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Abstract— Distributed optimization algorithms are proposed
to, potentially, reduce the computational time of large-scale
optimization problems, such as security-constrained economic
dispatch (SCED). While various geographical decomposition
strategies have been presented in the literature, we proposed a
temporal decomposition strategy to divide the SCED problem over
the considered scheduling horizon. The proposed algorithm
breaks SCED over the scheduling time and takes advantage of
parallel computing using multi-core machines. In this paper, we
investigate how to partition the overall time horizon. We study the
effect of the number of partitions (i.e., SCED subproblems) on the
overall performance of the distributed coordination algorithm and
the effect of partitioning time interval on the optimal solution. In
addition, the impact of system loading condition and ramp limits
of the generating units on the number of iterations and solution
time are analyzed. The results show that by increasing the number
of subproblems, the computational burden of each subproblem is
reduced, but more shared variables and constraints need to be
modeled between the subproblems. This can result in increasing
the total number of iterations and consequently the solution time.
Moreover, since the load behavior affects the active ramping
between the subproblems, the breaking hour determines the
difference between shared variables. Hence, the optimal number
of subproblems is problem dependent. A 3-bus and the IEEE 118-
bus system are selected to analyze the effect of the number of
partitions.

Index Terms— Temporal decomposition, distributed
optimization, security-constrained economic dispatch,
partitioning.

1. INTRODUCTION

Large optimization problems are constantly being solved for
operation, planning, and energy management in power systems
[1-7]. Computational burden of power system optimization
problems will increase by growing the system size [8-10]. For
problems such as security-constrained economic dispatch
(SCED), the computation time increment depends on the
number of variables and constraints [11]. Decomposition
techniques have been presented to divide large optimization
problems into several small subproblems and solve them in an
iterative manner [12-19]. There are several ways to decompose
such problems and each way of decomposition follows a
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particular goal. Reference [16] surveys the literature of
distributed algorithms with applications to optimization and
control of power systems. Reference [15] reviews
distributed/decentralized algorithms to solve optimal power
flow (OPF). Geographical-based decomposition strategies,
which divide a power system into several smaller zones, are
most common. These methods formulate a subproblem for each
zone and solve the subproblems iteratively either in a sequential
manner or a parallel fashion [20-23]. Although geographical
decompositions have shown desirable performance for large
power system problems, they might not be effective for
computation time reduction for optimization problems with
multiple time intervals, e.g., SCED, especially when the focus
is on a part of the system that has one owner. In such a multi-
interval scheduling problem, the computational burden not only
depends on the size of the system but also depends on the
number of intertemporal constraints such as ramp limits of
generating units.

We proposed a time decomposition strategy in our previous
work [24]. The optimization problem was decomposed into
seven equal sub-horizons, and a SCED problem was formulated
for each sub-horizon. To model the ramping up and ramping
down constraints, an extra time interval was added to the end of
each sub-horizon, and a coordination algorithm was designed
to make the amount of power generated by units in this coupling
time interval (i.e., shared variables) equal to the value of power
generated by units in the first time interval of the next sub-
horizon. These shared time intervals between the subproblems
were referred to as overlapping time intervals. A distributed
coordination algorithm was developed to make the shared
variables equal from the perspective of each two consecutive
subproblems.

As discussed in [25], the number of subproblems have a
significant impact on a geographical decomposition strategy.
Similarly, the performance of temporal decomposition strategy
depends on the number of subproblems. The optimal number of
subproblems to minimize the solution time while obtaining
accurate results depends on many factors. The solution time
does not always decrease by increasing the number of
subproblems since increasing the number of subproblems
increases the required number of shared variables and the
number of iterations for the coordination algorithm to converge.

In this paper, we analyze the partitioning of a SCED problem



over the considered time horizon. We study the effect of the
number of subproblems on the performance of the time
decomposition strategy, the solution time, the number of
iterations, and accuracy of the obtained results. Since it is
preferred to have equal sub-horizons to take the most advantage
of parallel computing, the number of subproblems determines
the breaking intervals. The power demand, the rate of change
of load between two consecutive time intervals, and the ramp
limits of the generating units are three features that are studied
to provide useful insights on the application of temporal
decomposition on SCED.

II. CENTRALIZED SECURITY-CONSTRAINED ECONOMIC
DISPATCHING MODEL

SCED is solved to find the optimal power output of
generating units at each time interval (i.e., hour) of a considered
operation horizon. The objective function is to minimize
operation cost while the generation-demand is satisfied at every
hour. The optimization constraints under normal conditions and
N — 1 contingency criteria are formulated by (2)-(16) [26, 27].
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where a,,, b,, and C,, are cost coefficients for generating unit
u, i and j are indices for buses, t is the time interval index, u
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refers to generating units, ¢ is the index for contingency (line
outage), ij is the index for lines, f is the generation cost
function, py; is power generated by unit u at time t, p©,, is
power generated by unit u at time t after contingency ¢, p;;
denotes power flow in line ij, §; is the voltage angle of bus i,
6¢; is the voltage angle of bus i after contingency c, X;; is the

reactance of line ij,P, and P, refer to the maximum and
minimum limits of generating unit u, Eand P;j refer to the

maximum and minimum limits of line ij, UR, and DR,, show
the ramping up and ramping down limits of unit u, and 4 is the
allowable change in generated power by units after the
occurrence of a contingency.

III. TIME DECOMPOSITION AND COORDINATION STRATEGY

The number of variables and constraints directly affects the
solution time of optimization problems. To speed up the
solution procedure for SCED, a time decomposition strategy is
proposed based on our previous work [24] to divide the problem
into several sub-horizons each presenting a subproblem (i.e., a
subset of variables and constraints) of the scheduling horizon.
To model the inequality constraints pertaining to generators
ramping in a simple way, we add an extra time interval (i.e., one
hour) to the end of each sub-horizon and formulate a SCED
subproblem for each sub-horizon. We call these extra time
intervals overlapping intervals. The power generated by units
at this overlapping hour are shared variables between these
subproblems and must be equal from the perspective of
neighboring subproblems. If an extra constraint is added to the
neighboring subproblem to force the value of power in the first
time interval to be equal to the output power achieved from the
previous subproblem, the solution would be suboptimal. In
addition, if the subproblems are solved independently, there
may be two different values for the output power of some
generating units in these shared intervals. Since this is not
possible in reality, a coordination strategy is needed to
coordinate the consecutive subproblems to make their shared
variables equal in a way that is optimal for the whole problem
in the overall scheduling time horizon. Since the main goal is to
decrease the solution time and the computational burden, we
prefer to solve all subproblem at the same time in parallel
computers, and therefore we propose a coordination algorithm
that is suitable for parallel computing.

A. Auxiliary Problem Principle

Auxiliary problem principle (APP) is implemented as a
suitable coordination algorithm for parallel computing. APP is
an iterative method, based on augmented Lagrangian
relaxation, which tries to find the optimal solution of several
coupled optimization subproblems [28]. A sequence of
auxiliary problems with special features is solved to coordinate
subproblems. This is a practical approach for optimizing in
parallel by approximating the shared variables in each iteration
based on the previous iteration.

Consider that the overall scheduling horizon of one week is
decomposed into NS subproblems. For the sake of explanation,
we focus on two consecutive subproblems n and n+1. The



power output of all generating units at the last time interval of
subproblem 7 is linked to time interval one of subproblem n+1
through ramping up/down limitations of generating units. In
order to model this constraint, we add an extra (overlapping)
time interval, tc, to the end of subproblem 7. For each unit, the
optimal amount of generated power in overlapping time interval
tc must be equal to the amount of generated power in time
interval 1 of subproblem n+1. Thus, generating powers at the
overlapping hour tc are shared with generating powers of hour
one of the next sub-horizon. The shared variables of
subproblem n are shown by ¢, and shared variables of
subproblem n + 1 by ¢,,,4. Since ¢,, and ¢,,,, are physically
referring to the same concept, the following consistency
constraint needs to be satisfied for all generating units.
$n— Pns1 =0 17
However, (17) is a hard constraint that may make the overall
solution suboptimal which may be different than the centralized
algorithm and is not desirable for distributed optimization. We
relax the hard constraint (17) by adding a penalty function to
the objective function (1) using the concept of augmented
Lagrangian relaxation. To do so, we formulate (1-16) for
subproblem # at iteration & as (18).
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where T is a transpose operator, x,, is the set of output power of
generating units during sub-horizon n, ¢, is the set of output
power of generating units in the overlapping time interval tc,
A¥ is the vector of Lagrange multipliers at iteration k, p and y

are suitable positive constants. @, **and & %1 indicate the
values of the shared variables of subproblems » and n+1 that
are determined at iteration k-1, and @K is the shared variable of

subproblem 7 that needs to be determined in the iteration k. In

fact, @, *1and @ -1
decision variable.
A similar ramp-constrained SCED is formulated for

subproblem n+1 in (19).
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where ®,*and ® %! are known values whereas ®, , is a
decision variable. The SCED subproblems are solved
iteratively. The penalty multiplier A needs to be updated at the
end of each iteration as:

(20)
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where « is a suitable positive constant, which is selected based
on experimental results. Note that the value of the Lagrange
multiplier 4 in each iteration corresponds to the cost of
maintaining the consistency constraint. It should be mentioned
that since the considered SCED problem is inherently convex,
APP is proven to converge [28, 29].

IV. PARTITIONING ANALYSIS AND MOTIVATING EXAMPLE

The number of variables and constraints (for both normal
and contingency conditions) at each interval is multiplied by the
number of scheduling intervals. The less the number of
variables and constraints of a subproblem is, the less the
computational time would be. However, because of increasing
the number of shared variables, the number of iterations and
consequently the total solution time might go up. Thus, there
should be a trade-off between the number of sub-horizons and
the solution time.

Consider a week-ahead SCED problem for the IEEE 118-
bus test system that ten contingency scenarios are assumed in
each hour. This optimization problem includes roughly 656,000
variables and 1,541,000 constraints (including the limitation of
generating units, power balance, preventing action, line flow
limits, angle of reference bus, voltage angles limitations and
ramping up/down constraints). As shown in Table I, the
solution time for this problem in a centralized manner is 33
seconds. If we decompose the problem into three subproblems,
the solution time decreases to 7 seconds, which is 78.79% faster
than the centralized SCED. Table I shows the solution time for
this problem in centralized and distributed manners. Note that
this is a relatively small system, and the time saving (in terms
of seconds) is much more significant for larger systems.

After decomposing the problem into three subproblems, the
number of variables in each subproblem is 223,896 for the first
and third subproblems, and 227,824 for the second subproblem
considering shared variables (explained further in section IV).
In addition, the number of constraints in the first and third
subproblems is 522,480, and it is 531,544 for the second



TABLE I
COMPARING THE SOLUTION TIME OF CENTRALIZED AND
DECENTRALIZED METHODS
Distributed
Centralized 2 3 4
subproblems  subproblems subproblems
Time (s) 33 10 7 45
Iterations 1 2 2 5

subproblem. This difference is due to the fact the middle
subproblems have shared variables with their two neighboring
subproblems, but the first and last subproblems have only one
neighbor. Decomposing the problem into three subproblems
reduces the number of variables and constraints in each
subproblem. Further, partitioning the problem into four
subproblems will reduce the size of each subproblem. However,
it increases the number of active consistency constraints and
thus, the difference between shared variables of consecutive
subproblems, and this may result in more computational
complexity.

Figure 1 shows that partitioning the overall time horizon
(i.e., a week) into two and three equal sub-horizons and solving
the subproblems in parallel decreases the solution time.
However, partitioning the problem into four subproblems does
not improve the solution time. The solution time goes up by
36% as compared to the case with three subproblems.

Hence, it is crucial to determine the optimal number of
subproblems and decide from which intervals to break the
scheduling horizon. Based on the results, the load pattern, the
rate of the load change from one interval to another interval,
and the ramping capability of the generating units are critical
factors that must be taken into consideration for the scheduling
horizon partitioning.
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Fig. 1. The effect of the number of subproblems (NS) on the solution time.

V. NUMERICAL ANALYSIS AND DISCUSSIONS

Although time decomposition is proposed to solve the
problem faster, the number of subproblems is a key factor that
determines the solution time and accuracy of results. The
optimal number of subproblems is problem dependent, and it is
not possible to find a general pattern to address this challenge
for all problems with different load patterns. We study the effect
of the number of subproblems to give insights on how to
partition the problem. We aim at solving a week-ahead SCED
problem. The overall time interval for one week is divided into
several smaller and equal subproblems that are solved in
parallel. Consistency constraints are modeled as shared
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variables to form the connections between subproblems to
optimize the system over the entire time span. In this way, we
achieve the overall optimal cost for the whole system. All
simulations are carried out on MATLAB using YALMIP [30]
as modeling software and Gurobi solver on a 3.7 GHz personal
computer with 16GB of RAM.

A. A 3-Bus Test System

We have applied the proposed methodology on a 3-bus test
system to solve the SCED problem. The total cost using both
centralized and decentralized methods is $1,909,498. This
system has two generating units whose ramping up/down
limitations are 50 and 100 MW. However, according to Fig. 2,
the maximum load change is 40 MW. Therefore, the distributed
algorithm converges just after one iteration since shared
variables are equal from the very first iteration, in this simple
case. The load change used in Fig. 2 is calculated from (21).

Load(t) — Load(t — 1)
1

Load Change = (21)

40 ¢

Load Changes (MW/h)

L L

0 50 100
Time (hour)

Fig. 2. Changes of the load in each hour for the 3-bus test system.

150

Therefore, in this case, we have several subproblems that
there is no connection between them. Indeed, the related
intertemporal constraints between the subproblems are not
active. Figure 3 illustrates the solution time for this case. Since
subproblems are independent, by increasing the number of
subproblems, the size of each subproblem will be smaller.
Therefore, the solution time decreases. However, since the
system is very small, by decomposing the problem to more than
20 subproblems the solution time does not change considerably.

25

0 10 20 30 40 50 60 70
NS

Fig. 3. The effect of the number of subproblems (NS) on the solution time for
the 3-bus test system.
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B. IEEFE 118-Bus System

The proposed method has been applied to the IEEE 118-bus
test system. The total cost using both centralized and
decentralized methods is $11,094,780. In this case, although
some ramping constraints for transition from one sub-horizon
to another sub-horizon are active, we have changed the load to
have considerable changes to increase the difference between
shared variables to study the effect of load changes on the
required number of iterations for the coordination algorithm to
converge. Figure 4 shows (a) the load demand and (b) load
changes over the one-week horizon, and Fig. 5 shows (a) the
required number of iterations and (b) solver time to converge
over the number of subproblems.

According to Fig. 5 (a), in this case, the general trend is the
more subproblems we have, the more iterations are required for
the coordinating algorithm to converge. This is mainly because
the number of shared variables increases; hence, more shared
variables need to be coordinated. As a result, the solution time
increases. We can conclude that both the number of shared
variables and subproblems effect on the convergence time. In
addition, the number of subproblems determines the hours from
which the problem is partitioned. If the ramping constraints of
several generating units are active between the two consecutive
subproblems, solving the subproblems independently results in
different shared variables. Therefore, the coordination
algorithm needs more iterations to decrease the difference
between shared variables. In other words, it is more efficient to
partition the problem from hours with the smallest change of
load.
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Fig. 4. (a) The load demand and (b) load change in each hour for the IEEE 118-
bus test system.
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Fig. 5. (a) The required number of iterations for convergence of coordination
algorithm and (b) the solution time over the number of subproblems for the
IEEE 118-bus test system.

VI. CONCLUSION

This paper presented a temporal decomposition strategy to
speed up the solution procedure of SCED. The partitioning of
the scheduling horizon was discussed, and a coordination
strategy was developed to solve the SCED formulated for each
sub-horizon in a distributed manner. The impact of the number
of sub-horizons on the number of iterations and the solution
speed was discussed. It was analyzed that the load pattern, the
rate of change of load, and ramp limits of the generating units
have a significant impact on the optimal number of sub-
horizons and time-saving. The results show that increasing the
number of sub-horizons over a certain limit will increase the
number of shared variables, the required number of iterations
for the distribution algorithm to converge, and the total solution
time. An important observation is that if we break the problem
from hours that ramping of most generating units are not active,
less number of iterations is required for the coordination
algorithm to converge.
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