), primarily
because of algorithms that support relatively large time
steps (32). Localization and assembly on membranes also
can proceed efficiently and accurately by using a recent al-
gorithm for implicit lipids, which avoids the need to propa-
gate large populations of individual lipid binding sites (74).
Although not yet optimized for parallel or GPU architec-
tures (27,34,40), this is an active development. The signifi-
cant advantages of NERDSS are the types of biological
model systems it makes accessible and the accuracy of the
single-particle algorithms used for propagating species,
illustrated in the next section.
Validation of NERDSS kinetics and equilibria

We validate the NERDSS software first for several non-self-
assembly models to verify fundamental reactions and the
rule-based implementation of the RD model either against
theory or other simulation methods. Zeroth- and first-order
reactions reproduce the exact analytical solutions as ex-
pected, and they are not dependent on space (newly created
a b

c d

try produce the same equilibrium and kinetics. This model combines all bimolec

and the implicit lipid model (see Fig. S5 for parameters). (d) Clathrin trimer self

binding between identical, independent sites, is shown. V¼ 0.494 mm3, Ntrimer,0
<NCC>eq ¼ 104.7 and 104.8 for Dt ¼ 0.1, 0.2 ms respectively. The NERDSS s

values also depend on the formation of closed loops, where here f ¼ 5.9e�6, bin

color, go online.
particles are placed randomly in the volume) (Fig. 2 a).
Bimolecular reactions for single-particles have been previ-
ously validated for the FPR algorithms in 3D (32), 2D
(73), and transitions from 3D to 2D with flat and curved sur-
faces (74), but we perform additional verification here
(Fig. 2 b). The FPR algorithms are derived to preserve
detailed balance for reversible binding interactions,
ensuring thermodynamic equilibrium is reached when sys-
tems are designed to (excluding kinetic traps). Binding to
the surface can be mediated through explicit lipid sites, or
we have implemented an implicit lipid model that is sub-
stantially more accurate than surface adsorption models at
reproducing binding kinetics of the explicit lipid simula-
tions (74). This model provides orders of magnitude
speedups relative to explicit lipid simulations (74) and cou-
ples with all other reaction types (Fig. 2 c). Although
NERDSS is compatible with arbitrarily curved surfaces
(77), the user inputs currently accommodate only spherical
geometries (Fig. 2 c) or rectangular volumes in which the
flat membrane is on one surface. We propagate diffusion
on the sphere by exactly sampling displacements on the
spherical surface (Supporting Materials and Methods), and
all distances between surface-bound particles are measured
using geodesics.

To validate the self-assembly simulations, we follow pre-
vious work (44) by comparing our results against nonspatial
rate-based simulations and by comparing our simulation re-
sults as we change the time step of integration (Fig. 2 d).
Changing the time step is a valuable test for two reasons:
first, as the time step decreases, the assumption that each
FIGURE 2 Multiple validations of NERDSS al-

gorithms and features. (a) Creation and destruction

are compared with analytical theory from the cor-

responding oridinary differential equation (ODE),

where kC ¼ 0.01 M/s and kd ¼ 1000 s�1, V ¼ 1

mm3. (b) Bimolecular reactions in different dimen-

sions are shown. 3D and 2D analytical theory

curves from the ODE, 3D / 2D theory as the nu-

merical solution to the PDE are shown, solved us-

ing Virtual Cell. The kinetics of the 2D single-

particle RD solution is theoretically known to

differ from the continuum solution (73). For all re-

actions, s ¼ 2 nm. For 3D: V ¼ 0.83 mm3, DA ¼
DB ¼ 20 mm2/s, kon ¼ 300 mM�1s�1, koff ¼ 50

s�1, A0 ¼ B0 ¼ 2 mM. For 2D: A ¼ 1 mm2,

DA ¼ DB ¼ 2 mm2/s, kon ¼ 10 mm2s�1, koff ¼ 50

s�1, (ka
2D ¼ 100 mm2s�1), A0 ¼ B0 ¼ 800/mm2.

For 3D / 2D: cube of L ¼ 1 mm. DA ¼ 40

mm2/s, DB ¼ 2 mm2/s, kon ¼ 100 mM�1s�1, koff ¼
50 s�1, A0¼ 1.412 mM, B0¼ 3000 mm2. (c) Local-

ization and binding on the membrane (as modeled

in (45)) with a box geometry and a sphere geome-

ular reactions tested in part (b) and includes diffusion on the curved surface

-assembly, where theory is the analytical solution to the ODE for reversible

¼ 100, kon ¼ 1 mM�1s�1, koff¼ 1 s�1, Dtrimer ¼ 13 mm2/s, DR ¼ 0.03 rad2/s.

imulations capture the spatial lattice formation, and thus, their equilibrium

dRadSameCom ¼ 5 nm, and overlapSepLimit ¼ 7 nm. To see this figure in
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multisite molecule is interacting with only one other site be-
comes more and more accurate, which improves adherence
to solving only two-body problems per step (32). Second,
the reaction probabilities depend nonlinearly on the time
step, so if inaccuracies existed in diffusion or reactions,
they show up quantifiably in the kinetics and equilibria.
We performed the same validation for assembly in 2D
(Fig. S4). For self-assembly, we must introduce a new
loop-closure reaction type (Methods), and we show how
the choice of this parameter, which controls the binding
free energy of loop-closure events, impacts the equilibrium
(Fig. S3). We cannot compare NERDSS self-assembly with
other single-particle software because they do not capture
orientation-dependent interactions and thus cannot form a
structured lattice or cage. It is informative to compare
NERDSS to NFSim (8), which lacks spatial resolution but
simulates rate-based models that can form multiprotein as-
semblies via multisite species and rule-based modeling
(Figs. S2 and S3). In weak-binding regimes, they agree
exactly, but with stronger binding, the structure resolution
in NERDSS drives spatially localized interactions and cap-
tures several elements of self-assembly not possible with
NFSim, including lattice geometries and topologies and
their growth patterns.

To test the rule-based implementation with a more com-
plex nonassembly model, we simulated a previously devel-
oped minimal model of a circadian genetic oscillator (53)
with NERDSS, as well as with PDEs and the stochastic
simulation algorithm (via Virtual Cell software (6)),
showing quantitative agreement across all models (Fig. 3).
Our simulation recapitulates how the expression of two pro-
teins, an activator protein (A) and repressor protein (R), can
a b

c

One exception is unbinding of the complex A-R (magenta dashed). Because unb

no possibility for geminate recombination, and thus, the unbinding follows the

cillations, where the calculated oscillation time is 25.1 s. (c) The oscillation tim

simulations, calculated as 24.5 s. In the Supporting Materials and Methods, we sh

were the same with Dt ¼ 10 or 50 ms. Because of the constant production and de

videos for this model (Video S5) and the Gag model (Video S4). To see this fig
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be coupled to produce robust oscillations of both proteins
and their bound complex. For our NERDSS model, when
messenger RNA and proteins are created, they are placed
adjacent to the molecule creating them. All rates were accel-
erated by a factor of 3600 relative to the original rates
because of computational costs, such that oscillations
occurred over timescales of seconds rather than hours.
This change made the binding events diffusion limited,
meaning they could become sensitive to the spatial distribu-
tion of particles. However, because the species mix rapidly
and the volume is not too large (Video S5), the kinetics were
essentially insensitive to diffusion and the spatial dimen-
sion, indicating the resolution offered by NERDSS is not
necessary for this model. We note the PDE and nonspatial
simulations have significantly faster CPU time.
NERDSS tests clathrin cage assembly designed
by four distinct models of clathrin-clathrin
interactions

Clathrin, a 600 kDa trimeric protein, assembles into both flat
and spherical lattices in vivo and in vitro (1,78,79), although
in vivo this process only occurs on the plasma membrane,
with the requirement of a host of accessory and adaptor pro-
teins, because clathrin itself does not bind the membrane.
Clathrin trimers are observed to assemble in solution
in vitro either at low pH or in the presence of clathrin termi-
nal-binding adaptor proteins (80,81). We model distinct as-
sembly conditions by changing binding strengths,
cooperativity, and binding geometries of clathrin-only solu-
tions, contrasting how multiple observables vary with
distinct model parameterizations at a fixed (1.3 mM) clathrin
FIGURE 3 NERDSS simulations of a circadian

clock model recapitulate oscillatory protein expres-

sion. (a) The model contains six components, with

the activator (A, in red) and repressor (R, in blue)

proteins produced by their corresponding

messenger RNA, which are produced by a single

copy of each gene (PmrA and PrmR). All species

have Dt ¼ 10 mm2/s, and initial copies were zero

except for one copy of PrmA and PrmR. Unimolec-

ular reactions (except dissociation) are shown with

reactions indicated by h or d (h1 ¼ 50 s�1, h2 ¼
0.01 s�1, h3 ¼ 50 s�1, h4 ¼ 5 s�1, h5 ¼ 500 s��1,

h6 ¼ 50 s�1; d1 ¼ 1 s�1, d2 ¼ 0.2 s�1, d3 ¼ 10

s�1, d4 ¼ 0.5 s�1) binding and unbinding reactions

are shown with rates p (pa1 ¼ 1204 mM�1s�1,

pa2 ¼ 602 mM�1s�1, pa3 ¼ 602 mM�1s�1, pb2 ¼
100 s�1, pb3 ¼ 50 s�1, ub ¼ 1 s�1). For bimolecular

association reactions, NERDSS converts the macro-

scopic rates above to microscopic rates, where s ¼
5 nm for binding PrmA/R and s ¼ 8 nm for A þ R.

inding results in only R (A is modeled as degraded instantaneously), there is

macroscopic rate ub. (b) Solution using a PDE solver produces regular os-

e of A (and R) from NERDSS is in close agreement with the PDE-based

ow similar results for a nonspatial model (time¼ 24.8 s). Simulation results

gradation of components in this model, we used Ovito software to produce

ure in color, go online.
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FIGURE 4 NERDSS simulations of designed

clathrin lattice assemblies in solution, with 1.3

mM clathrin triskelia. (a) For KD ¼ 100 mM,

most clathrin remains monomeric in solution.

The second column shows corresponding counts

of pairs of bound clathrin trimer legs in time. The

third column shows a histogram of the total copies

of clathrin triskelia as distributed complexes of

increasing size. (b) Strengthening KD to 0.2 mM

is shown. (c) The cooperative model has binding

of monomeric to nonmonomeric clathrin stronger

by a factor of 10, and nonmonomeric to nonmono-

meric is again 10 times stronger. Lattices can now

form despite a weak monomeric KD ¼ 100 mM. (d)

By changing geometry of the clathrin monomers

(KD ¼ 0.2 mM), they now assemble into spherical

cages with similar binding kinetics but that

nucleate smaller complexes (d3 relative to b3). Re-

sults are averaged over three to five trajectories,

and Supporting Videos are generated with VMD

(90). Cube with L ¼ 0.494 mm, koff ¼ 1 s�1, and

f ¼ 0.001. Ntrimer,0 ¼ 100, Dtrimer ¼ 13 mm2/s,

DR ¼ 0.03 rad2/s, Dt ¼ 0.2 ms. Flat clathrin mole-

cules: leg length lleg ¼ 10 nm. Puckered clathrin,

lleg ¼ 7.5 nm, and bindRadSameCom ¼ 5 nm,

overlapSepLimit ¼ 7 nm. To see this figure in co-

lor, go online.
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concentration. The baseline model has a KD for leg-leg bind-
ing of 100 mM, which is comparable to experimental esti-
mates of trimer dimerization (82). Very little binding is
observed in solution at this concentration (Fig. 4 a), which
is consistent with in vitro studies of clathrin in solution at
physiological pH (81). The same results are observed in
nonspatial simulations (Fig. S3).

By simply strengthening the KD, the flat clathrin lattices
start to assemble rapidly, to the point that a KD ¼ 1 mM pro-
duces a similar equilibrium in bound legs as 0.2 mM (Figs. 2
d, 4 b, and S10). As we strengthen KD, average size of com-
plexes transitions to a giant component at�10 to 1 mM.With
the formation of closed loops in the clathrin lattice, we can
introduce positive or negative cooperativity, due to the for-
mation of two simultaneous bound interfaces within the
closed loop (Methods and Supporting Materials and
Methods). This can thus alter the final equilibrium for a given
dimerization KD, favoring fewer bonds and more remodeling
(Figs. S3 and S10), and will also shift the value of kon when
nucleation of complexes progresses to complete lattices.

By instead introducing cooperativity in binding between
clathrins such that the rate depends on whether a monomer
is already bound to another clathrin, flat lattices assemble
after a delay, followed by rapid growth (Fig. 4 c). This
model thus has three on-rates for clathrin-clathrin binding,
with strongest binding between clathrins that are already
bound to others. This growth model results in a broader dis-
tribution of lattice sizes (Fig. 4 c; Video S1).

By taking the model of Fig. 4 b (KD ¼ 0.2 mM) and
altering the geometry of a clathrin monomer to tilt legs
10� below the plane (100� pucker), spherical cages form
(Video S2). The kinetics of leg-leg binding remains very
similar to Fig. 4 b, but the sizes of the complexes are smaller
due to spatial constraints of closed spheres and steric over-
lap (Fig. 4 d). The extent of the tilt controls the radius of the
sphere, with this 100� clathrin producing a sphere of R
�45 nm containing �100 clathrin. A 95� clathrin, in
contrast, produce a sphere of R �92 nm, estimated to
contain �500 trimers, and a 110� degree clathrin produces
a sphere of R �25 containing �20 trimers (Fig. S7). We
note that the rigid clathrin trimer cannot form a perfect
spherical lattice, and thus, defects appear even within a sin-
gle closed hexagon. In the most puckered clathrin (110�),
the geometry much better accommodates pentagons, not
hexagons (Fig. S7). Biomolecules typically have the flexi-
bility to bend and form contacts by supporting a distribution
of structural geometries, and clathrin is known to form cages
in solution and on the membrane at a range of curvatures
(75). We thus allow sites within a complex to bind one
another even when they are not at perfect contact (Methods).
The choice of cutoff distances for binding within a complex
and for identifying steric overlap (which is more difficult
Biophysical Journal 118, 1–15, June 16, 2020 9
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FIGURE 5 Clathrin assembly and disassembly by

membrane localization and delocalization. (a) Three

multivalent solution proteins are included in this

model (clathrin, adaptor protein, phosphatase) along

with one membrane lipid (PI(4,5)P2). (b) Clathrin

contains three sites for binding other clathrin and

three separate sites for binding to the adaptor. The

adaptor protein has a dedicated site for each of the

three other components, which is typical of a wide

range of clathrin adaptors (83). This allows clustering

on the membrane. The PI(4,5)P2 is present compara-

ble to its physiologic value, �1 mol % of plasma

membrane lipids (92). The phosphatase has indepen-

dent sites for adaptor and lipid binding. (c) With no

enzymatic activity, the assembly proceeds downhill,

directly to an equilibrium steady state (red curves).

With phosphatase activity turned on, the majority

of the lipids are converted by 1 s, except for the pop-

ulation that has been already bound to adaptors. The

clathrin lattice thus has time to assemble but is grad-

ually destabilized as determined by the rate of un-

binding between adaptor and lipid and adaptor and

clathrin, which increases from 1 to 10 s�1 between

cyan and blue. Ncla ¼ 100 clathrin trimers,

Nadaptor ¼ 300, Npip2 ¼ 6000, Nphos ¼ 10. Rectan-

gular box of size [0.7, 0.7, 0.494] mm, flat and

immobile membrane on the bottom. Dt ¼ 0.2

ms. koff
Cla-Cla ¼ 10 s�1. kon

Cla-adap ¼ 6

mM�1s�1 koff
Cla-adap ¼ 1 s�1, 10 s�1. kon

pip2-adap ¼
6 mM�1s�1, koff

pip2-adap¼ 1 s�1, 10 s�1. kon
phos-adap¼

0.6 mM�1s�1, koff
phos-adap ¼ 1 s�1, kon

pip2-phos ¼ 25

mM�1s�1, or 0 for ‘‘No activity.’’ For all 2D binding interactions, ka
2D ¼ ka

3D/2s, kb is unchanged, s ¼ 1 nm, f ¼ 0.001, Dcla ¼ 13 mm2/s, DR,cla ¼ 0.03

rad2/s. Dap ¼ 25 mm2/s, DR,ap ¼ 0.5 rad2/s. Dpip ¼ 1 mm2/s (Dz,pip ¼ 0), DR,pip ¼ 0. Dsyn ¼ 25 mm2/s, DR,syn ¼ 0.5 rad2/s. To see this figure in color, go

online.
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with defects) does impact the stability of the cages and
whether they prevent unphysical overlap (Figs. S8 and
S9); more sophisticated treatments in the future will
improve the treatment of defect formation (Methods).
NERDSS probes lattice assembly driven by
localization to the membrane

Increasing component concentrations is another natural
mechanism to nucleate assembly. In Fig. 5, we show how
localization to the 2D membrane surface can, on its own,
nucleate clathrin lattices by increasing the effective concen-
tration of clathrin relative to the 3D solution (Video S3).
Clathrin does not bind the membrane directly but can be
localized to the surface by an adaptor protein. The cla-
thrin-clathrin interaction is set here to a weak value of 100
mM (Fig. 5 a; (82)), and thus, minimal binding occurs in so-
lution. Once the clathrin have been localized to the surface,
however, they can assemble into a lattice that is stabilized by
relatively weak clathrin-clathrin contacts that are favorable
because of the small search space available on the 2D sur-
face (45). Although binding to many adaptor proteins is
known to stabilize clathrin-clathrin interactions (80), we
do not incorporate this cooperativity here to isolate the
role of 2D localization in nucleating assembly.
10 Biophysical Journal 118, 1–15, June 16, 2020
Enzymes can drive lattice disassembly by
removing links to the membrane

By removing links between clathrin and the membrane, we
can drive the clathrin assembly back into solution where our
clathrin lattice is no longer stable. Physiologically, this is
achievable by changing the phosphorylation state of the
lipid PI(4,5)P2, which is essential for localizing adaptor pro-
teins, and thus clathrin, to the membrane (83). Thus, without
altering the clathrin or the adaptor proteins directly, we can
drive disassembly of the lattice. We include here 10 copies
of a lipid phosphatase (e.g., synaptojanin), which converts
PI(4,5)P2 to PI(4)P irreversibly. Critically, the adaptor pro-
tein cannot bind to PI(4)P, thus removing its link to the sur-
face. Importantly, the phosphatase synaptojanin can be
localized to sites of clathrin-coated structures in vivo
through protein interactions with the adaptor protein AP-
285, thus allowing it to act in 2D to rapidly dephosphorylate
unbound PI(4,5)P2. Although in vivo, it has been shown to
play an important role in dephosphorylating PI(4,5)P2 after
fission from the membrane (59), we demonstrate here how it
is capable of driving disassembly of plasma-membrane-
bound clathrin-coated lattices, at least in this in vitro-type
model.

We find the timescales of the lattice disassembly are
sensitive to the binding and unbinding kinetics of all
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FIGURE 6 Gag monomer assembly model setup

and titration experiment. (a) Each Gag protein

monomer is given three active binding sites and

two inactive binding sites, positioned relative to a

COM site in red. The blue site is for homodimeri-

zation, H, and the green (G1) and orange (G2) sites

are for heterodimerization to produce hexamers.

The five orientation angles are based on the

COM to binding site vectors (turquoise lines), the

sigma vector (purple line), and two molecule nor-

mals (black vectors) that must not be co-linear

with the site vectors to provide an additional

dimension (Methods). The orientation of the bound

heterodimer similarly requires five angle defini-

tions, and G1 must bind G2 at a cis orientation to

ensure a hexamer loop can form (inset). (b) Trajec-

tories show the titration in of Gag monomers at

3.3 � 10�5 and 6.6 � 10�5 M/s. (c) The number

of monomers initially grows rapidly, but reaches

a relative steady state because of assembly and

degradation, which occurs at a rate of 1 s�1.

Assembled proteins are protected from degrada-

tion, causing a continual growth in sizes of assem-

bled complexes. Box ¼ [1, 1, 1] mm. Dt ¼ 0.1 ms,

kon
H-H ¼ 3 mM�1s�1, koff

H-H ¼ 1 s�1. kon
G1-G2 ¼

0.3 mM�1s�1, koff
G1-G2 ¼ 1 s�1, Dt ¼ 10 mm2/s,

DR ¼ 0.05 rad2/s. f ¼ 0.001,

bindRadSameCom ¼ 1.5 nm, overlapSeplimit ¼
0.7 nm. kdeg ¼ 1 s�1 (only fully monomeric

Gag). To see this figure in color, go online.
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protein-protein and protein-lipid interactions (Fig. 5). In
particular, although the phosphatases rapidly dephosphory-
late unbound PI(4,5)P2, the adaptor proteins protect the sub-
set of lipids they are bound to, and their links are cut on a
timescale that is determined by unbinding of the adaptor-
lipid interactions. Because clathrin can bind up to three
adaptor proteins, its dissociation from the membrane then
also depends on dissociation of all three adaptors from the
surface. Although this model is not fully parameterized to
reproduce experiment, it illustrates how localization, enzy-
matic activity, and binding kinetics can be tuned to control
assembly and disassembly. Equilibrium constants used are
within reasonable ranges of experimental measurements
for endocytic proteins (collected here (45)).
Model building requires orientations for each
pairwise binding reaction: application to viral
assembly in solution

To illustrate the model design process, we develop a coarse
model of the Gagmonomer, a retroviral protein that dimerizes
with itself and oligomerizes into a hexagonal lattice on the
plasma membrane of infected cells to form the so-called
immaturevirion (72). To forma lattice of hexamers from these
approximately linear monomers, two distinct types of dimers
are sufficient, a homodimer and heterodimer interaction, with
relative orientations defined by five separate angles for each
dimer (Fig. 6). The heterodimer forms between head-to-tail
monomers, allowing polymer-like growth at a specific hex-
americ geometry. The lattice forms with sizes of hexameric
subunits (�8 nm in diameter) and a spherical curvature (R
�50 nm) that would support an inclusion of �2500 Gags in
the full spherical shell, as observed experimentally (76). The
Gag-Gag homodimerization is stronger than other Gag-Gag
contacts at an estimated 1–10 mM and appears to form first
(84). The weaker Gag-Gag hexameric interactions are known
to be autoinhibited before binding to either RNA, negatively
charged analogs, or the membrane (72,84); however, here
we treat all interactions as constitutive for simplicity. Our
Gag monomer has been designed with binding sites for mem-
brane lipids and RNA binding sites, so future work can effec-
tively probe assembly kinetics as controlled by Gag binding
partners and membrane localization.

To illustrate the functionality of NERDSS, we initialize
the volume with zero Gag monomers. We then titrate them
in using a zeroth-order reaction, for which they are placed
randomly in the simulation volume. Thus, the concentra-
tion slowly increases, favoring slower nucleation and
more efficient growth of the Gag into a small number of
larger assemblies (Video S4). Monomeric Gag is also
degraded, although assembled Gag is not. Thus, the long-
time behavior consists of Gag as stable spheroids or as
short-lived (�1 s) monomers. As designed, the Gag is
able to assemble into large spheroids entirely because of
the two specified reactions (Fig. 6). The assembly kinetics
depends on the titration speed, which can provide addi-
tional knobs to help optimize the model against experi-
mental data.
Biophysical Journal 118, 1–15, June 16, 2020 11
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DISCUSSION

NERDSS has several advantageous features that make it a
powerful and immediately useful tool for cell-scale simula-
tions. First, NERDSS is transferrable between distinct sys-
tems thanks to its rate-based interaction framework, which
avoids the time-consuming parameterization of energy
functions often hard coded for specific assembly systems
(19). Although protein geometries and orientations of
bound complexes in NERDSS are system specific, we pro-
vide a GUI to facilitate user design of proteins and their
bound states. Second, unlike existing spatial rate-based ap-
proaches (33), the built-in molecular structure of NERDSS
not only enforces excluded volume of binding sites but
evaluates whether steric overlap or volume restrictions
would prevent the formation of unphysical assembly struc-
tures. Third, it uses the FPR algorithms (32,44,73) to effi-
ciently propagate species while retaining accurate rates of
association and dissociation, allowing for current simula-
tions of timescales on the order of seconds to minutes.
NERDSS converts carefully between microscopic rates
used in FPR and macroscopic rates commonly defined
from experiment, with extensive validation (44). Fourth,
NERDSS uses a BioNetGen Language-style syntax (46),
and models built in other software packages using similar
syntax can be ported to NERDSS with minimal alterations,
making it available for immediate use. In this combination
of structural resolution, efficient propagation and accurate
treatment of association rates, and user-friendly input file
syntax, NERDSS is a unique tool for simulating equilib-
rium and nonequilibrium self-assembly and other cell-scale
phenomena.

A current limitation of NERDSS is that all species must
be rigid bodies, and thus, assembly defects that arise within
complexes that cannot perfectly tile surfaces (such as rigid
bodies on a sphere) are accommodated approximately by us-
ing a distance tolerance. Molecule flexibility (14) is a natu-
ral extension beyond rigid molecules that would improve
defects and also enable better treatment of disordered re-
gions and genomes. NERDSS also lacks any orientation
dependence on binding between complexes before associa-
tion, which is an approximation that can result in unphysical
binding events, particularly between large multicomponent
intermediates, as also discussed previously (44). Although
we have implemented options to reject these moves, intro-
ducing orientation dependence to reaction probabilities
(13,85) would be more physically realistic and could allow
NERDSS to predict a range of structures rather than the ones
predetermined by the defined geometries, although this
would require more expense or approximate. NERDSS is
designed to be extensible to not only users but to developers
expanding functionality. The FPR algorithms support, for
example, the implementation of more elaborate physical
models that introduce electrostatic interactions between par-
ticles (13,32). A particularly exciting future development is
12 Biophysical Journal 118, 1–15, June 16, 2020
integration of NERDSS with continuum membrane models
(74) to allow more realistic simulations of vesicle and virion
formation dynamics and coupling of assembly to mechani-
cal force generation, which is a key component, for
example, in cytoskeletal assembly models (86) and contin-
uum membrane remodeling studies (87–89).

NERDSS is designed to be more user friendly and
portable than previous versions of the FPR algorithms
(44) with the addition of rule-based modeling, the format-
ting of input and output files, and the addition of the GUI,
all available open source here: github.com/mjohn218/
NERDSS. However, it does not match the usability of soft-
ware such as Virtual Cell in terms of model setup and anal-
ysis, including defining cell geometries from experimental
data (6,52). It also does not match the level of parallelization
or optimization of software such as Lattice Microbes (27).
These will be important future software developments to
support a broad and diverse user base.

We have introduced self-assembly models here motivated
by CME and virion formation in cells as a foundation to
extend these models to additional components and experi-
mental comparison. We show how assembly can be nucle-
ated despite weak clathrin-clathrin interactions through
cooperativity or through reduction of dimensionality to the
membrane (3D to 2D) (45). With NERDSS, we predicted
here how the dephosphorylation of essential plasma mem-
brane lipids, which occurs at sites of vesicle budding (59),
could de-stabilize clathrin-coated structures and drive their
disassembly. Ultimately, NERDSS has encoded as a core
feature the ability to resolve relatively fast processes over
long timescales and individual proteins over long length
scales, simulating otherwise intractable protein assembly
dynamics. This provides immediate use in helping over-
come the challenges of understanding or designing self-
assembling structures in biology.
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Supporting Methods 
 
I. Loop closure probability derivation: 
 
Consider a complex A—B, where both protein A and protein B have sites free to bind C. Protein 
C has two sites that can bind each to A and B, thus being able to form a closed loop.  We can 
write the single step reaction as: 
𝐴(𝑎). 𝐵(𝑏) + 𝐶(𝑎, 𝑏) ⇌ 𝐴(𝑎! 1). 𝐵(𝑏! 2). 𝐶(𝑎! 1, 𝑏! 2)                                             Eq. S1 
 
If we treat the association of C to A—B as a single binding event, we can define the KD due to 
binding free energy gained by both CA and CB forming, plus an additional free energy gain or 
loss due to the specifics of the molecules themselves: 

𝐾𝐷
1𝑠𝑡𝑒𝑝

= 𝐶0 exp (
[∆𝐺𝐶𝐴+∆𝐺𝐶𝐵+∆𝐺𝑐𝑜𝑜𝑝]

𝑘𝐵𝑇
) =

𝐴(𝑎).𝐵(𝑏)𝑒𝑞∗𝐶(𝑎,𝑏)𝑒𝑞

𝐴(𝑎!1).𝐵(𝑏!2).𝐶(𝑎!1,𝑏!2)𝑒𝑞
,                             Eq. S2 

where C0 is the standard state concentration of 1M, kB is Boltzmann’s constant, T is the 
temperature, and 𝛥GCA is the binding free energy difference of bound minus unbound CA, with 
the same definition for CB. The free energy does not have to be strictly the sum of the two 
contributions, hence the addition of the parameter 𝛥Gcoop.  

In practice, treating the loop closure as a single binding step makes it very difficult and 
time-consuming to properly evaluate binding probabilities and unbinding probabilities on-the-
fly. The rate ka would change if it were a loop closure relative to a standard binding event. Loop 
closure events are spatial and not known in advance, so one would have to check for each 
possible reaction evaluation if the two proteins would spatially orient in a way to allow loop 
closure.  For unbinding, to preserve detailed balance, both links would have to be broken at 
once, whether A, B, or C unbound.  

Because of the algorithmic complexity of single-step closure, we will instead preserve 
the same free energy difference between the open and closed loop conformations as would 
occur in a single step closure, by breaking the binding into two steps, a standard bimolecular 
association with unchanged rates, and a unimolecular loop closure. In BNGL syntax, this looks 
like: 
𝐴(𝑎). 𝐵(𝑏) + 𝐶(𝑎, 𝑏) ⇌ 𝐴(𝑎! 1). 𝐵(𝑏). 𝐶(𝑎! 1, 𝑏)                                                           Eq. S3a 
𝐴(𝑎! 1). 𝐵(𝑏). 𝐶(𝑎! 1, 𝑏) ⇌ 𝐴(𝑎! 1). 𝐵(𝑏! 2). 𝐶(𝑎! 1, 𝑏! 2)                                     Eq. S3b 
or  



𝐴(𝑎). 𝐵(𝑏) + 𝐶(𝑎, 𝑏) ⇌ 𝐴(𝑎). 𝐵(𝑏! 2). 𝐶(𝑎, 𝑏! 2)                                                           Eq. S4a 
𝐴(𝑎). 𝐵(𝑏! 2). 𝐶(𝑎, 𝑏! 2) ⇌ 𝐴(𝑎! 1). 𝐵(𝑏! 2). 𝐶(𝑎! 1, 𝑏! 2)                                     Eq. S4b 

 
 
For an individual bimolecular association between C and A, we have a standard definition: 

𝐾𝐷
𝐶𝐴 = 𝐶0exp⁡(

[∆𝐺𝐶𝐴]

𝑘𝐵𝑇
) =

𝑘𝑏

𝑘𝑓
𝐶𝐴                                                                                        Eq. S5 

and the same for CB, where kf and kb are the binding and unbinding rates for the bimolecular 
association reaction.  If we compare Eq. S5 with Eq. S2, we can state that: 

𝐾𝐷
1𝑠𝑡𝑒𝑝

=
𝑘𝑏𝑘𝑏exp⁡(∆𝐺𝑐𝑜𝑜𝑝/𝑘𝐵𝑇)

𝑘𝑓
𝐶𝐴𝑘𝑓

𝐶𝐵𝐶0
.                                                                                    Eq. S6 

 
 
We want from our two-step model that: 

𝐾𝐷
2𝑠𝑡𝑒𝑝

=
𝐴(𝑎).𝐵(𝑏)𝑒𝑞∗𝐶(𝑎,𝑏)𝑒𝑞

𝐴(𝑎!1).𝐵(𝑏!2).𝐶(𝑎!1,𝑏!2)𝑒𝑞
.                                                                                Eq. S7 

 
We assume the first step in the two-step model, the bimolecular association event, is fixed and 
unchanged, given by: 
𝐴(𝑎).𝐵(𝑏)𝑒𝑞∗𝐶(𝑎,𝑏)𝑒𝑞

𝐴(𝑎!1).𝐵(𝑏).𝐶(𝑎!1,𝑏)𝑒𝑞
=

𝑘𝑏

𝑘𝑓
𝐶𝐴.                                                                                              Eq. S8 

To recover the desired result of Eq. S7 equivalent to Eq. S6, we must define the second step, 
the unimolecular step, with equilibrium: 

𝐴(𝑎!1).𝐵(𝑏).𝐶(𝑎!1,𝑏)𝑒𝑞

𝐴(𝑎!1).𝐵(𝑏!2).𝐶(𝑎!1,𝑏!2)𝑒𝑞
=

𝑘𝑏exp⁡(∆𝐺𝑐𝑜𝑜𝑝/𝑘𝐵𝑇)

𝑘𝑓
𝐶𝐵𝐶0

.         Eq. S9 

 

The forward rate for the unimolecular reaction thus becomes 𝑘𝑐𝑙𝑜𝑠𝑒 = 𝑘𝑓
𝐶𝐵𝐶0exp⁡(−∆𝐺𝑐𝑜𝑜𝑝/

𝑘𝐵𝑇). The reaction probability is then evaluated per time-step as the other unimolecular 
reactions, based on a Poisson process. The same result occurs if CB forms first, followed by CA. 
Both the on- and off-rates can also be re-scaled by the same constant, since we constrain here 
only the equilibrium. By default, the scale factor is 1 and kb is unchanged. We note that in the 
two-step process, the total A is partitioned amongst four species, A(a).B(b), A(a!1).B(b).C(a!1,b), 
A(a).B(b!2).C(a,b!2), and A(a!1).B(b!2).C(a!1,b!2), whereas in the one-step process it is only two 
species (first and last in the list). Hence the equilibrium populations of these species will be 
slightly different in both models, although the free energy difference between the monomers 
and closed loops is the same.  
 In practice, the loop closing frequency using this definition with ∆𝐺𝑐𝑜𝑜𝑝=0 is much higher 

than the opening frequency, resulting in loops that rarely disassemble, because the KD from Eq. 
S2 is much stronger than the individual binding events. Positive values of ∆𝐺𝑐𝑜𝑜𝑝 thus 

destabilize the loops, making the open rate more competitive with the close rate, and 
producing more dynamic and reversible loops. This additional parameter can be specified per 
reaction pair as the scale factor (loopCoopFactor): 
f = exp⁡(−∆𝐺𝑐𝑜𝑜𝑝/𝑘𝐵𝑇)         Eq. S10 

 
 It will be applied to the loop closure rate if those proteins can ultimately form a loop.  



 
II.         Orientations of proteins in a bound complex: Angle definitions 
Once two molecules have bound to one another, their relative orientations can be specified to 
‘snap’ them into place. This is specified in the model input files via 5 angles: 𝜃1, 𝜃2, 𝜑1, 𝜑2, and 
𝜔, which can be designed using our GUI. Each molecule has two angles defined relative to the 
binding radius vector (𝜃1, 𝜑1), and 𝜔 then defines the orientation of molecule 1 relative to 
molecule 2. Point particles do not have any orientations to specify, and linear molecules do not 
have 𝜑 values.  
When molecules are rotated into position, molecule i displaces according to DR,i/(DR,1+DR,2). If 
both molecules have DR=0, then they displace according to relative Dt values.  

Theta Angles:  The first two angles, 𝜃1 and 𝜃2, 
determine the orientation [0:𝜋] between the binding 
radius vector 𝜎⃗ and the site-to-COM vectors 
𝑣1⃗⃗⃗⃗⃗ = 𝑝1 − 𝑐1    Eq. S11a 
𝑣2⃗⃗⃗⃗⃗ = 𝑝2 − 𝑐2    Eq. S11b 
connecting each molecule center-of-mass (c1,c2) to its 
participating binding site (p1,p2).   

𝜃1 = acos⁡(
𝑣1⃗⃗⃗⃗⃗∙𝜎1⃗⃗ ⃗⃗ ⃗

|𝑣1⃗⃗⃗⃗⃗||𝜎1⃗⃗ ⃗⃗ ⃗|
)   Eq. S12a 

and 

 𝜃2 = acos⁡(
𝑣2⃗⃗⃗⃗⃗∙𝜎2⃗⃗ ⃗⃗ ⃗

|𝑣2⃗⃗⃗⃗⃗||𝜎2⃗⃗ ⃗⃗ ⃗|
).      

   Eq. S12b 
We define the sign of the vector 𝜎⃗ relative to the 

molecule being moved, such that 
 𝜎1⃗⃗ ⃗⃗ = 𝑝1 − 𝑝2 = −𝜎2⃗⃗⃗⃗⃗.        Eq. S13 
 

Phi angle: The angles 𝜑1 and 𝜑2 are dihedral angles that 
orient a second axis of each molecule 𝑛1⃗⃗⃗⃗⃗ and 𝑛2⃗⃗⃗⃗⃗ (not 
co-linear with the site-to-COM vectors) relative to the 
binding radius vector 𝜎⃗.  
 We have that 
 𝜑1 = acos(𝑡1̂ ⁡ ∙ 𝑡2̂),    Eq. S14a 
here 𝑡1̂ and 𝑡2̂ are the unit normals defined by  

𝑡1⃗⃗⃗ ⃗ = 𝑣1⃗⃗⃗⃗⃗ × 𝜎1⃗⃗ ⃗⃗       
    Eq. S14b 

 𝑡2⃗⃗⃗⃗ = 𝑣1⃗⃗⃗⃗⃗ × 𝑛1⃗⃗⃗⃗⃗,       
    Eq. S14c 
with 𝑣1⃗⃗⃗⃗⃗ defined above.  The sign of 𝜑1 is determined by 

the direction of 𝑡2⃗⃗⃗⃗  relative to the right-hand rule of 𝑣1⃗⃗⃗⃗⃗ × 𝑡1⃗⃗⃗ ⃗. The angle 𝜑2 is defined the same 

way, with subscripts 2 in the definitions of 𝑡1⃗⃗⃗ ⃗ and  𝑡2⃗⃗⃗⃗ . 
 
 



Omega angle: The 𝜔 angle is a dihedral angle [-𝜋:𝜋] 
between the site-to-COM vectors around the binding 
radius vector 𝜎. This is the only angle that directly 
constrains the orientations of one molecule to the 
other (rather than to the binding radius vector 𝜎⃗). We 
have that 
 𝜔 = acos(𝑡1̂ ⁡ ∙ 𝑡2̂),    Eq. S15a 
here 𝑡1̂ and 𝑡2̂ are the unit normals defined by  

𝑡1⃗⃗⃗ ⃗ = 𝜎1⃗⃗ ⃗⃗ × 𝑣1⃗⃗⃗⃗⃗      
    Eq. S15b 

 𝑡2⃗⃗⃗⃗ = 𝜎1⃗⃗ ⃗⃗ × 𝑣2⃗⃗⃗⃗⃗.       
    Eq. S15c 

The sign of 𝜔 is determined by the direction of 𝑡2⃗⃗⃗⃗  relative to the right-hand rule of 𝜎1⃗⃗ ⃗⃗ × 𝑡1̂.   
The dihedral is not defined if either 𝑣1⃗⃗⃗⃗⃗ or 𝑣2⃗⃗⃗⃗⃗ is co-linear with 𝜎⃗.  We define a special case that 
constrains the orientation of molecule 1 relative to molecule 2 when both are co-linear with 𝜎⃗ 
(e.g. as occurs in the clathrin-clathrin interactions). In that case we use the molecule normals to 

specify a dihedral, such that 𝑡1⃗⃗⃗ ⃗ = 𝜎1⃗⃗ ⃗⃗ × 𝑛1⃗⃗⃗⃗⃗ and  𝑡2⃗⃗⃗⃗ = 𝜎1⃗⃗ ⃗⃗ × 𝑛2⃗⃗⃗⃗⃗.  
 
III.       Spherical System 
For sphere boundaries, which are treated as reflecting, we must adjust reflection off the curved 
boundary, diffusion on the curved surface (2D), distances when restricted to the 2D surface, 
and rigid body motion of complexes on the surface. To calculate the association probability 
between two particles on the sphere, which is a 2D case, the distance between their sites is 
calculated as the geodesic distance, not the straight-line distance. All the single particles and 
complexes on the sphere can diffuse and rotate, but the mathematical description is different 
from the one in solution. 
Diffusion of single point particles on the sphere: Here, a single particle is treated as a point that 
doesn’t have a three-dimensional structure or volume. We suppose that single particles will 
treat the sphere surface as a planar surface. Therefore, the diffusion on the sphere is the 
projection of the diffusion on a flat surface.  
It is well known that the diffusion on a plane is described by two dimensions, Δx and Δy, which 
follow the Brownian dynamics: 

∆𝑥 = ⁡√2𝐷𝑥∆𝑡 ∙ 𝛹𝑥, ∆𝑦 = ⁡√2𝐷𝑦∆𝑡 ∙ 𝛹𝑦   Eq. S16  

where Dx and Dy are diffusion coefficients, generally Dx = Dy, and Ψx and Ψy are Gauss random 
numbers, 〈𝛹〉 = 0, 〈𝛹2〉 = 1. We transfer them into: 

∆𝑙 = ⁡√(∆𝑥)2 + (∆𝑦)2, Δ𝜃 = acos⁡(
∆𝑥

∆𝑙
)   Eq. S17 

where Δl is the displacement distance, and Δθ is the movement direction. 
The diffusion on the sphere should generate Δl and Δθ. As shown in the schematic 

below, M is one point that will diffuse, and O is the center of the sphere, and R is the sphere 
radius. Firstly, we find the great circle that passes M and the pole points. This great circle is 
defined as the reference circle (blue circle in the figure). Secondly, rotate this circle around O-M 
line by Δθ, we get the new great circle as the trajectory circle (red circle in the figure). Then 
move M by arc length Δl on the trajectory circle. Through this process, the point M diffuses to 



M’. The sign of y is used to decide whether to move up or down the red curve. Our simulation 
shows that mean squared displacement (MSD) due to diffusion on the sphere matches that 
expected by theory (𝑀𝑆𝐷 = 4𝐷𝑡), up until the trajectories wrap around the sphere. The MSD 
on the sphere thus drops below the planar diffusion, as the maximum displacement is limited 
by the geometry.  

 
 
 
Diffusion of multi-site complexes on the sphere: The 
diffusion of a rigid complex on the sphere surface is 
carried out by two steps. First diffuse the center-of-
mass (COM) of the complex, then realign the 3D 
structure of the complex. The diffusion of complex 
COM is treated as the diffusion of a single particle on 
the sphere. For example, the point M is the COM of a 
complex (yellow color in the figure), and following the 
method above, M moves to M’. To precisely realign 
the structure, we set up an internal coordinate system 
of the complex, comprised of three unit-vectors, i, j, k. 
For example, when the COM of the complex is at M, i 

is defined as the normalized vector of 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  . And j is 
defined as the tangent vector of the trajectory circle at 
point M, and the direction of j is inclined to M’. k is 
defined as 𝒊 × 𝒋. Then every point P in the complex can 
be expressed of the sum of i, j, k:  

𝑀𝑃⃗⃗⃗⃗ ⃗⃗ = 𝛼𝒊 + ⁡𝛽𝒋 + ⁡𝛾𝒌.  Eq. S18 
When the center-of-mass M moves to M’, every point in the complex will also move, such as P 
moving to P’, and the orientation of the internal coordinate system will change into i’, j’, k’. 
Since the complex in NERDSS is rigid, we suppose the internal expression of every point in the 
complex won’t change. Thus the new position of P’ is: 

𝑀′𝑃′⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝛼𝒊′ + ⁡𝛽𝒋′ + ⁡𝛾𝒌′.                        Eq. S19   
Rotation on the sphere: Due to the constraint of the sphere surface, the complex on the sphere 
can only rotate around the line of O-M (M is the position of center-of-mass of the complex). 
Then the rotation is equivalent to a 2-dimentional rotation on a plane. 
 
IV.       Reaction rates for molecules with identical, repeated sites 
When molecules have identical, repeated sites, such as clathrin (three trimer legs), they must 
be distinguished by distinct labels, as they have distinct coordinates in space. This labeling 
results in binding between both self and distinct sites: Cla(c1, c2, c3) can interact with another 
molecule using all possible pairs, Cla(c1)+Cla(c1)->, or Cla(c1)+Cla(c2)->, or Cla(c2)+Cla(c2)->, 
etc, with 6 distinct possibilities. The energetics of each of these reactions is (in general) all the 
same.  Importantly, we note this means that the KD value for distinct reaction sites must be 
twice as strong as for the self sites, KD

c1c2=KD
c1c1/2, i.e. the rates are such that kon

c1c2=2kon
c1c1. 

Top: Illustration of diffusional updates on the 
sphere. Bottom: For a sphere of R=50nm, 
D=1nm2/𝜇s, the mean squared displacement 
(MSD) on surface matches a plane until the 
trajectories wrap. 1000 trajectories averaged. 



Only then will the kinetics and equilibrium of the N trimer assembly (excluding all spatial 
effects), match the behavior of 3*N independent identical sites, with KD=KD

c1c1. The user must 
directly specify this increase by a factor of 2, as there are other reactions, e.g. A(a)+A(b)->, 
where the specific rate is for two truly distinct sites (e.g. actin(barbed)+actin(pointed)->). This 
modification is performed automatically in NFsim1 for these reaction types by dividing the user 
input rates for self sites by 2, and leaving the rates for distinct sites at the input values (we note 
that this results in a KD that is half that expected from the input rates). For NERDSS, it is the 
user’s specification when these indices are only distinct due to labeling, and thus the user must 
introduce the factor of 2 increase to distinct sites in this case. This result was previously 
validated for a structure-resolved clathrin model2. 
 To derive this, we consider a self-binding reaction A(a)+A(a), with equilibrium KD and 

initial concentration A0. The equilibrium value is 𝐴𝑒𝑞 =
−𝐾𝐷

4
+

√𝐾𝐷
2 4⁄ +2𝐴0𝐾𝐷

2
. If we now evenly 

split the sites into n distinct labels, we have that nAi0 = A0 , and at equilibrium, we want that 
nAieq = Aeq , where i indexes each of the labels.  We know that 𝐴𝑖0 = 𝐴𝑖𝑒𝑞 + 2𝐴𝐴𝑖𝑖𝑒𝑞 +

∑ 𝐴𝐴𝑖𝑗𝑒𝑞
𝑛
𝑗,𝑗≠𝑖  and 𝐴𝑖𝑒𝑞

2 = 𝐾𝐷𝐴𝐴𝑖𝑖𝑒𝑞.  We then must specify that 𝐴𝑖𝑒𝑞𝐴𝑗𝑒𝑞 =
𝐾𝐷

2
𝐴𝐴𝑖𝑗𝑒𝑞⁡(𝑗 ≠ 𝑖) to 

recover as desired that 𝐴𝑖𝑒𝑞 =
1

𝑛
(

−𝐾𝐷

4
+

√𝐾𝐷
2 4⁄ +2𝑛𝐴𝑖0𝐾𝐷

2
)=

𝐴𝑒𝑞

𝑛
.  We note the equilibrium copy 

numbers thus generate the distinct products [Cla(c1!1).Cla(c2!1)] twice as numerous as self 
products [Cla(c1!1).Cla(c1!1)], as order does not matter in listing bound reactants. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supporting Table 
 

Systems 3D (A+B) 3 2D D  (A+B) 2D (A+B) Self (A+A) 

Relation to 
3D 
microscopic 
binding rate 

3D

ak  3 2 32D D D

a ak k   𝑘𝑎
2𝐷 = 𝑘𝑎

3𝐷/ℎa 𝑘𝑎
𝑠𝑒𝑙𝑓

= 2𝑘𝑎
3𝐷 

Microscopic 
dissociation 
rate 

bk  bk  bk  bk  

Macroscopic 
binding rate 

1

3

1 1

4
on D

a

k
k D



 
  
 

 
1

3 2

1 1 1

2 4
on D D

a

k
k D





 
  

 

 𝑘𝑏𝑛 =
𝑓(𝑘𝑎

2𝐷, 𝜎, 𝐷, 𝑏𝜌)
b 

𝑘𝑜𝑛

=
1

2
(

1

𝑘𝑎
𝑠𝑒𝑙𝑓 +

1

4𝜋𝜎𝐷
)

−1

 

Macroscopic 
dissociation 
rate 

3D

off on b ak k k k  3 22 D D

off on b ak k k k   2D

off on b ak k k k  𝑘𝑜𝑓𝑓 = 2𝑘𝑜𝑛𝑘𝑏/𝑘𝑎
𝑠𝑒𝑙𝑓

 

Equilibrium 
state 

3D

D b aK k k  3 22 D D

D b aK k k   2D

D b aK k k  𝐾𝐷 = 2𝑘𝑏/𝑘𝑎
𝑠𝑒𝑙𝑓

 

 
Table S1. Relationships between microscopic and macroscopic reaction rates. The proper 
relationship KD=koff/kon is preserved for all binding reactions. The user always inputs values of 
ka

3D to the software (or kon). The top row rates are what are input to the Green’s function to 
evaluate binding probabilities, but the software takes care of the conversion from user inputs 
to these values.    aThe parameter h is a lengthscale that by default is set to 2𝜎. bSee Ref 3.  
 
 
 
 
Supporting Figures 
 



 
Fig S1: Wall time vs system size for the clathrin assembly is linear. The system here has 
KD=1𝜇M, kon=1x106M-1s-1, koff=1s-1, and a fixed concentration of [Cla]=1.39 𝜇M. The volume is 
systematically increased with increasing N. Exact wall time per system depends on reaction 
parameters, and diffusion. For smaller diffusion, the system can be partitioned into more sub-
volumes, which accelerates pair-wise evaluations. For faster, stronger reactions, fewer sites are 
left free in solution, generally meaning fewer pairwise evaluations need be evaluated. Timing 
performed on a Dell workstation running Linux with Intel Core i9-9980XE, with Gnu compiler 
g++ version 7.4. Times are ~20% faster with Intel compilers.                                      
 
   
 

 
 
 
Fig S2: NERDSS clathrin assembly simulations in solution can be compared with non-spatial 
stochastic simulations using NFsim software1. a) KD=100𝜇M, koff=1s-1 b) KD=0.2𝜇M, koff=1s-1.  
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V=(0.494𝜇m)3, Ncla=100, Dcla=13𝜇m2/s. Blue are NERDSS simulations. Black is the solution with 
all 300 legs independent—thus no lattice structure forms. Red is solved using the NFSim 
software package encoded using BNGL syntax. For KD=100𝜇M, only inter-molecular reactions 
are specified, that is, only bimolecular association between distinct binding sites.  For 
KD=0.2𝜇M, intra-molecular reactions are also specified, using the same magnitude of rates as 
for bimolecular association. Because NFSim is non-spatial, no hexameric structure can be 
enforced, each clathrin simply has three sites. NFSim is a single trajectory, the NERDSS 
simulations are averaged over 3-5 trajectories. For NERDSS, f=0.001 (also see Fig S3). 
 
 
 

 
Fig S3. Loop closure events in rate-based models impact total numbers of ‘bonds’ formed. a) 
NERDSS simulations of clathrin assembly in solution with varying loop closure factors 
𝑓 = exp⁡(−∆𝐺𝑐𝑜𝑜𝑝/𝑘𝐵𝑇). Simulations were performed with leg dimerization strengths of KD=2 

x10-7 M, kon=5 x106 M-1s-1, koff=1s-1, V=(0.494𝜇m)3, Ncla=100, Dcla=13𝜇m2/s, DR,cla=0.03 rad2/s, 
∆t=0.2𝜇s. Until the loop factor is comparable to exp⁡(−∆𝐺𝐴𝐵/𝑘𝐵𝑇), (for this reaction 2 x10-7), 
loops that form are difficult to break. For comparison, we simulated 300 independent legs, 
where no lattice forms and all events are dimerization. b) In non-spatial NFSim1 simulations, the 
structural geometry is not specified (no hexagonal lattice), but sites that are within the same 
complex can form intra-molecular bonds, which are effectively loop closure events. For purely 
inter-molecular, or bimolecular association, the bound pairs plateaus relatively low, and 
becomes independent of KD (data not shown), due to formation of a single component, where 
no internal links are allowed. With internal or intra-molecular events, here defined with the 
same magnitude rate, more events can occur. For non-spatial models, aside from each clathrin 
having 3 sites, no geometric or spatial constraints limit where loop closure occurs.   
 



 
Fig S4. Clathrin assembly on the membrane surface is independent of time-step. Verification 
that when clathrin forms assemblies in 2D, the kinetics and structures are the same as ∆t 
changes. Example structures from a) ∆t=0.01𝜇s, b) ∆t=0.1𝜇s, c) ∆t=0.5𝜇s. Kinetics of d) 
recruitment of adaptor protein (labeled AP2) to membrane lipids, e) Binding of clathrin to the 
adaptor protein, f) binding of clathrin to clathrin.  Each clathrin has a reflecting site at its center, 
to prevent fully bound clathrin from not ‘seeing’ each other. Each trace is a single trajectory.  
 
 

 
Fig S5. Reversible recruitment of interacting protein pairs to a surface in a spherical system. 

This model has two species A(a,m) and M(m), and 6 reactions: 1) A(a)+A(a) ⇌A(a!1).A(a!1), 2) 

A(m)+M(m) ⇌A(m!1).M(m!1), 3) A(a!1).A(a!1,m)+M(m) ⇌A(a!1).A(a!1,m!2).M(m!2), 4) 

A(a,m!1).M(m!1)+A(a) ⇌A(a!2).A(a!2,m!1).M(m!1), 5) A(a,m!1).M(m!1)+A(a,m!2).M(m!2) ⇌ 

M(m!1).A(a!3,m!1).A(a!3,m!2).M(m!2)  and 6) A(a!1).A(a!1,m!2).M(m!2)+M(m) ⇌ 
M(m!3).A(a!1,m!4).A(a!1,m!2).M(m!2). The last two reactions are in 2D. The kinetics of binding 
to the surface of a) a box  vs b) a sphere, with the same V/A ratio. Lipids are modeled using the 
implicit lipid model. c) Number of solution particles bound to the surface agrees well. Sphere 
R=100nm, Box=[354.4908, 354.4908, 33.333]nm, ka=8.3056nm3/𝜇s, kb=1000s-1 for both A+A 
and A+M binding reactions. 𝜎=1nm. NA=1000, NIL=2000, DA=12nm2/𝜇s, DIL=1nm2/𝜇s.  
 



 
 

 
Fig S6: NERDSS simulations of the circadian clock model4 agree with Virtual Cell5 simulations. 
Virtual Cell simulations were solved using either deterministic partial differential equations (Fig 
3 main text) (PDE) or stochastic non-spatial algorithms (Gillespie). To quantitatively compare 
stochastic simulations, which are noisy, we calculate the average period of oscillations for A and 
R over 200 s. For PDEs (or ODEs—data not shown) the oscillation times are 25.1s and 25.1s, 
with a lag-time of 6.55s. For Gillespie, averaged over 10, 200s trajectories, the times are 24.8 
and 25.1s, with a lag-time of 6.63s. For NERDSS, we have comparable results, indicating that the 
system remains well-mixed and largely rate-limited, with times of 24.5s and 24.75s for a 200s 
trajectory, and lag-time of 6.45s. We also ran a set of simulations with increased diffusion from 
10 to 20 𝜇m2/s, which alters the intrinsic rates for bimolecular reactions, and then measured 
times of 25.1, 25.2, and 6.4 over 325s. To calculate these times, we performed a discrete 
Fourier transform of the signals (the signal was zero-padded out to 5000s to increase resolution 
of the frequencies). The reported oscillation time is the maximum amplitude frequency 
observed. The lag-time was evaluated using cross-correlation, again reporting the time with 
maximum amplitude. MATLAB was used.  Similar results are obtained by simply finding the 
peaks, calculating the time-separation between them, and averaging.  



 
Fig S7. Clathrin assembly with varying pucker angles. Flat planar clathrin has a pucker angle of 
90◦. Here we increase it to a) 95◦ b) 100◦ c) 110◦. As the angle increase, the curvature of the 
cages increases and accommodates fewer trimers. The largest can accommodate ~500 trimers, 
the smallest ~20, which orient into pentagonal faces not hexagonal faces, despite binding with 
the same angles. For simulations here and in S8-S10, V=(0.494𝜇m)3, Ncla=100, Dcla=13𝜇m2/s, 
DR,cla=0.03 rad2/s, ∆t=0.2𝜇s. KD=0.2𝜇M, lleg=7.5 nm, f=0.001, bindRadSamCom = 5nm, 
overlapSepLimit = 7nm.  
 
 
 



 
Fig S8. Clathrin cage simulations can form defects that can still stabilized interactions. By 
allowing free leg sites that are in close by not perfect contact to still form ‘bonds’, the cages are 
stabilized further against dissociation. This parameter, bindRadSameCom, is increased to allow 
bond formation at longer distances, from cutoffs at a) 3nm b) 5nm c) 8nm d) 10nm. When the 
distances are relatively large compared to the molecule size (lleg=7.5 nm), the bonds are less 
physical, and prevent recruitment of additional trimers. Pucker is 100◦, other parameters match 
Fig S7.  



 
Fig S9. Clathrin cage simulations can form defects, and evaluating steric overlap impacts 
structure. When binding events occur between clathrin, the events are rejected if components 
of the two complexes have steric overlap, which is true if any COM-COM distances are less than 
overlapSepLimit. As this limit is increased from a) 1.5nm b) 5nm c) 7nm d) 10nm, more 
association moves with any trimer overlap are rejected, resulting in more prevention of defects 
and fewer trimers per cage. Pucker is 100◦, bindRadSameCom=5nm, other parameters match 
Fig S7.  



 
Fig S10. Clathrin cages nucleate once KD is sufficiently strong. Here we compare results for a) 
KD=0.2𝜇M. b) 1𝜇M. Parameters are the same as Fig S7. Here, we note the KD in (b) is the same 
as in Fig 2d from the main text. The final equilibrium of bound leg pairs is higher here because 
we have increased f to 0.001, from 5x10-6, resulting in more stable loops.  
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