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In this work, we present a novel nonlocal nonlinear coarse grid approximation using a 
machine learning algorithm. We consider unsaturated and two-phase flow problems in 
heterogeneous and fractured porous media, where mathematical models are formulated 
as general multicontinuum models. We construct a fine grid approximation using the fi-
nite volume method and embedded discrete fracture model. Macroscopic models for these 
complex nonlinear systems require nonlocal multicontinua approaches, which are devel-
oped in earlier works [8]. These rigorous techniques require complex local computations, 
which involve solving local problems in oversampled regions subject to constraints. The 
solutions of these local problems can be replaced by solving original problem on a coarse 
(oversampled) region for many input parameters (boundary and source terms) and com-
puting effective properties derived by nonlinear nonlocal multicontinua approaches. The 
effective properties depend on many variables (oversampled region and the number of 
continua), thus their calculations require some type of machine learning techniques. In 
this paper, our contribution is two fold. First, we present macroscopic models and discuss 
how to effectively compute macroscopic parameters using deep learning algorithms. The 
proposed method can be regarded as local machine learning and complements our earlier 
approaches on global machine learning [36,35]. We consider a coarse grid approximation 
using two upscaling techniques with single phase upscaled transmissibilities and nonlocal 
nonlinear upscaled transmissibilities using a machine learning algorithm. We present re-
sults for two model problems in heterogeneous and fractured porous media and show that 
the presented method is highly accurate and provides fast coarse grid calculations.

 2020 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical models of the flow and transport problems in heterogeneous and fractured porous media are required to 
solve large and complex nonlinear systems. Processes in fractured porous media are described by the mixed dimensional 
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coupled system of equations [25,12,16,23,28]. Such models can be generalized as a general multicontinuum models similar 
to the dual porosity/dual permeability approaches [7,30].

Solving problems in heterogeneous and fractured media requires constructing grids that resolve all small scale hetero-
geneity. Numerous model order reduction techniques have been developed to construct coarse grid approximations and 
reduce the computational time of the numerical simulations. Global model order reduction approaches rely on projection 
on the important POD modes, where the full-order model is used in generating POD basis functions to perform the fast on-
line calculations stage [15,37]. Local model reduction techniques are based on constructing local multiscale basis functions 
to represent the influence of small scale heterogeneity [28,4,31,32]. One of the widely used ways is based on the numeri-
cal homogenization technique, where effective parameters are calculated in order to construct coarse grid approximations 
[2,27,34]. The coarse grid parameters are constructed by solving local problems with appropriate boundary conditions. For 
example, linear boundary conditions or periodicity can be used. The choice of boundary conditions have a strong impact on 
the accuracy of results. In [5], an interpolated global coarse grid solution is used for performing accurate construction of 
the upscaled transmissibilities, which involve iterations between global coarse grid model and local fine grid calculations. 
In standard upscaling methods, upscaled parameters are obtained independent of any global problem. However, these ap-
proaches lack several features, which are important for rigorous and accurate upscaling. These include the use of multiple 
continua and oversampled computations.

In the local model order reduction methods, an oversampling technique and multicontinua concepts are needed to 
achieve an accuracy independent of physical parameters, such as scales and contrast [11,38]. For example, the oversam-
pled domain is used for constructing multiscale basis and provide more accurate results in the Multiscale Finite Element 
Method [19]. In the Generalized Multiscale Finite Element Method [14,9], a larger domain is used to construct a space of 
snapshots and solution of the local spectral problem to determine dominant modes. Note that, the oversampled domain is 
used for local problem solution and only the interior information is used to define the basis functions.

In recently developed Constrained Energy Minimization and Nonlocal Multicontinuum methods [10,11,33], multiscale 
basis functions are defined in the oversampled domains and constructed via solving local constrained energy minimization 
problems, where constraints are related to each continuum. Continuum plays a role of macroscopic parameter. In [5,13], 
oversampling techniques have been developed in the context of the upscaling procedure, where an interesting local-global 
upscaling technique is presented for constructing coarse scale approximation for highly heterogeneous porous media. In 
this method, the coarse grid simulations are iterated with local calculations of the upscaled parameters, where the coarse 
grid solutions are used to determine the boundary conditions for the local calculation. The local-global upscaling method 
requires more computation than existing classic upscaling procedures. Therefore, in the upscaling and multiscale methods 
oversampled domains are used in two contexts: (1) as extended local domains for more accurate calculations of the coarse 
grid parameters with fine-scale information about heterogeneous properties and (2) for global or quasi-global information 
of the solutions that are used, for example, as boundary conditions in local calculations. The second context of the oversam-
pling technique, due to the incorporation of solution information into the local problems leads to the nonlinear equations 
even in the case of the linear problems.

In this work, we consider flow and transport processes in heterogeneous multicontinuum media and consider the case 
with high-conductive fractures. We construct coarse and fine grid approximations using a finite volume method with two-
point flux approximation. Due to nonlinear nature of these flows, upscaled parameters are nonlinear functions, which 
depend on multiple coarse-grid variables defined in oversampled regions. Macroscopic equations use nonlinear nonlo-
cal multicontinuum concept [8]. This framework first identifies macroscopic variables in each coarse-grid block and then 
solves local constraint problems in oversampled regions to compute macroscopic fluxes. The local oversampled computa-
tions require solving nonlinear problems with constraints that include the values of macroscopic variables. For example, for 
two-phase flow simulations, this requires solving two-phase flow problems with known values of pressures and saturations 
in each coarse-grid block. Each coarse-grid block may contain several macroscale pressures and saturations identified in the 
first step. Solving local nonlinear constraint problems can be challenging due to large number of nonlinear simulations in 
oversampled regions. Moreover, computing macroscale fluxes as a function of many variables as a look-up table is nearly 
impossible. In this work, we propose an efficient algorithm for solving the local problems consisting of original problems 
with various boundary conditions and using deep learning to train macroscale fluxes. This is a first step in designing com-
putationally efficient and rigorous upscaling methods for nonlinear flows in porous media.

Constructing accurate upscaled transmissibilities for the coarse grid approximation is based on the information about 
solution (nonlinear transmissibilities). The presented method is based on the machine learning procedure for fast prediction 
of the nonlinear transmissibilities, where we construct neural networks that learn dependencies between the coarse grid 
quantities on the oversampled local domains and upscaled transmissibilities. We use a convolutional neural network and 
GPU training process to construct a machine learning algorithm [22,21]. For constructing the datasets, we perform local or 
global calculations of the coarse grid quantities [5]. In the local approach, the upscaled transmissibilities are calculated on 
the local domain corresponding to the coarse-grid face, where the fine-scale solution information is used to set boundary 
conditions. The global approach uses a global fine-scale solution for determining coarse scale parameters. For training the 
neural networks, we use a family of problem solutions for different input conditions [36,35]. Note that, we should have 
many snapshots to capture all input condition variations because accuracy of the machine learning method depends on 
space of snapshots that is used as a train dataset. As soon as neural networks trained on the dataset, the fast and accurate 
calculations can be performed. To illustrate method construction and applicability, we considered two model problems: 
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unsaturated flow problem and two-phase filtration problem in heterogeneous and fractured porous media. The presented 
method combines accuracy of the fine grid models with fast coarse grid calculations by constructing machine learning 
techniques for predicting accurate nonlinear upscaled transmissibilities.

The paper is organized as follows. In Section 2, we present the mathematical model and fine grid approximation. In 
Section 3, we consider single-phase upscaling for problems in multicontinuum media with variable separation for nonlinear 
and space dependent variables. Next, we present a novel nonlinear coarse grid approximation using a machine learning 
algorithm in Section 4. In Section 5, we consider two model problems in two - dimensional formulation and present nu-
merical results, where we consider training of machine learning algorithm and relative errors between the reference fine 
grid solution and presented method. Finally, we present conclusions.

2. Model problem with reference fine grid approximation

As a model problem, we consider two nonlinear problems for fractured and heterogeneous porous media:

1. Unsaturated flow problem (nonlinear flow problem)
2. Two-phase flow problem (nonlinear transport and flow problem)

We start with the formulation of the mathematical model, where we formulate models for fractured media and gen-
eralize it for multicontinuum media. Next, we present a construction of the fine grid approximation using finite volume 
approximation and embedded fracture model.

2.1. Unsaturated flow problem

Mathematical model of the unsaturated flow in porous media described by the Richards’ equations [26]

∂"

∂t
− ∇ · (k(x, p)∇(p + z)) = f , x ∈ #, (1)

where p is the pressure head, k is the unsaturated hydraulic conductivity tensors, z represent the influence of the gravity 
to the flow processes, " is the water content and f refer to source and sink terms.

For fractured porous media, we consider a mixed dimensional formulation of the flow problem [25,12,16]. Let # ∈ Rd be
the d - dimensional domain of the porous matrix, where d = 2, 3. Fracture network is considered as a (d − 1) - dimensional 
(lower dimensional) domain γ ∈ Rd−1 due to small thickness of the fractures compared to the domain sizes. Then, for 
unsaturated flow in fractured porous media, we have the following coupled system of equations for pm and p f :

∂"m

∂t
− ∇ · (km(x, pm)∇(pm + z)) + σmf (x, pmf )(pm − p f ) = f m, x ∈ #,

∂" f

∂t
− ∇γ · (k f (x, p f )∇γ (p f + z)) − σ f m(x, pmf )(pm − p f ) = f f , x ∈ γ ,

(2)

where pm and p f are the pressure head in matrix and fractures; km and k f are the unsaturated hydraulic conductivity ten-
sors for matrix and fractures; z represent the influence of the gravity to the flow processes; ∇γ contains partial derivatives
along fracture γ ; "m and " f are the water content for matrix and fracture; and f m and f f refer to source and sink terms. 
For transfer term, we have 

∫
V σmf (pm − p f )dx =

∫
A σ f m(pm − p f )ds, σmf = σ/V , σ f m = σ/A (σ = C I kmf and kmf (x, pmf )

is the harmonic average between km(x, pm) and k f (x, p f )) for matrix volume V intersecting with fracture surface and C I is 
the connectivity index [4,28]. As an initial condition, we set pα = p0 (α = m, f ) and zero flux boundary conditions on ∂#
and ∂γ .

In general, we have following multicontinuum model:

∂"α

∂t
− ∇ · (kα(x, pα)∇(pα + z)) +

∑

β

σαβ(x, pαβ)(pα − pβ) = f α, (3)

where α = 1, ..., M and M is the number of continuum.
Let cα(x, pα) = ∂"α/∂ p therefore we have following coupled system of nonlinear parabolic equations

cα(x, pα)
∂ pα

∂t
− ∇ · (kα(x, pα)∇pα) +

∑

β

σαβ(x, pαβ)(pα − pβ) = qα, (4)

where qα = f α + ∇ · (kα(x, pα)z), cα(pα) and kα(x, pα) are the nonlinear coefficient (α = 1, ..., M).
For the approximation on the fine grid, we use structured grids with embedded discrete fracture model (EDFM) [23,28]. 

Let T h denote a structured fine grid of the porous matrix domain # and Gh denote a fine grid of the fracture domain γ
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T h = ∪Nm,h

i=1 ςi, Gh = ∪N f ,h

l=1 ιl,

where ςi and ιl are the cell of the matrix and fractures fine grids, Nm,h is the number of cells in T h , N f ,h is the number of 
cell related to fracture mesh Gh . Therefore, for finite volume approximation we have

cm
i

pm
i − p̌m

i

τ
|ςi | +

∑

j

umm
ij +

∑

l

umf
il = qm

i |ςi |, ∀i = 1, ..., Nm,h

c f
l

p f
l − p̌ f

l

τ
|ιl| +

∑

n

u f f
ln +

∑

i

u f m
il = q f

l |ιl|, ∀l = 1, .., N f ,h,

where pm
i and p f

l are pressure of matrix and fracture continuum in cells ςi and ιl , |ςi| and |ιl| are the volume of cells. 
Here, we use an implicit scheme for time discretization, where p̌m

i and p̌ f
l are the solutions from previous time step and τ

is the given time step [31,32].
For approximation of the flux in matrix (umm) and fracture (u f f ) continuum

umm = −km(x, pm)∇pm, u f f = −k f (x, p f )∇γ p f ,

we use a classic two point flux approximation (TPFA)

umm
ij = umm · n|Eij = T mm

ij (pm
i , pm

j )(pm
i − pm

j ), u f f
ln = u f f · n|eln = T f f

i j (p f
i , p f

l )(p f
i − p f

j ),

where T mm
ij = km

ij |Eij|/dij , T f f
ln = k f

ln/+ln , km
ij = (km

i (pm
i ) + km

j (pm
j ))/2, k f

ln = (k f
l (p f

l ) + k f
n (p f

n ))/2, Eij and eln are the interface 
between two cells, |Eij | is the length of face between cells ςi and ς j , dij is the distance between midpoint of cells ςi and 
ς j , +ln is the distance between midpoint of cells ιl and ιn .

For the flux between matrix and fracture continuum

umf = σmf (x, pmf )(pm − p f ), u f m = σ f m(x, pmf )(p f − pm),

we follow EDFM and have the following approximation

umf
il = −u f m

il = T mf
il (pm

i − p f
l ),

where T mf
il = σil with σil = C Iilk

mf
il if ιl ⊂ ςi and zero else (C Iil is the connectivity index from [23,28,17] that proportional 

to the distance and area of the intersection between the fracture cell ιl and porous matrix cell ςi ).
Therefore, we have following fine grid approximation

cm
i

pm
i − p̌m

i

τ
|ςi | +

∑

j

T mm
ij (pm

i , pm
j )(pm

i − pm
j ) +

∑

l

T mf
il (pm

i , p f
l )(pm

i − p f
l ) = qm

i |ςi|, ∀i = 1, ..., Nm,h

c f
l

p f
l − p̌ f

l

τ
|ιl| +

∑

n

T f f
ln (p f

l , p f
n )(p f

l − p f
n ) −

∑

i

T mf
il (pm

i , p f
l )(pm

i − p f
l ) = q f

l |ιl|, ∀l = 1, .., N f ,h,

(5)

or for general multicontinuum case [7,30], we have

cα
i

pα
i − p̌α

i

τ
|ςi| +

∑

j

T αα
i j (pα

i , pα
j )(pα

i − pα
j ) +

∑

β

∑

l

T αβ
il (pα

i , pβ
l )(pα

i − pβ
l ) = qα

i |ςi|, ∀i = 1, ..., Nα,h, (6)

where α = 1, ..., M and M is the number of continua.

2.2. Two-phase flow problem

Mathematical model of the two-phase flow problem in porous media contains a conservation law and Darcy’s law [18]. 
For the case with incompressible fluid and rock and without gravitational and capillary forces, we have

φ
∂s
∂t

− ∇ · (λw(s)k(x)∇p) = qw , x ∈ #,

−∇ · (λ(s)k(x)∇p) = q, x ∈ #,

(7)

where s = sw is the saturation of the wetting phase, p is the pressure, q = qw +qn , qw and qn are the source/sink of wetting 
and nonwetting phases, λi = kri(s)/µi , λ = λn + λw , φ, k are the porosity and permeability, µi and kri are the viscosity and 
relative permeability for i-phase (i = n, w).
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For the fractured porous media, we consider the mixed dimensional mathematical model for two-phase flow problem

φm ∂sm

∂t
− ∇ · (λw(sm)km(x)∇pm) + λw(smf )σmf (x)(pm − p f ) = qw,m, x ∈ #,

−∇ · (λ(sm)km(x)∇pm) + λ(smf )σmf (x)(pm − p f ) = qm, x ∈ #,

φ f ∂s f

∂t
− ∇γ · (λw(s f )k f (x)∇γ p f ) − λw(smf )σ f m(x)(pm − p f ) = qw, f , x ∈ γ ,

−∇γ · (λ(s f )k f (x)∇γ p f ) + λ(smf )σ f m(x)(pm − p f ) = q f , x ∈ γ ,

(8)

where sm and s f are the saturation in porous matrix and in fractures; pm and p f are the pressure in matrix and in fractures; 
φm and φ f are the porosity for matrix and fracture continuum; km and k f are the absolute permeability of matrix and 
fractures; and qα = qw,α + qn,α , qw,α and qn,α are the source/sink of wetting and nonwetting phases for continua α = m, f . 
On the fine grid, we suppose λi,m = λi, f = λi for i = n, w and λ = λn + λw , where λi = kri(sα)/µi , µi is the viscosity and 
kri is relative permeability for i-phase that depends on flux direction. In general, relative permeability functions can be 
different for each continua and for flux between them. For transfer term, similarly to the previous model for unsaturated 
flow, we have σmf = σ/V , σ f m = σ/A (σ = C I kmf and kmf is the harmonic average between km and k f ) for matrix 
volume V intersecting with fracture surface and C I is the connectivity index [4,28]. As an initial condition, we set sα = s0(x)
(α = m, f ). For boundary conditions, we set zero flux on ∂# and ∂γ .

For the general multicontinuum case, we can write

φα ∂sα

∂t
− ∇ · (λw(sα)kα(x)∇pα) +

∑

β

λw(sαβ)σαβ(x)(pα − pβ) = qw,α,

−∇ · (λ(sα)kα(x)∇pα) +
∑

β

λ(sαβ)σαβ(x)(pα − pβ) = qα,

(9)

where α = 1, ..., M and M is the number of continuum.
Similarly to the previous model problem of unsaturated flow, we use structured grids and construct a finite volume 

approximation with embedded discrete fracture model (EDFM) for approximation of the two-phase flow problem. We use 
same fine grid for the porous matrix domain (T h = ∪Nm,h

i=1 ςi ) and the fracture domain (Gh = ∪N f ,h

l=1 ιl) with cells ςi and ιl , 
Nm,h is the number of cells in T h , N f ,h is the number of cell related to fracture mesh Gh . For approximation by time, we 
use IMPES (implicit pressure explicit saturation) scheme and a finite volume approximation by space

φm
i

sm
i − šm

i

τ
|ςi|+

∑

j

uw,mm
ij +

∑

l

uw,mf
il = (1 − f w,m

i )qw,m
i |ςi|,

∑

j

umm
ij +

∑

l

umf
il = qm

i |ςi |,

φ
f

l

s f
l − š f

l

τ
|ιl|+

∑

n

uw, f f
ln +

∑

i

uw, f m
il = (1 − f w, f

l )qw, f
l |ιl|,

∑

n

u f f
ln +

∑

i

u f m
il = q f

l |ιl|,

where sm
i and s f

l are saturation of matrix and fracture continuum in cells ςi and ιl , f w,α
i = λw(sαi )/λ(sαi ), |ςi | and |ιl|

are the volume of cells. Here, we use an implicit scheme for time discretization, where šm
i and š f

l are the solutions from 
previous time step and τ is the given time step.

For the fluxes

umm = −λ(sm)km(x)∇pm, uw,mm = −λw(sm)km(x)∇pm,

u f f = −λ(s f )k f (x)∇γ p f , uw, f f = −λw(s f )k f (x)∇γ p f ,

umf = λ(smf )σmf (x)(pm − p f ), uw,mf = λw(smf )σmf (x)(pm − p f ),

u f m = λ(smf )σ f m(x)(p f − pm), uw, f m = λw(smf )σ f m(x)(p f − pm),

we have following approximations

umm
ij = umm · n|Eij = T mm

ij (pm
i − pm

j ), uw,mm
ij = uw,mm · n|Eij = T w,mm

ij (pm
i − pm

j ),

u f f
ln = u f f · n|eln = T f f

i j (p f
i − p f

j ), uw, f f
ln = uw, f f · n|eln = T w, f f

i j (p f
i − p f

j ),
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umf
il = −u f m

il = T mf
il (pm

i − p f
l ), uw,mf

il = −uw, f m
il = T w,mf

il (pm
i − p f

l ),

where

T αβ
i j = T αβ

i j (sαi , sβ
j ) = λ(sαβ

i j )W αβ
i j , T w,αβ

i j = T w,αβ
i j (sαi , sβ

j ) = λw(sαβ
i j )W αβ

i j , α,β = m, f

and W mm
ij = km

ij |Eij |/dij , W f f
ln = k f

ln/+ln , W mf
il = σil with σil = C Iilkm

il if ιl ⊂ ςi and zero else. Here |Eij| is the length of face 
between cells ςi and ς j , dij is the distance between midpoint of cells ςi and ς j , +ln is the distance between points l and 
n, C Iil is the connectivity index from [23,28,17] that proportional to the distance and area of the intersection between the 
fracture cell ιl and porous matrix cell ςi .

Therefore, we have following discrete problem on the fine grid

φm
i

sm
i − šm

i

τ
|ςi |+

∑

j

T w,mm
ij (šm

i , šm
j )(pm

i − pm
j ) +

∑

l

T w,mf
il (šm

i , š f
l )(pm

i − p f
l ) = (1 − f w,m

i )qw,m
i |ςi|,

∑

j

T mm
ij (šm

i , šm
j )(pm

i − pm
j ) +

∑

l

T mf
il (šm

i , š f
l )(pm

i − p f
l ) = qm

i |ςi|,

φ
f

l

s f
l − š f

l

τ
|ιl|+

∑

n

T w, f f
ln (š f

l , š f
n )(p f

l − p f
n ) −

∑

i

T w,mf
il (šm

i , š f
l )(pm

i − p f
l ) = (1 − f w, f

l )qw, f
l |ιl|,

∑

n

T f f
ln (š f

l , š f
n )(p f

l − p f
n ) −

∑

i

T mf
il (šm

i , š f
l )(pm

i − p f
l ) = q f

l |ιl|,

(10)

where i = 1, ..., Nm,h and l = 1, .., N f ,h .
For approximation of the λw(sαβ

i j ), we use an upwind scheme

λw(sαβ
i j ) =

{
λw(sαi ), if T αβ

i j (šαi , šβ
j )(pα

i − pβ
j ) > 0

λw(sβ
j ), else,

and λ(sαβ
i j ) is the harmonic average between λ(sαi ) and λ(sβ

j ).
For the general multicontinuum model, we have

φα
i

sαi − šαi
τ

|ςi |+
∑

j

T w,αα
i j (šαi , šαj )(pα

i − pα
j ) +

∑

β

∑

l

T w,αβ
il (šαi , šβ

l )(pα
i − pβ

l ) = (1 − f w,α
i )qw,α

i |ςi|,

∑

j

T αα
i j (šαi , šαj )(pα

i − pα
j ) +

∑

β

∑

l

T αβ
il (šαi , šβ

l )(pα
i − pβ

l ) = qα
i |ςi|,

(11)

where α = 1, ..., M .

3. Coarse grid upscaled model

Solution of the problems in heterogeneous and fractured media require the construction of the grids that resolve all 
small scale heterogeneity. One of the widely used way is based on the numerical homogenization technique, where effective 
parameters are calculated in order to construct a coarse grid approximations. The coarse grid parameters are constructed by 
a solution of the local problems with appropriate boundary conditions.

Let T H be a structured coarse mesh of the computational domain #

T H = ∪N H

i=1 Ki,

where N H is the number of the coarse grid cells, Ki is the quadrilateral coarse cell and i is the coarse grid cell index [34,29]. 
Form of the coarse grid upscaled model is similar to the fine grid model with finite volume approximation, where coarse 
grid transmissibilities T U P

i j are calculated by a solution of the local problems that take into account fine grid resolution of 
the heterogeneous permeability (see Fig. 1).

We let Eij be the coarse grid face and we define the neighborhood (local domain) by

ωi j = Ki ∪ K j, Ki, K j ∈ T H ,

where ωi j is a union of two coarse cells, when Eij lies in the interior of the domain #. For the edges on the boundary, we 
will use a no flux boundary conditions and therefore not need to calculate of the upscaled transmissibilities. For calculation 
of the upscaled transmissibilities T U P

i j for coarse face Eij , we solve local problems for nonperiodic heterogeneous fractured 
media with linear boundary conditions in ωi j . For the fractured/multicontinuum media, we use a similar approach for 
calculation of the coarse grid transmissibilities T αβ,U P

i j . Details of the calculations, we present below for each problem.
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Fig. 1. Coarse grid, heterogeneous properties and local domains. (a) Coarse grid with fine grid and local domains. (b) Heterogeneous permeability with 
coarse cells and local domains. Coarse grid T H (black color), fine grid T h (blue color), fracture γ (green), local domain ωi j (yellow), coarse edge Eij (red). 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.1. Nonlinear flow problem

We start with single-phase upscaling and suppose that

kα(x, pα) = kr(pα)kα
s (x), σαβ(x, pαβ) = σr(pαβ)σαβ

s (x), α = m, f ,

where, in general, kr and σr can be different for each continuum α, but in this work, we assume similar relationships, for 
simplicity.

Let T H denote a structured coarse grid of the porous matrix domain # and GH denote a coarse grid of the fracture 
domain γ

T H = ∪Nm,H

i=1 Ki, GH = ∪N f ,H

l=1 γl,

where Ki and γl are the cell of the matrix and fractures fine grids, Nm,H is the number of coarse cells in T H , N f ,H is 
the number of coarse cells related to GH . On the coarse grid for equation (4), we have the following discrete problem for 
p = (pm, p f )

cm
i

pm
i − p̌

m
i

τ
|Ki | +

∑

j

T mm,U P
i j (pm

i − pm
j ) +

∑

l

T mf ,U P
il (pm

i − p f
l ) = qm

i |Ki |,

c f
l

p f
l − p̌

f
l

τ
|γl| +

∑

n

T f f ,U P
ln (p f

l − p f
n ) −

∑

i

T mf ,U P
il (pm

i − p f
l ) = q f

l |γl|,
(12)

where l = 1, .., N f ,H and i = 1, ..., Nm,H .
In general for multicontinuum model, we have

cα
i

pα
i − p̌

α
i

τ
|Ki | +

∑

j

T αα,U P
i j (pα

i − pα
j ) +

∑

β

∑

l

T αβ,U P
il (pα

i − pβ
l ) = qα

i |Ki|, (13)

where cα
i ≈ 1

|Ki |
∫

Ki
cα(pα

i ) dx and

T αβ,U P
i j (pα

i , pβ
j ) = kr(pαβ

i j )W αβ,U P
i j , α = m, f (14)

and W αβ,U P
i j is the precalculated effective transmissibilities.

For the calculation of the upscaled transmissibilities for the porous matrix, we solve the following local problems in each 
ωi j (see Fig. 1, where local domain is depicted by a yellow color)

−∇
(

km
s (x)∇ψ l

)
= 0, x ∈ ωi j, (15)
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with boundary conditions

ψ l = 1, x ∈ 01
i j, ψ l = 0, x ∈ 02

i j,

−km
s (x)

∂ψ l

∂n
= 0, x ∈ ∂ωi j/(0

1
i j ∪ 02

i j).

In this work, we consider two-dimensional problems with x = (x1, x2). Therefore, we solve two local problems for ψ l , 
l = 1, 2. For ψ1, boundaries 01

i j and 02
i j are the left and right boundaries of the domain ωi j , respectively. For ψ2, boundaries 

01
i j and 02

i j are the top and bottom boundaries of the domain ωi j , respectively. Note that, another boundary conditions can 
be applied for local problems.

Therefore, for calculations W mm,U P
i j in (14), we solve following discrete problem for finite volume approximation up to 

fine grid resolution

∑

j

W ij(ψ
l
i − ψ l

j) = 0,

with appropriate boundary conditions.
After solution of the local problems in ωi j , we calculate upscaled transmissibility for the porous matrix (see Fig. 1, where 

interface Eij is depicted by a red color)

W mm,U P
i j =

∑
r,n Wrn(ψ

l
r − ψ l

n)

ψ
l
i − ψ

l
j

, (16)

where r, n are the fine cells around coarse face Eij , ψ
l
i and ψ l

j are the mean values in coarse cells Ki and K j . We use ψ l

with l = 1 for all vertical edges and l = 2 for horizontal edges. For the fracture continuum, we suppose that k f = const and 
therefore set W f f ,U P

ln = k f /dln (dln is the distance between points l and n).
In this work, we suppose k f = const , and therefore for the calculations of the coarse grid transmissibility between coarse 

grid fracture cells γl and γn , we have T f f ,U P
ln = k f /+ln , where +ln is the distance between midpoint of cells γl and γn .

Let ωmf
il = {Ki : Ki ∪ γl )= ∅, γl ∈ GH , Ki ∈ T H } be the local domain for calculation of the W mf

il in (14) (see Fig. 1, where 
local domain is depicted by a orange color). For the calculation of the upscaled transmissibility between porous matrix and 
fracture, we solve local problems in ωmf

il

cm ∂φ

∂t
− ∇

(
km

s (x)∇φ
)
+ σmf

s (x)(φ − φ f ) = 0, x ∈ ωmf
il , (17)

where φ f = 1 on γl with zero flux boundary conditions on ∂ωmf
il . Therefore, we solve following discrete system for finite 

volume approximation up to fine grid resolution

cm
i

φi − φ̌i

τ
|ςi| +

∑

j

W ij(φi − φ j) +
∑

l

W mf
il (φi − φ

f
l ) = 0,

until |φi − φ̌i | > ε and find upscaled matrix-fracture transmissibility using final time step solution

W mf
il =

∑
r,n W mf

rn (φr − φ
f

n )

φi − φ
f
l

, (18)

where r are the cell that contains fracture, φi and φ f
l are the mean values in coarse cells Ki and in fracture γl (see Fig. 1, 

where interface γl is depicted by a red color).
Note that, there exist different approaches for calculation of the effective transmissibilities, for example, based on the 

different boundary conditions for local problems, using oversampled domains and the construction of look-up table for 
interpolation of the nonlinear dependence. In this work, for calculating the upscaled transmissibilities, we use the simplest 
classic approach. The main goal of the paper is the construction of the novel highly accurate nonlinear upscaled coarse grid 
approximations using machine learning techniques.
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3.2. Nonlinear flow and transport problem

On the coarse grid for equation (8), we have following discrete problem for pm, p f , sm and s f

φ
m
i

sm
i − š

m
i

τ
|Ki|+

∑

j

T w,mm,U P
i j (š

m
i , š

m
j )(pm

i − pm
j ) +

∑

l

T w,mf ,U P
il (š

m
i , š

f
l )(pm

i − p f
l ) = (1 − f

w,m
i )qw,m

i |Ki |,

∑

j

T mm,U P
i j (š

m
i , š

m
j )(pm

i − pm
j ) +

∑

l

T mf ,U P
il (š

m
i , š

f
l )(pm

i − p f
l ) = qm

i |Ki|,

φ
f
l

s f
l − š

f
l

τ
|γl|+

∑

n

T w, f f ,U P
ln (š

f
l , š

f
n )(p f

l − p f
n ) −

∑

i

T w,mf ,U P
il (š

m
i , š

f
l )(pm

i − p f
l ) = (1 − f

w, f
i )qw, f

l |γl|,

∑

n

T f f ,U P
ln (š

f
l , š

f
n )(p f

l − p f
n ) −

∑

i

T mf ,U P
il (š

m
i , š

f
l )(pm

i − p f
l ) = q f

l |γl|,

(19)

where l = 1, .., N f ,H and i = 1, ..., Nm,H . For approximation by time similarly to the fine grid approximation, the IMPES 
scheme is used.

For the general multicontinuum model, we have

φ
α
i

sαi − š
α
i

τ
|Ki |+

∑

j

T w,αα,U P
i j (š

α
i , š

α
j )(pα

i − pα
j ) +

∑

β

∑

l

T w,αβ,U P
il (š

α
i , š

β

l )(pα
i − pβ

l ) = (1 − f
w,α
i )qw,α

i |Ki|,

∑

j

T αα,U P
i j (š

α
i , š

α
j )(pα

i − pα
j ) +

∑

β

∑

l

T αβ,U P
il (š

α
i , š

β

l )(pα
i − pβ

l ) = qα
i |Ki |,

(20)

where

T αβ,U P
i j (sαβ

i j ) = λ(sαi , sβ
j )W αβ,U P

i j , T w,αβ,U P
i j (sαi , sαj ) = λw(sαβ

i j )W αβ,U P
i j , α,β = m, f (21)

with upwind scheme approximation of λw and W αβ,U P
i j is the precalculated effective transmissibilities that is similar to the 

previous problem and based on the single phase upscaling.
The choice of boundary conditions have a strong impact on the accuracy of results. In the presented standard upscal-

ing method, coarse grid parameters are obtained independently to global problem solution information. More accurate 
approaches can be based on the information about the fine scale flow in the local domains up to fine grid resolution and 
without variable separation of nonlinear coefficients. For example, an interpolated global coarse grid solution is used for per-
forming accurate construction of the upscaled transmissibilities in [5], which involve iterations between global coarse grid 
model and local fine grid calculations with updating of the upscaled transmissibilities. The local-global upscaling method 
requires extra computations than existing classic upscaling procedures.

In this work, the construction of the accurate upscaled transmissibilities for the coarse grid approximation is also based 
on the information about global solution (nonlinear transmissibilities). Moreover, the presented method is based on the 
machine learning procedure for fast prediction of the nonlinear transmissibilities, where we construct neural network that 
learn dependencies between the coarse grid quantities on the oversampled local domains and upscaled transmissibilities. 
We use a convolutional neural network and GPU training process to construct a machine learning algorithm.

4. Machine learning for nonlinear nonlocal upscaled transmissibilities

We consider a machine learning approach for prediction of the upscaled nonlinear nonlocal transmissibilities for accurate 
and fast coarse grid approximation. We have following main steps:

1. Generate dataset to train, validate and test of the neural network.
2. Neural networks training, validation and testing.
3. Calculation of the nonlinear upscaled transmissibilities on the fly using constructed neural networks during coarse 

system construction, fast and accurate solution of the upscaled system.

For construction of the datasets, we perform local or global calculations of the coarse grid quantities [5]. In local ap-
proach, the upscaled transmissibilities are calculated on the local domain corresponding to the target face, where the 
fine-scale solution information is used to set boundary conditions. Global approach uses a global fine-scale solution for 
the determination of coarse scale parameters. For training of the neural networks, we use a family of problem solutions for 



10 M. Vasilyeva et al. / Journal of Computational Physics 412 (2020) 109323

different input conditions (snapshots). Note that, we should have many snapshots to capture all input condition variations 
because the accuracy of the machine learning method depends on snapshot space that is as train dataset. Next, we consider 
dataset generation and network construction in detail.

4.1. Dataset

The most accurate case can be based on the fine grid solution, at the same time for upscaled model, we would like to 
use only coarse-grid information. For possible applicability of this, we construct a novel coarse grid model, using machine 
learning algorithms and construct neural network that learn dependency between coarse grid functions pα in local domains 
and upscaled nonlinear transmissibilities.

For constructing accurate neural network for prediction of the transmissibilities, we should train network on the highly 
accurate dataset. One of the most accurate approach for calculating upscaled transmissibilities based on the direct calcula-
tion from the fine scale solution. We use following coarse grid approximation (similar to previous section)

• Unsaturated flow problem (nonlinear flow):

cα
i

pα
i − p̌

α
i

τ
|Ki| +

∑

j

T αα,N L
i j (pα

i − pα
j ) +

∑

β

∑

l

T αβ,N L
il (pα

i − pβ
l ) = qα

i |Ki|, (22)

with nonlinear upscaled transmissibilities

T αβ,N L
i j (x, pα, pβ, sα, sβ) =

∑
r,n T αβ

rn (sα, sβ)(pα
r − pβ

n )

pα
i − pβ

j

. (23)

• Two-phase flow problem (nonlinear transport and flow):

φ
α
i

sαi − š
α
i

τ
|Ki|+

∑

j

T w,αα,N L
i j (pα

i − pα
j ) +

∑

β

∑

l

T w,αβ,N L
il (pα

i − pβ
l ) = (1 − f

w,α
i )qw,α

i |Ki|,

∑

j

T αα,N L
i j (pα

i − pα
j ) +

∑

β

∑

l

T αβ,N L
il (pα

i − pβ
l ) = qα

i |Ki|,
(24)

with nonlinear upscaled transmissibilities

T w,αβ,N L
i j (x, pα, pβ, sα, sβ) =

∑
r,n T w,αβ

rn (sα, sβ)(pα
r − pβ

n )

pα
i − pβ

j

,

T αβ,N L
i j (x, pα, pβ, sα, sβ) =

∑
r,n T αβ

rn (sα, sβ)(pα
r − pβ

n )

pα
i − pβ

j

.

(25)

Because T w,αβ,N L and T αβ,N L (α, β = m, f ) are nonlinear and depend on the fine grid solutions pα, pβ, sα, sβ , we cannot 
directly use such transmissibilities on the coarse grid model. For possible applicability of this, we will use a machine 
learning algorithms and construct a neural network that learn dependence between coarse grid functions pα, pβ, sα, sβ in 
local domains (oversampled) and upscaled nonlinear transmissibilities.

Let El be the interface, where we define upscaled transmissibility, and Xl and Yl are the input data and output data for 
machine learning algorithm and

Dataset: {(Xl, Yl), l = 1, ..., L}.
For constructing neural network for upscaled transmissibilities, based on the (23) and (25), we use a nonlocal upscaled 
transmissibilities T w,αβ,N L

l and T αβ,N L
l (α, β = m, f ) as output data Yl . Input data Xl contains information about fine scale 

permeabilities, fracture position in local domain ωEl , coarse grid functions p and s in the oversampled local domains. For 
this purpose, we use a local multi-input data for training neural network

Xl = (Xk
l , X f

l , X pα

l+ , X pβ

l+ ) for flow and Xl = (Xk
l , X f

l , X pα

l+ , X pβ

l+ , X sα
l+, X sβ

l+) for transport and flow, (26)

where Xk
l and X f

l are the local heterogeneous permeabilities and local fracture position markers in local domain ωEl ; 
X pα

l+ and X sα
l+ are the coarse grid nonlocal mean values for pressure and saturation for continuum α in oversampled local 

domain ωH+
El

. Each of the input fields is represented as two-dimensional array for two-dimensional problem. The scale of 
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Fig. 2. Coarse grid and local domains illustration. Four types (horizontal and vertical matrix-matrix flow, fracture-matrix flow and fracture-fracture flow) of 
local domains ωEl (∂ωEl – blue color, fine grid resolution – black color, coarse edge or matrix-fracture interface – red color and fracture-fracture connection 
– yellow point). Four types (horizontal and vertical matrix-matrix flow, fracture-matrix flow and fracture-fracture flow) of oversampled local domains ωH+

El

(∂ωH+
El

– orange color, coarse grid resolution – green color).

permeability array in dataset is re-scaled to fall within the range 0 to 1, but local coarse grid solution are taken without 
rescaling.

In Fig. 2, we present an illustration of the local domains ωEl and ωH+
El

, l = 1, ..., NE (NE – number local domains). 
Local domain ωEl is the domain for edge El up to fine grid resolution that is similar to the classic (single phase) upscaling 
presented in previous section. In local domain ωEl , we define Xk

l ∈ ωEl and X f
l ∈ ωEl . Oversampled local domain ωH+

El
is the 

domain around El up to coarse grid resolution, where we define X pα

l+ ∈ ωH+
El

and X sα
l+ ∈ ωH+

El
. We note that, the size of the 

oversampled region should be sufficient to capture influence of the coarse grid solution to the nonlinear transmissibilities. 
On the other hand, the size of the oversampling should be not very large because it effects to the size of the dataset that 
used in machine learning process. To ensure same size and structure of the input data, we divide all local data into four 
types: matrix-matrix flow through horizontal edge (T mm,N L

l ), matrix-matrix flow through vertical edge (T mm,N L
l , fracture-

matrix flow for T mf ,N L
l and fracture-fracture flow for T f f ,N L

l .
The output is the normalized array of the upscaled transmissibilities

Yl = (T αβ,N L
l ) for flow and Yl = (T αβ,N L

l , T w,αβ,N L
l ) for transport and flow,

for edge El . Dataset is divided into train, validation and test sets with sizes Ntrain , Nval and Ntest (N = Ntrain + Nval + Ntest ). 
For each type of local domain as a test set, we take 50% of data, another 50% divided between train and validation set in 
80/20 proportion.

We use dataset (Xl, Yl) for training of the neural network. To ensure a good learning rate and for obtaining a wide 
coverage of data, we generate several solution snapshots by varying of the source term in global fine grid model. Another 
approach is related to the localization of the dataset generation, where we can use local domains calculations for fine grid 
solutions and calculations of the Xl and Yl . Note that, this machine learning approach for the learning of the nonlocal 
nonlinear upscaled transmissibilities can be also applied for the linear problems and has a recap with nonlinear finite 
volume methods, where transmissibilities are also depends on solution.

4.2. Network

In machine learning algorithm, we use a multi-input deep neural network (convolutional neural network). Let

Dataset: {(Xl, Yl), l = 1, ..., L}
where Xl = (X1

l , ..., X s
l ) (s is the number of the input data for El , see (26)). Each input data Xi

l is defined in ωi
El

and rep-
resented as two-dimensional array for two-dimensional problems. The architecture of the multi-input deep neural network 
for prediction of the nonlinear nonlocal upscaled transmissibilities is presented in Fig. 3. For each input data Xi , we use 
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Fig. 3. Illustration of the multi-input deep neural network for prediction of the nonlinear nonlocal upscaled transmissibilities.

a convolutional neural network [22,21]. Several convolutional and pooling layers with rectified linear units activation layer 
are stacked with a several fully-connected layers with dropout. Several layers of convolutions and pooling are alternated in 
order to detect higher order features for better accuracy of the method. After performing convolutions, pooling, activation 
and dropout layers for each Xi (i = 1, ..., s), we add fully connected layers, where we compose all outputs on CNN together. 
By a training process, a machine learning algorithm solve the optimization problem to find model weights that best describe 
the train set by minimization of the loss function.

We train a convolutional neural network by a dataset of local multi-input data (Xl ) and upscaled transmissibilities (Yl ). 
As a loss function, we use the mean square error (MSE)

Losstrain = 1
Ntrain

Ntrain∑

l=1

|Yl − F (Xl)|2.

For solution of the minimization problem, we use gradient-based optimizer Adam [20]. Implementation of the machine 
learning method is based on the open source library Keras [6] with TensorFlow backend [1] and performed on the GPU. 
Constructed machine learning algorithm will efficiently determine dependence between coarse grid functions in local do-
mains and upscaled transmissibilities.

5. Numerical result

In this section, we present numerical results for the proposed method. We consider following model problems in frac-
tured and heterogeneous porous media:

Test 1: Nonlinear flow problem (unsaturated flow problem)
Test 2: Nonlinear transport and flow problem (two-phase flow problem)
Test 3: Nonlinear flow problem (unsaturated flow problem) for complex fracture geometry

We solve model problem in # = [0, 1] ×[0, 1] with no flux boundary conditions. We use 10 × 10 coarse grid. Location of 
the source terms and fracture position are depicted in Fig. 4a. In Figs. 4b and 4c, we show a heterogeneous porous matrix 
permeability for both test problems. The numerical calculations of the effective properties has been implemented with the 
open-source finite element software PETSc and FEniCS [24,3].

To measure difference between reference solution and coarse grid solution, we compute relative L2 error

e(u) =

√√√√
∑N H

i=1(u f ine
i − ui)2

∑N H

i=1(u f ine
i )2

,

where u = p, s, u f ine is the reference solution (mean value on coarse grid of the fine grid solution) and u is the solution on 
the coarse grid.

For each test problem, we present results of the fine scale solution, for upscaling technique presented in Section 3 and 
new method from Section 4. Computational algorithm for single-phase upscaling method with T αβ,U P (Section 3):

1. Loading of the precalculated effective transmissibilities W αβ,U P .
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Fig. 4. Coarse mesh with source term and fracture positions (a). Heterogeneous porous matrix permeability in # for Test 1 (b) and Test 2 (c).

Fig. 5. Coarse mesh with source term and fracture positions (a). Heterogeneous porous matrix permeability in # for Test 3 (b).

2. Solution of the multicontinuum model:
Test 1: Nonlinear flow problem with

T αβ,U P
i j (pα

i , pβ
j ) = kr(pαβ

i j )W αβ,U P
i j , α = m, f

Test 2: Nonlinear transport and flow problem with

T αβ,U P
i j (sαi , sβ

j ) = λ(sαβ
i j )W αβ,U P

i j ,

T w,αβ,U P
i j (sαi , sαj ) = λw(sαβ

i j )W αβ,U P
i j , α,β = m, f

with upwind approximation of λw on the coarse grid.

For the new nonlocal nonlinear machine learning technique with T αβ,N L (Section 4), we have:

1. Loading of the machine learning models, N Ni (i = 1, 2, ...).
2. Solution of the multicontinuum model:

Test 1: Nonlinear flow problem with

T αβ,N L
i j =

{
T αβ,ML

ij (x, pα, pβ, pα, pβ), if |pα − pβ | > ε,

T αβ,U P
i j , else

,

where T αβ,ML
ij is the value predicted using machine learning algorithm.

Test 2: Nonlinear transport and flow problem with

T αβ,N L
i j =

{
T αβ,ML

ij (x, pα, pβ, pα, pβ), if |pα − pβ | > ε,

T αβ,U P
i j , else

,

T w,αβ,N L
i j =

{
T w,αβ,ML

ij (x, pα, pβ, pα, pβ), if |pα − pβ | > ε, |sα − sβ | > εs

T w,αβ,U P
i j , else

,
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Table 1
Learning performance of machine learning 
algorithm for Test 1 (nonlinear flow). Errors 
for train and test sets.

MSE RMSE (%) MAE (%)

Train set (global data)

N N1 0.012 1.101 1.072
N N2 0.016 1.273 1.272
N N3 0.013 1.156 0.838

Test set (global data)

N N1 0.012 1.104 1.085
N N2 0.016 1.286 1.280
N N3 0.011 1.050 0.774

Train set (local data)

N Nl
1 0.081 2.861 2.060

N Nl
2 0.014 1.223 1.229

N Nl
3 0.042 2.058 1.791

where T αβ,ML
ij and T w,αβ,ML

ij is the value predicted using machine learning algorithm.

Note that, the loss of positivity of upscaled transmissibilities can happen, and we use a threshold value ε for the pressure 
difference to guarantee a good values of the coarse grid parameters, where linear upscaling is used for the faces with small 
pressure difference. Moreover, we used predicted transmissibilities adaptively with parameter εs in the coarse grid model 
with machine learning approach.

We will show results of the learning process of deep neural network for nonlocal nonlinear upscaled transmissibilities 
and calculate errors for given datasets. Finally, we consider a coarse grid solution of the problem, where nonlocal nonlinear 
upscaled transmissibilities are calculated using constructed machine learning method. Finally, we discuss the computational 
time of the neural networks construction and solution of the coarse grid system using classic upscaling and machine learning 
approaches. We divide calculation on the offline and online stages. On the online stage, we train neural network on the GPU 
by a given train and validation datasets. On the offline stage, we have two steps: loading of the preconstructed neural 
network and prediction of the upscaled coarse grid transmissibilities on each time iteration or/and nonlinear iteration.

5.1. Nonlinear flow problem

We consider the solution of the nonlinear equation in fractured and heterogeneous porous media. We set source terms 
f ± = ±q, q = 105. For the nonlinear coefficient, we use kαβ(x, u) = ks(x)kr(u) with kr(u) = exp(−a|u|), a = 0.1 (α, β = m, f ). 
In Fig. 4b, we show a heterogeneous porous matrix permeability km

s (x) and fracture position. We set cm = 1, c f = 0, k f
s = 106

and Tmax = 10−3 with 20 time steps. Coarse grid is 10 × 10 and fine grid is 640 × 640 for domain #.
We present results for the machine learning algorithm and calculate errors for train and test datasets (see Table 1). For 

the training of the neural networks, we investigate two datasets: local and global. For the global dataset, we extract local 
information from the fine grid calculations on the global domain #. For the local dataset, we calculate each data by solution 
of the local problem up to fine grid resolution with different boundary conditions for generation of the possible set of 
solutions (snapshots). We use six random values of the source term to generate datasets (Nr = 6). We train three neural 
networks for each type of transmissibility: N N1 for horizontal coarse edges for matrix-matrix flow, N N2 for vertical coarse 
edges s for matrix-matrix flow and N N3 for matrix - fracture flow. For 10 × 10 coarse mesh, we have NE = 90 horizontal 
and NE = 90 vertical coarse edges (without boundary edges due to no flux boundary conditions), furthermore, we have 
NE = 5 coarse cells with fracture. Therefore, the train dataset for neural network contains N = Nr · NE · Nt samples for 
learning process, where Nt is the number of time steps. We have N = 10800 for N N1 and N N2; and N = 600 for N N3. Each 
sample Xl contains information about heterogeneous permeability and fracture position up to fine grid resolution in local 
domain, coarse grid mean value of the solution in oversampled local domain

Xl = (Xk
l , X f

l , X pm

l+ ).

Each dataset is divided into training and validation sets with 80 : 20 ratio. For testing, we calculate another six solution 
snapshots.

For calculations, we use 500 epochs with a batch size Nb = 90 and Adam optimizer with learning rate ε = 0.001. For 
accelerating of the training process of the multi-input CNN, we use GPU. We use 3 × 3 convolutions and 2 × 2 maxpooling 
layers with RELU activation for Xk and X f , and 3 × 3 convolutions with RELU activation for X pm

. For each input data, we 
have 2 layers of CNN with one final fully connected layer. Convolution layer contains 8 and 16 feature maps for Xk and X f ; 
and 4 and 8 feature maps for X pm

. We use dropout with rate 10% in each layer in order to prevent over-fitting. Finally, we 
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Fig. 6. Learning process for Test 1 (nonlinear flow). Loss function vs. epoch: (a) N N1 for vertical T mm,N L , (b) N N2 for horizontal T mm,N L , (c) N N3 for T mf ,N L .

Fig. 7. Learning performance for Test 1 (nonlinear flow). Parity plots comparing preference property values against predictions made using machine learning. 
First row: train and validation dataset (green color) for (a) N N1, (b) N N2 and (c) N N3. Second row: test dataset (blue color) for (d) N N1, (e) N N2 and (f) 
N N3.

combine CNN output and perform two additional fully connected layers with size 200 and 1 (one final output). Presented 
algorithm is used to learn dependence between multi-input data and upscaled nonlinear transmissibilities.

For error calculation on the train and test dataset, we use mean square errors, relative mean absolute and relative root 
mean square errors

M S E =
∑

i

|Yi − Ỹ i |2, RM S E =
√∑

i |Yi − Ỹ i |2∑
i |Yi |2

, M AE =
∑

i |Yi − Ỹ i |∑
i |Yi|

,

where Yi and Ỹ i denotes reference and predicted values for sample Xi .
Convergence of the loss functions for three neural networks for Test 1 are presented in Fig. 6, where we plot the MSE 

loss function vs. epoch number for train and validation sets. In Fig. 7, we present a parity plots comparing reference values 
against predicted using trained neural networks for train and test datasets (green and blue colors). Learning performance 
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Fig. 8. Upscaling error for coarse grid parameters predicted using machine learning algorithm for Test 1. Green color: e(uU P ). Red and blue colors: e(uN L)

with local and global calculations.

Fig. 9. Nonlinear flow problem (Test 1). Pressure on final time tm , m = 20. (a) Reference fine grid solution (u f ine ), (b) mean value on coarse grid of the fine 
grid solution (u f ine ), (c) coarse grid solution using upscaling method (uU P ) and (d) coarse grid solution using nonlinear nonlocal machine learning method 
(uN L ).

for neural networks are presented in Fig. 8 for global and local datasets. We observe good convergence of the relative errors 
for train and test sets with 1 − 2% of RMSE.

Next, we consider errors between solution of the coarse grid problem with reference and predicted upscaled transmis-
sibilities. In Fig. 8, we present results for 50 test problems with random value of the source term. We show a relative 
L2 errors for pressure head on the coarse mesh with classic upscaling algorithm and using new nonlocal nonlinear trans-
missibilities. We observe small errors (1 − 2%) for predicted nonlocal nonlinear transmissibilities compared with classical 
upscaling technique, where we have ≈ 15% of relative L2 errors for pressure head. Furthermore, we see that local calculation 
of the dataset provide similar results as a globally calculated data.

In Fig. 9, we depict solution of the problem on the fine grid, coarse grid upscaled solution using classic approach from 
Section 3 and for new method presented in Section 4 (u f ine , u f ine , uU P and uN L ). For uU P , we apply presented upscaling 
method (16), (18) and (12). We have e(uU P ) = 14.772% and e(uN L) = 1.463% at final time. For the nonlinear nonlocal 
transmissibilities, we set ε = 0.5 · 10−1 for N N1 and N N2, ε = 10−20 for N N3. Note that, we didn’t construct N N4 of data 
(T f f ,N L ) because for our test problem we observe almost constant pressure on the fracture and set T f f ,N L = T f f ,U P on the 
coarse grid.

We perform training of the neural networks on the GPU, where we train three neural networks: N N1, N N2 and N N3. 
Online stage (neural network training) time is 25 minutes for N N1, 28 minutes for N N2 and 6 minutes for N N3 on GPU 
(GeForce GTX 1060). Note that, the training time depends on size of the dataset and GPU model. Here we didn’t consider 
time of the dataset construction which depends on type of calculations (global or local) and number of solution snapshots, 
that we used for training. Number of snapshots (Nr ) is also effects to the algorithm errors because we should have sufficient 
number of snapshots to capture all variations of the input data to know how it effects to the output.

Time of the online stage contains 6.6 seconds of loading three neural networks and 13.0 seconds for calculations on the 
10 × 10 coarse grid with prediction of the nonlinear nonlocal transmissibilities. Fine grid calculations time is 454 seconds 
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Fig. 10. Learning process for Test 2 (nonlinear flow and transport). Loss function vs. epoch. First row: (a) N N1 and (b) N N2 for vertical and horizontal 
T mm,N L . Second row: (c) N N3 and (d) N N4 for T mf ,N L and T f f ,N L .

for 20 time steps on 640 × 640 fine grid. We have approximately 35 time faster calculations for a new method with small 
error of the coarse grid solution.

5.2. Nonlinear flow and transport problem

We consider solution of the two-phase flow problem in fractured and heterogeneous porous media. For nonlinear coeffi-
cient, we set λw(s) = s2 and λn(s) = (1 − s)2. In Fig. 4c, we show the heterogeneous porous matrix permeability km(x) and 
fracture position. We set φα = 1 (α = m, f ), k f = 103 and Tmax = 25 · 10−3 with 250 time steps. Coarse grid is 10 × 10 and 
fine grid is 160 × 160 for domain #.

For the training of the neural networks, we use a global dataset, where we extract local information from the fine grid 
calculations on the global domain #. For generation of the train datasets, we use a three random snapshots (Nr = 3) with 
Tmax = 40 · 10−3 and 400 time steps. We train four neural networks for each type of transmissibility: N N1 for horizontal 
coarse edges for matrix-matrix flow, N N2 for vertical coarse edges s for matrix-matrix flow, N N3 for matrix - fracture flow 
and N N4 for fracture - fracture flow. The train dataset for first and second neural networks contains N = 108000; N = 6000
for N N3 and N = 4800 for N N4, where dataset is randomly divided into training and validation sets with 80 : 20 ratio. Each 
sample Xl contains information about heterogeneous permeability and fracture position up to fine grid resolution in local 
domain, mean value of the solution in oversampled local domain (coarse grid)

Xl = (Xk
l , X f

l , X pα

l+ , X sα
l+, X pβ

l+ , X sβ
l+)

and output

Yl = (T αβ,N L
l , T w,αβ,N L

l ), α,β = m, f .

For calculations, we use 150 epochs with a batch size Nb = 90 and perform calculations on GPU. Architecture of the 
neural networks is similar to the previous test problem but as output for this case, we obtain two values, T . Learning 
performance for neural networks are presented in Fig. 10 and Table 2 for train datasets. We observe a good convergence 
with small error for each neural network.
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Table 2
Learning performance of machine learning 
algorithm for Test 2 (nonlinear flow and 
transport). Errors for train and test sets.

MSE RMSE (%) MAE (%)

N N1 0.017 1.316 0.959
N N2 0.043 2.092 1.507
N N3 0.014 1.218 0.778
N N4 0.052 2.301 1.328

Fig. 11. Upscaling error for coarse grid parameters predicted using machine learning algorithm for Test 2 (nonlinear flow and transport). (a), (c) and (e) – 
pressure errors, tm with m = 50, 150 and 250. (b), (d) and (f) – saturation errors, tm with m = 50, 150 and 250. Green color: e(uU P ). Red color: e(uN L).

In Fig. 11, we present results for 20 test problems with random value of the source terms. We show a relative mean 
square error in percentages for pressure (Figs. 11a, 11c and 11e) and for saturation (Figs. 11b, 11d and 11f) on the coarse 
mesh with classic upscaling algorithm and using new nonlocal nonlinear transmissibilities.

In Fig. 12, we depict solution of the problem using different methods. On the first column ((a1), (a2), (a3) and (a4) in 
Fig. 12), we depict a reference fine grid solution (s f ine , p f ine), mean value on coarse grid of the fine grid solution (s f ine , 
p f ine) on the second column ((b1), (b2), (b3) and (b4) in Fig. 12), coarse grid solution using upscaling method (sU P , pU P ) 
on the third column ((c1), (c2), (c3) and (c4) in Fig. 12) and coarse grid solution using nonlinear nonlocal machine learning 
method (sN L , pN L ) on the fourth column ((d1), (d2), (d3) and (d4) in Fig. 12). On the first, second and third rows, we show 
a saturation for time tm , m = 50, 150, 250. On fourth row, we have pressure for time tm , m = 250. For solution on the coarse 
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Fig. 12. Nonlinear flow and transport problem (Test 2). (a) Reference fine grid solution (s f ine , p f ine ), (b) mean value on coarse grid of the fine grid solution 
(s f ine , p f ine ), (c) coarse grid solution using upscaling method (sU P , pU P ) and (d) coarse grid solution using nonlinear nonlocal machine learning method 
(sN L , pN L ). (a1), (b1), (c1), (d1): saturation for time tm , m = 50. (a2), (b2), (c2), (d2): saturation for time tm , m = 150. (a3), (b3), (c3), (d3): saturation for 
time tm , m = 250. (a4), (b4), (c4), (d4): pressure for time tm , m = 250.
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Fig. 13. Learning performance for Test 3 (nonlinear flow). Parity plots comparing preference property values against predictions made using machine learn-
ing: (a) N N1 for vertical T mm,N L , (b) N N2 for horizontal T mm,N L , (c) N N3 for T mf ,N L , (d) N N4 for vertical T f f ,N L and (e) N N5 for horizontal T f f ,N L .

Table 3
Learning performance of machine learning 
algorithm for Test 3 (nonlinear flow).

MSE RMSE (%) MAE (%)

Train set (local data)

N Nl
1 0.011 1.071 0.538

N Nl
2 0.009 0.962 0.614

N Nl
3 0.187 4.329 2.105

N Nl
4 0.003 0.606 0.365

N Nl
5 0.004 0.683 0.444

grid (pU P and sU P ), we applied classic upscaling method (see Section 3). Fine grid (reference) solution is performed using 
finite volume approximation with embedded discrete fracture model, where for error calculations we used a mean values 
of the reference solution on the coarse grid, p f ine and s f ine . On the last column of the Fig. 12, we depict a coarse grid 
solution using nonlinear nonlocal transmissibilities that calculate based on the machine learning approach. For machine 
learning approach, we have e(pN L) = 0.920%, e(sN L) = 3.957%, and for upscaling e(pU P ) = 13.519%, e(sU P ) = 13.227% at 
final time tm , m = 250. For the nonlinear nonlocal transmissibilities, we set εS = 10−2 for transport and ε = 0.5 · 10−2 for 
N N1, ε = 10−4 for N N2, ε = 10−3 for N N3 and ε = 10−20 for N N4 for flow.

We perform training of the neural networks on the GPU, where we train four neural networks: N N1, N N2, N N3 and 
N N4. Online stage (neural network training) time is 80 minutes for N N1, 59 minutes for N N2, 2 minutes for N N3 and 4 
minutes for N N4 on GPU (GeForce GTX 1060). Note that, the training time depends on size of the dataset and GPU model. 
Time of the online stage contains 16.7 seconds of loading four neural networks and 46.9 seconds for calculations on the 
10 × 10 coarse grid with prediction of the nonlinear nonlocal transmissibilities. Fine grid calculations time is 812 seconds 
for 250 time steps on 160 × 160 fine grid for transport and flow model. We observe a good results with fast calculations 
using a machine learning algorithm for presented method.

5.3. Nonlinear flow problem for complex fracture geometry

We consider the solution of the nonlinear equation in fractured and heterogeneous porous media. We set similar pa-
rameters as in Test 1. In Fig. 5, we show a heterogeneous porous matrix permeability km

s (x) and fracture position. We set 
Tmax = 2.5 · 10−3 with 50 time steps. Coarse grid is 10 × 10 and fine grid is 160 × 160 for domain #.

We present results for the machine learning algorithm for Test 3, where we use local calculations for the training of the 
neural networks. We train five neural networks for each type of transmissibility: N N1 for horizontal matrix-matrix flow, 
N N2 for vertical matrix-matrix flow, N N3 for matrix - fracture flow, N N4 for horizontal fracture-fracture flow, N N5 for 
vertical fracture-fracture flow. Each sample Xl in the dataset contains information about heterogeneous permeability and 
fracture position up to fine grid resolution in local domain, coarse grid mean value of the solution in oversampled local 
domain. For calculations, we use 500 epochs with a batch size Nb = 90 and Adam optimizer with learning rate ε = 0.001
on the GPU. In Fig. 13, we present a parity plots comparing reference values against predicted using trained neural networks 
for datasets.

Learning performance for neural networks are presented in Table 3. We observe good convergence of the relative errors. 
In Fig. 14, we depict solution of the problem on the fine grid, coarse grid upscaled solution using new method presented in 
Section 4 (u f ine , u f ine and uN L ). We have e(uN L) = 1.850% at final time.

We would like to remark that the examples in the paper assume high-conductivity fractures. In general, one can consider 
more general and complex scenarios by introducing low conductivity barriers together with high conductivity fractures. This 
will require introducing more continua and more complex macroscale functional forms. The proposed approaches can handle 
these cases and require more careful modeling of macroscale quantities. Our main goal in this paper is to show that one 
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Fig. 14. Nonlinear flow problem (Test 3). Pressure on final time tm , m = 50. (a) Reference fine grid solution (u f ine ), (b) mean value on coarse grid of the fine 
grid solution (u f ine ) and (c) coarse grid solution using nonlinear nonlocal machine learning method (uN L ).

can use machine learning together with our novel upscaled models to approximate the solutions on a coarse grid. Moreover, 
machine learning techniques are important in our rigorous and robust upscaled models in order to make them (upscaling) 
more practical and easy to use.

6. Conclusion

In this work, we consider two nonlinear problems in heterogeneous and fractured porous media. Mathematical models 
are formulated as a general multicontinuum models, where fine grid approximations are constructed using finite volume 
method. For the accurate solution of the nonlinear problems on the coarse grid, a novel machine learning algorithm com-
bined with nonlinear nonlocal multicontinua approach for calculating nonlocal nonlinear transmissibilities is presented and 
investigated. We presented the construction of the dataset for training deep neural networks. The construction of the neu-
ral network is based on the multi-input convolutional neural networks, where GPU is used for performing a fast learning 
process. To illustrate the applicability of the presented method, we presented numerical results for two test problems. 
Numerical results showed that presented algorithm provides fast and accurate calculations of the nonlocal nonlinear trans-
missibilities.
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