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Helical conductors with spin-momentum locking are promising platforms for Majorana fermions.
Here we report observation of two topologically distinct phases supporting helical edge states in charge
neutral Bernal-stacked tetralayer graphene in Hall bar and Corbino geometries. As the magnetic field B⊥
and out-of-plane displacement field D are varied, we observe a phase diagram consisting of an insulating
phase and two metallic phases, with 0, 1, and 2 helical edge states, respectively. These phases are
accounted for by a theoretical model that relates their conductance to spin-polarization plateaus.
Transitions between them arise from a competition among interlayer hopping, electrostatic and exchange
interaction energies. Our work highlights the complex competing symmetries and the rich quantum
phases in few-layer graphene.
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Helical conductors, systems that have no bulk conduc-
tion but support dissipationless conducting states at their
edges, may be engineered to realize Majorana statistics for
quantum computation [1–4]. Underlying these remarkable
systems are the nontrivial topology of electronic structure
in the bulk, arising in part from the states associated with a
valence band that are energetically raised above those of a
conduction band. At the system boundary, this inversion is
relaxed, leading to crossing of “holelike” states of the
valence band with “electronlike” states of the conduction
band. In helical conductors, these states carry different spin
quantum numbers, protecting the crossing and preventing a
gap from opening in the spectrum of edge states. Such a band
inversion is typically induced by large spin-orbit coupling in
topological insulator materials at zero magnetic field [5–7].
Alternatively, they may manifest in semimetals with coex-
isting electron and hole pockets in the quantum Hall regime,
though the mobility of such systems realized in traditional
semiconductors is relatively low [8]. These systems are
typically not tunable in situ, and helical conduction is only
achieved over a narrow range of parameters.
The advent of few-layer graphene provides an alternative

platform to realize helical edge states: as semimetals, they
host electron and hole states coexisting near the charge
neutrality point (CNP) [9–15], while affording high mobil-
ity transport. Helical edge states are observed in monolayer
graphene at the CNP in the presence of large in-plane
magnetic fields [16], in bilayer graphene in displacement

fields [17], and in trilayer graphene in modest magnetic
fields [12].
Here we report observation of quantum phases support-

ing helical edge states in tetralayer graphene (4LG) at the
CNP in a large magnetic field, arising from the competing
effects of interlayer coherence, electrostatic polarization,
and exchange interaction. As the interlayer potential and
magnetic field varies, we observe a series of quantum
transitions among the phases that host 2, 1, and 0 helical
edge states on each edge, with quantum critical phase
boundaries that move with parallel magnetic field. Our
work highlights the complex competing symmetries in few-
layer graphene and the rich quantum phases in this
seemingly simple system. As 4LG is a few-layer graphite
system that is tunable by gate, our observations may also be
relevant to the highly resistive state observed in bulk
graphite [18–23], whose underlying nature remains con-
troversial to date.
The low energy electron bands of 4LG consist of two

bilayer graphene (BLG)-like bands with light (m) and
heavy (M) effective masses [Fig. 1(a)], which intersect and
hybridize near the CNP due to next-nearest interlayer
hoppings (Fig. S1 [24]). The unique band structure and
high tunability give rise to multiple Lifshitz transitions and
multiband transport when the magnetic field is absent or
small [25–28]. We note that inversion (and thus valley)
symmetry is always preserved in the absence of external
fields.
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We perform magneto-transport measurement on dual-
gated 4LG devices with Hall bar and Corbino geometris
[24] [Fig. 1(b)–1(c)], with independently controlled charge
density n and out-of-plane displacement field D. The
experiments were performed in a 3He cryostat employing
lock-in techniques. The devices’ field-effect mobility
ranges from 30 000 to 100 000 cm2=Vs. All measurements
are taken at T ¼ 0.3 K unless specified otherwise.
Figure 1(d) displays the longitudinal resistance Rxx ¼

V23=I14 of a Hall bar device (H1) vs n and perpendicular
magnetic field B⊥ at D ¼ 0. Here the subscript numbers
denote the terminals of voltage and current probes as
indicated in Fig. 1(c). Awell-definedLandau fan is observed.
At n ¼ 0 and relatively low field, the device is highly
resistive with Rxx ranging from 100 kΩ to 2 MΩ, similar
to those observed inmonolayer and bilayer graphene [16,29–
35]. However, when B⊥ exceeds ∼30 T, Rxx drops precipi-
tously to ∼7 kΩ [Fig. 1(e)]. This dramatic decrease in
resistance has not been observed in other graphene systems,
suggesting a field-induced insulator-metal transition.
To explore the electronic phases of the ν ¼ 0 QH state,

we measure Rxx vs B⊥ and D, while maintaining overall
charge neutrality. At large magnetic field, a striking phase
diagram emerges [Fig. 2(a)]. Guided by the boundaries
between dramatically changed Rxx, we identify three
different phases. The brown region, identified as phase I,
indicates a highly insulating state (Rxx > 50 kΩ). It devel-
ops at a moderate B⊥ (∼6 T) and persists over the entire
range of D (up to �600 mV=nm) until B⊥ ¼ 22 T.

This insulating state transitions abruptly to conductive
regions with Rxx ∼ 7–12 kΩ, or equivalently, conductance
that is approximately 2–4 times the conductance quantum
GQ ¼ e2=h. Interestingly, the phase boundary that sepa-
rates the insulating and conductive states is not monotonic
in the B⊥-D plane, but has a “Σ” shape: the transition
at B⊥ ¼ 30 T occurs at D ¼ 0, and B⊥ ¼ 22T at
D ¼ 280 mV=nm. Within the conductive regions, phase
II (blue) has the lower resistance, with Rxx ranging from 4
to 8 kΩ. It starts at the transition point from phase I at
B⊥ ∼ 30 T and D ¼ 0, its phase boundary expanding
linearly with B⊥, and reappears at larger D. Lastly, the
green region dominating the conducting regime at moder-
ately low D has resistance ∼12 kΩ, and is identified as
phase III. Here we identify phases II and III as distinct
phases, due to their conductances that are nearly quantized
at low temperature to ∼4e2=h and 2e2=h, respectively
[Fig. 2(d) inset]. Transitions between various phases as a
function of D and B⊥ are illustrated by the line cuts in
Figs. 2(b)–2(d). The point at B⊥ ¼ 30 T and D ¼ 0
constitutes a quantum critical point, apparently adjoining
all three phases, which we denote Bcp. The overall phase
diagram is observed in 4 Hall bar devices, and a similar
partial phase diagram is mapped in additional 5 Hall bar
devices.
The insulating (metallic) nature of phase I (II and III) is

further confirmed by their temperature dependence. As T

FIG. 1. (a) Low energy band structure EðkxÞ of 4LG in the
absence of external fields. Red and blue lines denote BLG-like
bands with light (m) and heavy (M) effective masses, respec-
tively. (b)–(c) Schematics of Hall bar and Corbino devices,
respectively, and propagation of 1 pair of helical edges therein.
(d) Landau fan Rxxðn; B⊥Þ for a Hall bar device (H1) at D ¼ 0.
The unit is kΩ, in logarithmic scale. Blue numbers indicate filling
factors. (e) RxxðnÞ at D ¼ 0 and B⊥ ¼ 29 and 32 T, respectively.

FIG. 2. (a) Electronic phase diagram RxxðD;B⊥Þ at n ¼ D ¼ 0,
different phases are labeled I, II, and III. The unit is kΩ. Dotted
box indicates the region shown in Figs. 3(a)–3(b). (b) RxxðB⊥Þ at
n ¼ D ¼ 0 at selected temperatures. (c)–(d) Temperature
dependence of RxxðDÞ of the ν ¼ 0 state, at B⊥ ¼ 25 and
34 T, respectively. Inset in (d): Enlarged plot of RxxðDÞ at
T ¼ 0.3 K, showing near quantization of phase I and II to 4e2=h
and 2e2=h, respectively.
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increases, Rxx of phase I decreases from ∼80 to ∼40 kΩ; in
contrast, in phase II, Rxx rises from ∼6 kΩ at base
temperature to become nearly as resistive as phase I at
40 K [Fig. 2(b)]. Similarly, at B⊥ ¼ 25 T, phase II is
indicated by the resistance valleys centered at
jDj ∼ 280 mV=nm, where Rxx increases from ∼5 to
∼40 kΩ as T is raised 20 K [Fig. 2(c)]. At B⊥ ¼ 34 T,
Rxx of the resistive state for jDj > 600 mV=nm drops with
increasing temperature, signifying its insulating nature.
A central question in ascertaining the natures of these

phases is whether conduction therein occurs via bulk or
edge state transport, as Rxx in Hall bar devices contains
contributions from both mechanisms. To address this
question, we fabricated dual-gated devices with Corbino
geometry [Fig. 1(c)], in which no physical edges connect
the electrodes and therefore probe only bulk transport.
The conductance difference between Corbino and Hall bar
devices then originates solely from edge states. Figure 3(a)
plots the two-terminal conductance GCorbinoðB⊥; DÞ from a
Corbino device (C1). Phase I is insulating in both the Hall
bar and Corbino devices; the absence of a gap transition
point suggests a first-order transition, in agreement with
Hartree-Fock calculations (see Fig. 4 and associated dis-
cussion). Interestingly, GCorbinoðB⊥; DÞ ∼ 0 while Rxx ∼
h=4e2 for phase II, indicating an insulating bulk and high
edge state conductance. In phase III, a somewhat higher
GCorbino ∼ 0.5e2=h suggests that bulk excitations have a
relatively small gap; nevertheless, much of the conductance
in phase III is also contributed by edge states. Similar phase
diagrams are observed in 3 Corbino devices.
To better visualize the edge conductance, we note that

the longitudinal conductance of the Hall bar device is
a sum of the edge and bulk conduction, GHall ¼ Gedgeþ
σbulkðW=LÞ, while GCorbino arises solely from the bulk,
GCorbino ¼ ½2π= lnðb=aÞ�σbulk (here σbulk is the conductivity
of the bulk,W=L is the aspect ratio of the Hall bar channel,
b is the distance between the two contacts, and a is the
radius of the inner contact). Thus, the edge conduction is
given byGedge ¼GHall− ðW=LÞ½lnðb=aÞ=2π�GCorbino. From
device geometries, we estimate that ðW=LÞ½lnðb=aÞ=2π�∼
0.1. Combining data from devices H1 and C1, we plot
GedgeðB⊥; DÞ in Fig. 3(b), thus explicitly demonstrating
that the edge conduction approaches 4e2=h in phase II and
2e2=h in phase III. In addition, nonlocal measurements also
yield conductance values that agree with Landauer-Buttiker
formalism for 2 and 1 helical edge states, respectively [24].
Taken together, these datasets unambiguously establish
edge state conduction in phase II and III.
Lastly, we investigate how the phases are affected by an in-

plane magnetic field Bk. Figure 3(c) displays RxxðB⊥; DÞ of
H1 that is tilted at an angle θ ¼ 49°. The general features
resemble that in Fig. 2(a) with Bk ¼ 0; however, the entire
phase boundaries shift towards lower B⊥. For instance, the
transition between phase I and II atD ¼ 0 now takes place at
B⊥ ¼ 27 T. Such Zeeman-induced reduction of the critical

magnetic field B⊥c indicates spin ordering. A detailed
Zeeman energy dependence of transition at n ¼ D ¼ 0
from phase I to II for another Hall bar device H2 is plotted
in Fig. 3(d), showing the quantum critical point B⊥cp moves
to lower values as largerBk is applied. In fact,B⊥cp decreases
linearly with total applied field Bt, suggesting that the
transition point is linearly dependent on the Zeeman energy
[Fig. 3(d)].
To understand the phase diagram and the origin of the

metallic states, we first calculate the Landau level (LL)
spectrum of 4LG using a noninteracting k · p continuum
model [26,28,36]. The hopping parameters are extracted by
fitting calculated spectra to experimentally observed LL
crossing points, and are consistent with previous reports
[27,28,37]. Figure 4(a) displays the calculated LL spectrum
at D ¼ 0, where each LL is valley and spin degenerate,
labeled by spin (↑ and ↓), valley (K and K0), orbital
(N ¼ −1 and 0), and bands with heavy (M) and light (m)
masses. Red and blue curves denote electronlike and
holelike LLs, respectively.
Of most relevance to our studies are two LLs (M, 0) and

(m, −1), between which the CNP of 4LG resides. At low
field, the electronlike (m, −1) LL has higher energy than the
holelike (M, 0) LL. TakingZeeman splitting into account, the
ν ¼ 0 state is an insulator with spin and valley polarization at
D ¼ 0 [Fig. 4(b)]; upon the application of D, this state
crosses over smoothly into a layer-polarized insulator.

FIG. 3. (a) Conductance in unit of e2=h for a Corbino device
(C1) as a function of D and B⊥, respectively. (b) Conductance
contributed by edge states. (c) Phase diagram RxxðD;B⊥Þ
measured in tilt magnetic field at an angle θ ¼ 49°, in units
of kΩ. The red dotted curves outline the phase boundaries in
Figs. 2(a) at θ ¼ 0 and Bk ¼ 0. (d) RxxðD;B⊥Þ at n ¼ D ¼ 0

measured at different tilt angles from device H2. Inset: location of
the quantum critical point in the plane of perpendicular (B⊥) and
total (Bt) magnetic field from 4 different devices. Solid line is a
linear fit to the data.
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This insulating phase at lower field (B⊥ < 22 T) and over the
entire range of accessible D corresponds to phase I.
The insulating phase I, however, can transition into a

metallic phase, if the holelike (M, 0) LL surpasses the
electronlike (m, −1) level, thus leading to counterpropa-
gating edge states. Such a “band inversion” can be achieved
by tuning either B or D. First, at D ¼ 0, the different
dispersions of these two LLs in B⊥ lead to their crossing at
sufficiently high magnetic fields. Figure 4(b) plots the spin-
split LL spectra EðB⊥Þ at D ¼ 0 near the crossing points,
assuming a g factor of 2. At B⊥ ¼ 30 T, the (m, −1, ↑) and
(M, 0, ↓) LLs cross; the two valley-degenerate holelike and
two electronlike edge states disperse in opposite directions
at the sample edge, giving rise to magnetic field-induced
helical edge states that counterpropagate with opposite spin

polarizations. This metallic phase corresponds to phase II
with ∼4e2=h conductance.
To examine the effect of D, we calculate the LL spectra

at constant B⊥ while varying the interlayer potential Δ
[Figs. 4(c)–4(d)]. Here Δ is the actual potential difference
between the top and bottom layers of 4LG, which, because
of screening, is typically reduced by a factor of 5-7 from
Dd, the experimentally imposed potential difference [28]
(d ∼ 1 nm is the thickness of 4LG). Δ breaks the inversion
symmetry and lifts the valley degeneracy, and the different
dispersion of valley-split LLs in D gives rise to new
crossing points.
Two representative EðΔÞ spectra below and above

B⊥cp ¼ 30 T are shown in Figs. 4(c)–4(d), where the K
and K0 LLs are represented by solid and dashed lines,
respectively. For instance, at B⊥ ¼ 25 T [Fig. 4(c)], the
holelike (M, 0, K0, ↓) level is elevated above the electron-
like (m,−1,K, ↑) whenΔ exceeds 13 mV, giving rise to the
conductive phase III, where there is only one “inverted LL,”
hence its conductance is ∼2e2=h. Further increase of D
above ∼20 mV causes these two LLs to cross again,
leading to the reentrance of phase I. These two crossing
points are labeled by hollow and solid circles in Fig. 4(c),
respectively. For B⊥ > 30 T, the high magnetic field alone
is sufficient to induce the “band inversion” at Δ ¼ 0, and
raising Δ gives rise to two distinct LL crossings. The first
crossing occurs between (M, 0, K, ↓) and (m, −1, K0, ↑),
labeled by the solid triangle in Fig. 4(d), yielding a
transition from phase II to III, where the number of holelike
LLs above the Fermi level is reduced from 2 to 1. The ν ¼ 0
state reverts to a layer-polarized insulator when sufficientΔ
is applied to fully valley polarize the charge carriers,
incurring (m, −1, K, ↑) crosses back with (M, 0, K0, ↓),
as indicated by the solid circle.
We reproduce the phase diagram in Fig. 2(a) by

calculating E (Δ) at different B⊥, and plot the crossing
points in the Δ-B⊥ space [Fig. 4(e)], using the same
symbols as in Figs. 4(b)–4(c) to denote different LL
crossings. The resulting phase diagram captures prominent
features of the experimental data, most notably the sharp
phase boundaries separating phase II from I and III.
However, the single-particle model cannot account for
the reemergence of the low resistance state (phase II) at
large B⊥ and intermediate D, suggesting the enhanced
effect of interactions, e.g., exchange terms which favor spin
polarization.
To account for interaction effects, we introduce a

minimal set of one-body and interaction terms, and perform
Hartree-Fock (HF) calculations (see Supplemental Material
[24] for details, which includes Refs. [38–43]). A typical
phase diagram analysis is depicted in Fig. 4(f). Comparing
to the noninteracting result, it exhibits a richer structure and
accounts for additional experimental features, including the
reentrance of the high conduction phase for intermediate
D, and smearing of the multicritical point at B⊥ ∼ 30 T

FIG. 4. (a) Spin- and valley-degenerate LL spectrum of 4LG at
D ¼ 0. Red and blue lines denote electron and holelike LLs,
respectively. Numbers between the LLs indicate filling factors.
LLs are labeled by heavy (M) or light (m) mass BLG-like band,
orbital index, and spin polarization. (b) Similar to (a), except for
25 < B⊥ < 45 T and each LL is spin split by a g factor of 2.
(c)–(d) LL energy vs interlayer potential Δ at B⊥ ¼ 25 and 35 T,
respectively. Circles and triangles indicate crossing points of
electron and holelike LLs that form the ν ¼ 0 state. (e) Single
particle phase diagram in Δ-B⊥ plane, using the same symbols
for LL crossing points in (c)–(d). (f) Theoretical phase diagram
by taking electronic interactions into account. PP1 and PP2
refer to two distinct ground states with partial spin polarization
that support no conducting edges, with spin canting next-
layer coherence and nearest-neighbor interlayer coherence,
respectively [24].
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and D ¼ 0 due to interaction-induced degeneracy lifting of
the single particle levels. Two particularly robust phases
emerge from the calculations: (a) a low-B spin-singlet state
(Sz ¼ 0); it is largely determined by the one-body part of
our model, and dominated by the competition between
the one-body term (γ2) that favors layer coherence and D
that favors layer polarization. Here 8 states of the form
jþ;Nsia ¼ cosðθa=2Þja;Nsi þ sinðθa=2Þjaþ 2;Nsi are
occupied, where a ¼ 1, 2, s ¼ ↑, ↓ and N ¼ 0, 1 are
layer, spin, and orbital LL indices. The layer-polarization
angles θa vary withD, from θa ¼ π=2 forD → 0 to θa ¼ 0
in the high D limit. Throughout this phase, both bulk and
edge charge excitations are gapped and the system is an
insulator, corresponding to phase I. The second phase (b) is
a high-B partially spin-polarized phase with Sz ¼ 2 that is
stabilized by interactions, where each orbital hosts four
occupied single-electron states of the form ja ¼ 1; 3;N↑i,
jþ;N↓i1, and jþ;N↓i2. This ground state corresponds to
phase II, and has a bulk gap, but supports gapless helical
edge modes protected by Sz conservation. The resulting
edge-dominated conductance G ∼ 2Sze2=h ¼ 4e2=h is
compatible with the blue regions of Fig. 2(a).
Interestingly, at large B and moderately low D, a phase

withSz ¼ 1 appears, followedby the reemergenceof phase II
with Sz ¼ 2 [Fig. 4(f)]. These phases have 1 and 2 pairs of
helical edge states, respectively. The precise boundaries of
the less conducting Sz ¼ 1 state in the phase diagram [which
appears compatible with the green regions in Fig. 2(a)]
depend sensitively on the parameters of our model.
Finally, in narrower regions of the phase diagram, the HF

analysis yields more complex states formed by a coherent
superposition of various states ja;Nsi. These coherent
states are zero temperature insulators; the continuous nature
of the transitions into them suggest relatively small stiff-
nesses associated with the broken U(1) symmetries they
host [40], hence small edge and bulk gaps and associated
enhanced transport at nonvanishing T. The emergence of
these broken symmetries can account, for example, for the
enhanced transport observed at large B and intermediate D
in the Corbino geometry. Further investigation of 4LG’s
phase diagram with refined parameters and measurements
are warranted to fully understand the competing sym-
metries at the CNP.
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