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Abstract: This study presents a distributed collaborative transmission expansion planning (TEP) algorithm for interconnected
multi-regional power systems. The proposed algorithm is a multi-agent-based TEP. A local TEP is formulated for each region
(agent) with respect to the region's local characteristic and interactions (i.e. tie-line flows) with its neighbours. Nodal power
balances at border buses are modified to model the interactions. Realistic planning constraints and objectives such as budget
constraints, operational costs, N − 1 security criterion, and uncertainties are modelled in the local TEPs. The information privacy
is respected as each local planner needs to share limited information related to cross-border tie lines with other planners. To
coordinate the local planners, a two-level distributed optimisation algorithm is proposed based on the concept of analytical
target cascading (ATC) for multidisciplinary design optimisation. While the upper level solves the local TEPs in parallel, the
lower level seeks to coordinate neighbouring regions. The lower-level problem is further replaced in the upper-level optimisation
by Karush–Kuhn–Tucker conditions to relax the need for any form of central coordinator. This makes the proposed ATC-based
TEP a fully parallelised distributed optimisation algorithm. An initialisation strategy is suggested to enhance the performance of
the distributed TEP.

 Nomenclature
Indices and sets

C index for contingencies
d index for demand
g index for generating units
k index for iterations
l index for transmission lines
i, j index for buses
m, n index for regions (networks)
w index for wind farms
r l receiving-end node of transmission line l
s l sending-end node of transmission line l
ΩI

D set of all demands located at node i

ΩI
G set of all generating units located at node i

ΩI
W set of all wind farms connected to node i

ΩL set of all existing transmission lines
ΩL + set of all candidate transmission lines
ΩI

m set of all buses of region m

ΩI
m + set of border buses of region m

ΩI
+ set of border buses of all networks

Γ set of decision variables in disjunctive TEP model
Δg

max maximum adjustment capability of unit g

Parameters

Ag
C parameter that is equal to 0 if unit g is unavailable under

contingency C and 1 otherwise
Al
C parameter that is equal to 0 if line l is unavailable under

contingency C and 1 otherwise
Bl susceptance of transmission line l
Cd load-shedding cost of demand d
Cd
c load-shedding cost of demand d in contingency C

Cg production cost of generating unit g
Fl
max capacity of transmission line l

I
~
l investment cost of candidate transmission line l

Imax investment budget for building candidate lines
M large enough number, called big-M
Pd expected power demand d
Pw expected power produced by wind farm w
Pg
max expected production capacity of generating unit g

πm penalty function corresponding to consistency constraints
of area m

α, β penalty multipliers
λ tuning parameter

Variables

xl binary decision variable to indicate whether candidate line l
is constructed

Pg power produced by unit g
f l power flow through line l
f i jm power flow in tie line ij determined by region m

f i jn power flow in tie line ij determined by region n

Pd
LS load shedding of demand d

r jicm, k coordinating (or response) variables corresponding to tie
line ji sent by the central coordinator to region m in
iteration k

θi voltage angle at node i

1 Introduction
In electric power industries, new transmission lines are required to
support load growth, remove transmission congestion, support the
integration of distributed renewable energy sources, provide non-
discriminatory transmission access for all market participants, and
support system reliability [1]. The location, the number, and the
installation time of new transmission lines are determined by long-
term transmission expansion planning (TEP) problem. The TEP
problem is used by planning entities to expand the network
topology optimally with the least investment costs. This is a very
expensive, lengthy, and burdensome procedure [2].

Various approaches have been presented in the literature for
modelling and implementation of TEP. The linearised DC TEP is
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the most popular model that is widely used in the literature, applied
by system planners, and implemented in commercial software
packages such as PLEXOS [3, 4]. Romero et al. [5] summarise and
compare transportation, hybrid, disjunctive, and DC power flow
models for TEP. Arabali et al. [6] present a multi-stage multi-
objective TEP methodology taking into account three objectives:
investment cost, absorption of private investment, and system
reliability. In [7], based on the concept of the binary numeral
system, strategies are introduced to reduce the number of variables
related to the candidate transmission lines and network constraints.
Bus splitting option considered in [8] changes flow path
impedances and accordingly adjust short-circuit levels of the TEP
solution. Incorporation of short-circuit level constraints and bus
splitting decision variables in TEP decrease the total expansion
planning costs.

TEP is a more challenging problem in interconnected multi-
regional power systems including several independent networks.
Each power system could have its own local transmission planner
[9]. If the planners solve their TEP problem separately, the grid
topology might not be optimal from the perspective of the whole
grid. This imposes unnecessary investment costs and reduces the
overall benefit of the system. Most of the existing literatures ignore
interactions between the regions when solving for the local
regional TEP. Several papers deal with TEP in the interconnected
power systems, while most of them assume that there is an entity
that has all grid information and formulates a centralised TEP
problem for the whole grid [9]. Such a TEP framework potentially
enhances system performance and reduces the overall investment/
operational costs. However, in the privatised power sector, planners
(or operators) are not willing to share their commercially sensitive
information with other parties, and each transmission planner seeks
to find its optimal TEP solution [10]. On the other hand, any
decision made by a transmission planner affects TEP results of
other planners, as the whole system is an interconnected grid.
Therefore, implementing an individual TEP by a planner regardless
of TEP results in other areas might cause higher-transmission
planning costs and lower system reliability.

Few papers have been published on TEP in multi-regional
power systems. In previous studies, two different approaches have
been proposed for multi-regional TEP: cooperative approach and
non-cooperative approach. In the cooperative approach, all
planners work together to achieve the highest overall social
welfare. One TEP problem can be formulated for the whole
system. While, in the non-cooperative approach, each transmission
planner seeks to maximise its social welfare considering the
planning decisions of other planners [11]. In the non-cooperative
approach, the social welfare of the whole interconnected system
might not be obtained due to competition between different
transmission planners [12]. According to these terminologies, the
proposed algorithm in this paper, which aims at maximising the
overall social welfare of the whole system, falls in the cooperative
TEP category. However, despite conventional cooperative models
in which the information privacy of independent planners is not
met, the information privacy of the planners is respected in the
proposed algorithm. Therefore, we use the term collaborative for
the proposed algorithm. The concept of cooperative and non-
cooperative solutions for TEP in the multilateral context is
discussed in [13]. Papers that deal with the non-cooperative TEP
consider, usually, the cooperative TEP's solution as benchmark
results since it maximises the overall social welfare. Most of the
existing works in the field of cooperative/non-cooperative are
based on either a centralised optimisation or game theory. While
several studies have been done on the distributed optimal power
flow [14] and distributed unit commitment [15], due to the
complex nature of TEP, no reference is reported on the domain of
distributed TEP (DTEP) for interconnected power systems. We
deal with the multi-regional TEP in the context of distributed
optimisation.

Another problem that makes TEP more challenging is N − 1
security criterion that is an essential constraint in the long-term
planning problem [16]. On the basis of North American Electric
Reliability Corporation standards, a planned network must be able
to operate in a way that the outage of a single component does not

interrupt supplying demands [17]. Therefore, the N − 1 criterion
must be taken into consideration in a cooperative/non-cooperative
TEP framework.

This paper contributes to the literature by presenting a DTEP
algorithm for interconnected multi-regional power systems in a
collaborative framework taking into account N − 1 security
criterion for each region and uncertainties. The proposed DTEP is a
multi-agent-based TEP. Each region has an independent planning
entity. Interactions (i.e. power exchange) between the regions
through tie lines are modelled by a set of pseudo generations and a
set of pseudo loads, and the power balance equation at border
buses are modified accordingly. Taking into account the
information privacy of the planning entities and their mutual
interactions, a local TEP problem is formulated for each region.
Each local planner handles the TEP problem of its network while
having access to the information of cross-border tie lines
connecting that network to its neighbours. On the basis of the
concept of analytical target cascading (ATC) technique for
multidisciplinary design optimisation, a two-level distributed
optimisation algorithm is developed. While the classical ATC is a
sequential procedure, the developed ATC allows the parallel
solution of local TEP problems in level one with the use of a
central coordinator in level two. Since the level two's problem is a
convex optimisation, it is further replaced in the level one's TEP
problems by the Karush–Kuhn–Tucker (KKT) conditions. With
this procedure, we eliminate the need for a central coordinator by
introducing a set of coordinating variables and enforcing a set of
constraints in the local TEP of each region. This makes the
proposed algorithm fully parallelised. An initialisation strategy is
suggested to reduce the number of iterations of the DTEP
algorithm. The proposed collaborative DTEP is applied to the
IEEE 24-bus and 118-bus test systems, and promising results are
obtained.

The main contributions of this paper are summarised as follows:

• Multi-regional TEP is formulated in the content of distributed
optimisation instead of the conventional centralised optimisation
methods that might not be appropriate for collaborative
expansion.

• An ATC-based distributed optimisation algorithm is presented to
coordinate long-term planning.

• On the basis of the concept of bi-level optimisation, the
distributed ATC-based TEP, which is a hierarchical approach, is
transformed into a fully parallel approach with no need for any
form of central coordinator.

• To enhance the performance of the proposed DTEP, an initiation
strategy is suggested.

The remainder of this paper is organised as follows. The
mathematical formulation of DTEP is explained in Section 2. The
ATC-based distributed solution algorithm is presented in Section 3.
Section 4 provides numerical results. Concluding remarks are
discussed in Section 5.

2 Mathematical formulation of DTEP
The TEP problem is mostly modelled with DC power flow in the
literatures [2, 3, 6, 7, 9]. Voltage angles of buses are used to
calculate power flow in existing and candidate lines. Power flow of
candidate lines is, usually, modelled through bilinear equations,
where integer variables representing candidate lines are multiplied
by bus voltage angles. Bilinear equations can be transformed into
linear equations using disjunctive techniques [1]. The resultant
TEP formulation is mixed-integer linear programming which is
called the disjunctive TEP model. A complete formulation of the
disjunctive TEP model considering N − 1 security criterion is given
in the Appendix. To account for uncertainties (which are power
demand, the capacity of generating units, and wind power
generation), a data-driven approach is applied [18].

In this section, we present the DTEP model for the system
shown in Fig. 1, which can be extended for interconnected systems
with multiple regions. The regions exchange power with each other
through the tie lines. Consider that in a given time, the power in the
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tie line ij flows from network n toward the network m, and the
direction of power flow in tie line i′ j′ is toward the network n. We
model the tie line ij as a controllable pseudo generation in the
network m and as a controllable pseudo load in the network n. The
same concept is used for the tie line i′ j′ as shown in Fig. 2. Values
of the pseudo generations and loads are equal to the line flows.
Following this approach, we can virtually disconnect networks m
and n. As the pseudo generations and loads appear in both
networks, we call them coupling (shared) variables between
networks m and n. These coupling variables are not constant and
can take any values between −Fi j

max and Fi j
max. 

 
Remark 1: In most applications of distributed optimisation on

power system problems, e.g. distributed optimal power flow [14]
and distributed unit commitment [15], voltage angles of cross-
border buses (i.e. i, i′, j, and j′) are considered as coupling
variables. That is, two coupling variables should be assumed for
each tie line. We directly use tie-line flows as coupling variables to
have less number of variables in the model. It is obvious that in the
DC power flow, bus voltage angles are proportional quantities,
which depend on the reference bus location. However, power flow
through each line, which depends on the difference between
voltage angles of sending and receiving buses [see (20)], is
independent of the reference bus location. Therefore, it is better to
select power flowing in tie lines as coupling variables. This
enhances the convergence performance of the DTEP algorithm.
 

Remark 2: In the proposed method, the reference bus is selected
for one region (e.g. region m). After convergence, the values of
voltage angles for other regions can be obtained from the values of
voltage angles of cross-border buses of the region m and power
flow through tie lines [see (20)].

Now, each planning entity can formulate a local TEP problem
with respect to its local parameters/variables and coupling
variables (i.e. the pseudo generations and loads).

2.1 Local objective and constraints

The objective function of the local TEP problem of network m, i.e.
(1a), is to minimise the investment and operational costs of the
region m. The sets of equality and inequality constraints (1b) are
local constraints that include only local variables and parameters of
region m. These constraints are given in the Appendix

min
Γ

Fm Γ (1a)

s . t . gm Γ = 0; hm Γ ≤ 0 (1b)

2.2 Constraints of border buses

In addition to constraints (1b), we formulate constraints (2a)–(2e)
that not only consist of local variables/parameters but also include
coupling variables between the network m and its neighbours.
Constraint (2a) indicates that if bus i of network m is connected to
a tie line between this network and its neighbours, and if the tie
line is modelled as a pseudo generation from the perspective of
network m, power injected to bus i is equal to power output of the
pseudo generation plus power generated by actual units on this bus.
A similar discussion is valid for (2b), where the tie line is modelled
as a pseudo load. Inequalities (2c) and (2d) ensure that the pseudo
generations and loads are within their limits. These limits are
defined according to the capacity of tie lines. Note that f jim and f i′ j′m

can be negative. In this case, f jim becomes a pseudo load and f i′ j′m

becomes a pseudo generation. The nodal power balance at the
border buses is modelled by equality (2e)

Pg
m =

Pg
m; g ∈ ΩI

G, i ∈ ΩI
m, i ∉ ΩI

m +

Pg
m + f jim; g ∈ ΩI

G, i ∈ ΩI
m +

(2a)

Pd
m =

Pd
m; d ∈ ΩI

D, i′ ∈ ΩI
m, i′ ∉ ΩI

m +

Pd
m + f i′ j′m ; d ∈ ΩI

D, i′ ∈ ΩI
m +

(2b)

− f jimax ≤ f jim ≤ f jimax; i ∈ ΩI
m + , j ∈ ΩI

n + (2c)

− f i′ j′max ≤ f i′ j′m ≤ f i′ j′max; i′ ∈ ΩI
m + , j′ ∈ ΩI

n + (2d)

∑
g ∈ ΩI

G
Pg − ∑

d ∈ ΩI
D
Pd − Pd

LS − ∑
l s(l) = i

f l + ∑
l r(l) = i

f l

= Pd
m − Pg

m; ∀i ∈ ΩI
m +

(2e)

2.3 Consistency constraints

Consider tie line ij in Fig. 1, which is modelled by a pseudo
generation and a pseudo load in Fig. 2. If planner m separately
solves its local TEP regardless of the TEP of a planner n, the
solution procedure might result in different values for f jim and f jin

that is not a feasible solution. As f jim and f jin  refer to the tie-line
flow, their values need to be the same to reach a consistent and
feasible solution for the whole grid. We introduce new sets of
equality constraints (3a) and (3b), named consistency constraints,
and enforce them in local TEPs m and n. The consistency
constraints enforce pseudo generations to be equal to their
corresponding pseudo loads. In other words, the consistency
constraints ensure that the values of coupling variables are the
same in the local TEP problems

CC1: f jim − f jin = 0; i ∈ ΩI
m + , j ∈ ΩI

n + (3a)

CC2: f i′ j′m − f i′ j′n = 0; i′ ∈ ΩI
m + , j′ ∈ ΩI

n + (3b)

Finally, in the DTEP model, the local TEP for the region m is
modelled as follows:

min
Γ

Fm Γ

s . t . 1b , 2a − 2e , 3a , and 3b

3 Solution algorithm for DTEP
Although the consistency constraints ensure the feasibility of TEP
results, these hard constraints are barriers for the separate solution
of local TEPs. A strategy is needed to coordinate the planners’
decisions for the values of pseudo generations and loads.

Fig. 1  Two interconnected networks
 

Fig. 2  Modelling power exchange between interconnected networks m and
n
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3.1 ATC technique for DTEP implementation

On the basis of the concept of ATC, we develop an algorithm to
coordinate the planners’ decisions and solve the local TEPs in a
distributed manner. ATC is a model-based method for multilevel
hierarchical optimisation problems [19–21]. The general concept of
ATC is similar to other popular algorithms that are based on
augmented Lagrangian relaxation such as the auxiliary problem
principle and the alternating direction method of multipliers [22].
However, ATC has a hierarchical structure and works based on
propagating target values from upper-level systems toward the
lower-level systems, and passing the response variables from lower
levels to upper levels. In addition, we have flexibility in the choice
of penalty function in the ATC method and can select, for instance,
a quadratic function, or an exponential function [21].

Consider the local TEP for the region m. We penalise violations
of the consistency constraints (3a) and (3b) into the objective
function using two penalty functions

min
Γ

Fm Γ + π1
m CC1 + π2

m CC2 (4)

Here, we applied second-order penalty functions for π1
m .  and

π2
m . . Accordingly, the objective function of TEP m is rewritten as

follows:

min
Γ

Fm Γ

+ ∑
i j ∈ ΩI

+
{αji

m f jim − f jin + ∥ β ji
m ∘ f jim − f jin ∥2

2

+αi′ j′m f i′ j′m − f i′ j′n + ∥ βi′ j′m ∘ f i′ j′m − f i′ j′n ∥2
2 }

(5)

where the symbol ∘ represents the Hadamard product. The
parameter α is the Lagrangian multiplier and β is a penalty
parameter. A similar relaxed TEP problem is formulated for the
network n, and accordingly, local TEP problems of all
interconnected networks will be formulated. Decision variables of
TEP m include local variables of network m and the coupling
variables denoted by superscript m. The pseudo generations and
loads denoted by superscript n are constants received from the
neighbour n.

The local TEPs can be assumed to be connected hierarchically,
and a sequential, iterative procedure as presented in [19, 20] can be
applied to coordinate the subproblems. While a planner is solving
its TEP, other planners should stay idle. This increases the overall
computational time of the solution process. We will further propose
a fully parallel, scalable solution procedure.

3.2 Decentralised parallel TEP implementation

3.2.1 Partially parallel solution algorithm: We introduce a
coordinator to enable a parallel solution of the local TEPs. This
coordinator virtually disconnects the TEPs of neighbouring
planners as shown in Fig. 3. The local TEPs are at the upper level,
and the coordinator is at the lower level. Instead of direct
interaction between the neighbouring planners, each planner only
communicates with the coordinator. Therefore, regions can solve
their local TEPs in parallel. Note that there is no need to have an
entity to play the role of a coordinator. Any of local planners may
handle the role of the coordinator (we will relax the need for such a
virtual coordinator in Section 3.2.2). 

According to the concept of ATC, information sent by local
regions to the central coordinator has named targets, and
information sent by the coordinator toward the regions is called
responses. The communication direction is indicated in
superscripts. For instance, f jimc denotes the target variable that is
calculated in the region m and sent to the coordinator. We introduce
coordinating variables r jicm that are the responses sent from the
central coordinator to the region m. A set of consistency constraints
is formulated to make the solution of the central coordinator and
the local regions consistent

r − f = 0 (6)

These constraints are relaxed in the objective function of local
planners by augmented Lagrangian penalty functions (see [15] for
more details). This procedure leads to the following TEP problem
for the region m in iteration k (see (7)) . A local TEP is formulated
for each region. The coordinator has no role, except coordinating
local TEPs. Thus, its objective function includes only a set of
penalty functions for relaxing the consistency constraints. For the
system shown in Fig. 2, the coordinator's objective function is
formulated as (8a). Four quadratic augmented Lagrangian penalty
functions appear in (8a). The first two functions are related to
relaxation of the consistency constraints (r jicm − f jimc and ri′ j′cm − f i′ j′mc)
between the coordinator and TEP of the region m, and the last two
penalty functions relax the consistency constraints (r jicn − f jinc and
ri′ j′cn − f i′ j′nc ) between the coordinator and TEP of the region n

rk = argmin ∑
i j ∈ ΩI

+
{

αji
m, k r jicm, k − f jimc, k + ∥ β ji

m, k ∘ r jicm, k − f jimc, k ∥2
2

+αi′ j′m, k ri′ j′cm, k − f i′ j′mc, k + ∥ βi′ j′m, k ∘ ri′ j′cm, k − f i′ j′mc, k ∥2
2

+αji
n, k r jicn, k − f jinc, k + ∥ β ji

n, k ∘ r jicn, k − f jinc, k ∥2
2

+αi′ j′n, k ri′ j′cn, k − f i′ j′nc, k + ∥ βi′ j′n, k ∘ ri′ j′cn, k − f i′ j′nc, k ∥2
2 }

(8a)

r jicm, k = r jicn, k; i ∈ ΩI
m + , j ∈ ΩI

n + (8b)

ri′ j′cm, k = ri′ j′cn, k; i′ ∈ ΩI
m + , j′ ∈ ΩI

n + (8c)

The response values determined by the central coordinator must be
consistent for both regions m and n. This is reflected in (8b) and
(8c). With the above procedure, the local TEPs become virtually
separated, and a two-level ATC can be applied to solve TEPs in
parallel. However, the main drawback is the need for a central
coordinator that is responsible for coordinating the coupling
variables between the regions.

Fig. 3  Bi-level ATC structure for networks m and n
 

min
Γ, fmc

Fm, k Γ + ∑
i j ∈ ΩI

+
{αji

m, k r jicm, k − 1 − f jimc, k + ∥ β ji
m, k ∘ r jicm, k − 1 − f jimc, k ∥2

2

+αi′ j′m, k ri′ j′cm, k − 1 − f i′ j′mc, k + ∥ βi′ j′m, k ∘ ri′ j′cm, k − 1 − f i′ j′mc, k ∥2
2 }

s . t . 1b , 2a − 2e

(7)
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3.2.2 Fully parallel solution algorithm: Assume that region m
and the coordinator are interacting as shown in Fig. 3. We can form
a bi-level optimisation problem to model their interactions in which
TEP m is the leader's problem and the coordinator's optimisation is
the follower's problem. The leader's problem includes (1a), (1b),
and (2a)–(2e), and the follower's problem consists of (8a)–(8c).
Note that in iteration k, the region m uses values of the coordinated
shared variables determined by the coordinator in the iteration
k − 1. Thus, while the leader's problem deals with variables of
iteration k, we use the coordinating variable rk − 1 in the follower's
problem. Note that we use only the coordinating values of the
coordinator that are needed for the region m (i.e. rcm, k − 1) and
ignore other coordinating values (that is, any coupling variables
that have no direct impact on region m do not appear in the bi-level
optimisation of this region). The bi-level model of TEP m is
formulated as follows:

upper − level leader :
min
Γ, fmc

7

s . t . 1b , 2a − 2e
(9a)

lower − level follower :
min

rcm, k − 1
8a

s . t . 8b , 8c
(9b)

The follower problem includes only a set of convex quadratic
penalty functions and linear constraints. Therefore, it is a convex
optimisation problem that can be replaced in the leader problem by
applying KKT conditions and solving the resulting mathematical
programming problem with equilibrium constraints. Consider
penalty terms corresponding to a shared variable between regions
m and n (i.e. power flow in tie line ji) shown in (10). From the
constraints of the follower problem, we have r jicm, k − 1 = r jicn, k − 1.
Taking the partial derivative of π with respect to r jicm results in the
formulation (11) for r jicm, k − 1

π = αji
m, k − 1 r jicm, k − 1 − f jimc, k − 1

+ ∥ β ji
m, k − 1 ∘ r jicm, k − 1 − f jimc, k − 1 ∥2

2

+αji
n, k − 1 r jicn, k − 1 − f jinc, k − 1

+ ∥ β ji
n, k − 1 ∘ r jicn, k − 1 − f jinc, k − 1 ∥2

2

(10)

r jicm, k − 1

=
2 β ji

m, k − 1 2
f jimc, k − 1 + 2 β ji

n, k − 1 2
f jinc, k − 1 − αji

m, k − 1 − αji
n, k − 1

2 β ji
m, k − 1 2 + 2 β ji

n, k − 1 2

(11)

If each region directly calculates the values of the central
coordinator's coordinating variables r jicm, k − 1, the coordinator can be
omitted. However, to calculate r jicm, k − 1, the equivalents of αji

m, k − 1,

αji
n, k − 1, β ji

m, k − 1, β ji
n, k − 1, f jimc, k − 1, and f jinc, k − 1 are needed. If regions m

and n directly exchange information without a central coordinator
and multipliers α and β are updated as (12a) and (12b), then we can
replace αji

m, k, αji
n, k, β ji

m, k, and β ji
n, k by their equivalents αji

mn, k, αji
nm, k,

β ji
mn, k, and β ji

nm, k, respectively. Expressions (12a) and (12b) are used
to update α and β with respect to the violation of consistency
constraints. This updating process is based on the concept of the
method of multipliers [23]

αk = αk − 1 + 2 βk − 1 2
rk − 1 − f k − 1 (12a)

βk = λ βk − 1 (12b)

The value ri′ j′cm, k − 1 can is obtained in a similar manner. Finally, by
replacing the follower optimisation with its KKT conditions in the
leader optimisation, the decentralised formulation for local TEP of
the region m is modelled as shown by the equation below:

(see (13)) 
Variables f jimc, k and f i′ j′mc, k are replaced by f jimn, k and f i′ j′mn, k, which

shows that region m exchanges values of coupling variables
directly with its neighbours instead of the central coordinator.
Therefore, the local TEP of the region m only relies on the local
information of the region m and coupling variables between this
region and its immediate neighbouring regions. Meaning, it can be
solved in a decentralised manner with no need for a central
coordinator. Moreover, in iteration k, each region needs values of
coupling variables calculated by its neighbours in the iteration
k − 1. That is, the regions do not need to stay idle and can solve
their local TEP problems concurrently. In other words, the local
TEPs can be solved in a parallel way with peer-to-peer
communications only among the immediate neighbouring regions.
We propose the iterative coordination algorithm shown in Fig. 4,
which is a fully parallel ATC technique, to solve the local TEPs of
the regions. 

3.3 Notes on convergence property

ATC is proven to converge for convex problems if responses rk − 1

are used in the subproblem in which targets f i jk  are computed (i.e.
subproblems are solved sequentially) [19]. Although the proposed
distributed algorithm solves the problem in a parallel manner, rk − 1

is computed analytically and used in the TEP subproblem in which
f i jk  is to be determined. That is, all features of the sequential ATC
are preserved, and the convergence proof of ATC provided in [19]
is valid for the proposed parallel ATC. Although DTEP deals with
non-convex optimisations, our simulations show that the algorithm
converges to a high-quality solution. The quality of the solution
enhances if good initial guess for the coupling variables and
multipliers are available. In addition, adding convex quadratic
penalty terms in the objective function acts as local convexifiers
and enhances the algorithm behaviour.

Note that one might use convexification techniques such as
those presented in [24], to convexify local TEP problems. In this

min
Γ, fmn, k

Fm, k Γ

+ ∑
i j ∈ ΩI

+
{αji

mn, k r jicm, k − 1 − f jimn, k + ∥ β ji
mn, k ∘ r jicm, k − 1 − f jimn, k ∥2

2

+αi′ j′mn, k ri′ j′cm, k − 1 − f i′ j′mn, k + ∥ βi′ j′mn, k ∘ ri′ j′cm, k − 1 − f i′ j′mn, k ∥2
2 }

s . t . 1b , 2a − 2e

r jicm, k − 1 =
2 β ji

mn, k − 1 2
f jimn, k − 1 + 2 β ji

nm, k − 1 2
f jinm, k − 1 − αji

nm, k − 1 − αji
mn, k − 1

2 β ji
mn,k − 1 2 + 2 β ji

nm,k − 1 2

ri′ j′cm, k − 1 =
2 βi′ j′mn, k − 1 2

f i′ j′mn, k − 1 + 2 βi′ j′nm, k − 1 2
f i′ j′nm, k − 1 − αi′ j′nm, k − 1 − αi′ j′mn, k − 1

2 βi′ j′mn, k − 1 2 + 2 βi′ j′nm, k − 1 2

(13)
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case, the convergence of the proposed ATC-based TEP algorithm is
guaranteed. However, such convexification techniques potentially
come with the cost of degrading the accuracy of TEP results.

4 Numerical results
Two popular test systems for TEP studies including the IEEE RTS
24-bus system and the IEEE 118-bus system are used to evaluate
the performance of the proposed method. All simulations are
carried out using GAMS and ILOG CPLEX MIQP solver [25]. A

PC with an Intel(R) Xeon(R) CPU @2.6 GHz including eight cores
and 16 GB of RAM is used.

4.1 IEEE 24-bus system

The one-line diagram of the modified 24-bus system is shown in
Fig. 5. This system is modified by Ruiz and Conejo for TEP
studies, and the list of candidate lines are suggested accordingly
[26]. We replace half of the conventional generation capacity of
units connected to buses 7 and 22 by wind farms with parameters
given in [27]. The system includes two regions, which are
connected via tie lines 3-24, 9-11, and 10-12. Each region contains
five candidate lines listed in Table 1. 

Three scenarios are studied:

• Scenario 1: Each region implements its local TEP regardless of
its interactions with its neighbouring regions.

• Scenario 2: It is assumed that a centralised planning entity exists
and gathers the information of all regions and aims at
maximising the social welfare (or minimising the total costs) for
the whole power system. Since this fictitious centralised entity
has information of all regions, it can provide the optimal TEP
solution from the perspective of the whole system.

• Scenario 3: The proposed collaborative DTEP is implemented
taking into account interactions between the regions and the
information privacy.

We consider the results of scenario 2 (that provides the best results
from the perspective of the whole grid) as the benchmark and use
the following convergence measure to evaluate the performance of
the proposed DTEP:

rel =
f ∗ − f d

f ∗
(14)

where f ∗ is the cost function of the centralised TEP and f d is the
cost function determined by the proposed collaborative DTEP. For
scenario 3, the initial value of penalty multipliers and tuning
parameter λ are set to one, and the convergence thresholds ϵ1 and ϵ2
are 0.05 and 0.01, respectively. Simulation results of all scenarios
are summarised in Table 2. When each local TEP is solved
individually regardless of its interactions with its neighbouring
regions, the total cost is $553.12 M (costs of regions one and two
are $43.58 and $172.87 M, respectively), and candidate lines one,
eight, and nine are selected to be installed. The annual investment
cost of installing new lines is higher than the two other scenarios.
Moreover, region two cannot support the forecasted load and has to
shed 74.8 MW of the load at bus 15. For the centralised TEP, the
total cost goes down to $231.53 M, and candidate lines one and
eight are selected to be installed. Although the cost decreases
because of interactions between the regions, the information
privacy of the regions is not preserved. The proposed collaborative
DTEP algorithm converges after 27 iterations. Figs. 6 and 7 show
the coordinating variables (r jicm, k) and the rel index over the course
of iterations. On convergence, the rel index and differences
between the share variables are within an acceptable threshold. The
rel index is rough 1 × 10−6. The total cost of DTEP is the same as
the centralised TEP. The costs of regions one and two are $58.86
and $ 171.17 M, respectively, and candidate lines one and eight are
planned for installation. The proposed collaborative DTEP could

Fig. 4  The proposed parallel ATC-based coordination strategy with no
coordinator for decentralised TEP implementation

 

Fig. 5  One-line diagram of a modified 24-bus system
 

Table 1 Candidate lines’ parameters for the IEEE 24-bus system
Number of lines From bus To bus Region Annual investment

cost, M$
Number of lines From bus To bus Region Annual investment

cost, M$
1 2 7 1 0.7 6 20 22 2 1.1
2 6 8 1 0.8 7 14 15 2 0.9
3 2 5 1 1.0 8 15 19 2 0.8
4 1 4 1 1.2 9 13 14 2 1
5 5 7 1 1.3 10 19 21 2 1
Note: All candidate lines are assumed to have a susceptance of 500 Ω−1 and a capacity of 500 MW.
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provide the benchmark results obtained in scenario 2 while
preserving the information privacy of the local planning entities. 

One may terminate the DTEP algorithm before iteration 27th
(e.g. 19) and obtain acceptable results (rel is around 1 × 10−5).
However, a trade-off should be considered between the optimality
(i.e. the rel index), feasibility (i.e. fmn

k − f nm
k ), and the number of

iterations. Although the convergence measure rel decreases overall,
in several iterations it goes up. This is because of the feasibility
criterion. In those iterations, for instance in the transition from
iteration 19 to iteration 20, the distributed algorithm wants to
reduce the feasibility gap fmn

k − f nm
k , and this may lead to a

slightly larger rel index.

4.2 IEEE 118-bus system

The system information is provided in [28]. For this system, we
have considered a set of candidate lines that geographically make
sense and decrease the operational costs if installed. The system is
modified by adding three wind farms on buses 36, 69, and 77 [29].
The system includes three regions. Seven coupling variables exist.
Regions one and two are connected through five tie lines (15-33,
19-34, 30-38, 75-77, and 75-188) and regions two and three are
connected through two tie lines (77-82 and 80-96). Each region
includes ten candidate lines as listed in Table 3. 

The same three scenarios as in case 1 are considered.
Simulation results are summarised in Table 4. In scenario 1, the
operation costs of regions one, two, and three are $236.28,
$298.30, and $ 214.07 M, respectively. Two more candidate lines
(lines 8 and 27) are selected to be installed compared with the
benchmark results, and the total cost is larger than the benchmark
cost. The proposed collaborative DTEP of scenario 3 converges
after 129 iterations. Fig. 8 shows the rel index, which is small
enough (almost 1 × 10−4) on the convergence. The annual planning

cost of installing new lines is the same as that obtained in scenario
2. The proposed DTEP provides planning decisions similar to the
benchmark results while respecting the information privacy of
planning entities. Note that in TEP, the cost of generation units
(operation cost) might not realise in the real-time operation. The
main goal of solving TEP problem is to decide about installing new
transmission lines. Therefore, the slight difference (this 0.015%
error is because of the considered acceptable gap for the distributed
algorithm) between operational costs of scenarios 2 and 3 does not
affect planning decisions. 

4.2.1 DTEP with initialisation: In the previous DTEP scenario,
the initial values of coupling variables were set to zero. To reduce
the number of iterations, the initial value of coupling variables in
the decentralised ATC technique can be selected wisely. For this
purpose, we fixed the decision variable of installing new lines to
zero (xl = 0) and simplify DTEP to a distributed OPF problem,
which is a convex problem. The solution of the distributed OPF is
selected to initialise the coupling variables in DTEP. In this case,
DTEP converges after 62 iterations, which almost 50% less than
that for DTEP with flat start (i.e. initialising the coupling variables
to zero). The rel index value is depicted in Fig. 8 and the planning
results are the same as them for scenario 3 of Table 4.

5 Conclusion
A distributed collaborative TEP algorithm was presented for
interconnected multi-regional power systems. Realistic planning
constraints and objectives such as budget constraints, operational
costs, and N − 1 security criterion were taken into account. A data-
driven approach was applied to account for uncertainties of power
demand, the capacity of generating units, and wind power
generation. While each region handles its local planning problem,
it collaborates with other regions to achieve the optimal and

Table 2 Simulation results for the IEEE 24-bus system
Cost function, M$ Annual cost of

candidate lines, M$
Number of candidate lines for

installation
Annual cost of

units, M$
Annual cost of load

shedding, M$
scenario 1 553.12 2.5 1, 8, 9 216.45 334.17
scenario 2 231.53 1.5 1, 8 230.03 0
scenario 3 231.53 1.5 1, 8 230.03 0

 

Fig. 6  Coordinating (response) values in scenario 3
 

Fig. 7  rel Index obtained by DTEP (scenario 3) for the IEEE 24-bus system
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feasible planning schemes for the whole interconnected grid. A
two-level decentralised solution algorithm was developed based on
the concept of ATC. The proposed distributed algorithm allowed
the parallel implementation of TEP subproblems with no need for a
central coordinator.

Three scenarios were simulated. If each region solves its local
TEP regardless of interactions with its neighbours (scenario 1), the
overall investment planning (and operational) costs go up as
compared with those costs obtained by taking into account the
coordination of local TEPs (scenarios 2 and 3). Although the
centralised TEP with the coordination of planners provided the
optimal results, information of the local planners must be gathered
in the centre. The proposed collaborative DTEP algorithm provided
the benchmark results as the centralised TEP while respecting the
information privacy of the independent planners. The suggested
initialisation strategy reduced the number of iterations of DTEP by
50%.
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6 Appendix
 
The disjunctive TEP model with N − 1 security criterion is
formulated by (15)–(37). The objective function (15) consists of
the costs of installing new lines and expected operational costs Q.
Set of decision variables Γ is expressed in (16). Constraints of
normal operation and N − 1 security criterion are, respectively,
shown by (17)–(27) and (28)–(37). Budget constraints (18), nodal
power balance constraints (19), and flow constraints of the existing
and candidate lines (20)–(23) must be satisfied in both normal and
contingency conditions. Adjustment capabilities of generating units
to provide either preventive or corrective action in response to a
contingency are expressed by (37). More details are provided in [1]

min
Γ

F Γ ;

F Γ = ∑
l ∈ ΩL +

I
~
l xl + E Q pg, pdLS, pdLS, c ;

Q = ∑
g ∈ ΩG

Cg pg + ∑
d ∈ ΩD

Cd pdLS + ∑
c ∈ ΩC

∑
d ∈ ΩD

Cd
c pdLS, c

(15)

Γ = xl, f l, Pg, Pd
LS, θi, f lc, Pg

c, Pd
LS, c, θic (16)

xl = 0, 1 ; ∀lΩL + (17)

∑
l ∈ ΩL +

I
~
l xl, ≤ Imax; ∀lΩL +

(18)

∑
g ∈ ΩI

G
Pg + ∑

w ∈ ΩI
W
Pw − ∑

l s(l) = i
f l + ∑

l r(l) = i
f l = ∑

d ∈ ΩI
D
Pd − Pd

LS ;

∀i (19)

f l = Bl θi − θ j ; ∀l ∈ ΩL, s l = i, r l = j (20)

−Fl
max ≤ f l ≤ Fl

max; ∀l ∈ ΩL (21)

− 1 − xl M ≤ f l − Bl θi − θ j ≤ 1 − xl M

∀l ∈ ΩL + , s l = i, r l = j
(22)

−xlFl
max ≤ f l ≤ xlFl

max; ∀l ∈ ΩL + , s l = i, r l = j (23)

0 ≤ Pg ≤ Pg
max; ∀g (24)

0 ≤ Pd
LS ≤ Pd; ∀d (25)

−π ≤ θi ≤ π; ∀i (26)

θi = 0; ∀i = ref (27)

∑
g ∈ ΩI

G
Pg
c + ∑

w ∈ ΩI
W
Pw − ∑

l s(l) = i
f l
c + ∑

l r(l) = i
f l
c = ∑

d ∈ ΩI
D

Pd − Pd
LS, c ; ∀i, C (28)

f l
c = Al

cBl θic − θ jc ; ∀C, l ∈ ΩL, s l = i, r l = j (29)

−Fl
max ≤ f l

c ≤ Fl
max; ∀C, l ∈ ΩL (30)

− 1 − Al
c xl M ≤ f l

c − Bl θic − θ jc ≤ 1 − Al
c xl M

∀C, l ∈ ΩL + , s l = i, r l = j
(31)

−Al
c xlFl

max ≤ f l
c ≤ Al

c xlFl
max ;

∀C, l ∈ ΩL + , s l = i, r l = j
(32)

0 ≤ Pg
c ≤ Pg

max; ∀g, C (33)

0 ≤ Pd
LS, c ≤ Pd ; ∀d, C (34)

−π ≤ θic ≤ π; ∀i, C (35)

θic = 0; ∀C, i = ref . (36)

Ag
c (Pg − Δg

max) ≤ Pg
c ≤ Ag

c (Pg + Δg
max); ∀g, C (37)

The available production capacity of generating units (Pg
max), power

demand (Pd), and generation of wind farms (Pw) are uncertain
parameters in TEP. We use a data-driven approach, presented in
[18], to model these uncertain parameters in TEP. Consider that the
true distribution X is unknown. The confidence set D is defined in a
way to minimise the tolerance level of the distance between the
reference distribution X′ and the true distribution X [18]. That is,
D = ∀X :d X, X′ ≤ α , where parameter α represents a tolerance
level of the distance and d X, X′  is the predefined probability
distance between X and X′. A histogram of historical data is used as
the reference distribution. The data domain is divided into N bins,
and the probability distribution of each bin is determined. The
reference distribution is X′ = X1′, X2′, …, XN′ . Generally, having
more information on the true distribution leads to more accurate
estimated distribution. Two probability metrics are selected. Norm
one as the probability distance and α1 = N /2S log 2N / 1 − β  as
a tolerance level [30]. The confidence set is constructed as
D = X ∈ RN :∑n = 1

N χn − χn′ ≤ α1  for each uncertain parameter
(i.e. Pg

max, Pd, and Pw), and the objective function is minimised
subject to all constraints and under the worst-case distribution in D.
Since the data-driven approach is not one of the contributions of
this paper, we see [18] for more details.
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