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Abstract-This paper proposes a temporal decomposition strategy 
to reduce the computation time of security-constrained unit 
commitment (SCUC). The novelty of this paper is twofold. The 
scheduling horizon is decomposed into multiple subhorizons. The 
concept of coupling intervals is introduced, and a set of auxiliary 
counting variables and logical expressions along with their 
equivalent linear models are formulated to handle intertemporal 
ramp constraints and minimum on/off times between consecutive 
subhorizons. An accelerated analytical target cascading (A-ATC) 
algorithm is developed to coordinate SCUC subproblems and find 
the optimal solution for the whole operation horizon in a distributed 
manner. An initialization strategy is presented to enhance the 
convergence performance of A-ATC. The proposed algorithm is 
tested on four test systems. 

Index Terms—Temporal decomposition, security-constrained 
unit commitment, accelerated analytical target cascading. 

 
NOMENCLATURE 

Indices, Sets, and Parameters: 
𝑐 Index for contingencies. 
𝑘       Index for iterations. 
𝑡  Index for time intervals. 
𝑡   Index for coupling time intervals. 
𝑢 Index for units. 
𝑠 Index for subhorizon (subproblem) 𝑠.  
𝑠  Subhorizon (subproblem) before subhorizon 𝑠. 
𝑠  Subhorizon (subproblem) after subhorizon 𝑠. 
𝑇 , 𝑇  Minimum on/off time of unit 𝑢. 
𝜌 Penalty factor. 
Variables: 
𝐼   On/off status of unit 𝑢 at interval 𝑡. 
𝐼 ,  On/off status of unit 𝑢 at coupling time interval 𝑡  

between subhorizons 𝑠  and 𝑠 determined by 
subproblem 𝑠 and sent to subproblem 𝑠 . 

𝑝   Power generated by unit 𝑢 at interval 𝑡. 
𝑝 ,  Power generated by unit 𝑢 at coupling time interval 𝑡  

between subhorizons 𝑠  and 𝑠 determined by 
subproblem 𝑠 and sent to subproblem 𝑠 . 

𝑟 ,  Response shared variables between subhorizons 𝑠   
and 𝑠 calculated by subproblem 𝑠  at iteration 𝑘. 

𝑥  Set of variables in time intervals belonging to 
subhorizon 𝑠 . 

𝑦  Startup indicator of unit 𝑢 at time 𝑡. 
𝑧  Shutdown indicator of unit 𝑢 at time 𝑡. 
𝜒 ,  Target shared variables at iteration 𝑘. 
𝜆 Vector of Lagrange multipliers. 

Auxiliary Counting Variables and Functions: 
ℎ       An auxiliary variable to calculate ℎ , . 

ℎ       An auxiliary variable to calculate ℎ , . 

ℎ ,  Number of hours that 𝑆𝑃  asks 𝑆𝑃  to keep unit 𝑢 on. 
ℎ ,  Number of hours that 𝑆𝑃  asks 𝑆𝑃  to keep unit 𝑢 on. 

ℎ ,  Number of hours that 𝑆𝑃  asks 𝑆𝑃  to keep unit 𝑢 off. 

ℎ ,  Number of hours that 𝑆𝑃  asks 𝑆𝑃  to keep unit 𝑢 off. 

𝐻  An auxiliary variable to linearize max of Φ . 
ℱ  First shutdown time of 𝑆𝑃 . 
ℱ  First startup time of 𝑆𝑃 . 
𝜙 , 𝜙 A vector whose 𝑡th element is nonzero if status of unit 

𝑢 changes in interval 𝑡 from off/on to on/off. 

I.  INTRODUCTION 

HE computational burden of security-constrained unit 
commitment (SCUC) increases with growing the size of the 
system and scheduling intervals [1, 2]. Conventional 

centralized methods may face difficulties to handle such large 
optimization problems within an acceptable time. Distributed 
algorithms are proposed as alternatives to decompose large 
problems into smaller subproblems and distribute computational 
burden on multiple computing machines [3-5]. References [4, 6, 
7] review distributed algorithms and their applications on power 
systems. Algorithms, such as alternating direction method of 
multipliers [8], optimality condition decomposition [9], auxiliary 
problem principle [10], and analytical target cascading [11, 12], 
are applied to coordinate subproblems. Such algorithms are 
widely used for optimal power flow, demand response, and 
economic dispatch [13-15].  

The literature on distributed SCUC is more limited than 
optimal power flow and economic dispatch. To the best of our 
knowledge, all existing distributed SCUC approaches are based 
on decomposition over geographical areas, uncertainty 
scenarios, and contingency scenarios. In [16], progressive 
hedging is presented to decompose problems over scenarios. 
Reference [17] decomposes hourly day-ahead unit commitment 
over stochastic scenarios. In [18], a scenario-based 
decomposition is presented for solving two-stage stochastic unit 
commitment. In [19], Benders decomposition is applied to 
decompose SCUC into a master problem and several 
subproblems that handle contingency constraints. Majority of 
recent publications focus on area decomposition. In [20-22], the 
system is decomposed into several smaller zones, a SCUC 
subproblem is formulated for each zone, and distributed 
algorithms are developed to coordinate subproblems. 

Although decompositions over geographical areas, 
uncertainty scenarios, and contingency scenarios may reduce the 
computation time of SCUC, they are not capable of handling the 
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computational complexity originated from temporal constraints. 
Such complexity increases as the number of scheduling intervals 
grows. Considering contingencies and interdependencies 
between scheduling intervals increase the computation time of 
SCUC. To reduce the computation time, decomposing SCUC 
over the considered scheduling time horizon is potentially a more 
promising strategy than a geographical decomposition. 
However, the most challenging part of time decomposition is 
dealing with ramping and minimum on/off time constraints of 
units that interconnect decisions made in consecutive intervals. 
In our previous work [23], we presented the idea of time 
decomposition for a simple economic dispatch problem without 
modeling minimum on/off time constraints.  

This paper presents a temporal decomposition and 
coordination strategy to solve SCUC distributedly with the aim 
of computation time reduction. To the best of our knowledge, 
this is the first paper proposing a time decomposition strategy for 
SCUC. The overall scheduling horizon is decomposed into 
multiple smaller subhorizons, and a SCUC subproblem is 
formulated for each subhorizon. The concept of coupling time 
intervals is introduced to model ramping limitations of 
generating units between two consecutive subhorizons. Each 
subproblem has one or two coupling intervals. Moreover, several 
auxiliary counting variables and logical expressions along with 
their linear equivalent models are presented to model minimum 
on/off time constraints between subhorizons. In addition, to 
coordinate SCUC subproblems and ensure feasibility and 
optimality of results, accelerated analytical target cascading (A-
ATC) is developed to solve subproblems distributedly. An 
initialization technique is presented to enhance the convergence 
performance of A-ATC. The main contributions of the paper are 
summarized as follows: 
 A novel temporal decomposition strategy is proposed to 

decompose the SCUC problem into multiple time-
interdependent SCUC subproblems.  

 Modeling approaches are developed to handle generating 
units’ ramp and minimum on/off restrictions for the 
transition between subhorizons. 

 Based on the concept of Nesterov momentum for gradient 
descent methods, an accelerated ATC is presented to 
coordinated SCUC subproblems distributedly.  

 An initialization strategy is presented to enhance the 
performance of the proposed distributed SCUC algorithm. 

II.  PROPOSED TIME DECOMPOSITION STRATEGY 

The main philosophy of the proposed algorithm is based on 
Augmented Lagrangian relaxation [4, 24-26]. To take advantage 
of distributed computing, we divide the scheduling horizon into 
several smaller, consecutive subhorizons. A SCUC subproblem 
is formulated for each subhorizon. SCUC subproblems are 
formulated exactly the same as the centralized SCUC for the 
whole scheduling horizon, with no need for modifying the 
intertemporal and non-intertemporal constraints. Intertemporal 
interdependencies between every two consecutive subproblems 
are converted into a set of shared variables. Consistency 
constraints are formed to ensure that each pair of shared variables 
reaches the same values from the perspective of the two 
subproblems. The concept of augmented Lagrangian relaxation 

is used to penalize the consistency constraints into local 
objective functions and make mismatches between each pair of 
the shared variables zero iteratively.  

A.  SCUC Formulations and Notations 
For brevity, we show compact forms of SCUC subproblems. 

We have adopted the SCUC formulation presented in Chapters 3 
and 4 of [1] except for modeling startup and shutdown indices 
and minimum on/off time constraints that are adopted from [27]. 
𝑠 , 𝑠, and 𝑠  refer to three consecutive subhorizons. We use 
subscript 𝑠 , 𝑠  to distinguish coupling variables for modeling 
transition between subproblems 𝑠  and 𝑠. A coupling variable 
indicated by subscript ⋅,⋅  is a decision variable determined by 
the left side subproblem. For instance, 𝑚 ,  are coupling 
variables 𝑚 between subproblems 𝑠  and 𝑠 that are among 
decision variables in subproblem 𝑠 . 

B.  Decomposing SCUC 
Without loss of generality, we derive equations for two 

consecutive subhorizons 𝑠  and 𝑠 and decompose the SCUC 
problem into SCUC subproblems (1) and (2). Assume that the 
scheduling time horizon is 𝑇. We assign intervals one to 𝑛  to 
the SCUC subproblem (SP) of subhorizon 𝑠  (named 𝑆𝑃 . 

 

𝑥 argmin 𝑓 𝑝 , 𝐼                              1𝑎 

𝑠. 𝑡.             ℎ 𝑥 0     &     𝑔 𝑥 0          1𝑏 

with 𝑡 1, … , 𝑛  
 

where 𝑥  are variables corresponding to intervals one to 𝑛 . ℎ  
includes power balance constraints under normal and 
contingency conditions at intervals 1, … , 𝑛 , and 𝑔  refers to 
generations upper and lower bounds, line flow limits, units 
ramping up/down restrictions, minimum on/off time restrictions 
under normal and contingency conditions, and expressions 
coupling power generated by units before and after 
contingencies. We also assign intervals 𝑛 1 to 𝑇 to 𝑆𝑃 .  



𝑥 argmin 𝑓 𝑝 , 𝐼                            2𝑎 

𝑠. 𝑡.         ℎ 𝑥 0      &       𝑔 𝑥 0              2𝑏 

with 𝑡 𝑛 1, … , 𝑛 . 


𝑥  are variables corresponding to intervals 𝑛 1 to 𝑇. 
Subproblems (1) and (2) are smaller than the original centralized 
SCUC and hence are computationally less expensive. However, 
the solution to (1) and (2) may be physically infeasible as 
interdependencies, i.e., temporal constraints, between 
subhorizons 𝑠  and 𝑠 are ignored.  

C.  Modeling Ramp Limits with Coupling Time Intervals 
Generation ramp up and down constraints pertaining to power 

generated in the last interval of subhorizon 𝑠  (𝑡 𝑛 ) and the 
first interval of subhorizon 𝑠 (𝑡 𝑛 1  link decisions made 
in these subhorizons. Decomposing the centralized SCUC into 
(1) and (2), as shown in Fig. 1a, does not take into account these 
ramp constraints. To enable modeling the boundary ramp 
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constraints, we represent the whole operation horizon as depicted 
in Fig. 1a.  Without loss of generality and to better explain 
decomposition with a middle SP, we divide the scheduling 
horizon it into three subhorizons 𝑠 , 𝑠, and 𝑠 . 
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Fig. 1. a) Three consecutive subhorizons and b) subhorizons decomposition with 
coupling intervals. 
 

As shown in Fig. 1b, the first interval of each subhorizon, 
except for subhorizon one, is introduced as a coupling time 
interval, indicated by 𝑡 , between two consecutive subhorizons. 
We duplicated each coupling interval and assign a copy to a 
subhorizon to separate the subhorizons. Each copy contains 
variables and constraints of the corresponding coupling interval. 
The coupling intervals not only facilitate modeling ramp 
constraints for transition between subproblems but also allow the 
separate solution of subproblems. We found this method more 
efficient for time decomposition rather than duplicating variables 
that is popular for geographical decompositions. The SP (1) for 
subhorizon 𝑠_ is now reformulated as: 

𝑥 argmin 𝑓 𝑝 , 𝐼                              3𝑎 

𝑠. 𝑡.             ℎ 𝑥 0   &     𝑔 𝑥 0        3𝑏 

with 𝑡 1, … , 𝑛 , 𝑛 1
coupling interval

 

 
where 𝑥𝑠  contains variables corresponding to intervals one to  
𝑛  as well as interval 𝑛 1 that is interval one of subhorizon 
𝑠. The SP (2) for subhorizon 𝑠 is reformulated by (4). Since 
subhorizon 𝑠 has two neighboring subhorizons, it contains two 
coupling intervals, i.e., 𝑡 𝑛 1 between 𝑆𝑃  and 𝑆𝑃  and 
𝑡 𝑛 1 between 𝑆𝑃  and 𝑆𝑃 . 
 

𝑥 argmin 𝑓 𝑝 , 𝐼                            4𝑎 

𝑠. 𝑡.         ℎ 𝑥 0      &       𝑔 𝑥 0              4𝑏 

with 𝑡 𝑛 1
coupling interval

, 𝑛 2, … , 𝑛, 𝑛 1
coupling interval

 

 

Power produced by units at coupling intervals 𝑛 1 appears in 
both 𝑆𝑃  and 𝑆𝑃 . Similarly, 𝑝 ,  appears in 𝑆𝑃  and 𝑆𝑃 . For 
brevity of notations, we name the coupling intervals 𝑛 1 and 
𝑛 1 as 𝑡  and add a subscript to power produced by units at 
coupling intervals to show the shared information (i.e., coupling 
variables) between subproblems. For example, 𝑝 ,  is a 
coupling variable between 𝑆𝑃  and 𝑆𝑃  that is  handled by 𝑆𝑃 , 
and 𝑝 ,  is a coupling variable between 𝑆𝑃  and 𝑆𝑃  being 
handled by 𝑆𝑃 . To make the SCUC solutions feasible from the 
perspective of the whole operating horizon, we convert each pair 
of coupling variables into a consistency constraint as: 

𝐶𝐶 , : 𝑝 𝑡𝑜 , 𝑝 , 0          ∀𝑢, 𝑡 𝑛 1       5  

𝐶𝐶 , : 𝑝 𝑡𝑜 , 𝑝 𝑠 ,𝑠 0          ∀𝑢, 𝑡 𝑛 1          6  

and enforce (5) in 𝑆𝑃  and 𝑆𝑃  and (6) in 𝑆𝑃  and 𝑆𝑃 .  

D.  Minimum On/Off Time Limits 
The concept of coupling intervals is introduced for modeling 

ramping between subproblems; however, they cannot solve 
challenges for decomposing minimum on/off time constraints 
between subproblems. These constraints must be decomposed 
and modeled appropriately to ensure feasibility of the proposed 
time decomposition strategy’s solution. Modeling boundary 
minimum on/off time constraints is more complex than that 
ramping as the number of intervals that connect neighboring 
subhorizons depends on minimum on/off time that is different 
for different units. That is, two consecutive subhorizons are 
coupled through several ending/beginning non-coupling 
intervals at the boundary of subhorizons.  

The main idea for solving this challenge is to count the 
number of on/off times at boundary intervals between 
consecutive subproblems and try to reach a consistency between 
these numbers iteratively by penalizing their mismatches in local 
objective functions. As depicted in Fig. 2, we introduce two sets 
of auxiliary variables in each SP that count the number of on/off 
times at boundary intervals. These variables are shared between 
subproblems to measure inconsistencies between minimum 
on/off times of an SP with its neighbors. These variables are only 
counters and have no impact on the form of minimum on/off time 
constraints. To formulate each SP, the minimum on/off time 
constraints for all time intervals, including coupling intervals, are 
formulated using models developed in [27], with no 
modifications. The counting variables for 𝑆𝑃 , for instance, are: 

 

1. ℎ , : Remaining minimum on-time of unit 𝑢 in 𝑆𝑃  that 

should be satisfied in 𝑆𝑃 . 

2. ℎ , : Remaining minimum off-time of unit 𝑢 in 𝑆𝑃  that 

should be satisfied in 𝑆𝑃 . 
 

We define several functions to model these counting shared 
variables.  

 

Minimum on-time counter for 𝑆𝑃 : Using startup indicator 𝑦 
[27], in 𝑆𝑃 , we define a vector Φ  whose 𝑡th element is equal 
to the time interval index 𝑡 if the status of unit 𝑢 has changed 
from off to on in that interval, otherwise zero.  

Φ 𝑡 𝑦             ∀𝑢, ∀𝑡                     7  
The last interval in which an off to on status change occurs 

for unit 𝑢 is equal to the maximum value of the vector Φ . 
Hence, the number of intervals that unit 𝑢 have been on in final 
intervals of 𝑆𝑃 , i.e., ℎ , is: 

ℎ 𝑛 max Φ 1         ∀𝑢         8  
For instance, for a subhorizon with 24 intervals, if the last 

interval in which unit 𝑢 is turned on is 22, max Φ 22 and 
expression (8) returns  ℎ 24 22 1 3. Thus, the 
number of intervals that 𝑆𝑃  wants 𝑆𝑃  to keep unit 𝑢 on is:  

 
ℎ , max 0, 𝑇  ℎ          ∀𝑢        9    
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Subhorizon 𝑠  

Subhorizon 𝑠 

Subhorizon 𝑠  

𝐼𝑢𝑡𝑜 𝑠 ,𝑠
𝑘 1 , ℎ𝑢 𝑠 ,𝑠

𝑜𝑓𝑓 ,𝑘 1, ℎ𝑢 𝑠 ,𝑠
𝑜𝑛 ,𝑘 1, 𝑝𝑢𝑡𝑜 𝑠 ,𝑠

𝑘 1

𝐼𝑢1 𝑠,𝑠
𝑘 1 , ℎ𝑢 𝑠,𝑠

𝑜𝑓𝑓 ,𝑘 1, ℎ𝑢 𝑠,𝑠
𝑜𝑛 ,𝑘 1, 𝑝𝑢1 𝑠,𝑠
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𝐼𝑢𝑡𝑜 𝑠,𝑠
𝑘 1 , ℎ𝑢 𝑠,𝑠

𝑜𝑓𝑓 ,𝑘 1, ℎ𝑢 𝑠,𝑠
𝑜𝑛 ,𝑘 1, 𝑝𝑢𝑡𝑜 𝑠,𝑠

𝑘 1

𝐼𝑢1 𝑠 ,𝑠
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𝑜𝑛 ,𝑘 1, 𝑝𝑢1 𝑠 ,𝑠

𝑘 1

Initial values  
𝑘 0 for

SCUC 
solution

at iteration k

at iteration k

at iteration k

SCUC solution 
for subhorizon 𝑠  

SCUC solution 
for subhorizon 𝑠 

SCUC solution 
for subhorizon𝑠  

(see Section IV-B)

 
Fig. 2. Block diagram of information sharing for coordinating subproblems. 
 

If ℎ  is smaller than the minimum on-time, 𝑇  ℎ  is 
positive and 𝑆𝑃  wants 𝑆𝑃  to keep unit 𝑢 on for at least 𝑇
 ℎ  intervals at the beginning of its subhorizon; otherwise 𝑆𝑃  
sends zero to 𝑆𝑃 . For instance, for a subhorizon with 24 
intervals, if ℎ 3 and 𝑇 5, then ℎ , 2; and if 

ℎ 3 and 𝑇 2, then ℎ , 0. Also, if 𝑇 2 and 

unit 𝑢 is turned on at hour 20 and off at hour 23 and was kept off 
for the rest of intervals in 𝑆𝑃 , then (7) produces 20, (8) gives 5, 
and (9) returns 0. 

Minimum on-time counter for 𝑆𝑃 : To count the number of 
intervals that unit 𝑢 is on at the beginning of subhorizon 𝑠, we 
should detect the first interval in which the unit is turned off.  

Using shutdown indicator 𝑧 [27], we define a vector Φ  whose 
𝑡th element is equal to time index 𝑡 if the status of unit 𝑢 has 
changed from on to off in that interval, otherwise zero. 

Φ 𝑡 𝑧               ∀𝑢, ∀𝑡           10  

The first shutdown time of 𝑆𝑃  is then the minimum nonzero 

element of Φ .  

ℱ minnonzero Φ              ∀𝑢         11  

Three possible situations may happen. 
1. ℎ ,  calculated by (9) is nonzero, and it is also more 

beneficial for 𝑆𝑃  to keep unit 𝑢 on for at least ℎ ,  

hours. In this situation, coupling variables between the 
two subproblems are the same. 

2. ℎ ,  is nonzero but 𝑆𝑃  prefers to keep unit 𝑢 on for 

less than ℎ ,  hours. In this situation, coupling 

variables are different and subproblems must come to a 
trade-off about the number of on-hours. 

3. ℎ ,  calculated by (9) is zero, and hence 𝑆𝑃  does not 

send any request to 𝑆𝑃 .  
To cover these possibilities, we determine ℎ ,  that must 

take the minimum of ℎ , , given from 𝑆𝑃 , and the number of 

intervals at the beginning of subhorizon 𝑠 that unit 𝑢 is on.  
 

ℎ , min ℎ , , ℱ 1, 𝑀 𝐼 ,       ∀𝑢      12  
 

If unit 𝑢 is on at the first interval of 𝑆𝑃 , the number of initial 
on-hours at this subhorizon is counted by the first hour at which 
a shutdown happens minus one (i.e., ℱ 1). The term 
𝑀 𝐼 , , in which a big-M is used, accounts for situations 
that unit 𝑢 is off at the first interval of 𝑆𝑃 . 

 
Minimum off-time counter: An analogous strategy as of that 

for minimum on-time is used for minimum off-time counters. 
In 𝑆𝑃 : 

ℎ 𝑛 max Φ 1              ∀𝑢        13  

ℎ , max 0, 𝑇  ℎ          ∀𝑢        14      

In 𝑆𝑃 : 
ℱ minnonzero Φ                         ∀𝑢       15  

ℎ , min ℎ , , ℱ 1, 𝑀 1 𝐼𝑢 𝑠,𝑠  ∀𝑢 16  

 
Similar expressions can be used to model the counting 

variables between 𝑆𝑃  and 𝑆𝑃  and any two consecutive 
subproblems. The combination of (7)-(16) provides accurate 
counting variables for all possible on/off situations that might 
happen for the transition between subproblems. 

 
Illustrative example: Consider the boundary intervals shown 

in Fig. 3. Assume that 𝑇 3, 𝑇 1, and the length of each 
SP is 24. We have ℎ 24 23 1 2, ℎ ,

max 0,3 2 1, ℱ 6, ℎ , min 1,6 1, 𝑀 0

0, ℎ 24 21 1 4, ℎ , max 0,1 4 0, 

ℱ 3, and ℎ , min 0,3 1, 𝑀 1 0. Note that this 

example is not feasible. A detailed tutorial for minimum on/off 
modeling is provided in Section V.A. 

 

Subproblem 1

... ...

23

1

24

0 10 1 0

22 1 2

10

21 3 4

Subproblem 2

0

20 5 6

1 1

 
Fig. 3. An illustrative example for on/off status at boundary intervals. 

 
Consistency constraints: ℎ ,  and ℎ ,  must reach the 

same value to have consistency between the on-counting 

variables in 𝑆𝑃  and 𝑆𝑃 . ℎ ,  and ℎ ,  must also reach 

the same values for consistency between the off-counting 
variables. Otherwise, the obtained solution is not feasible from 
the perspective of the whole scheduling horizon. To ensure 
consistency between 𝑆𝑃  and 𝑆𝑃 , we formulate three sets of 
consistency constraints and impose them to each subproblem.  

𝐶𝐶 , :

𝐼 , 𝐼 , 0            ∀𝑢, 𝑡 𝑛 1
ℎ , ℎ , 0                 ∀𝑢                       

ℎ , ℎ , 0                  ∀𝑢                      
 17  

The consistency constraints between 𝑆𝑃  and 𝑆𝑃  are: 

𝐶𝐶 , :

𝐼 , 𝐼 , 0            ∀𝑢, 𝑡 𝑛 1
ℎ , ℎ , 0                 ∀𝑢                     

ℎ , ℎ , 0                 ∀𝑢                     
    18  

Constraints (17) are enforced in 𝑆𝑃  and 𝑆𝑃 , and (18) are added 
in 𝑆𝑃  and 𝑆𝑃 . 

E.  Summary of SCUC Subproblems Formulation 
In summary, the SCUC subproblem for each subhorizon 𝑠 is 

formulated by adding (5)-(18) to the optimization problem (4). 
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Although (7)-(16) model interdependencies between 𝑆𝑃  and its 
previous subproblem 𝑆𝑃 , a set of similar expressions are 
required to model interdependencies between 𝑆𝑃  and its next 
subproblem 𝑆𝑃 . For modeling minimum on/off time 

constraints, we use models presented in [27] where ℎ  and ℎ  
are known parameter from initial conditions. However, in our 
developed models, ℎ  (indicated by ℎ ,  and ℎ , ) and 

ℎ  (indicated by ℎ ,  and ℎ , ) are shared decision 

variables that are byproducts of SCUC decision variables. In 
addition to regular SCUC input parameters (e.g., network 
topology and capacity of units), 𝑆𝑃  receives 𝑝 , , 𝐼 , , 

ℎ , , and ℎ ,  from 𝑆𝑃  and 𝑝 , , 𝐼 , , ℎ , , 

ℎ ,  from 𝑆𝑃  as inputs, and determines  Ξ  (see (4)), 

𝑝 , , 𝐼 , , 𝑝 , , 𝐼 , , ℎ , , ℎ , , 

ℎ , , ℎ ,  as outputs. 

F.  Discussion on Number of Subhorizons 
Increasing the number of subhorizons increases the number 

of shared variables and consequently the required number of 
iterations for coordination algorithms to converge. Hence, 
although smaller subproblems take less time to be solved, 
increasing the number of subhorizons is not necessarily efficient 
for time-saving. There should be a tradeoff between the number 
of subhorizons and iterations. Another factor that should be 
considered is the power of computational facilities. Although a 
computing machine takes less time to solve smaller optimization 
problems, further size reduction beyond a certain level may not 
yield significant time-saving. 

Determining the optimal number of subhorizons is a 
challenging, but valuable research question. A possible approach 
is to solve a given SCUC problem considering different numbers 
of subhorizons and select the one that yields the best time-saving. 
We suggest determining the length of subhorizons in a way to be 
larger than the largest minimum on/off times of generating units. 
Another suggestion is to have subhorizons with a similar size to 
take advantage of parallel computing with the least CPUs idle 
times. Since the behavior of the problem may change depending 
on the loading condition, different numbers of subhorizons may 
be more appropriate for different load pattern. The yearly load 
can be classified into different groups (e.g., a group for each 
season of a year), and a suitable number of subhorizons can be 
found for each group using a trial and error approach. We are 
working on this research question as future work. 

III.  CONVERTING MODEL INTO MIP 

Closed-form linear models minnonzero, min, and max 
functions in (10)-(18) are needed to formulate the problem in the 
standard MIP format. 

A.  Minnonzero Functions  
We model the minnonzero function in (11) using a Big-M 

value and replace it by:  

ℱ min 1 𝑧 𝑀 Φ    ∀𝑢    19  

where 𝑧  is a vector containing the shutdown indicator for each 
interval 𝑡. This constraint assigns the first time index of 𝑆𝑃  in 

which a shutdown happens (i.e., 𝑧 1) to ℱ . To model the 
minnonzero function for minimum off-time constraint (15), we 
replace (15) by (20) to determine the first startup time. 

ℱ min 1 𝑦 𝑀 Φ       ∀𝑢     20  

B.  Min Function  
We follow the concepts presented in [28] for linearizing min 

functions. In 𝑆𝑃 , instead of equation (11), we use: 

                  ℱ 1 𝑧 𝑀 Φ       ∀𝑢           21  

The right-hand-side of (21) is a vector and its left-hand-side 
is a variable. Therefore, ℱ  is smaller than the minimum value 
of the right-hand-side vector. We also replace (12) as follows: 

ℎ ,  ℎ ,                      ∀𝑢                   22  

ℎ ,  ℱ 1                    ∀𝑢                   23  

ℎ , 𝑀 𝐼𝑢 𝑠,𝑠                ∀𝑢, 𝑡 𝑛 1        24  

As explained in Section IV, we formulate augmented 
Lagrangian penalty functions, whose goal is to vanish 
mismatches between coupling variables, in a way for ℎ ,  to 

appear with negative terms in the objective function of 𝑆𝑃 . Since 
SCUC is a minimization problem, (22)-(24) along with including  
ℎ ,  in the objective function result in  ℎ ,  taking the 

minimum of ℎ , , 𝑀 𝐼 𝑡𝑜 , , and ℱ 1. Other min 

functions can be converted analogously.  

C.  Max Function 
We follow the concepts presented in [28] for linearizing max 

functions. For calculating ℎ  in (8), we introduce an auxiliary 
variable 𝐻  for each unit 𝑢 to formulate (25)-(26) and use (27)-
(28) instead of (9) for calculating ℎ , . 

𝐻 Φ                                       ∀𝑢, ∀𝑡               25     
ℎ 𝑛 𝐻 1                    ∀𝑢                     26  
ℎ , 0                                     ∀𝑢                     27  

ℎ , 𝑇 ℎ               ∀𝑢                     28   

As explained in Section IV, ℎ ,  appears with positive 

terms in the objective function of 𝑆𝑃  with penalizing 
consistency constraints (17) and (18). As explained in [28], this 
penalization strategy along with (25)-(28) results in ℎ ,  

taking the maximum of 0, 𝑇  ℎ . The minimization 
problem tries to reduce ℎ , , and (25)-(28) enforce ℎ ,  to 

be larger than zero and 𝑇 ℎ . In addition, 𝐻  Φ  
means that 𝐻  is larger than or equal to the largest element of 
vector Φ . Since the objective function tends to minimize and 
the penalty term ℎ ,  pertaining to 𝐻  appears with positive 

terms in the objective function, 𝐻  sticks to the smallest 
possible value that is the maximum of vector Φ .  Other max 
functions can be modeled in a similar manner.  

IV.  COORDINATION ALGORITHM   

We propose an accelerated analytical target casting (A-ATC) 
algorithm to coordinate SCUC subproblems. An acceleration 
technique and an initialization strategy are proposed to enhance 
the convergence performance of ATC.  

A.  Normal Parallel ATC 
Consider 𝑆𝑃  and 𝑆𝑃  formulated in Section II. For brevity 
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of equations, we use a vector format to represent shared 

variables, e.g., 𝑟 , 𝑝 , 𝐼 , ℎ , , ℎ ,  for 𝑆𝑃 . 

We use parallel ATC, which is based on augmented Lagrangian 
relaxation, to coordinate subproblems [22]. SCUC subproblems 
are in level two, and a coordinator is in level one. The actual 
shared variables 𝑟 (called responses in the context of ATC) are 
duplicated to create a set of auxiliary variables 𝜒 (called targets) 
for the coordinator and separate subproblems to make them 
solvable in parallel [22]. 𝑟 𝜒 are consistency constraints 
between the coordinator and subproblems. Violations of 
consistency constraints are penalized in objective functions (3a) 
and (4a). The relaxed 𝑆𝑃  at iteration 𝑘 is written as: 

𝑥𝑠
𝑘 , 𝑟 , argmin 𝑓 𝑝 , 𝐼                       29  

𝜆 , 𝜒 , 𝑟 , 𝜌 𝜒 , 𝑟 ,  

𝑠. 𝑡.                         3𝑏 , 7 16  

where 𝑥  and 𝑟 ,  are decision variables while 𝜒 ,  are known 
target variables received from the coordinator. 𝜆 and 𝜌 are 
Lagrange and penalty multipliers. Superscript † is the transpose 
operator. Analogously, 𝑆𝑃  is formulated as: 
 

𝑥𝑠
𝑘, 𝑟 , , 𝑟 , argmin 𝑓 𝑝 , 𝐼                30  

𝜆 , 𝜒 , 𝑟 , 𝜌 𝜒 , 𝑟 ,  

𝜆 , 𝜒 , 𝑟 , 𝜌 𝜒 , 𝑟 ,  

𝑠. 𝑡.           4𝑏 , 7 16
     

& 7 16
     

 

The coordinator receives 𝑟  and solves the following problem 
to determine target variables 𝜒 .  

𝜒 argmin 𝜆 𝜒 𝑟 𝜌‖𝜒 𝑟 ‖     31  

For penalty terms with a positive sign for 𝜆, Lagrange 
multipliers are updated as follows: 

𝜆 𝜆 2𝜌 𝜒 𝑟                           32 

and for penalty terms with a negative sign for 𝜆, we have: 
𝜆 𝜆 2𝜌 𝑟 𝜒                           33 

This formulation can be generalized for multiple 
subproblems. 𝜆 and 𝜌 need to be initialized in acceptable ranges. 
If 𝜌 are selected too large, the convergence speed may increase; 
however, it increases the chance of losing optimality [24]. 
Although selecting small 𝜌 enhances solution accuracy, the 
convergence speed degrades [24]. Knowledge about suitable 
ranges for 𝜆 and 𝜌 will be gained by solving the problem multiple 
times and using historical information obtained from past 
implementations of the distributed SCUC. 

B.  Proposed Accelerated ATC 
The convergence performance of ATC might degrade when 

more iterations are carried out and the solution becomes close to 
the optimal point, or when the optimal point is in a shallow area 
(or a ravine). Near the optimal point, the term 𝜒 𝑟  might 
become small that leads to updated multipliers in iteration 𝑘 1 
that are almost the same as them in iteration 𝑘, i.e., 𝜆 𝜆 . 

This slows the convergence speed. 
We present an accelerated ATC based on the technique that 

first proposed by Nesterov to accelerate gradient descent 
methods [29, 30]. The proposed accelerated ATC utilizes a 
prediction type acceleration step. The concept of momentum is 
used to prevent the algorithm from deceleration while more 
iterations are carried out. After each iteration 𝑘, the cumulated 
gradient of previous iterations (i.e., momentum) is calculated as 
the predicted direction in the next iteration, and a big jump is 
made in that direction. Then, the gradient is measured, and a 
correction is made to avoid moving forward too fast.  

 Extrapolation (prediction)

ATC (correction)

^

r k+1

rk

r k-1

r k+1

Accumulated 

 
Fig. 4. Prediction and correction procedure. 

Accelerated ATC (A-ATC): At iteration 𝑘, we predict that to 
what point ATC directs coupling variables and Lagrange 
multipliers at iteration 𝑘 1. To do so, we add the effects of 
momentum in ATC. Consider coupling variable 𝑟 at two 
consecutive iterations, i.e., 𝑟  and 𝑟 , as shown in Fig. 4. To 
predict 𝑟 , we connect a line between points 𝑘 1, 𝑟  and 
𝑘, 𝑟 . The line equation is: 

𝑦 𝑟 𝑟 𝑥 𝑘𝑟 𝑘 1 𝑟              34  
By replacing 𝑥 𝑘 1, we predict the next point as: 

𝑦 𝑟 𝑟 𝑘 1 𝑘𝑟 𝑘 1 𝑟 2𝑟 𝑟  
35  

We reorganize (35) and name 𝑦 �̂�  that is the predicted 
𝑟 at iteration 𝑘 1. 

�̂� 𝑟 𝑟 𝑟                        36  
The first term is the current 𝑟 and the second term is the line 

slope. We add a coefficient 𝜂 ∈ 0,1  to the slope to have a better 
prediction. In the first few iterations of ATC, large oscillations 
may be observed, and the jump should not be large, otherwise, it 
may cause a large error on �̂� . Thus, in the first few iterations 
𝜂 ≪ 1 to prevent large error and it becomes gradually larger to 
enhance the speed. We use the following expressions to increase 
𝜂 gradually until 𝜂 ≅ 1 [29, 30].  

𝛼 1   &     𝛼 1 1 4𝛼  /2                       37         

𝜂
𝛼 1
𝛼

                                                        38  

Since 𝛼  has an increasing trend, 𝜂 becomes closer to one 
over the course of iterations. This leads to a larger ATC step size, 
especially when 𝑟 approaches the optimal point. Near the optimal 
point, the slope becomes smaller and does not vary considerably. 
By this prediction-correction procedure, the convergence 
performance of ATC is enhanced. 

A-ATC for SCUC: The penalty term in the objective function 
(29) of 𝑆𝑃  at iteration 𝑘 is modified as: 

𝜆 , �̂� , 𝑟 , 𝜌 �̂� , 𝑟 ,        39  

where 𝜒 ,  and 𝜆 ,  are replaced by �̂� ,  and 𝜆 , . The two 
penalty terms in the objective function (30) of 𝑆𝑃  at iteration 𝑘 
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are modified by replacing 𝜒 , , 𝜒𝑠,𝑠 , 𝜆 , , and 𝜆 ,  with �̂� , , 

�̂� , , 𝜆 , , and 𝜆 , . The new parameters shown by ⋅̂  are 
predictions of coordinator variables and Lagrange multipliers. 
The predicted values used at iteration 𝑘 1 are calculated based 
on the actual shared variables and penalty multipliers obtained at 
iterations 𝑘 and 𝑘 1 as follows: 

  𝛼 1 1 4𝛼 /2                                 40  

�̂� 𝜒
𝛼 1
𝛼

𝜒 𝜒                    41  

𝜆 𝜆
𝛼 1
𝛼

𝜆 𝜆                         42  

Convergence analysis of A-ATC is provided in the Appendix. 
Implementing A-ATC is similar to the classical ATC with a few 
more steps. The proposed A-ATC can be used instead of the 
classical ATC to solve various distributed optimization 
problems, such as distributed SCUC and optimal power flow 

Initialization Strategy: ATC, similar to most distributed 
algorithms, is sensitive to initialization. To choose a good-
enough starting point, we take advantage of power system 
characteristics and propose a method to initialize coupling 
variables. We ignore the coupling intervals and intertemporal 
connectivity between subhorizons. That means the coupling 
variables between subproblems are disregarded and subproblems 
are considered to be completely independent. The SCUC 
subproblems are solved once. The achieved results might not be 
feasible as the connectivity between subproblems is ignored, but 
they are close to the optimal solution as all other SCUC 
constraints at most intervals are respected. Hence, this solution 
can be used as a good starting point for initializing the distributed 
algorithm. Our simulation results illustrate that this initialization 
strategy works well for all studied cases.  

The pseudocode for the A-ATC-based distributed SCUC is 
given in the following Algorithm.  

 
Algorithm Pseudocode for the proposed A-ATC-based distributed SCUC 
1: Decompose the considered horizon into multiple subhorizons 
2: Ignore the coupling intervals and shared variables 
3: Solve SCUC subproblems in parallel 
4: Use the obtained results to initialize �̂�  
5: Initialize multipliers 𝜆 , 𝜌 in their acceptable ranges and set 𝑘 0 
6: while |𝜒 𝑟 | 𝜀 ,  𝑘 𝑘 1 do 
7:        Solve SCUC subproblems in parallel and determine 𝑟  (outputs of 

SCUC subproblems and inputs for the coordinator) 
8:        Solve the coordinator problem to determine 𝜒  (outputs of the 

coordinator and inputs for SCUC subproblems) 
9:         Exchange 𝑟  and 𝜒  between the coordinator and subproblems  
10:       Update 𝜆  by (32) or (33) 
11:       Calculate 𝛼  by (40) 
12:      Update �̂�  and 𝜆  by (41) and (42) (inputs for the coordinator 

and SCUC subproblems) 
13: end while 

V.  CASE STUDY  

The proposed algorithm is implemented on a 3-bus system, 
the IEEE 24-bus system, the IEEE 118-bus system, and a 472-
bus system. All systems information is given in [31]. The 
considered scheduling problem includes 72 intervals, each 
representing an hour. For most cases, we have observed that 
decomposing the consider scheduling horizon into three 
subhorizons, each with 24 intervals, will lead to good time-

saving. Having three subhorizons also shows the situation of 
modeling intertemporal constraints for a middle subproblem. 
Hence, without loss of generality, we have divided the 
scheduling horizon into three subhorizons. In addition, we study 
the impact of number of subhorizons on solution performance 
using the IEEE 24-bus system. To initialize Lagrange multipliers 
and penalty parameters multipliers, we have run multiple cases 
with 𝜆  and 𝜌 in the range of 0.01 to 100. For all cases, setting 
𝜆 𝜌 1 for continuous shared variables and 𝜌 3 for 
integer shared variables provides good results. All simulations 
are carried out using YALMIP toolbox [32] and Gurobi solver 
on a PC with 16GB of RAM. The reported times for the 
distributed SCUC include the initialization time and time that A-
ATC takes to converge. The following convergence index is used 
to measure the relative distance between operation costs 
determined by the distributed SCUC, 𝑓 , and benchmark results 
obtained by the centralized SCUC, 𝑓∗: 

𝑟𝑒𝑙
|𝑓∗ 𝑓 |

𝑓∗                                      43  

A.  3-Bus System 
This small case serves as a tutorial for the proposed algorithm 

and to show that the UC results obtained by the proposed 
algorithm and the centralized SCUC are the same, not only at the 
boundary intervals (shown in Tables I-V) but also at all other 
intervals. Two load patterns are considered to analyze all three 
possible situations explained in Section II. D. 

Case1: The load pattern one is considered. Intervals 1-25, 25-
49, and 49-72 belong, respectively, to subhorizons one, two, and 
three. A-ATC, without applying the suggested initialization 
strategy, converges after 12 iterations. As shown in Fig. 5a, 
consistency constraints (5) and (6) are roughly zero upon 
convergence that means power generated by units in coupling 
intervals are the same from the perspective of consecutive 
subproblems. Table I shows units’ on/off status at the boundary 
intervals of 𝑆𝑃  and 𝑆𝑃  after the first iteration. The same results 
are obtained with and without considering on/off time 
consistencies since minimum on/off times (i.e., 5 hours) are 
already satisfied. Consider the on/off status of unit two. 𝑆𝑃  
sends ℎ , 3 to ask 𝑆𝑃  to keep unit two on for three more 

hours. From the perspective of 𝑆𝑃 , this is satisfied as according 
to (12) ℎ , 3. This is situation 1 in Section II.D in which 

shared variables corresponding to on/off status of the units are 
equal from the first iteration and consistency constraints (17) are 
satisfied. Table II shows the units’ on/off status at the boundary 
intervals between 𝑆𝑃  and 𝑆𝑃  after the first iteration. 𝑆𝑃  sends 
ℎ , 0 to 𝑆𝑃  for unit two. On the other hand, according to 

(12), ℎ , min 0,2 0, which means unit two in 𝑆𝑃  stays 

on only at the first two intervals. This is situation 3 in Section 
II.D in which consistency constraints (18) are satisfied at the first 
iteration. However, the generation in coupling intervals 25 and 
49 must be equal to satisfy consistency constraints (5) and (6) for 
generation ramp constraints. All consistency constraints are 
satisfied upon convergence of the algorithm after 12 iterations. 

Figure 5b shows the 𝑟𝑒𝑙 index, and Table III compares cost 
obtained by the distributed SCUC and the benchmark cost 
determined by the centralized SCUC. Upon convergence, the  
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                               (a)                                                          (b)  
Fig. 5. a) The difference between shared variables in coupling intervals and b) 
the 𝑟𝑒𝑙 index for case 1of 3-bus system. 

 

TABLE I   
UNITS ON/OFF STATUS IN BOUNDARY INTERVALS BETWEEN DAYS ONE AND 

TWO AFTER THE FIRST ITERATION (CASE 1) 
  Subhorizon one Subhorizon two 

Hour 20 21 22 23 24 25 25  26  27  28  29  30 
Unit 1 1 1 1 1 1 1 1  1  1  1  1  1 
Unit 2 0 0 0 1 1 1 1  1  1  1  1  1 

 
TABLE II 

UNITS ON/OFF STATUS IN BOUNDARY INTERVALS BETWEEN DAYS TWO AND 

THREE AFTER THE FIRST ITERATION (CASE 1) 
 Subhorizon two Subhorizon three 

Hour 44 45 46 47 48 49 49 50 51 52 53 54 
Unit 1 1 1 1 1 1 1 1 1 1 1 1 1 
Unit 2 1 1 1 1 1 1 1 1 1 0 0 0 

cost of distributed SCUC is $668,713, and the 𝑟𝑒𝑙 index is 0.003. 
For the sake of comparison, we have simulated ATC and A-
ATC. As shown in Fig. 5b, 𝑟𝑒𝑙 obtained by A-ATC is always 
less than that obtained by ATC. This means that after a specific 
number of iterations, A-ATC provides a more accurate solution 
than the normal ATC.  

To enhance the distributed SCUC performance, we apply the 
suggested initialization strategy and re-run A-ATC. The 
algorithm converges after three iterations. The units’ on/off 
status and power dispatches are the same as those obtained by 
the centralized SCUC. Operation costs obtained by A-ATC is 
$666,709 that is equal to the cost determined by the classical 
centralized SCUC (i.e., 𝑟𝑒𝑙 0 .  

Case 2: Load pattern two is considered. Table IV shows the 
units’ on/off status after the first iteration.  According to (14), for 

unit two, 𝑆𝑃  sends ℎ , 3 to 𝑆𝑃 . But, according to (16), 

from the view of 𝑆𝑃 , it is optimal to have ℎ , 2 (situation 

2 in Section II.D). Therefore, if subproblems are solved 

separately, ℎ , ℎ ,  and SCUC results are infeasible. 

With the stopping criterion of 0.01 MW, A-ATC, without 
applying the suggested initialization strategy, converges after 20 
iterations. Figure 6 shows the difference between shared 
variables and 𝑟𝑒𝑙 over iterations. Table V depicts the units’ 
on/off status at the boundary intervals upon convergence. The 
unit commitment results and power generations are similar to 
those obtained by the classical centralized SCUC.  

   
                                  (a)                                                     (b) 
Fig. 6. a) The difference between shared variables in coupling intervals and b) 
the 𝑟𝑒𝑙 index for case 2 of the 3-bus system.  

TABLE III 
RESULTS FOR 3-BUS SYSTEM (CASES 1) W/WO INITIALIZATION STRATEGY  

Algorithm  Cost ($) Iteration 𝑟𝑒𝑙 
Centralized 666,709 - - 

Distributed A-ATC 668,713 12 0.003 
Distributed A-ATC+ initialization 666,709 2+1 0 

 
TABLE IV 

UNITS ON/OFF STATUS IN BOUNDARY INTERVALS BETWEEN DAYS ONE AND 

TWO AFTER THE FIRST ITERATION (CASE 2) 
 Subhorizon one Subhorizon two 

Hour 20 21 22 23 24 25 25 26 27 28 29 30 
Unit 1 1 1 1 1 1 1 1 1 1 1 1 1 
Unit 2 1 1 1 0 0 0 0 0 1 1 1 1 

 
TABLE V 

UNITS ON/OFF STATUS IN BOUNDARY INTERVALS BETWEEN DAYS ONE AND 

TWO UPON CONVERGENCE (CASE 2) 
 Subhorizon one Subhorizon two 

Hour 20 21 22 23 24 25 25 26 27 28 29 30 
Unit 1 1 1 1 1 1 1 1 1 1 1 1 1 
Unit 2 1 1 1 1 1 1 1 1 1 1 1 1 

 

TABLE VI  
RESULTS FOR THE 3-BUS SYSTEM (CASE 2) W/WO INITIALIZATION STRATEGY 

Algorithm Cost ($) Iteration 𝑟𝑒𝑙 
Centralized 817,755 - - 

Distributed A-ATC 818,710 20 0.001 
Distributed A-ATC+ initialization 817,755 10+1 0 

TABLE VII      
 RESULTS OF DIFFERENT ALGORITHMS FOR 24-BUS SYSTEM 

Algorithm Iteration 𝑟𝑒𝑙 Time (s) 
Centralized NCUC - - 17 

NCUC with A-ATC + initialization 2+1 0 2 
Centralized SCUC - - 135 

SCUC with A-ATC + initialization 3+1 3e-8 12 

TABLE VIII  
POWER OF UNITS IN COUPLING INTERVALS (24-BUS SYSTEM) 

Unit 
No. 

Hour 25, 
subhorizon 1 

Hour 25, 
subhorizon 2 

Hour 49, 
subhorizon 2 

Hour 49, 
subhorizon 3 

1 184.5 184.5 177.7 177.7 
3 153.7 153.7 148.1 148.1 
5 184.5 184.5 177.7 177.7 
7 162.1 162.1 156.4 156.4 
9 204.5 204.5 197.7 197.7 

TABLE IX 
RESULTS FOR THE IEEE 118-BUS SYSTEM 

Algorithm Iteration 𝑟𝑒𝑙 Time (s) 
Centralized - - 3818 

ATC + initialization 4+1 e-5 216 
A-ATC + initialization 4+1 e-6 216 

 

A-ATC is applied with the suggested initialization strategy. 
As shown in Table VI, operation cost is $817,755 using 
distributed SCUC and the classical centralized SCUC. The 
suggested initialization strategy reduces the number of iterations 
from 20 to 11 and makes 𝑟𝑒𝑙 0.  

B.  IEEE 24-Bus System 
Two cases are studied, network constrained UC (NCUC) with 

no contingency and SCUC with ten plausible contingencies. A-
ATC with the initialization strategy is implemented for both 
cases. The distributed NCUC converges after three iterations 
within two seconds.  As depicted in Table VII, costs determined 
by distributed and centralized NCUC algorithms are $3,774,232. 
The distributed algorithm decreases the solution time by 88%. 
Table VIII shows power generated by several sample units in 
coupling intervals. The 𝑟𝑒𝑙 becomes zero upon convergence. 
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For SCUC, ten scenarios for transmission line outage are 
considered at each interval. This increases the size of the 
problem. The distributed SCUC converges to the same cost as of 
that for the centralized SCUC (i.e., $3,833,162) while being 91% 
faster. This implies that when the size of the problem increases, 
the effectiveness of the distributed SCUC is more prominent.  

Number of Subhorizons: We have studied the impact of 
number of subhorizons on the solution time. We have 
decomposed the scheduling horizon into different numbers of 
subhorizons and run the distributed SCUC. Figure 7 shows the 
solution time versus the number of subhorizons for the 24-bus 
system. It is observed that increasing the number of subhorizons 
reduces the solution time; however, decomposition the 
scheduling horizons beyond a certain number, which is nine for 
this case, increases the solution time. Such a trend is widely 
observed in parallel computing approaches. Breaking the 
horizon into two and three subhorizons leads to the best time-
saving. Increasing the number of subhorizons beyond three does 
not result in significant time-saving.  

We have also studied the impact of load on the optimal 
number of subhorizons. Several low-load and high-load 
scenarios are analyzed. Although we have observed that the load 
changes the curve pattern shown in Fig. 7, one pattern, similar to 
Fig. 7, is obtained for all load conditions between 70%~100% of 
the baseload (Fig. 7 is plotted for the baseload) and another 
pattern for load conditions larger than the baseload. Hence, we 
conclude that one can categorize the load into low, medium, and 
high (e.g., seasonal load), decompose the problem into several 
subhorizons for each loading condition, and select the best 
number of subhorizons for each loading condition. This is an 
efficient approach as a user can use the same number of 
subhorizon for many similar load scenarios.  

 
Fig. 7. Time versus number of subproblems for the IEEE 24-bus system. 
 

TABLE X 

RESULTS FOR THE 472-BUS SYSTEM 
Algorithm Iteration Cost ($) Time (hour) 
Centralized - 17,866,016 111 

A-ATC + initialization 6+1 17,768,289 14 
 

C.  IEEE 118-Bus System 
As shown in Table IX, the centralized approach provides a 

cost of $4,928,242 after 3818 seconds. The distributed algorithm 
converges to a cost of $4,928,268 after five iterations within 216 
seconds that is 94% faster than the centralized approach. We also 
compare ATC and A-ATC. A-ATC provides a smaller 𝑟𝑒𝑙 index 
upon convergence. 

To have a better comparison, we stop the centralized approach 
when a cost of $4,928,268 (the same as A-ATC) is obtained. 
While A-ATC converges after 216 seconds, the centralized 
approach takes 2406 seconds. This means that the centralized 

SCUC takes 91% more computation time to converge to the 
same solution as the distributed algorithm.  

D.  A 472-Bus System 
The superiority of the proposed algorithm as compared to the 

centralized SCUC is more considerable for larger cases. We 
combine four IEEE 118-bus systems to build a 472-bus system. 
Table X shows the results. We stop the centralized approach after 
111 hours, and the achieved cost is $17,866,016. However, the 
proposed distributed algorithm converges after seven iterations 
to a cost of $17,768,289 within 14 hours.  

VI.  CONCLUSION 
A strategy is proposed to decompose SCUC over the 

scheduling time horizon, create several subproblems each for a 
subhorizon, and model temporal interdependencies between 
subproblems. The proposed strategy is called a temporal 
decomposition. The concept of coupling intervals is introduced 
to model ramping limitation of generating units between 
subproblems. In addition, several counting auxiliary variables 
are determined to coordinate minimum on/off times for transition 
between consecutive subproblems. An accelerated ATC 
algorithm with an initialization strategy is proposed to coordinate 
subproblems. The simulation results show that the proposed 
algorithm obtains the same SCUC results (i.e., binary variables 
for units’ on/off status and power dispatch) as the centralized 
SCUC while reducing the computation time considerably.  For 
instance, for the IEEE 118-bus system, the solution time 
decreases by 94%. We have observed that as the size of the 
problem increases, the distributed algorithm shows better 
performance than the centralized SCUC. The results show the 
privilege of A-ATC to ATC and effectiveness of the suggested 
initialization strategy to enhance the convergence performance. 
For the future work, we will focus on developing methods to find 
the best time intervals for decomposing the considered 
scheduling horizon and the optimal number of subhorizons. 

 

APPENDIX 
In this Appendix, we discuss the convergence of A-ATC. 

Consider the following problem: 
min 𝐹 𝑟 𝐹 𝑟                                  a1  
𝑠. 𝑡.        𝑟 𝑟                     

Assume that 𝐹  and 𝐹  are strongly convex. In the normal 
parallel ATC, a coordinator exists to coordinate the two 
subproblems. Subproblems one and two send updated 𝑟  and 𝑟  
to the coordinator and receive 𝜒. Consider the coordinator’s 
optimization problem as 𝐺 𝜒  and  𝐻 𝑟 𝐹 𝑟 𝐹 𝑟 . We 
restate the problem (a1) as: 

min 𝐻 𝑟 𝐺 𝜒                                    a2  
𝑠. 𝑡.      𝜒 𝑟               

Then: 
𝑟 argmin 𝐻 𝑟 𝜆 𝜒 𝑟 𝜌 𝜒 𝑟          a3  
𝜒 argmin 𝐺 𝜒 𝜆 𝜒 𝑟 𝜌 𝜒 𝑟     a4  
 𝜆 𝜆 2𝜌  𝜒 𝑟                                               a5  

where 𝜒 𝜒  and 𝑟 𝑟 . We write the dual conjugate 
function of (a2) as: 

max 𝐷 𝜆 𝐻∗ 𝜆 𝐺∗ 𝜆                 (a6) 
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Introducing 𝜆 /   𝜆  2𝜌 𝜒 𝑟  and 𝜆 𝜆
2𝜌 𝜒 𝑟 , and using optimality conditions, we calculate 𝑟  
and 𝜒  as follows: 

𝜕𝐻 𝑟 𝜆 /  , 𝑟 ∇𝐻∗ 𝜆                      a7  

𝜕𝐺 𝜒 𝜆  , 𝜒 ∇𝐺∗ 𝜆                              a8  
To calculate the convergence rate of the parallel ATC, the 
relation between 𝜆∗ 𝐷 𝜆  and 𝜆 should be determined.  
According to (a6): 

𝐷 𝜆∗ 𝐷 𝜆 𝐻∗ 𝜆∗ 𝐺∗ 𝜆∗ 𝐻∗ 𝜆
𝐺∗ 𝜆        a9  

We rewrite the term 𝐻∗ 𝜆∗ 𝐻∗ 𝜆  in (a9) as follows: 
  𝐻∗ 𝜆∗ 𝐻∗ 𝜆 𝐻∗ 𝜆∗

𝐻∗ 𝜆 𝐻∗ 𝜆

𝐻∗ 𝜆                                                          a10  
After some calculations and using convex properties: 

𝐻∗ 𝜆∗ 𝐻∗ 𝜆 𝜆∗ 𝜆 ∇𝐻∗ 𝜆
1

2𝜌
‖𝜆 𝜆‖  a11  

Similarly, for the term 𝐺∗ 𝜆∗ 𝐺∗ 𝜆  in (a9): 
𝐺∗ 𝜆∗ 𝐺∗ 𝜆 𝜆∗ 𝜆 ∇𝐺∗ 𝜆             a12  

By incorporating (a10) and (a11) into (a9), we then have: 

𝐷 𝜆 𝐷 𝜆∗ 1
𝜌

 𝜆∗ 𝜆 𝜆 𝜆
1

2𝜌
‖𝜆 𝜆‖     a13  

To convert (a3 - a5) to the accelerated ATC, we replace 𝜆
𝜆  and 𝜒 �̂� .   

𝐷 𝜆 𝐷 𝜆∗ 1
𝜌

  𝜆 𝜆∗ 𝜆 𝜆
1

2𝜌
𝜆 𝜆 a14  

Using the telescopic summation and after some simplifications:  

𝐷 𝜆∗ 𝐷 𝜆
2  𝜆 𝜆∗

𝜌 𝑘 2
                           a15  

This proves the convergence of A-ATC whose convergence rate 
is 𝑂 1/𝑘 .  
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