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Abstract: A horizontal time decomposition strategy to reduce the computation time of security-constrained economic dispatch
(SCED) is presented in this study. The proposed decomposition strategy is fundamentally novel and is developed in this paper
for the first time. The considered scheduling horizon is decomposed into multiple smaller sub-horizons. The concept of
overlapping time intervals is introduced to model ramp constraints for the transition from one sub-horizon to another sub-
horizon. A sub-horizon includes several internal intervals and one or two overlapping time intervals that interconnect
consecutive sub-horizons. A local SCED is formulated for each sub-horizon with respect to internal and overlapping intervals’
variables/constraints. The overlapping intervals allow modelling intertemporal constraints between the consecutive sub-horizons
in a distributed fashion. To coordinate the subproblems and find the optimal solution for the whole operation horizon
distributedly, accelerated auxiliary problem principle is developed. Furthermore, the authors present an initialisation strategy to
enhance the convergence performance of the coordination strategy. The proposed algorithm is applied to three large systems,
and promising results are obtained.

 Nomenclature
i, j index for buses
t index for time intervals
u index for units
c index for contingencies
k index for iterations
ij index for lines
N index for sub-horizons
to index for overlapping time intervals
nto number of overlapping time intervals between a sub-

horizon and its neighbouring sub-horizons
N− sub-horizon (subproblem) before sub-horizon N
N+ sub-horizon (subproblem) after sub-horizon N
n number of time intervals in a sub-horizon
URu ramping up of unit u
DRu ramping down of unit u
putoN− → N

∗ (k − 1)N− power generated by unit u in overlapping time interval
to between sub-horizons N− and N determined at
iteration k − 1 by subproblem N− and sent to
subproblem N

putoN → N+
∗ (k − 1)N+ power generated by unit u in overlapping time interval

to between sub-horizons N and N+ determined at
iteration k − 1 by subproblem N+ and sent to
subproblem N

f ( ⋅ ) generation cost function
† transpose operator
λ vector of Lagrange multipliers
β, γ tuning parameters
ρ penalty factor
ϕ∗ predicted parameters in the accelerated APP
putN generation of unit u at time t of sub-horizon N
putNc generation of unit u after contingency c at time t of sub-

horizon N
δtN voltage angle of bus i at time t of sub-horizon N
δtNc voltage angle of bus i after contingency c at time t of

sub-horizon N
putoN− → N
N_ decision variable in subproblem N− for power

generated by unit u in overlapping time interval to
between sub-horizons N− and N

putoN− → N
N decision variable in subproblem N for power generated

by unit u in overlapping time interval to between sub-
horizons N− and N

1 Introduction
Security-constrained economic dispatch (SCED) with generation
ramp limits is a decision-making problem that is frequently solved
for analysis of power systems. The considered scheduling time
horizon may vary from days to weeks [1]. The size of multi-
interval decision-making problems, such as ramp-constrained
SCED, depends on the size of the considered system and the length
of scheduling time intervals. The larger/more the system/number of
time intervals is, the larger the size of the optimisation problem
will be. Although ramp-constrained SCED is a tractable
optimisation problem, its computational burden and solution time
increase with growing the size of the problem [1]. Centralised
methods and standard solvers, such as CPLEX, may face
difficulties to handle such large optimisation problems within an
acceptable time limit. Reducing the solution time of SCED is
highly desirable as this problem is at the heart of many power
system analyses, and decision-makers prefer to obtain solutions to
their problems as fast as possible.

Approximations, relaxations, and decomposition techniques
have been presented in the literature to alleviate the computational
burden and find high-quality solutions within an acceptable range
of time. Distributed optimisation algorithms are presented as
promising techniques to decompose large problems into several
subproblems and distribute computational burden on several
computing machines [2]. Kargarian et al. [2] reviewed distributed
and decentralised algorithms to solve the optimal power flow
problem in electric power systems. Palomar and Chiang [3]
provide a tutorial for decomposition methods for network utility
maximisation. Molzahn et al. [4] survey the literature of distributed
algorithms with applications to optimisation and control of power
systems. In [5], the authors have overviewed distributed
approaches, all based on consensus + innovations, for three
common energy management functions: state estimation, economic
dispatch (ED), and optimal power flow. Kargarian et al. [6] present
a distributed unit commitment algorithm to accelerate the
generation scheduling for large-scale power systems. Kargarian et
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al. [7] present a decentralised solution algorithm for network-
constrained unit commitment in multiregional power systems. Liu
and Chu [8] study iterative distributed algorithms to assess transfer
capability for management of multi-area power systems. The
authors of [9] have described a distributed implementation of
optimal power flow on a network of workstations. An approach to
paralleling optimal power flow is described in [10] that is
applicable to large interconnected power systems. Authors of [11]
and [12] present a coordination method for distributed ED
problem. Distributed algorithms were implemented in [13] to solve
large-scale unit commitment problems.

Many papers have tried to reduce SCED solution time to
enhance decision-making processes for power system analysis
problems. However, most techniques presented in the literature to
solve ED in a distributed manner implement a geographical
decomposition to divide the power system into several smaller
subsystems (note that most of the existing geographical-based
distributed algorithms in the literature aim at preserving
information privacy of autonomous entities). Distributed
algorithms, such as alternating direction method of multipliers
[14], optimality condition decomposition [15], auxiliary problem
principle [16], and analytical target cascading [17] are applied to
coordinate the geographical subproblems and reach a good-enough
solution from the perspective of the whole power system. Guo et
al. [18] present a geographically distributed ED, where every
generator/load is modelled as an agent, and the related agents of an
area form a cluster. In [19], the authors have described a
transmission + distribution ED and proposed a decentralised
method to solve this problem using multi-parametric quadratic
programming. Lagrangian relaxation and augmented Lagrangian
relaxation are used in [20] to solve ED in a distributed fashion. Xu
et al. [21] present a distributed ED with second-order convergence,
which is based on a parallel primal-dual interior-point algorithm
with a matrix-splitting technique. Chen and Zhao [22] proposed a
consensus-based distributed ED algorithm and analyse the
influence of time delays. An attack-robust distributed ED strategy
was developed in [23] assuming that every distributed generator
can monitor the behaviour of its neighbours.

However, the dimensionality and complexity of the ramp-
constrained ED not only depend on the size of the system but also
depend on the number of scheduling time intervals. Although
decomposing the system geographically potentially reduces the
size and computation time of the ED problem, it does not deal with
intertemporal constraints. The intertemporal constraints, which
originate from limits of ramping capabilities of generating units,
interconnect decisions made in a time interval to decisions made in
other intervals and increase the complexity of the decision-making
process in the ramp-constrained ED. Another factor that increases
the size and computational complexity of the ED problem is N − 1
security criteria. The ED problem with N − 1 security criteria is
called SCED [24]. A set of credible contingencies is considered for
each interval of the SCED, and a new set of variables and
constraints are added to each time interval. Considering
contingencies and interdependencies between scheduling time
intervals (i.e. intertemporal constraints) increases the computation
time of the SCED problem. In such a situation, decomposing
SCED over the considered time horizon is potentially a promising
strategy to reduce the computation time.

In this paper, we propose a distributed optimisation algorithm to
reduce the computation time of SCED. A horizontal time
decomposition strategy is developed to divide the ramp-constrained
SCED problem into several smaller optimisation subproblems,
each containing fewer intertemporal constraints and variables than
the original centralised SCED. Unlike the geographical
decomposition, the considered scheduling horizon is decomposed
into several sub-horizons (we call this strategy as a horizontal time
decomposition since it decomposes the optimisation over the time
horizon with respect to intertemporal constraints). The concept of
overlapping time intervals is presented to model intertemporal
constraints, which are ramping constraints of generating units, for
the transition from one sub-horizon to its neighbouring sub-
horizons. The overlapping time intervals are mathematically
modelled as a set of variables and constraints. An SCED

subproblem is formulated for each sub-horizon with respect to
variables and constraints of internal intervals and the overlapping
intervals of that sub-horizon. Variables and constraints of an
overlapping time interval can be controlled by two consecutive
sub-horizons (an overlapping interval is at the end of sub-horizon
N− and at the beginning of sub-horizons N). To coordinate
solutions of the SCED subproblems and ensure the feasibility and
optimality of results from the perspective of the power system and
its components, accelerated auxiliary problem principle (A-APP) is
developed to solve subproblems distributedly. Furthermore, we
present an initialisation technique to enhance the convergence
performance of the distributed optimisation algorithm. The
proposed algorithm is scalable and reduces the computation time of
the SCED problem. The proposed horizontal decomposition and
coordination strategies are applied to solve a week-ahead SCED
problem on IEEE 118-bus system and a 472-bus system, and a day-
ahead SCED on a 4720-bus system.

The main contributions of the paper, that make it different from
the existing literature, are summarised as follows:

• A temporal decomposition strategy is proposed to decompose
SCED into multiple time-interdependent subproblems. This
strategy can be applied to other multi-stage problems. To the
best of our knowledge, such a temporal decomposition strategy
is its first kind developed for SCED.

• Based on the concept of Nesterov momentum approach for
gradient descent methods, an accelerated APP is presented to
coordinate SCED subproblem distributedly.

• An initialisation strategy is presented to enhance the
performance of the proposed distributed SCED algorithm.

The proposed time decomposition and geographical decomposition
are complements of each other. Geographical decomposition can be
used to divide a system into several smaller subsystems. If the
considered problem has multiple time intervals, time
decomposition can be used to further decompose each subsystem
into several sub-horizons to reduce the computational cost of each
subsystem.

The rest of this paper is organised as follows. In Section 2, the
considered SCED problem is formulated. In Section 3, a novel time
decomposition strategy is proposed to decompose SCED over the
time horizon. In Section 4, A-APP algorithm and an initialisation
strategy are presented to solve SCED subproblems in parallel.
Simulation results are illustrated in Section 5 and concluding
remarks are provided in Section 6.

2 Considered SCED problem
The considered centralised SCED is formulated below. The
objective function is to minimise generation costs subject to power
flow, network, and equipment constraints under normal condition
((1b)–(1g)), and N − 1 security criteria ((1h)–(1l)) [25].

min
put, putc , δt

∑
t
∑
u
au ⋅ put2 + bu ⋅ put + Cu

f (put)
(1a)

s . t . h p, δ :
puit − pdit = ∑

j

δit − δjt
Xi j

∀i, ∀t

δref, t = 0 ∀t
(1b,c)

g(p, δ):

Put ≤ put ≤ Put ∀ u, ∀t
put − pu t − 1 ≤ URu ∀ u, ∀t
pu t − 1 − put ≤ DRu ∀ u, ∀t

Pi j ≤
δit − δjt
Xi j

≤ Pi j ∀i j, ∀t

(1d-g)
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hc(p, δ):
puitc − pdit = ∑

j

δitc − δjtc

Xi j
∀i, ∀t, ∀c

δref, tc = 0 ∀t, ∀c
(1h-i)

gc(p, δ):

Put ≤ putc ≤ Put ∀ u, ∀t, ∀c

Pi j ≤
δitc − δjtc

Xi j
≤ Pi j ∀i j, ∀t, ∀c

put − putc ≤ Δ ∀ u, ∀t, ∀c

(1j-l)

We have used a DC power flow-based SCED formulation.
However, a convex relaxation of the AC power flow model can be
integrated to formulate a more complex and computationally
expensive SCED formulation [26]. Although we have ignored
uncertainties in the considered SCED formulation, chance
constraints can be formulated to account for generation and
demand uncertainties. In that case, line flow and power reserve
inequality constraints should be modelled as chance constraints
[27].

3 Proposed temporal decomposition strategy
Consider a scheduling horizon consisting of n × N intervals as
shown in Fig. 1a. The horizon can be decomposed into N equal
sub-horizons, each consisting of n intervals as depicted in Fig. 1b.
One strategy is to formulate an SCED subproblem for each sub-
horizon N regardless of other sub-horizons N∓ and then
independently solve the subproblems in parallel. Another strategy
is to formulate an SCED for each sub-horizon N by fixing the
solution of interval n of SCED N− as the initial condition of SCED
N and then solve SCED subproblems 1 to N sequentially. While the
first strategy may violate system intertemporal constraints between
the ending interval of sub-horizon N− and the beginning interval of
sub-horizon N, the second strategy may provide feasible but
suboptimal results for the whole scheduling horizon n × N.
Consider the SCED subproblems of two consecutive sub-horizons
N− and N (from now on, for the sake of brevity, we write SCED of
(1) in a compact form).

min
pN_, pN_c , δN_, δN_c

∑
t = 1

n

∑
u

f (putN − ) (2a)

s . t . hN_ putN−, putN−
c , δitN−, δitN−

c = 0 ∀t, u, i, c (2b)

gN_ putN−, putN−
c , δitN−, δitN−

c ≤ 0 ∀t, u, i, c (2c)

where equality constraint (2b) is the compact form of (1b), (1c),
(1h) and (1i), and inequality constraint (2c) is the compact form of
(1d)–(1g) and (1j)–(1l) for SCED corresponding to sub-horizons
N−.

min
pN, pNc , δN, δNc

∑
t = 1

n

∑
u

f (putN) (3a)

s . t . hN putN, putNc , δitN, δitNc = 0 ∀t, u, i, c (3b)

gN putN, putNc , δitN, δitNc ≤ 0 ∀t, u, i, c (3c)

Equality constraint (3b) is the compact form of (1b), (1c), (1h) and
(1i), and inequality constraint (3c) is the compact form of (1d)–(1g)
and (1j)–(1l) for SCED corresponding to sub-horizons N.

As shown in Fig. 2, the constraints of sub-horizon N− are
coupled with the constraints of sub-horizon N through the
generators’ ramping constraints for the transition from interval n of
sub-horizon N− to interval one of sub-horizon N . The red (blue)
line indicates that if the unit u is generating punN−  at the end of
sub-horizon N−, it cannot generate more (less) than punN− + URu

(punN− − DRu) at the beginning of sub-horizon N. The coupling
constraints between sub-horizons N− and N are as shown in the
equations presented in Fig. 2.

To handle these two sets of coupling intertemporal constraints,
we present the concept of overlapping (or coupling) time intervals
between the consecutive sub-horizons as illustrated in Fig. 3a. We
duplicate the first interval of each sub-horizon N and consider that
as interval n + 1 of sub-horizon N−. All variables and constraints of
the overlapping time intervals appear in both optimisation
subproblems corresponding to sub-horizons N− and N .
Coordinating the time intervals n and n + 1 of sub-horizon N− and
the time intervals one and two of sub-horizon N through
intertemporal constraints inside each sub-horizon leads to
coordination between the consecutive sub-horizons. We separate
the sub-horizons and duplicate the overlapping time intervals in
each sub-horizon as shown in Fig. 3b.

The optimisation subproblem N_ (i.e. (2a)–(2c)) with the
overlapping time intervals is now formulated as follows:

min
pN_, pN_c , δN_, δN_c , ptoN_ → N

∑
t = 1

n + nto

∑
u

f putN_, putoN_ → N
N_ (6a)

s . t . (2b), (2c)

Fig. 1  Time decomposition
(a) Whole n × N intervals, and (b) decomposed N sub-horizons each with n intervals

 

Fig. 2  Coupling constraint (ramping limit) for transition from sub-horizon
N− to sub-horizon N

 

Fig. 3  Time decomposition for three consecutive sub-horizons with
overlapping intervals
(a) The whole time horizon, (b) Sub-horizons decomposition over time horizon
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N_ → N

hN_to putN_, putN_c , δitN_, δitN_c , putoN_ → N
N_ = 0
∀u, i, c

gN_to putN_, putN_c , δitN_, δitN_c , putoN_ → N
N_ ≤ 0
∀u, i, c

(6b,c)

where (2b) and (2c) are constraints corresponding to internal
intervals of sub-horizon N_, and (6b) and (6c) are constraints
corresponding to the overlapping time intervals for the transition
from sub-horizon N_ to sub-horizon N. The optimisation
subproblem N (i.e. (3a)–(3c)), which is a middle subproblem with
two overlapping time intervals at the beginning and ending time
intervals, is formulated as

min
ptoN_ → N, pN, pNc , δN, δNc , ptoN → N+

∑
t = 1

n + nto

∑
u

f
putoN_ → N
N , putN,
putoN_ → N
N (7a)

s . t . (3b), (3c)

N_ → N

hNto putoN_ → N
N , putN, putNc , δitN, δitNc = 0

∀u, i, c
gNto putoN_ → N

N , putN, putNc , δitN, δitNc ≤ 0
∀u, i, c

(7b,c)

N → N+

hNto putN, putNc , δitN, δitNc , putoN → N+
N = 0

∀u, i, c
gNto putN, putNc , δitN, δitNc , putoN → N+

N ≤ 0
∀u, i, c

(7d,e)

where (3b) and (3c) are constraints corresponding to internal
intervals of sub-horizon N . Since sub-horizon N has overlapping
intervals with sub-horizons N_ and N+, its optimisation
subproblem includes two sets of overlapping constraints, one with
N_ and another one with N+. Expressions (7b) and (7c) are
constraints corresponding to the overlapping time intervals for the
transition from sub-horizon N_ to sub-horizon N, and (7d) and (7e)
are constraints corresponding to the overlapping time intervals for
the transition from sub-horizon N to sub-horizon N+. The
optimisation subproblems (6) and (7) are still non-separable as they
include shared variables putoN_ → N. In addition, subproblems N and
N+ are non-separable because of shared variables putoN → N+. The
shared variables are power produced by generating units in the
overlapping time intervals. We duplicate putoN− → N to create two
sets of new variables with one belonging to subproblem N−

(putoN− → N
N_ ) and another one belonging to subproblem N (putoN− → N

N ).
Similarly, we duplicate putoN → N+ and assign one set to subproblem

N (putoN → N+
N ) and the other set to subproblem N+ (putoN → N+

N+ ). These
auxiliary variables make SCEDs of the sub-horizons separable.
That is, each SCED subproblem can be solved separately from
other subproblems. To ensure the feasibility of the results from the
perspective of the whole scheduling horizon, we convert each pair
of the shared variables to a set of consistency constraint as

CCN− → N : putoN− → N
N_ − putoN− → N

N = 0 ∀u (8)

CCN → N+: putoN → N+
N+ − putoN → N+

N+ = 0 ∀u (9)

CCN− → N is enforced in subproblems N− and N, and CCN → N+ is
enforced in subproblems N and N+. The SCED subproblem of sub-
horizon N− is

min (6a)

s . t . (2b), (2c), (6b), (6c), (8)

and the SCED subproblem of sub-horizon N is

min (7a)

s . t . (3b), (3c), (7b) − (7e), (8), (9)

While putoN− → N
N_  is a decision variable in subproblem N−, it is

treated as a constant in subproblem N. Similarly, putoN− → N
N+  is a

decision variable in subproblem N+ and a constant in subproblem
N. Consistency constraints (8) and (9) are hard constraints that
make the order of solving subproblems of importance. If sub-
horizon N− solves its SCED first, CCN− → N forces sub-horizon N to
set its decision variables putoN− → N

N  equal to putoN− → N
N_ . Since the

sub-horizons are connected like a string, if one starts from the
beginning of the string to solve the decomposed SCED problem,
the solution of hour one of each sub-horizon is dictated by the
solution of its previous sub-horizon. In the existing literature and
current practice, the initial condition of every sub-horizon (which
is usually one day in ramp-constrained SCED) is set by its previous
sub-horizon. However, this may lead to a suboptimal solution for
the whole scheduling horizon.

4 Proposed coordination algorithm
To avoid obtaining suboptimal results, we present an iterative
coordination algorithm that allows a parallel solution of the SCED
subproblems. The consistency constraints are relaxed in the
objective function of each sub-horizon using the concept of
augmented Lagrangian relaxation. We utilise the auxiliary problem
principle [16], which is a parallel coordination strategy, to
coordinate the sub-horizons. We further propose an accelerated
APP (A-APP) and an initialisation strategy to enhance the
performance of the distributed coordination algorithm.

4.1 Normal APP

APP is an iterative method that aims at finding the optimal solution
of several coupled optimisation problems in a distributed manner
[16]. APP is a suitable method for parallel computing and reduces
the idle time of subproblems as compared to sequential distributed
approaches. This method uses the augmented Lagrangian
relaxation to penalise the consistency constraints (i.e. hard
constraints) with a set of penalty terms in the objective function. A
sequence of auxiliary problems are solved to make the non-
separable terms of the augmented Lagrangian (i.e. the quadratic
term) separable and solve subproblems in parallel (we refer to [2]
for more details).

Consider the SCED subproblems N− and N . We denote the
iteration index of APP as k and penalise the violation of hard
constraint (8) at each iteration k in the objective functions of
subproblem N−. The resultant SCED subproblem for sub-horizon
N− becomes as follows:

min
pN_k , pN_kc , δN_, δN_c , ptoN− → N

kN−
∑
t = 1

n + nto

∑
u

f putN−
k , putoN− → N

kN−

+∑
u

ρ
2 putoN− → N

kN− − putoN− → N
∗ (k − 1)N−2 + λN− → N

k† putoN− → N
kN−

+γputoN− → N
kN−† putoN− → N

∗ (k − 1)N− − putoN− → N
∗ (k − 1)N

(10)

s . t . (2b), (2c), (6b), (6c)

where putN−
k , putN−

kc , and putoN− → N
kN−  are decision variables while

putoN− → N
∗ (k − 1)N  and putoN− → N

∗ (k − 1)N− are known. Parameter putoN− → N
∗ (k − 1)N  is the value

of generated power by each unit u (i.e. the shared variable) in the
overlapping time interval determined by sub-horizon N at iteration
k − 1. Parameter putoN− → N

∗ (k − 1)N− denotes the value of generated power by
each unit u in the overlapping time interval determined by sub-
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horizon N− at iteration k − 1. The SCED subproblem N is penalised
by relaxing two sets of hard constraints (8) and (9) in its objective
function as follows:

min
ptoN− → N
k , pNk , pNkc, δN, δNc , ptoN → N+

k
∑
t = 1

n + nto

∑
u

f
putcN− → N
kN ,

putNk , putoN → N+
kN

+∑
u

ρ
2 putoN− → N

kN − putoN− → N
∗ (k − 1)N 2 − λN− → N

k† putoN− → N
kN

+γputoN− → N
kN† putoN− → N

∗ (k − 1)N − putoN− → N
∗ (k − 1)N−

+
ρ
2 putoN → N+

kN − putoN → N+
∗ (k − 1)N 2 + λN → N+

k† putoN → N+
kN

+γputoN → N+
kN† putoN → N+

∗ (k − 1)N − putoN → N+
∗ (k − 1)N+

(11)

s . t . (3b), (3c), (7b) − (7e)

While the first penalty term penalises any violations in the
overlapping time interval between sub-horizons N− and N, the
second term penalises any violations in power produced by each
unit u at the overlapping time interval between sub-horizons N and
N+. Since in each iteration k, each sub-horizon N uses values of the
shared variables obtained by its neighbouring sub-horizons N− and
N+ at iteration k − 1 (i.e. putoN− → N

∗ (k − 1)N− and putoN → N+
∗ (k − 1)N+), the SCED

subproblems can be solved in parallel. Before starting each
iteration k, the penalty multiplier λ is updated as follows:

λN− → N
k + 1 = λN− → N

k + β putoN− → N
∗ kN− − putoN− → N

∗ kN (12)

λN → N+
k + 1 = λN → N+

k + β putoN → N+
∗ kN − putoN → N+

∗ kN+ (13)

where β should be a suitable positive step-size. If the step-size is
selected too large, the convergence speed may go up; however, it
increases the chance of losing optimality, oscillating around the
optimal point, or even divergence. If the step-size is selected too
small, although the solution is more accurate and the chance of
divergence reduces, the convergence speed degrades [28]. A user
may solve the problem several times with different step-sizes to
gain knowledge on the suitable values/ranges for the step-size. The
value of the Lagrange multiplier λ in each iteration implies the cost
to maintain the consistency constraints in the overlapping time
intervals. The above formulation can be generalised for multiple
sub-horizons. The pseudocode for implementation of distributed
SCED is given in Algorithm 1 (see Fig. 4). Since the considered
SCED problem is convex, the APP is proven to converge to the
global optimal solution. We refer to [16] for discussions on the
convergence rate/proof of APP.

4.2 Accelerated auxiliary problem principle

The normal APP uses a simple fixed step size gradient-based
method to update multipliers with respect to the difference between
coupling variables putoN− → N

kN− − putoN− → N
kN & putoN → N+

kN − putoN → N+
kN+ ,

which is the gradient. However, the convergence performance
might degrade when more iterations are carried out, and the
solution is getting close to the optimal point or when the optimal
point is in a shallow area (or a ravine). Near the optimal point, the
terms putoN− → N

kN− − putoN− → N
kN  and putoN → N+

kN − putoN → N+
kN+  (or gradients)

might become very small that leads to an updated multiplier in
iteration k + 1 that is almost the same as that in iteration k, i.e.
λk + 1 ≈ λk. This slows the convergence speed.

The local objective functions of the SCED subproblems are
strongly convex. Taking advantages of this feature, we present an
accelerated APP based on the technique that was first proposed by
Nesterov to accelerate gradient descent methods and later was used
to accelerate alternating direction method of multipliers [29, 30].
The suggested accelerated APP utilises a prediction type
acceleration step. The momentum of the algorithm is used to
prevent the algorithm from deceleration while more iterations are

carried out. After each iteration k, the cumulated gradient of the
previous iterations (i.e. momentum) is calculated as the predicted
direction of the algorithm in the next iteration, and a big jump is
made in that direction. Then, the gradient is measured, and a
correction is made to avoid going too fast. This procedure is shown
in Fig. 5. The dashed line shows the jump in the direction of the
previously accumulated gradient, the dotted line indicates the
correction based on measuring the gradient in the new point, and
the solid line is the accumulated gradient (predicted-correction
direction), used in the accelerated APP algorithm [31].

To implement the accelerated APP for SCED, the penalty term
in the objective function (10) at iteration k is modified as follows:

∑
u

ρ
2 putoN− → N

kN− − ϕutoN− → N
∗ (k − 1)N−2 + λ

^
N− → N
k†

putoN− → N
kN−

+γputoN− → N
kN−† ϕutoN− → N

∗ (k − 1)N− − ϕutoN− → N
∗ (k − 1)N

(14)

in which putoN− → N
∗ (k − 1)N−, putoN− → N

∗ (k − 1)N , and λN− → N are replaced by ϕutoN− → N
∗ (k − 1)N−,

ϕutoN− → N
∗ (k − 1)N , and λ

^
N− → N. The two penalty terms in objective function

(11) at iteration k are modified by replacing putoN− → N
∗ (k − 1)N−, putoN− → N

∗ (k − 1)N ,

putoN → N+
∗ (k − 1)N , putoN → N+

∗ (k − 1)N+, λN− → N, and λN → N+ by ϕutoN− → N
∗ (k − 1)N−, ϕutoN− → N

∗ (k − 1)N ,

ϕutoN → N+
∗ (k − 1)N , ϕutoN → N+

∗ (k − 1)N+, λ
^
N− → N, and λ

^
N → N+, respectively.

∑
u

ρ
2 putoN− → N

kN − ϕutoN− → N
∗ (k − 1)N 2 − λ

^
N− → N
k†

putoN− → N
kN

+γputoN− → N
kN† ϕutoN− → N

∗ (k − 1)N − ϕutoN− → N
∗ (k − 1)N−

+
ρ
2 putoN → N+

kN − ϕutoN → N+
∗ (k − 1)N 2 + λ

^
N → N+
k†

putoN → N+
kN

+γputoN → N+
kN† ϕutoN → N+

∗ (k − 1)N − ϕutoN → N+
∗ (k − 1)N+

(15)

The new parameters marked by ⋅̂  are predictions of actual shared
variables/penalty multipliers. The predicted values that are used at
iteration k + 1 are calculated based on the actual shared variables
and penalty multipliers obtained at iterations k and k − 1. ϕ ∗ k + 1

and λ
^k + 1

 are updated according to (17) and (18), respectively.

αk + 1 =
1 + 1 + 4αk2

2 (16)

Fig. 4  Algorithm 1 Pseudocode for coordinating SCED subproblems with
normal APP

 

Fig. 5  Nesterov update
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ϕ ∗ k + 1 = p ∗ k + αk − 1
αk + 1

(p ∗ k − p ∗ (k − 1)) (17)

λ
^k + 1 = λk + αk − 1

αk + 1
(λk − λk − 1) (18)

The solution procedure and the way that we calculate the predicted
parameters are shown in Algorithm 2 (see Fig. 6).

4.3 Initialisation

One of the main drawbacks of distributed and decentralised
optimisation algorithms is their dependency on initial conditions.
That is, the convergence performance (the number of iterations and
the optimality gap) might be different if two different sets of initial
conditions are used. If a set of good initial conditions is selected,
the proposed APP-based distributed SCED potentially converges in
a considerably fewer number of iterations as compared to a case in
which good initial conditions are not available. A good initial
condition is a system- and problem-dependent. This is ongoing
research in power systems and operations research communities.

Since the main goal of the proposed time decomposition is to
decrease the computation time, we need to choose a suitable
starting point. For this purpose, we take advantage of power system
characteristics and propose a technique to find a set of good
initialise values for the shared variables at the overlapping time
intervals. To initialise the problem, we ignore the overlapping time
intervals and shared variables (i.e. the sub-horizons are
independent) and solve the SCED subproblems in parallel.
Intuitively, since the load does not drastically change by the
transition from the last time interval of sub-horizon N− to the first
interval of sub-horizon N, ignoring ramp rates of the units (which
are eliminated as the shared variables) does not impose a large
error to the solution. Although the obtained results might not be
feasible, they are close to the feasible solution, and the relative
error might be small from the beginning. We use the results of this
procedure to initialise the APP-based distributed SCED. The
pseudocode for the distributed SCED with the initialisation
technique is given in Algorithm 3 (see Fig. 7). 

4.4 Discussion on convergence

The Nesterov momentum technique is proven to accelerate the
convergence of gradient descent methods [32]. On the other hand,
APP, that is a gradient descent-based method, is proven to converge
for convex problems (the considered SCED problem in this paper
is convex) [33]. Hence, intuitively, using the Nesterov accelerated
technique instead of the ordinary gradient descent for updating
Lagrange multipliers after each iteration of APP keeps the
convergence proof of APP valid and enhances its convergence
speed.

5 Case study
The proposed algorithm is applied to solve a week-ahead SCED
problem for the IEEE 118-bus system and a 472-bus system and a
day-ahead problem for a 4720-bus test system. System and
equipment characteristics are given in [32]. All simulations are
carried out on Matlab using YALMIP [34] as modelling software
and the QP solver of ILOG CPLEX 12.4 on a 3.7 GHz personal
computer with 16 GB of RAM. The solver default settings are
used. Although the reported results are obtained by CPLEX, we
have applied Gurobi and Mosek and achieved almost the same
simulation times as those reported in this paper.

To evaluate the performance of the proposed distributed SCED
algorithm, we use a convergence index rel that shows the relative
difference between the operating costs determined by the
distributed SCED ( f d) and the centralised SCED ( f ∗) (note that f ∗
is the benchmark cost)

rel =
f ∗ − f d

f ∗
(19)

The closer the convergence measure gets to zero, a more precise
solution is obtained. We have found that the choice of 1%
maximum mismatch between the shared variables yields a high-
quality solution with a negligible rel index for all studied cases.
This maximum mismatch is considered as the stopping criteria.
Note that unlike the geographical decomposition, the nodal power
balance is always satisfied at each iteration of the time
decomposition strategy.

5.1 IEEE 118-Bus system

Six cases and sensitivity analysis are studied. The operation
horizon is divided into seven sub-horizons, each including 24
intervals. To have a fair comparison, we set β, ρ, γ = 0.2 and
λ = 1 in all cases except for the sensitivity analysis in which we
study the effect of multipliers on the performance of the algorithm.

Case 1: Four contingency scenarios are considered for each
hour (note that one can consider a complete set of N − 1
contingencies. As shown in further cases, the efficiency of the
proposed distributed SCED as compared to the centralised SCED
becomes better for larger problems). We use a flat start strategy to
initialise the shared variables (power generated by units in
overlapping intervals) as ptoN− → N

N_ = Pmin  and ptoN− → N
N = Pmax. As

shown in Table 1, the proposed distributed SCED converges after
nine iterations within 11 s. The operation cost is $11,099,286.
Fig. 8 shows the rel values over the course of iterations and time. 
The convergence measure decreases as more iterations are carried
out. The rel index is 0.0004 upon the algorithm convergence (one
may run the algorithm for more iterations to get a smaller rel index;
however, we stop the algorithm at this point since we further apply
the proposed initialisation strategy to significantly reduce error to
1 × 10−8 as shown in Table 1).

We implement the accelerated distributed algorithm. The results
are shown in Table 1, and the rel index is depicted in Fig. 8.
Although the number of iterations and the required time to
converge are the same as the normal distributed algorithm, 75% of
improvement is observed in rel. The rel index obtained by the
accelerated algorithm is less than that for the normal algorithm
over the course of iterations. If a user wants to reach a specific rel

Fig. 6  Algorithm 2 Pseudocode for coordinating SCED subproblems with
accelerated APP

 

Fig. 7  Algorithm 3 Pseudocode for coordinating SCED subproblems with
APP + initialisation
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index (e.g. 0.0002), the normal APP takes more iterations and time
to reach that target rel compared to the accelerated APP.

Case 2: The proposed initialisation strategy is implemented. All
other values are the same as in Case 1. As shown in Table 1, the
distributed SCED takes 5 s to converge after 2 + 1 iterations. Note,
2 + 1 means that the algorithm takes two iterations in addition to
the one iteration needed for initialisation. We have counted the
computation time of the initialisation step in the reported times.
The number of iterations is six less than that for Case 1, and the
computation time has been reduced by 55%. Also, the relative error
has been considerably decreased to almost zero. The same trend is
observed for the accelerated SCED. Note that in this case, both
normal and accelerated algorithms provide almost the same results.
This is because of the very high accuracy of the solution because of
the initialisation step.

Case 3: This case is similar to Case 1 except for the permissible
ramping of several units that are purposely reduced to show that
the proposed algorithm handles problems of which shared variables
in the neighbouring sub-horizons have a considerable difference at
initialisation (this makes the SCED problem more computationally
complex). Several intertemporal constraints are heavily binding.
This condition affects Lagrange multipliers and can be interpreted
as a situation in which lines are congested in a geographical
decomposition. In such a case, the values of Lagrange multipliers
are larger than those for Case 1, and thus the sensitivity of the
solution to the variations of shared variables is higher. Fig. 9a
shows the consistency constraint CC (difference between shared
variables) corresponding to a sample unit (i.e. unit 25). Six curves
are depicted each of which refers to a shared variable
corresponding to unit 25 at the overlapping time intervals. Fig. 9b

shows the rel index over the course of optimisation. The rel and CC
values decrease as more iterations are carried out. The convergence
measure rel is 0.0003 upon the convergence. We also implement
the accelerated APP and present the results in Table 2. Although
the convergence time is the same as the normal distributed
algorithm, 93% of improvement is observed in rel upon the
convergence. Fig. 9b depicts that the rel index obtained by the
accelerated algorithm is always less than that for the normal
algorithm. Note that, since several intertemporal constraints are
heavily binding, CPU time of the centralised SCED increases by
43% and the distributed SCED takes two more iterations than Case
1. However, the distributed SCED still shows good performance
and is 25% faster than the centralised SCED.

Case 4: Case 3 is reconsidered, and the suggested initialisation
strategy is applied. The results are given in Table 2. Both normal
and accelerated distributed SCED algorithms converge after 7 + 1
iterations within 11 s that is 27 and 45% less than the solution
times of Case 3 and the centralised SCED, respectively. Since the
intertemporal constraints between consecutive days are ignored in
the initialisation step and ramping limits are binding heavily, the
initialised solution is farther from the optimal point as compared
with Case 2 in which the ramp limits are not binding heavily. Thus,
the distributed SCED takes five iterations more than that for Case
2. Upon convergence, the rel values are less than those for Case 3.
The accelerated method provides a smaller error compared to the
normal algorithm.

Case 5: We consider ten contingency scenarios and compare the
results with and without the suggested initialisation strategy. All
other parameters are the same as in Case 2. Table 3 shows the

Table 1 Comparison of rel and simulation times obtained by distributed and centralised SCED approaches for Cases 1 and 2
Case no. Algorithm Iteration rel Time, s

centralised — — 14
Case 1 APP 9 0.0004 11

A-APP 9 0.0001 11
Case 2 APP + initialisation 2 + 1 1 × 10−8 ( ≈ 0) 5

A-APP + initialisation 2 + 1 110−8 ( ≈ 0) 5

 

Fig. 8  The convergence measure for case 1
(a) Rel vs. iterations, (b) Rel vs. time

 
Fig. 9  Two convergence measures for case 3
(a) Consistency constraints corresponding to unit 25 vs. iterations, (b) rel vs. iterations
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comparison of the proposed A-APP with APP and the centralised
SCED. The suggested initialisation strategy reduced the number of
iterations (CPU time) from 8 (31 s) to 2 + 1 iterations (12 s). As
observed in Fig. 10, the rel index obtained by the accelerated APP
is always less than that for the normal APP. Increasing the number
of credible contingencies from four to ten increases the
computation time of the centralised SCED by 320%, while the
distributed SCED is only 10% slower than that for Case 2. The
distributed SCED takes 12 s to converge that is almost five times
faster than the centralised SCED that takes 59 s. The difference

between each pair of the shared variables and the relative error are
almost zero upon convergence.

Case 6: This is similar to Case 5, but we decrease the
permissible ramping of several units. Therefore, the difference
between the shared variables after the initialisation step is much
more than that in Case 5. As shown in Table 4, the distributed
SCED with (without) the suggested initialisation strategy
converges after 9 + 1 (14) iterations that is seven (six) iterations
more than that for Case 5. The CPU time with (without) the
suggested initialisation is 38 (54) s, which is 46% (30%) faster than
the centralised method. As observed in Table 4 and Fig. 10, the
accelerated APP provides a smaller error than the normal APP. In
most simulations, upon convergence, the mismatch between each
pair of shared variables is much smaller than 1%. Note that the
power balance constraints are considered as hard constraints and
are always satisfied regardless of the mismatch in generations.
Considering the sign of mismatches, the summation of mismatches
is zero at every interval.

Insight on selecting suitable multipliers: Although we have
used the same multipliers for Cases 1–6 to have a fair comparison,
this set of multipliers may not be the best choice for all cases. We
can change the multipliers to obtain better results. In this section,
we perform a sensitivity analysis and give an insight on how to
initialise multipliers β, ρ, and γ. We examine the effect of
multipliers and found suitable sets for Cases 1–4. By changing
multipliers from 0.1 to 10, we plot the rel index versus the number
of iterations required for convergence to determine the most
suitable initial point for each case. Fig. 11 shows the simulation
results for different multiplier values. The best solutions are
highlighted by red colour in Fig. 11 and their corresponding
multipliers are shown in Table 5. Cases 1 and 3 are more sensitive
to the choice of initial values, while Cases 2 and 4 in which the
suggested initialisation strategy is implemented are less sensitive to
initial values. As expected, we have observed that selecting large
multipliers potentially reduces the number of iterations; however, it
increases error.

When a user wants to use the distributed SCED algorithm with
no historical information, we recommend selecting small values for
multipliers. The user will gradually obtain knowledge on suitable
values of multipliers when more simulations are carried out.
Evaluating the recorded results, the user can adjust the multipliers
to enhance the solution performance for future simulations. In
addition, it is proper to select ρ and γ equal to β [35].

5.2 472-Bus System

Case 7: We connect four IEEE 118-bus systems to make a large
472-bus system and compare changes in simulation times. Ten
contingency scenarios are considered for each hour. The operation
cost using both centralised and distributed SCED algorithms is
$44,376,003. The number of iterations, rel, and solution time using
the normal APP and the proposed A-APP are compared with the

Table 2 Comparison of rel and simulation times obtained by A-APP, APP, and centralised SCED for Cases 3 and 4
Case no. Algorithm Iteration rel Time, s

centralised — — 20
Case 3 APP 11 3 × 10−4 15

A-APP 11 2 × 10−5 15

Case 4 APP + initialisation 7 + 1 2 × 10−6 11

A-APP + initialisation 7 + 1 6 × 10−7 11
 

Table 3 Comparison of rel and simulation times obtained by A-APP, APP, and centralised SCED for Case 5
Algorithm Iteration rel Time, s
centralised — — 59
APP 8 0.0005 31
a-APP 8 0.0002 31
APP + initialisation 2 + 1 1 × 10−7 12

a-APP + initialisation 2 + 1 1 × 10−7 12
 

Fig. 10  Rel index for normal and accelerated APP without initialisation
obtained in
(a) Case 5, and (b) Case 6

 
Table 4 Comparison of rel and simulation times obtained
by A-APP, APP, and centralised SCED for Case 6
Algorithm Iteration rel Time, s
centralised — — 70
APP 14 0.0002 54
a-APP 14 6 × 10−6 54

APP + initialisation 9 + 1 2 × 10−6 38

a-APP + initialisation 9 + 1 3 × 10−7 38
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centralised SCED in Table 6. The convergence measure rel is
almost zero upon convergence. The centralised SCED takes around
40 mi, but both normal and accelerated distributed algorithms
converge after 2 min that are around 94% faster than the
centralised algorithm.

Although the size of the system is four times larger than the
118-bus system, the solution time of centralised SCED is increased
around 40 times compared to Case 5, which has the same loading.

Case 8: We manipulate ramping capability of generating units
to make ramping limits of several units heavily binding in several
hours and make more consistency constraints active. In this
situation, the shared variables of neighbouring subproblems have a
larger difference at the initialisation step, and the initial solution is

farther from the feasible and optimal point. The results are
summarised in Table 7. The operation cost obtained by the
centralised SCED is $44,388,886. Although the distributed
algorithm takes seven iterations more than Case 8, it still is 72%
faster than the centralised SCED.

5.3 4720-Bus System

Case 9: A day-ahead scheduling problem is considered for a 4720-
bus test system. The centralised SCED takes 550 s to provide a cost
of $64,736,891. The time horizon is decomposed into four
subhorizons, each including six hours. As shown in Table 8, the
proposed distributed SCED converges after 1 + 1 iterations (1 + 1
means that the algorithm takes one iteration to converge in addition
to the one iteration needed for the initialisation step) within 141 s. 
The rel index is almost zero, and the solution time is improved by a
factor around four.

Case 10: We have studied a network-constrained ED for this
system to analyse the effect of the number of subproblems on the
overall solution time. Fig. 12 shows the solution time variation
versus the number of subproblems. In addition, Table 9 represents
the number of iterations, rel values, and simulation times. A
considerable time saving is achieved even if the time horizon is
decomposed into a few sub-horizons. Increasing the number of
sub-horizons increases the number of shared variables and the
required iterations for A-APP to converge. Hence, the time saving
is not significant if the number of sub-horizons goes beyond a
certain number. Our simulations show that having four sub-
horizons for this test system provides a good time saving and rel
index. Although having eight subproblems provides a better time
saving that having four subproblems, its rel index is higher.

6 Conclusion
In this paper, a decomposition strategy is proposed to divide the
ramp-constrained SCED problem. Since the optimisation is
decomposed over the scheduling time horizon, the proposed
strategy is called horizontal time decomposition. The concept of

Fig. 11  Relative error and the number of iterations to converge depending
on the changes of multipliers \beta , ρ, and γ,
(a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4

 

Table 5 Best multipliers for Cases 1–4
Case No. β, ρ, γ rel Iteration
Case 1 0.2 4 × 10−4 9

Case 2 1.25 1 × 10−10 2

Case 3 0.1 4 × 10−5 11

Case 4 0.1 1 × 10−8 7
 

Table 6 Comparison of rel and simulation times obtained
by A-APP, APP, and centralised SCED for Case 7
Algorithm Iteration rel Time, s
centralised — — 2400
APP + initialisation 2 + 1 1 × 10−8 140

a-APP + initialisation 2 + 1 1 × 10−8 140
 

Table 7 Comparison of rel and simulation times obtained
by A-APP, APP, and Centralised SCED for case 8
Algorithm Iteration rel Time, s
centralised — — 1900
APP + initialisation 9 + 1 1 × 10−6 532

a-APP + initialisation 9 + 1 1 × 10−7 532
 

Table 8 Comparison of proposed distributed and
centralised SCED approaches for 4720-bus system
Algorithm Iterations rel Time, s
centralised — 1 + 1 550
accelerated distributed 1 + 1 3 × 10−9 141
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overlapping time intervals is introduced to model
interdependencies (coupling constraints) between the subproblems,
which originate from intertemporal (or ramping) constraints of
generating units. An accelerated APP and an initialisation strategy
are proposed to enhance the convergence performance of the
distributed SCED algorithm.

The simulation results show that the proposed algorithm
reduces the computation time of SCED for the IEEE 118-bus
system from 45 to 400% depending on the size of the considered
problem. For cases with more contingency scenarios and small
generation ramping capabilities, more time-saving is obtained
using the distributed SCED instead of the centralised method. The
simulation results on large test systems show that as the size of the
problem (that depends on the size of the system and the number of
contingencies) increases, the distributed algorithm shows better
performance.
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Fig. 12  Time versus the number of subproblems for the 4720-bus system
 

Table 9 Number of iterations, rel, and simulation times
obtained for different number of subproblems
Number of Subproblems Iteration rel Time, s
1 — — 31.7
2 1 + 1 1 × 10−9 16.5

3 1 + 1 1 × 10−9 10.04

4 1 + 1 1 × 10−10 6.8

6 2 + 1 1 × 10−6 5.3

8 2 + 1 1 × 10−5 3.4

12 6 + 1 2 × 10−5 6.3

24 10 + 1 9 × 10−6 9.2
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