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AND STILLMAN’S CONJECTURE
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1. INTRODUCTION

Throughout this paper, let R = K[x1,...,xy] denote a polynomial ring over a
field K. We usually assume that K is algebraically closed, but the results bounding
projective dimension do not need this restriction. Stillman’s conjecture asserts that
given a specified number n of forms of specified positive degrees, say at most d,
there is a bound for the projective dimension of the ideal I the forms generate
that depends on n and d but not on the number N of variables. The conjecture
is recorded in [22] and previous work related to it may be found in [1], where the
problem is solved for quadrics, and in [3,7,10-12,17,18,20, 21|, where bounds are
given for small numbers of quadrics and cubics and examples are given, and the
degree restriction is shown to be needed, based on much earlier work in [4,5,19].
We prove Stillman’s conjecture in a greatly strengthened form, as well as many
other results, e.g., Theorems A, B, C, D, E, and F below. In fact, we prove that
the forms are in a polynomial K-subalgebra generated by a regular sequence with
at most B(n,d) elements, where B(n,d) does not depend on K or N: we refer to
this smaller polynomial ring informally as a “small” subalgebra.

In [2] a number of bounds for degrees 2, 3, and 4 are computed. While some
of the arguments depend on results of this paper, substantially different techniques
are used, particularly for the degree 4 case. One of the reasons that new methods
are needed is that we have not been able to make the results of §3 in this paper
sufficiently constructive. See Remarks 1.2 and 1.4 for more specific information
about bounds from [2].

For the purpose of proving Stillman’s conjecture one can pass to the case where
the field is algebraically closed, and we shall assume that K is algebraically closed,
unless otherwise stated, throughout the rest of this paper.

We use N to denote the nonnegative integers and Z the positive integers. We
define a nonzero homogeneous polynomial F' of positive degree in R to have a
k-collapse for k € N, if F' is in an ideal generated by k& homogeneous elements
of strictly smaller positive degree, and we define F' to have strength k if it has a
k + 1-collapse but no k-collapse. We shall also say that F' is k-strong if it has no
k-collapse, which means that its strength is at least k. Because nonzero linear forms
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292 TIGRAN ANANYAN AND MELVIN HOCHSTER

do not have a k-collapse for any k € N, we make the convention that such a form
has strength +o00. A form has strength at least 1 if and only if it is irreducible. One
of the main themes here is that F’ has a “small” collapse if and only if the singular
locus of F' has “small” codimension. “Only if” is evident: when F' = Zle G;H;,
the partial derivatives of F' are in the 2k-generated ideal (G;, H; : 1 < i < k)R.
“If” is quite difficult: a precise statement is made in part (a) of Theorem A below.

We use V to denote a finite-dimensional graded vector subspace of R spanned
by forms of positive degree. If d is an upper bound for the degree of any element of
V, we may write V=V, ®...@V;®...8V,, where V; denotes the i th graded piece,
and we shall say V has dimension sequence (01, ..., 64) where §; := dimg (V;). This
sequence carries the same information as the Hilbert function of V. We regard two
such dimension sequences as the same if they become the same after shortening by
omitting the rightmost string of consecutive 0 entries.

For V as in the preceding paragraph, we say that V' has strength at least k or is
k-strong if every nonzero homogeneous element of V' is k-strong.

If F is a form of degree d in K[x1, ..., zy], we denote by DF the K-vector space
spanned by the partial derivatives OF/0x;, 1 < i < N. When the characteristic
does not divide d, we have that F' € (DF), the ideal generated by DF', since Euler’s
formula asserts that

N
deg (F)F = > x;(0F /0x;).
i=1
If o is a subset of a polynomial ring R = K[x1, ..., ], where K is an algebraically
closed field, we write V(o) for the algebraic set in AY where the elements of o all

vanish.

We recall that a Noetherian ring S satisfies the Serre condition R,,, where 7 is
a nonnegative integer, if Sp is regular for every prime P of height < 7. If the
singular locus of S is closed and defined by an ideal J, this is equivalent to the
condition that J have height at least n + 1. (By convention, the unit ideal has
height +00.) We shall say that a sequence of elements generating a proper ideal
of a ring S is a prime sequence (respectively, if S is Noetherian, an R,-sequence,
where n € Z,), if the quotient of S by the ideal generated by any initial segment
is a domain (respectively, satisfies R,). A prime sequence in S is always a regular
sequence. If § = R is a polynomial ring, every R,-sequence of forms of positive
degree for n > 1 is a prime sequence (in fact, the quotients are normal domains),
and, hence, a regular sequence. Note that if the regular sequence is such that the
successive quotients are normal, then the sequence must be an R;-sequence.

We call a function B : N* — Z ascending if it is nondecreasing in each input when
the others are held fixed. In all our constructions of functions, it is easy to make
them ascending: replace the function B by the one whose value on (b1, ..., by)
is max{B(ai, ..., ap) : 0 < a; < b; for 1 < i < h}. A d-tuple of integer-valued
functions on N” will be called ascending if all of its entries are ascending functions.

The main results are stated below. The proofs are given in §4, after some pre-
liminary results are established in §§2 and 3.

We want to emphasize that in Theorem A below, the functions "4, A, and "A do
not depend on the field K nor on the number of variables N. This fact is central
to their use in proving Stillman’s conjecture and related results.
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Theorem A. (a) There exists an integer "A(d) > d —1 > 0, ascending as a
function of n, d € Z,., such that for every algebraically closed field K and
for every positive integer N, if R = K[x1, ..., n] is a polynomial ring
and F € R is a form of degree d > 1 of strength at least "A(d), then the
codimension of the singular locus in R/FR is at least n+ 1, so that R/FR
satisfies the Serre condition R,,.
(b) There are ascending functions A = (A1, ..., Aq) and, for every integer n >
1, "A = ("Ay, ..., "Ay) from dimension sequences § = (01, ..., 0q) € N to

N? with the following property:
For every algebraically closed field K and every positive integer N, if

R = Klxy, ..., znN] s a polynomial ring, and V denotes a graded K-
vector subspace of R of vector space dimension n with dimension sequence
(01, ..., 0a), such that for 1 < i < d, the strength of every nonzero ele-

ment of V; is at least A;(8) (respectively, "A;(8)), then every sequence of
K -linearly independent forms in'V is a reqular sequence (respectively, is an
R, -sequence).

(¢) If we have the functions "A(i) described in (a) for 1 < i < d, we may take
"A;(8) = "A(i)+3(n—1), where n = 3.°

j=10;, and these functions will have
the property described in part (b).

Remark 1.1. The condition that the singular locus of R/F R have codimension at
least n+1in R/F'R, i.e., that R/F R satisfy the Serre condition R, is equivalent to
the condition that the ideal F R+ (DF)R have height n+2 in R. (If the characteristic
is 0 or does not divide deg(F), F is in the ideal (DF)R.)

Remark 1.2. It would be of great interest to get specific bounds for the functions in
Theorem A. In [2, Theorem 4.20 and Corollary 4.21], it is shown that if V' is a vector
space of quadratic forms in R of dimension n over K such that every element of
V —{0} is (n—1)-strong, then every sequence of linearly independent elements of V
is a regular sequence. If 7 > 1 and every element of V — {0} is (n — 1+ [2])-strong,
then the quotient by the ideal generated by any elements of V satisfies the Serre
condition R,,. The corresponding result for a vector space of cubics of dimension n
over K uses a function in the strength condition that is quadratic in 2n + 7. See
[2, Theorem 6.4]. One might hope that for degree d, the function in the strength
condition needed for a vector space of dimension n consisting of d-forms might be
a polynomial of degree d — 1 in n and 5. So far as we know, this might be true.
However, the result obtained for quartics in [2, Corollary 10.4], is somewhat worse
than exponential.

By taking a supremum over values of the "A; over all dimension sequences with
at most d entries such that the sum of the entries is at most n we have at once the
result mentioned in the abstract.

Corollary A. There is an ascending function "A(n,d), independent of K and N,
such that for all polynomial rings R = K|z, ..., xn]| over an algebraically closed
field K and all ideals I generated by a graded vector space V' of dimension < n whose
nonzero homogeneous elements have positive degree at most d, if no homogeneous
element of V.—{0} is in an ideal generated by "M(n,d) forms of strictly lower degree,
then R/I satisfies R,,.

We use Theorem A to prove the following.
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Theorem B (Existence of small subalgebras). There is an ascending function
B from dimension sequences 6 = (01, ..., dq) to Z4 with the following property. If
K is an algebraically closed field and V' is a finite-dimensional Z 4 -graded K -vector
subspace of a polynomial ring R over K with dimension sequence &, then V (and,
hence, the K-subalgebra of R generated by V') is contained in a K-subalgebra of
R generated by a regular sequence G1, ..., Gs of forms of degree at most d, where
s < B(9).

Moreover, for everyn > 1 there is such a function "B with the additional property
that every sequence consisting of linearly independent homogeneous linear combina-
tions of the elements in G, ..., G, is an R, -sequence.

Discussion 1.3. We note, for example, that this theorem implies for > 3 that all
the quotients of R by ideals generated by homogeneous linear combinations of the
elements in Gy, ..., G are unique factorization domains: this follows at once from
a theorem of Grothendieck, conjectured by Samuel, for which there is an elementary
exposition in [6].

By taking a supremum over all dimension sequences with at most d entries such
that the sum of the entries is at most n, we have the following at once.

Corollary B. There is an ascending function "B(n,d), independent of K and
N, such that for all polynomial rings R = Klz1, ..., xn] over an algebraically
closed field K and all graded vector subspaces V' of R of dimension at most n
whose homogeneous elements have positive degree at most d, the elements of V' are
contained in a subring K[G1, ..., Gg], where B <"B(n,d) and Gy, ..., Gp is an
R, -sequence of forms of degree at most d.

We want to emphasize that in Theorems C, D, E and Corollary E below, given
elements and entries are not necessarily assumed to be homogeneous: one obtains
the results by passing to a subalgebra that contains all of their homogeneous com-
ponents. Note that the degree of a polynomial provides an upper bound for the
number of its positive degree homogeneous components with no reference to the
base field nor to the number of variables.

Theorem B easily implies a strong form of M. Stillman’s conjecture.

Theorem C. There is an ascending function C from Z X Zq X Zy — Z4 with the
following property. If R is a polynomial ring over an arbitrary field K and M is a
module that is the cokernel of an m xn matrixz whose (not necessarily homogeneous)
entries have degree at most d, then the projective dimension of M is bounded by

C(m,n,d).

Remark 1.4. In [2, Theorem 4.22], it is shown that a K-vector space V of quadrics
of dimension n in the polynomial ring R is contained in a polynomial subring
generated by a regular sequence consisting of at most 2"+1(n — 2) + 4 linear and
quadratic forms, and so this number also bounds the projective dimension of R/I
over R, where I is the ideal generated V. The corresponding result for cubics is
not made explicit in [2]: it is n-fold exponential. See [2, Discussion 6.6]. It may be
that much smaller bounds exist, especially for projective dimension. In the case of
quadrics, the bound for projective dimension may be quadratic in n. See [17,18].

Theorem B yields many other bounds. In the following theorem we give bounds
on a finite free resolution and on a primary decomposition. The resolution and the
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primary decomposition are not unique, so what we mean is that there exists some
finite free resolution and some primary decomposition for which the bounds hold.

Theorem D. Let K be an algebraically closed field and let R = K[x1, ..., xN] be
the polynomial ring in N variables over K. Let m,n,d € Z, let M be an m X n
matriz over R whose (not necessarily homogeneous) entries have degree at most d,
and let M be the column space of M.

(a) There exists an ascending function P(m,n,d), independent of N and K,
that bounds the length of a finite free resolution of M, the ranks of the free
modules occurring, and the degrees of all of the entries of all of the matrices
occurring. Hence, P(m,n,d) bounds sets of generators for the modules
of syzygies associated with the resolution. In the graded case, P(m,n,d)
bounds the twists of R that occur as summands in a minimal free resolution
of M.

(b) There exists an ascending function E(m,n,d), independent of N and K,
that bounds the number of primary components in an irredundant primary
decomposition of M in R™, the number of and the degrees of the genera-
tors of every prime ideal occurring, and the number of generators and the
degrees of the entries of the generators for every module in the decomposi-
tion. E(m,n,d) can also be taken to bound the exponent on every associated
prime ideal P needed to annihilate the corresponding P-coprimary compo-
nent of M mod M (in the ideal case, the exponent a needed so that P* is
contained in the corresponding primary ideal of the decomposition).

(¢) There exists an ascending function D(k,d), independent of N and K, that
bounds the minimum number of generators of any minimal prime of an
ideal generated by a regular sequence consisting of k or fewer d-forms.

Remark 1.5. Part (c) is obvious from part (b), since we may take D(k,d) =
E(1,k,d). However, the function D(k,d) plays a special role in the proofs, and
may have a much smaller bound.

Free resolutions are not unique, but the specified bounds work for at least one
free resolution. Similarly, primary decompositions are not unique, but the specified
bounds work for at least one irredundant primary decomposition of M in R™. Of
course, when m = 1 we are obtaining such a bound for the primary decomposition
of an ideal with n generators when the degrees of the generators are at most d.

We shall refer to the largest degree of any entry of a nonzero element v of the
free module R™ over the polynomial ring R as the degree of v. We shall say that
a set of generators for a submodule of R™ is bounded by n, d if it has at most n
elements of degree at most d. If n = d, we say that the set of generators is bounded
by n.

Theorem E. There exist ascending Z . -valued functions ©(m,n,r,d), A(m,n,d, h),
and T'(m,n,d) of the nonnegative integers h > 2, m, n, r, d with the following prop-

erties. Let R = Klx, ..., xn] be a polynomial ring over an algebraically closed
field K. Let G := R™. Let M, Q, and My, ..., My be submodules of G. Let I be
an ideal of R. Suppose that all of M,Q, My, ..., My, and I have sets of generators

bounded by n, d.

(a) Given an mxr matriz over R with entries of degree at most d, thought of as
a map from R" — R™ and M C R™ as above, there is a set of generators
for Ker(R" — R™ — R™ /M) bounded by ©(m,r,n,d).
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(b) There exists a set of generators for My N---N My bounded by A(m,n,d,h).
(c) There exist sets of generators for M :r Q, M :q I, and M :¢ I*° bounded
by I'(m,n,d).

Remark 1.6. Given a map of finitely presented R-modules, we may always think
of it as induced by a map of free modules that map onto these R-modules, so
that it may be described as the map R"/M' — R™/M determined by the m x r
matrix of a map of the free numerators. The kernel of this map is generated by
the images of the generators of the kernel of the map to R” — R™ /M. Thus, part
(a) of Theorem E enables one to bound a set of generators for the kernel of a map
of finitely presented modules when we have information bounding the sizes and
degrees of the presentations and of the matrix of the map of free modules.

Remark 1.7. It is difficult to make a comprehensive statement of all the related re-
sults that follow from the main theorems: the following is an example. In the result
below, by the “leading form” of a polynomial we mean the nonzero homogeneous
component of highest degree, or 0 if the polynomial is 0.

Corollary E. Let R = K|x1, ..., xn] be a polynomial ring over an algebraically
closed field. There exist bounds for the number of generators of the ideal generated
by the leading forms of the elements in an ideal generated by n elements of degree
at most d that depend on n and d but not on N or K.

Proof. Let theideal be (fy, ..., fn)R. Let Fy, ..., F, be the result of homogenizing
the f; with respect to a new variable z = zxy1. Then Fi, ..., F}, also have degree
at most d, and the required ideal is the image of (F1, ..., Fy) :gjy) #°° mod z. O

Theorem F. There is an ascending function ®(h,d) such that, independent of the
algebraically closed field K or the integer N, if a form F of degree d in the polyno-
mial ring K[z1, ..., xn] has strength at least ®(h,d), then DF is not contained in
an ideal generated by h forms of degree at most d — 1.

Of course, this is obvious from Euler’s formula if p := char(K) does not divide
d: in that case we may take ®(d, h) = h, since F is in the ideal (DF)R. We handle
the case where p is a positive prime that may divide d inductively, by using the fact
that we know Corollary B for integers less than d. See Proposition 2.6.

We end this section with a brief overview of the structure of the proof. The
main results are proved by simultaneous induction. Section 2 through Theorem 2.5
establishes lower bounds on the codimension of the singular locus of a variety de-
fined by a regular sequence of forms needed in the proofs of statements about the
existence of R,-sequences. Proposition 2.6 is independent of other material in §2:
it plays a key role in the induction. The rest of §2 is concerned with proving results
on when prime (respectively, primary) ideals retain that property after extension.

In the course of the induction, one can sometimes pass, using cases of the the-
orems that are already known, to a polynomial subring in which one has a bound
for the number of variables. Section 3 contains results that provide other relevant
bounds once a bound for the number of variables is known.

In §4, all the prior results are combined in the simultaneous induction that yields
the proofs of all of the main theorems.

Licensed to Univ of Michigan. Prepared on Wed Jul 29 14:01:34 EDT 2020 for download from IP 141.211.4.224.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SMALL SUBALGEBRAS AND STILLMAN’S CONJECTURE 297

2. PRELIMINARY RESULTS

The proofs of our main results depend on giving lower bounds for the codimension
of the singular locus of the variety defined by a regular sequence, which means giving
a lower bound for the heights of certain ideals generated by maximal minors of
Jacobian matrices. Theorem 2.1 enables us to reduce to the case where the elements
in the regular sequence have mutually distinct degrees, while Theorem 2.4 gives a
very strong result on heights of ideals of maximal minors in the situation where one
can assign a degree to every row of the matrix such that all elements of that row
have the assigned degree but distinct rows are assigned distinct degrees. The desired
result on codimension is obtained, using these earlier results, in Theorem 2.5.

Proposition 2.6 is, in a sense, unrelated to other results in this section. It provides
a key step in the complex multiple induction that simultaneously proves all of our
main results in §4.

The remaining results in this section are aimed at giving conditions on a faithfully
flat extension R C S so that every prime (and, hence, also, every primary) ideal
of R remains prime (respectively, primary) when extended to S. The case needed
for our proofs is when S is a polynomial ring over an algebraically closed field
K and R is generated over K by a prime sequence of forms of positive degree:
this is, essentially, Corollary 2.9. This is needed in our proof of results bounding
primary decomposition, which proceeds by passing from the original ring to a small
subalgebra generated by a homogeneous prime sequence.

Theorem 2.1. Let K be an algebraically closed field, let R = K[z1, ..., zN] be a
polynomial ring. Let V' be a graded K-vector subspace of R, say V =V1& --- @V,
where V; is spanned by forms of degree i, and suppose that V has finite dimension
n. Assume that a homogeneous basis Fy, ..., F, for V is a reqular sequence in
R. Let X = V(Fy, ..., F,). Let S be the family of all subsets of V' consisting of
nonzero forms with mutually distinct degrees, so that the number of elements in
any member of S is at most the number of nonzero V;. For o € S, let C, be the
codimension of the singular locus of V(o) in A¥.. Then the codimension in AY. of
the singular locus of X is at least (mingecs Cy) — (0 — 1).

Proof. We study the codimension of the set where the Jacobian of X has rank at
most n — 1. Let Z denote an irreducible component of the singular locus of X. We
first consider the case where the Jacobian has rank 0 on Z, i.e., where it vanishes
identically. Let Ag be the set of all ¢ such that V; # 0. If we form ¢ by choosing
one form G; of each degree i € A\, then Z is in the singular locus of the scheme
Y = V(G; : i € \g) defined by the vanishing of these G; (evidently, the Jacobian
of this smaller set of polynomials is still identically 0 on Z), which shows that the
dimension of the singular locus of Y is at least as large as the dimension of Z, and
hence C, is a lower bound for the codimension of Z.

Second, we consider an irreducible component Z of the singular locus, such that
on a nonempty open subset U; of Z, the Jacobian matrix has rank r, 1 <r <n—1.
We can choose an r X r minor u of the Jacobian matrix that does not vanish on a
dense open subset U of Uj, and it will suffice to bound below the codimension of U
in A%. Choose forms which, after renumbering, we may assume are Fy, ..., F,1q
in the basis for V' such that the corresponding r + 1 rows of the Jacobian matrix
contain the r rows corresponding to u. We have a map 6 : U — P" that assigns
to each point w € U the nontrivial relation on the rows of the Jacobian matrix
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Jo of Fy, ..., F.y1 when it is evaluated at u: since the Jy has rank exactly r at
u, this relation is unique up to multiplication by a nonzero scalar. In fact, it is
given by the r X r minors of the r columns determined by the nonvanishing minor
. Since the dimension of §(U) C P" is at most r, the dimension of U is bounded
by the sum of r and the dimension of a typical fiber Y of the map. Note that
r < n — 1, and the codimension of U in A¥ is bounded below by C' — r, where C
is the codimension of a typical fiber of the map 6 : U — P". Consider the fiber
over the point u = [a; : --- : ar41] € P". Because the a; give a relation on the
rows of the Jacobian matrix corresponding to Fi, ..., F,41, it follows that all of
the partial derivatives of F' = Z::ll a;F; vanish on U. We can break this sum up
as a sum of nonzero forms of mutually distinct degrees, say F' = G, +--- + G,
where 1 <4 < --- < i < d are the degrees. But then the sum of the rows of the
Jacobian matrix for Zy = V(G,,,...,G;,) vanishes on U, and so U is contained
in the singular locus of Zy. The codimension in AY of the singular locus of Z is
bounded below by C, with o = {Gj,, ..., G;, }. Thus the codimension of U in A¥
is bounded below by C, — r, where r < n — 1. This yields the stated result. O

Remark 2.2. Note that in a polynomial ring, the height of a homogeneous ideal I
does not increase when we kill some of the variables. Let P be a minimal prime
of I whose height is the same as that of I, and let () be the prime generated by
the variables we are killing. The result holds because we may localize at a minimal
prime of P+ @, and we may apply the result of [24, Théoréme 1, part (2), p. V-13],
which implies that height(P + @) < height(P) + height(Q). We shall make use of
this in the proof of Theorem 2.4 below.

Remark 2.3. In the theorem just below, the hypothesis that the degrees associated
with the various rows be distinct is crucial: without it, the rows could all be taken
to be the same. Having the degrees be all different somehow makes the matrix
more like a generic matrix, i.e., a matrix of indeterminates, for which results like
the one below have long been known: cf. [9], [14].

Theorem 2.4. Let K be a field, let R be a polynomial ring over K, and let M be
an h X N matriz such that for 1 <1 < h, the i th row consists of forms of degree
d; > 0 and the d; are mutually distinct integers. Suppose that for 1 < i < h, the
height of the ideal generated by the entries of the i th row is at least b. (If the row
consists of scalars, this is to be interpreted as requiring that it be nonzero.) Then
the ideal generated by the mazximal minors of the matriz has height at least b—h+1.

Proof. Without loss of generality, we may enlarge the field to be algebraically closed,
and we may assume that d; < ... < dj. We use induction on h: the case where
h =1 is immediate. (If one has a single nonzero row of scalars, the height of the
ideal generated by the maximal minors is +00.) We therefore assume h > 2 and
that the result holds for smaller h. Next, we reduce to the case where the number
of variables in R is b, and every nonscalar row generates an ideal primary to the
homogeneous maximal ideal. Suppose that the number of variables is greater than
b. For each i, choose a subset of the span of the ith row generating an ideal J; of
height . Choose a linear form that is not in any of the minimal primes of any of
the J;. We may kill this form, and the hypotheses are preserved: the height of the
ideal generated by the maximal minors does not increase by Remark 2.2. We may
continue in this way until the number of variables is b.
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Let P be a minimal prime ideal of the ideal generated by the maximal minors
of M. To complete the proof, it will suffice to show that the dimension of the ring
R/P is at most h — 1.

Let M denote the image of the matrix M over R/P. It is possible that all of
the maximal minors of the matrix formed by a proper subset consisting of hy < h
of the rows of M vanish in R/P. But then the height of the ideal generated by the
maximal minors of these rows is at least b — ho+1 by the induction hypothesis, and
this shows that the dimension of R/P is at most hy — 1. Hence, we may assume
that there is no linear dependence relation on any proper subset of the rows of M,
while the rank of the image M is h — 1. This implies that there are unique elements
of the fraction field of R/P, call them wy,...,up—1, such that p, = 2?2—11 Ui Ps
where p; is the image of the ith row of M. More specifically, since the first h — 1
rows of M are linearly independent over frac(R/P), we may choose h — 1 columns
forming an h x (h — 1) submatrix My of M such that the h — 1 size minor A of
the first A — 1 rows is not 0. The nonzero relation, unique up to multiplication by
a nonzero scalar in frac(R/P), on the rows of the submatrix M is given by the
vector whose entries are its h — 1 size minors, which are homogeneous elements of
R/P. This must give the relation on the rows of M. Thus, every u; can be written
as a fraction with denominator A whose numerator is one of the other minors of
M.

Let S be the ring (R/P)[u1, ..., up—1]. Note that u; has degree dy, — d; > 0, so
that S is a finitely generated N-graded K-algebra with Sy = K generated over K
by the images of the x; and by the u;. The Krull dimension of S is the same as
that of R/P, since the fraction field has not changed, and that is the same as the
height of the maximal ideal of S. But S/(uq, ..., up—1)S is zero-dimensional, since
the vanishing of the u; implies the vanishing of all entries of pj, and these entries
generate an ideal primary to the homogeneous maximal ideal of Klx1, ..., xp]. It
follows that the Krull dimension of S is at most h — 1, and, hence, the same holds
for R/ P, as required. O

Theorem 2.5. Let K be an algebraically closed field, and let V' be an n-dimensional
graded K -vector subspace of the polynomial ring R = Klx1, ..., xn] consisting of
forms of degree between 1 and d, so that V. =V, @ --- & Vy. Assume that a basis
for V' consisting of forms is a reqular sequence in R. Let h denote the number
of integers i such that V; # 0, so that h < min{d, n}. Suppose that for every
nonzero homogeneous element F' of V, the height of the ideal (DF)R in R is at
least n + h + 2n — 1. Then the codimension of the singular locus of R/(V)R in
R/(V)R is at least n+ 1.

Proof. Consider any set o of homogeneous elements of V' of distinct degrees: it has
at most h elements. The Jacobian matrix of the elements of o has at most h rows,
and the degrees associated with the rows are distinct. By hypothesis, each row
generates an ideal of height n4+h+2n —1 in R. By Theorem 2.4, the height of the
ideal of maximal minors is at least n+2n—141. Hence, the codimension C, of the
singular locus of V(o) in A% is at least n + 2n. By Theorem 2.1, the codimension
of the singular locus of R/(V)R in A¥ is at least  + n + 1. When we work mod
(V)R this codimension can drop, at worst, to i+ 1. O

The following result shows that Corollary B in degree d — 1 implies Theorem F
in degree d.
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Proposition 2.6. Suppose that we have a function *B(n,d — 1) for a fived value
of d and all n, as in the statement of Corollary B. Then Theorem F holds with
®(h,d) =3B(h,d — 1)+ 1.

Proof. Suppose that a form F of degree d in K[x1, ..., ] has strength at least
3B(h,d—1)+1 but that DF is contained in the ideal generated by h forms of degree
d—1 or less. By Corollary B these forms are contained in a subring K[G1, ..., G5|
where B < 3B(h,d—1) and G4, ..., Gp form an R3-sequence. Then DF is also con-
tained in the ideal generated by G, ..., Gp. Since R/(G1, ..., Gp) is a complete
intersection that is Rg, it is a UFD, by Discussion 1.3. F' must be irreducible in this
quotient, or else we obtain a homogeneous equation F' = F} F5 + Zf:l G;H;. Thus,
F has a (B+1)-collapse, contradicting the hypothesis. Therefore, Gy, ..., Gg, F'is
a prime sequence. This implies that the maximal minors of the Jacobian matrix of
Gy, ..., Gp, F generate an ideal of positive height mod (Gy, ..., Gp, F)R. Hence
the row of the Jacobian matrix corresponding to F', whose K-span is DF’, cannot
be 0 mod (G, ..., Gp). O

Extension of prime ideals. Recall that a flat ring homomorphism R — S is in-
tersection flat if for every family 7 of ideals of R, (1,7 (1S) = ((;cz I)S. Flatness
implies this condition when 7 is a finite family. By [15, p. 41],, if S is free over R,
then S is intersection flat. In the situation where GGy, ..., Gp is part of a homoge-
neous system of parameters for the polynomial ring K[z1, ..., n], if G1, ..., Gn
is a full homogeneous system of parameters we know that we have free extensions
K[Gl, ey GB] — K[Gl, ey GN] and K[Gl, ey GN] — K[l‘l, ey ,TN} (thiS is
module-finite and free, since the target ring is Cohen-Macaulay). Moreover, if
K C L is a field extension, K[y, ..., xny] — L[z1, ..., xn] is free, since L is
free over K. Hence, K[Gy, ..., Gg] = L[z1, ..., xn] is free and, consequently,
intersection flat.

Recall also that R is a Hilbert ring if every prime ideal is an intersection of
maximal ideals.

We first observe the following.

Theorem 2.7. Let R be a Noetherian Hilbert ring, and let S O R be a Noetherian
R-algebra that is intersection flat over R. Suppose that for every mazximal ideal m
of R, S/mS is a domain. Then for every prime ideal P of R, S/PS is a domain.

Proof. Suppose the theorem is false and that P is maximal among the primes
in R that give a counterexample. The case where R/P has dimension 0 is the
hypothesis. Now assume that dim(R/P) = d > 0. Let F,G € S be such that
F, G ¢ PS but FG € PS. By the induction hypothesis, for every prime @ D P of
R such that the height of @Q/P is one in R/P, S/QS is a domain. Hence, F € QS
or G € (S. Since R is a Hilbert ring, P is an intersection of maximal ideals m,
all of which contain such a (). Hence, P is the intersection of all such ), and the
family of such @ is infinite. Thus, either F or G, say F, is in @;S for infinitely
many choices Q1, ..., Q; ... of the prime Q. Hence, F € N;2, Q:S = (N2, Q:)S,
because R — S is intersection flat. But ();—, Q; = P, since f ¢ P cannot have the
property that f + P has infinitely many minimal primes in R/P. Hence, F € PS,
a contradiction. |

Second, we observe the following.

Licensed to Univ of Michigan. Prepared on Wed Jul 29 14:01:34 EDT 2020 for download from IP 141.211.4.224.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SMALL SUBALGEBRAS AND STILLMAN’S CONJECTURE 301

Proposition 2.8. Let R be an N-graded domain and let Fy, ..., F,, be a regular
sequence of forms that generate a prime ideal P. Let f1, ..., fn be elements of
R whose leading forms are the elements Fy, ..., F,. Then f1, ..., fn generate a

prime ideal Q.

Proof. Let L(g) denote the leading form of g € R.

If the result is false we may first make a choice of g, h ¢ @ such that gh € Q
and such that, among all such choices, the degree of gh minimum. Second, for this
choice of g and h, among all ways of writing gh = >, r; f;, choose one such that
the largest degree 0 of any of the L(r;f;) = L(r;)F; is minimum.

If 6 > deg(gh), let S be the set of indices i such that deg(r;f;) = 6. Then
> icsg L(ri)F; = 0, and the vector whose entries are the L(r;) is a graded linear
combination of Koszul relations on the F;, say, Zij hij(Fje; —Fie;). We can replace
each F; by f; in this expression to obtain a relation on the f;: >, u;f; = 0. Then
gh =>""_,(ri — u;) f; has a smaller value for § on the right hand side. Hence, we
may assume that § = deg(gh). But then L(g)L(h) € P, and one of them, say L(g),
isin P. We may alter g by subtracting a linear combination of the f; so as to cancel
its leading form and so obtain ¢’h € Q with ¢’, h ¢ @, contradicting the minimality

of the degree of gh. O
Corollary 2.9. Let K be an algebraically closed field, and let R = K|g1, ..., gB]
denote a polynomial ring over K. Suppose Klg1, ..., gg] C L[z1, ..., zn] =5, a
polynomial ring over a field L such that the inclusion is graded and g1, ..., g is

a prime sequence in S. Then for every prime ideal P of R, PS is prime.

Proof. By Proposition 2.8 above, for any ¢1, ..., cg € K, g1 —¢1, ..., g — Ccp 18
prime in S. The result is now immediate from Theorem 2.7. |

Corollary 2.9 can also be deduced from [13, Théoréme 12.1(viii)].
We also note the following fact, which is immediate from [24, Proposition 15,
p. IV-25].

Proposition 2.10. Let R to S be flat extension of Noetherian rings, and let M be
a P-coprimary R-module, i.e., the set of associated primes of M is {P}. Suppose
that PS is prime. Then S ®@ M is PS-coprimary. O

3. BOUNDING ALL DATA FOR CALCULATIONS WITH IDEALS OR MODULES
WHEN THE NUMBER OF VARIABLES IS KNOWN

The results of this section are expected, and likely can be deduced by nonstan-
dard methods as in [8] or possibly even from [23], and they are closely related in
both content and methods to those of [13, (9.8)]. However, what we need is not
precisely given in any of those papers, and we give a brief treatment here that
contains what we need for both this and subsequent papers.

Let R = K[x1, ..., zp] be a polynomial ring over an algebraically closed field.
When we refer to degrees we have in mind the standard grading in which the
variables have degree 1. But one may use a nonstandard positive integer grading
instead, since the ratio of the two notions of degree is bounded above and below by
constants. Consider an m x n matrix M with entries in R such that the degrees
of the entries are at most a given integer d. Let M C R™ be the column space of
M. In this section we show that bounds for the data of a primary decomposition
of M in R™ (respectively, of a finite free resolution of M) can be given in terms of
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B, m,n,d, where the data of the decomposition include the number of associated
primes, the number of generators of each, and the number of generators and the
degrees of the generators of all the modules in the primary decomposition. As will
be evident from the proof, one can keep track of more numerical characteristics.
By the data of a finite free resolution, we mean the length, the ranks of the free
modules occurring, and the degrees of the entries of the matrices. The bounds are
independent of the choice of K. We also obtain bounds for the operations occurring
in Theorem E when the number of variables is bounded.

The results of this section are very different from other bounds obtained else-
where in the paper, because they are allowed to depend on B, the number of
variables in the polynomial ring. We shall apply them in situations where we have
a bound on B that is independent of K and N.

We give a brief overview of the key ideas in this section. We are working with n
polynomials of degree at most d in B variables over some algebraically closed field
K. We want to bound the numerical data associated with a finite free resolution
or a primary decomposition of a module constructed as a cokernel of a matrix
of given size (the number of entries is at most n) whose entries are among these
polynomials. We want the bounds to involve only n, d, and B, and to be valid over
any algebraically closed field K. To achieve this, we replace all of the coeflicients
by indeterminates over the integers Z. Let A denote the polynomial ring over
Z generated by all of these indeterminate coefficients. The problem is then to
bound the resolution or primary decomposition after specializing the coefficients
by applying an arbitrary homomorphism from A to an algebraically closed field.
It is easier to approach the problem if we think of A as an arbitrary Noetherian
domain, so that we have the freedom of replacing A by a homomorphic image
domain and can assume, by Noetherian induction, that we know the result for the
homomorphic image. This means that the problem reduces to constructing the
needed bounds for all homomorphisms A — K whose kernels lie in a nonempty
Zariski open subset U of X = Spec(A). The task then remains to construct the
bounds for the all the irreducible components of the proper closed set X — U. But
these correspond to proper homomorphic image domains of A, and so we may apply
Noetherian induction.

As indicated above, to construct the bounds for a nonempty open subset of
Spec(A), we start by constructing the resolution or primary decomposition over
the algebraic closure F of frac(A). This field is a directed union of module-finite
extensions A’ of localizations A, of A, where a # 0. By taking A’ sufficiently large,
we can descend the resolution or primary decomposition over F so that it only
involves modules over A’. We can then make use of sufficiently (but finitely) many
instances of Grothendieck’s lemma of generic freeness (in doing this, we localize at
one more nonzero element of A) so that the resolution or primary decomposition
is preserved by base change from A’ to any algebraically closed field. If the new
choice of A’ is module-finite over A,,, this solves the problem over the open set
Spec(Ag,). Note that any homomorphism from A,, to an algebraically closed field
extends to the module-finite extension A’. The details are carried through in the
remainder of this section.

Theorem 3.1. Let h > 2, B, m, n, r, and d vary in N. Then there exist
ascending functions T (B, m,r,n,d), G(B,m,n,d), L(B,m,n,d,h), E(B,m,n,d),
and P(B,m,n,d) with values in Z with the properties described below. Let K be
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an algebraically closed field and let R = K|[z1, ..., ] be the polynomial ring in B
variables over K. Let m,n,d € N, let M be an m X n matrix over R whose entries
have degree at most d, and let M be the column space of M.

(a) Given an r x m matriz over R with entries of degree at most d, thought of
as a map from R™ — R™, and a set of generators for a submodule M of R™
bounded by n,d, there is a set of generators for Ker(R"™ — R™ — R™ /M)
bounded by T(B,m,r,n,d).

(b) There exist sets of generators for MNN, M :g N, M :q I, and M :p I*®
bounded by G(B, m,n,d).

(¢) There exists a set of generators for MiN---NMj, bounded by L(B,m,n,d,h).

(d) There exists an ascending function E(B,m,n,d) that bounds the number
of primary components in an irredundant primary decomposition of M in
R™, the number of and the degrees of the generators of every prime and
primary ideal occurring, and the number of generators and the degrees of
the entries of the generators for every module in the decomposition.

(e) There exists an ascending function P(B,m,n,d) that bounds, independent
of K, the length a free resolution of M, the ranks of the free modules occur-
ring, and the degrees of all of the entries of all of the matrices occurring.
In the graded case, P(B, m,n,d) bounds the twists of R that occur as sum-
mands in a minimal free resolution of M.

Discussion 3.2. As already indicated in the introductory paragraphs of this sec-
tion, we shall prove this result by first considering the case where all the entries
of the matrices occurring and all entries of generators of the modules and ideals
occurring are replaced by generic polynomials of degree at most d with distinct
coeflicients u; that are variables over Z. In this discussion we give further detail.

Let A denote the polynomial ring over Z in all the variable coefficients. Then
we can cover Spec(A) by a finite number of locally closed affines Spec(A;) for each
of which there is a generic calculation of the kernel, intersection, colon, primary
decomposition of the module, or a generic finite free resolution (for these, each A
is replaced by a module-finite extension domain A’). These generic calculations
specialize to give all ones needed when we replace the variables u; by elements of
an algebraically closed field K: when we make that replacement, we obtain a map
A — K whose kernel P € Spec(A) lies in one of the Spec(4;) for i > 1, and the
required calculation over K is obtained by extending the map A; — K to a map
Al — K, and then tensoring over A, with K. A more complete explanation is given
below.

To carry through this idea, we first do the generic calculation or primary de-
composition or free resolution over an open affine Spec(A4;) in Spec(A). The com-
plementary closed set is a union of closed irreducibles. We can then iterate the
procedure with each of these irreducible closed sets. We carry out this construction
when A is an arbitrary Noetherian domain, and the results we need will follow
readily once we have carried through the first step, i.e., once we have shown that
we can find an open affine A; and a module-finite extension A} where there is a
generic calculation, or primary decomposition, or free resolution. It then follows by
Noetherian induction that for each irreducible component of the complement of Ay,
one already has a finite cover by locally closed affines as described. Discussion 3.3
just below together with Proposition 3.4 construct A; for an arbitrary Noetherian
domain A.
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Discussion 3.3. Let A be a Noetherian domain and let R4 = A[zq, ..., xp]. Let
Q 4 (respectively, M 4) be an r x m (respectively, m xn) matrix over R4 and let M4
be the column space of M 4. Let 14 be an ideal of R4, and let N, My a,..., ,Mp 4

be submodules of G4 := R’}'. Let W4 be the kernel of the composite map
4 — R} — Ry /My,

where the map on the left has matrix Q4. For any A-algebra S, let Rg, Mg, Gg,
etc., denote the tensor products over A of R4, M 4 with S. In the case of M4 or
N4, Mg or Ns is the result of replacing each entry of the matrix considered by
its image in S. Let F denote an algebraic closure of the fraction field of A. In the
case of ideals I4 or submodules of M/, of G 4, the change in subscript from A to S
indicates that I4 or M4 is to be replaced by its image in R4 or G 4.

A well-known form of generic flatness (perhaps more accurately, generic freeness)
asserts that if W4 is a finitely generated S 4-module, where S 4 is a finitely generated
algebra over a Noetherian domain A, one can localize at one element of a € A— {0}
so that (Wy), is A,-free. It is also true that if T4 is a finitely generated Sy-
algebra, that Wy is a finitely generated T4-module, and @4 is a finitely generated
S a-submodule of Wy, one may localize at one element of A so that (Wa/Qa)a is
Ag-free; see Lemma 8.1 of [16]. Of course, in applying this we may take S4 to be
Ra.

Note that for T4 C R4 or M/, C G4 there are two possible meanings for Ig
and My: oneis T4 ®4 S (respectively, My ® 4 S) and the other is its image in Rg
(respectively, G'). By the theorem on generic freeness, using the image will be the
same as the result of tensoring with .S if we first replace A by a suitable localization
at one element of A — {0}, which we will be free to do in this section, and we shall
assume that A has been replaced by such a localization for which the two agree.

Let A denote the family of extension rings of A within F obtained by localizing
at one element of A — {0} and then adjoining finitely many integral elements of F.
(The same rings may be obtained by adjoining finitely many integral elements of
F to A and then localizing at one element of A —{0}.) Note that F is the directed
union of the rings in A.

For each of Wr (W4 is defined above as a certain kernel), My z N --- N My, 7,
Mz :p, Qr, MF :qg, Ir, MF :¢, I, a chosen irredundant primary decomposition
of M in G, and a chosen finite free resolution of M over Rz, one can choose
A’ € A, module-finite over A; = A,, such that the kernel, intersection, colon,
primary decomposition or finite free resolution is defined over A’. It may not have
the same property over A’, but that can be restored after localizing at one nonzero
element of A.

Proposition 3.4. Let notation and hypotheses be as in Discussion 3.3 just above.
After localizing at one more nonzero element of A, we have a calculation of the
kernel, intersection, or colon, or a primary decomposition or finite free resolution
over A’ € A which is preserved by arbitrary base change to an algebraically closed
field K. Since every map A1 — K, where K is an algebraically closed field, extends
to a map A’ — K, the kernel, intersection, colon, primary decomposition, and
finite free resolution over K arise from the one over A’ by specialization, i.e., by
base change from A’ to K.

Proof. We shall be applying generic freeness repeatedly with A’ replacing A. Since
every nonzero element of A’ has a nonzero multiple in A, we may assume in these
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applications that we are localizing at an element of A — {0}. We may localize at
one element of A and achieve a finite number of instances of freeness over A’.

First note that after localizing at one element of A — {0}, we can preserve the
exactness of a finite number of short exact sequences of finitely generated R -
modules upon tensoring with any A’-algebra L. We may also preserve the inclusions
in a finite filtration of a finitely generated R4/-module, as well as the injectivity
of an A’-algebra map S — T4 of finitely generated A’-algebras upon tensoring
with an arbitrary A’-algebra L over A’. We may preserve intersections of two
(hence, finitely many) submodules M4/, N/, of a finitely generated R4 module
W4+, because we may preserve the inclusions of M4 and N4 in Wa» as well as
the exactness of the sequence

O%MAIQNA/%MA/EBNA/—)MA/-l-NA/—)O

under arbitrary base change by localizing at one element of A — {0} so that all the
modules involved become A’-free.
With these remarks it is obvious that we can preserve the exactness of

0— W) — Ry — R} /Ms—0

under any base change A’ — L. We already know that we can preserve finite
intersections of submodules. If uq, ..., u; generate N4, we have an exact sequence

0— MA/ : RA/NA’ — RA/ — (GA//MA/)®t

where the image of r € R4 is the vector whose ¢ entries are the images of the
elements ru; in Ga//Mas. Likewise, if fi1, ..., f; generate I4/, we have an exact
sequence

0— My HeY Iy — GA/ — (GA/MA)GBt

where the image of u € G4/ is the image of the vector (fiu, ..., fiu).

We now consider primary decomposition. We can preserve that an element of
a module (hence, the module itself) is nonzero, if that is true after tensoring with
F. Call the element uy4 and the module @ 4. We may localize so that all the terms
of 0 > Raug — Qa — W4 — 0 become A-free, and Rau, is then a nonzero free
A-module. Then Rpuy is nonzero for every nonzero A-algebra L, and injects into
Q1. This enables us to keep modules distinct, and to keep ideals distinct.

If a primary decomposition of M 4. in G 4 is irredundant, this can be preserved:
we can localize sufficiently that intersection commutes with base change for all
finite sets of primary components, and we can keep every intersection that omits
a component distinct from M 4,. Likewise, we can keep all the primes that occur
distinct. We need an additional argument to show that the primes remain primes
and that components remain primary.

If P4 is such that Pr is prime, we can localize at one element of A — {0} and
guarantee that Py is prime for every map of A’ to an algebraically closed field
L. In fact, it suffices to preserve that Dy = Ru//Pas is a domain for a finitely
generated A’-algebra D,s, given that Dr is a domain. After localizing at one
nonzero element of A, we have that D4 is module-finite over a polynomial ring
over A’. After enlarging A’ and D4, by adjoining finitely many p®th roots of
elements of A’ and of the variables, we may assume that the D4/ is contained in
a domain D';, obtained by making a separable extension of the fraction field of
a polynomial ring over A’ and adjoining finitely many integral elements in that
separable extension. By the theorem on the primitive element for separable field
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extensions, D’,, has the same fraction field as A'[x1, ..., xp][f] where 6 satisfies
a monic irreducible separable polynomial H/ over A'[z1, ..., z;]. Now we can
choose Gar € A'[xy, ..., xp] such that D'y, C (A'[x1, ..., z4]a,, )[0]. By inverting

an element of A — {0} we may assume that G 4/ is monic. To complete the proof,
it suffices to show that we can, after enlarging A’, keep the minimal polynomial
H s of @ (which we may also assume is monic) irreducible no matter what field we
tensor with. This can be done using Hilbert’s Nullstellensatz. For each positive
degree s strictly smaller than the degree of H 4/, we can write down a potential
factorization of H 4/, namely Ha» = H'y,H'},, where H';, has degree s, and we use
indeterminates for all the coefficients of H';, and H'{,. Equating corresponding
coefficients yields a system of polynomial equations in the unknown coefficients Z;.
We know these equations have no solution in the algebraically closed field F. Hence,
the polynomials we are setting equal to 0 generate the unit ideal in F[Z; : j]. They
will therefore still generate the unit ideal in A’[Z; : j] for a suitably large choice of
Al

We can preserve that a submodule is P4/-coprimary: filter the module by torsion-
free modules over R4//P4/, and embed each in a free (R 4/ /Pas)-module. The filtra-
tion and the embedding will be preserved by arbitrary base change after localization
at a suitable element of A — {0}.

Thus, we can choose a primary decomposition over A’ that is preserved by base
change to any algebraically closed field.

To preserve M4/ : 1§ under base change, we note that this module is the same as
the intersection of those primary components of M4, such that the corresponding
prime does not contain [ 4.

It is clear that one can preserve a finite free resolution: its exactness is equivalent
to the exactness of finitely many short exact sequences. O

We use Discussion 3.3 above to construct the open affine A;. As mentioned
earlier, we now obtain the required cover by locally closed open affines by applying
Noetherian induction to the irreducible components of the complement of Spec(A;)
in Spec(A).

Proof of Theorem 3.1. By applying this procedure to A as defined in Discussion 3.2,
we obtain finitely many kernels, colons, intersections, primary decompositions, or
finite free resolutions that give rise to all others needed over any algebraically
closed field by specialization. The existence of the bounds stated in Theorem 3.1
is immediate. O

Remark 3.5. Tt is clear from the argument that we can bound much more if we
choose to, by taking a finer stratification. For example, we can bound all the data
associated with finite free resolutions of the ideals and/or modules in the primary
decomposition, and the same is true for finitely many other ideals and/or modules
formed from them by iterated intersection, colon, product, and sum.

4. THE PROOF OF THE MAIN THEOREMS A, B, C, D, E, AND F

We shall prove that if Theorems A, B, C, D, E, and F hold for positive integers
strictly less than d, then they hold also for degree d. We note that all of the
theorems are obvious if d = 1.

To prove part (a) of Theorem A, let D := D(k — 1,d — 1), which bounds the
number of generators of a minimal prime of an ideal generated by a regular sequence
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of k—1 or fewer forms of degree d— 1, and which exists by the induction hypothesis.
Let ® be as in Proposition 2.6, which also exists by the induction hypothesis, since
one has a function *B(n,d — 1) as in Corollary B. If the strength of the d-form F is
at least ®(D, d), but the height of (DF)R is at most k — 1, we can choose k — 1 or
fewer polynomials in DF' that form a maximal regular sequence, and we can choose
an associated (equivalently, minimal) prime of the ideal they generate that contains
DF. The number of generators is bounded by D = D(k — 1,d — 1). Hence, using
only those generators of degree at most d — 1, we obtain that DF is contained in
an ideal J generated by at most D forms of degree < d — 1. By Theorem F, this
contradicts the strength assumption on F. In characteristic 0 or p > d, we could
simply have assumed that F' has strength D.

Part (b) of Theorem A follows from part (c). We use induction on n. The
result is clear if n = 1. We may assume n > 1 and that any n — 1 or fewer
linearly independent homogeneous elements in V' form an R,-sequence. None of
the elements in the basis is in the ideal generated by the others: if it were, we
would get a graded relation on the basis elements in which one of the coeflicients
is 1: say it is the coefficient of an element of degree i. Then a nonzero linear
combination of elements of degree i has a k-collapse for k£ < i — 1, a contradiction,
since we are assuming "A(:) > i — 1. Since the quotient by n — 1 or fewer elements
in the basis satisfies R,,, and so is a domain, we may assume that a basis for V
consisting of forms is a regular sequence.

From the property of the 7A (%) stated in part (a) of Theorem A, each row of the
Jacobian matrix of a basis for V' with respect to x1, ..., x generates an ideal of
height n4+3n —3+1+4+1=7n43n—1 in the polynomial ring. Since n > h, where
h is the number of nonzero V;, by Theorem 2.5, the height of the defining ideal of
the singular locus of R/(V') in R/(V') is at least n + 1, so that R/(V) satisfies R,,.

We next show that Theorem A in degree at most d implies Theorem B in degree
at most d. Linearly order the dimension sequences 6 = (41, ..., d4) so that § < ¢’
precisely if §; < ¢; for the largest value of ¢ for which the two are different. This is
a well-ordering. Assume that "B is defined for all predecessors of §. If the vector
space is "A(J)-strong, it satisfies R,, and we are done. If not, for some ¢ an element
of V; has an "4;(d)-collapse, and we can express the element using at most 2-74,(0)
forms of lower degree. This enables us to form a new vector space in which d;
remains the same for j > 4, J; decreases by 1, and the §; for j < ¢ increase by
a total of 2 - 74;(5). If we let § run through all dimension sequences, with this
property, that precede ¢ in the well-ordering, we may take "B(d§) = maxs {"B(¢)}.
This completes the proof of Theorem B.

Theorem C is immediate, because if d bounds the degrees of the entries of the
matrix, then mnd bounds the number of nonscalar homogeneous components of
all entries, and C(m,n,d) := max{B(0) : Zle d; = mnd} bounds the projective
dimension of the cokernel.

Theorems D and E follow at once from the existence of "B and Theorem 3.1 of
the preceding section, while as already noted, Theorem F in degree d follows from
Theorem B in degree d — 1 by Proposition 2.6. (]
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