Photochemical & Photobiological Sciences

PAPER

View Article Online

Cite this: Photochem. Photobiol. Sci., 2020, 19, 390

Effects of solvent and micellar encapsulation on the photostability of avobenzone†

Kerry M. Hanson,* Miles Cutuli, D Tiffany Rivas, Miranda Antuna, Jessica Saoub, Nathan T. Tierce and Christopher J. Bardeen D*

The photodegradation of avobenzone (AV), the only ultraviolet filter molecule approved by the Food and Drug Administration to absorb UVA radiation, is an important problem in sunscreen formulations. In this paper, the photophysics and photostability of AV in various solvent systems and in aqueous micelles are studied. AV in its keto—enol tautomer functions as an effective UVA protection agent. AV is highly susceptible to photoinduced diketonization in both nonpolar solvents and in aqueous aggregates but is considerably more stable in polar, protic solvents like methanol. By studying its stability in different surfactant solutions, we show that incorporation of AV into sodium dodecylsulfate (SDS) micelles can achieve stability levels comparable to neat methanol. Steady-state spectral shifts, fluorescence anisotropy, and time-resolved fluorescence decay measurements are all consistent with AV experiencing a polar environment after micellar encapsulation. It is proposed that AV is encapsulated in the palisade layer of the SDS micelles, which allows access to water molecules that facilitate the re-formation of the enol form after photon absorption and relaxation. Although the detailed mechanism of AV tautomerization remains unclear, this work suggests that tuning the chemical microenvironment of AV may be a useful strategy for improving sunscreen efficacy.

Received 13th December 2019, Accepted 17th February 2020 DOI: 10.1039/c9pp00483a

rsc.li/pps

Introduction

Photodamage of the skin results from the absorption of ultraviolet (UV) radiation by intrinsic chromophores found in both the epidermis and dermis. This damage includes immediate effects like erythema, melanogenesis, and immunodulation as well as delayed effects like photoaging, actinic keratosis, and carcinogenesis. 1-7 Sunscreens use UV filters to protect the skin either by scattering (physical sunscreens) or by absorbing (chemical sunscreens) UVB (280 nm-320 nm) and UVA (320 nm-450 nm) radiation before these photons can penetrate into the skin. Ideally, a chemical UV filter absorbs a photon and then quickly relaxes through nonradiative pathways, effectively converting the high energy UV photon into low energy vibrations or heat.8-15 In addition, a UV filter should be stable and not undergo chemical changes that lessen its ability to absorb UV light or modify its toxicity. Today, the Food and Drug Administration (FDA) recognizes the importance of photostability in sunscreen function and

Department of Chemistry, University of California, Riverside, 501 Big Springs Road,

christopher.bardeen@ucr.edu

†Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00483a

requires a photochemical stability test as one of its criteria for sunscreen evaluation. 16

Avobenzone (4-tert-butyl-4'-methoxydibenzoylmethane, (AV)) is a 1,3-dicarbonyl compound that is currently the only UVAabsorbing filter molecule approved by the FDA for use in sunscreens. It is also highly photolabile under UVA irradiation.¹⁷⁻²² Avobenzone can exist in multiple isomeric forms, three of which are illustrated in Scheme 1: the intramolecular keto-enol chelate, the non-chelated keto-enol, and the diketone form. 23,24 The most stable isomer is the ketoenol intramolecular chelate which exhibits a strong oscillator strength in the UVA created by a π - π * transition due to conjugation through the carbonyl-ethylene unit.20,25,26 This isomer is responsible for the UVA protection of AV. The more polar diketone isomer absorbs mainly in the UVC region (260 nm-280 nm) and thus does not afford protection against UV photons that reach Earth's surface. 12,18,20-22,25,27 Formation of the metastable diketone leads to two inter-related problems. 12,18,27 First, it no longer absorbs UVA due to loss of the conjugation across the keto-enol bridge, which in practical terms correlates to efficacy loss of avobenzone as a UVA absorbing sunscreen. Second, excitation of the $n-\pi^*$ transition of diketone AV generates a triplet state (500 ns, E_T = 59.5 kcal mol⁻¹) that can sensitize singlet oxygen, as well as undergo a Norrish Type I reaction where the alpha-carbon splits forming two radicals, leading to complete photodegradation of

Riverside, CA 92521, USA. E-mail: kerry.hanson@ucr.edu,

Scheme 1 Examples of the non-chelated and chelated keto-enol and diketone tautomers of avobenzone. Because of the asymmetry of the molecule, the two keto-enol structures also have a counter molecule that is not shown. Additionally, the non-chelated enol may have multiple conformers.32

AV. 17,22,28 Currently, the primary method for improving AV photostability, and thus its efficacy, relies upon enabling AV to undergo excited state energy transfer to a different molecule. 28,29 A more general method to prevent AV isomerization to the diketone form would help preserve its UVA protection capability and improve sunscreen efficacy.

Currently, the mechanism of how AV partitions between the diketone and keto-enol tautomers after photoexcitation remains unclear. Upon excitation, the keto-enol chelate is broken, enabling rapid internal conversion back to the electronic ground state manifold, where it partitions between multiple non-chelated isomers.³⁰ These isomers can either relax back to the intramolecular chelated tautomer on longer timescales or undergo intramolecular hydrogen migration to form the diketone. 20,30 This process appears to be solvent dependent, where tautomerization is detected in non-polar (cyclohexane, isooctane) and polar, aprotic (DMSO, acetonitrile) solvents but is effectively absent in polar, protic solvents like methanol. 20-22,28,31-35 Given the beneficial effects of this class of solvents, one might hope that water, a solvent that is known to effectively mediate proton transfer reactions, would have a stabilizing effect on AV. However, like other hydrophobic UV filters, AV is almost completely insoluble in H2O. Recently, we found that the photostability of the UVB filter molecule octylmethoxycinnamate was strongly reduced by aggregation in water.36 In this paper, we examine how the local solvent environment affects AV photostability. We are particularly interested in controlling the access of H2O molecules to AV using micellar encapsulation. The ultimate goal is to identify conditions that stabilize AV in its keto-enol tautomer where it can function as an effective UVA protection agent. The results in this paper show that tuning the chemical microenvironment of AV may be a useful strategy for improving sunscreen efficacy.

Experimental

Reagents

Avobenzone (98%) was provided by Merck Consumer Care Inc. (Memphis, TN). All solvents (cyclohexane, methanol, ethylene glycol, acetonitrile) and surfactants (cetrimonium bromide (CTAB), trimethylammonium bromide (TTAB), sodium dodecylbenzenesulfonate (SDBS), sodium laurate (SL), sodium dodecyl sulfate (SDS), >99%) were obtained from Sigma-Aldrich and used without further purification. MilliO water was used for the surfactant solutions.

Sample preparation

Photostability and fluorescence experiments in neat solvents were done using dilute solutions of AV (ca. 6 µM) in cyclohexane, methanol, ethylene glycol and acetonitrile. To create dry acetontitrile, anhydrous magnesium sulfate was added to 10 mL of 0.6 µM AV, and the solution was allowed to stand in the dark for 1 h before the photostability tests were performed. To make suspensions of colloidal AV particles in water and surfactants (SDS, CTAB, TTAB, SDBS, SL) the re-precipitation method was used.36 200 µL of 10 mM AV in methanol was quickly injected into a rapidly stirred solution of 10 mL MilliO water or surfactant (CTAB (2 mM), TTAB (8 mM), SDBS (5 mM), SL (42 mM), and SDS (2 mM, 4 mM, 6 mM, 8 mM, 10 mM, 12 mM, 15 mM and 20 mM)). Each solution was stirred uncovered for 45 minutes to allow evaporation of the methanol. Subsequently, a 300 µL aliquot was transferred to 10 mL of water or surfactant to create an ca. 6 μM solution. In order to avoid changes in the absorption spectrum due to further aggregation, the aggregate solutions were used immediately after preparation. Photostability and/or fluorescence experiments of AV in surfactants (CTAB, TTAB, SDBS, SL and in SDS) above their respective critical micelle concentration (CMC) values were performed 24 hours post-creation to ensure that the molecule partitioned into the micelles.

Photostability studies

Solar simulated UV radiation was generated by a solar simulator (Model 16S, 150 W, Solar Light Company, Glenside, PA). The spectral output travelled through an optical fiber to a 1 cm pathlength quartz cuvette. The fiber was placed in front of the cuvette such that the UV output beam incident on the sample had a diameter of 1 cm. The UV spectrum was composed of 30 mW UVA and 1 mW UVB, which is excellent agreement with the UVA: UVB ratio of the standard solar spectrum ASTM G173-03.37 The concentration of AV was ca. 6 µM in all sol-

vents, corresponding to a peak optical density <0.2, to prevent inner-filter effects. Each solution had an identical volume (3.2 mL) and was stirred constantly during irradiation. The solar simulator dose control system was used to set the UV dose at time (t) = 0, 60, 300, 600, 1200, and 2400 (± 0.2) seconds), where 56 s is equivalent to 1 minimal erythemal dose measured as 22 mJ cm⁻² UVB, and 660 mJ cm⁻² UVA. Absorption spectra were recorded at each time point by a Cary-500 absorption spectrophotometer. Experiments were performed in duplicate. Absorption spectra of the neat solvents were recorded and showed no absorption >250 nm; they were subtracted from the sample spectra. In order to determine the fraction of enol (f_{Enol}) remaining after irradiation period, each absorption spectrum was normalized by dividing by the absorbance at the enol peak (λ_{max} which varies between 350 and 400 nm depending on solvent) of the t = 0 spectrum:

$$f_{\text{Enol}}(t) = \frac{\text{Abs}(\lambda_{\text{max}}, t)}{\text{Abs}(\lambda_{\text{max}}, t = 0)}$$
(1)

where $Abs(\lambda_{max}, t)$ is the absorbance at the λ_{max} of the enol peak at t = 60, 300, 600, 1200 or 2400 s and Abs($\lambda_{\text{max}}, t = 0$) is the absorbance at t = 0 s.

Fluorescence: steady-state and anisotropy spectra

Fluorescence spectra of dilute solutions and colloidal suspensions were acquired using a QuantaMaster 8000 (Horiba, Irvine, CA). All samples were stirred during each experiment. The excitation anisotropy (r) spectra were calculated using eqn (2):

$$r = \frac{I_{\parallel} - I_{\perp}}{I_{\parallel} + 2I_{\perp}} \tag{2}$$

where the emission polarizer is parallel (I_{\parallel}) or perpendicular (I_{\perp}) to the excitation polarizer.³⁸

Time-resolved fluorescence

Dilute solutions were used to collect fluorescence lifetime ($\tau_{\rm fl}$) data. The excitation wavelength at 320 nm was generated by pumping an OPA (Palitra, Quantronix) with 800 nm, 150 fs pulses from a Ti:sapphire regenerative amplifier (1 kHz, Libra, Coherent). The laser power was set to be at or below 75 µW at the sample surface. Fluorescence lifetime data were collected using a front face geometry with a picosecond streak camera (Streakscope, Hamamatsu C4334) whose instrument response function had a full-width-half maximum of ~25 ps. Scattered IR and UV light were removed by placing two 420 nm long wave pass filters and a hot mirror before the input of the streak camera.

Results and discussion

The characteristic AV $\pi - \pi^*$ transition in the UVA shifts to longer wavelengths with increasing solvent polarity (ESI, Fig. S1†). In non-aqueous, non-polar cyclohexane, the enol absorption peaks at 352 nm, but is shifted in polar, aprotic sol-

Table 1 Steady-state and time-resolved spectroscopic parameters of avobenzone in different solvent conditions

Solvent	Absorption λ_{\max} (nm)	Emission λ_{\max} (nm)	$f_{ m Enol}^{~a} ({ m std ~dev})$	$ au_{\mathrm{fl}}\left(\mathrm{ps}\right)$
Cyclohexane	352	402	0.03 (0.01)	<7
Methanol	360	410	0.99(0.00)	<7
Ethylene glycol	362	414	0.96(0.00)	_
Water	368	423	0.35(0.02)	_
SDS (20 mM)	363	419	0.96(0.01)	18 ps $(a = 0.9)$
, ,			, ,	125 ps $(a = 0.1)$
SDS (15 mM)	363	417	0.97(0.01)	
SDS (12 mM)	363	419	0.96 (0.00)	_
SDS (10 mM)	363	419	0.94(0.01)	_
SDS (8 mM)	363	421	0.81(0.06)	_
SDS (6 mM)	363	424	0.87(0.02)	_
SDS (4 mM)	401	422	0.79(0.19)	_
SDS (2 mM)	363	424	0.67 (0.17)	_
CTAB (2 mM)	356	_	0.82(0.02)	_
SDBS (5 mM)	361	_	0.96 (0.02)	_
SL (42 mM)	361	_	0.93 (0.01)	_
TTAB (8 mM)	361		0.91(0.04)	_

^a Fraction of enol remaining after 1200 s⁻¹ (0.5 J cm⁻² UVB, 14.1 J cm^{-2} UVA).

vents like ethylene glycol where the λ_{max} is 362 nm (Table 1). These results are consistent with the literature and illustrate how the polar nature of the first excited singlet state (S₁) is stabilized by polar solvents lowering the S₀-S₁ the energy gap.20,39

In contrast to organic solvents, AV is effectively insoluble in water. It forms aggregates as indicated by a faintly cloudy solution that yields the typical scattering profile from a colloidal suspension, with an exponential tail that extends to longer wavelengths (ESI, Fig. S1†). These results are similar to those of the UVB filter octylmethoxycinnamte.³⁶ This spectrum also exhibits clear signs of aggregation, with a strong broadening and redshift of the lowest energy absorption peak. The change in the absorption lineshape is consistent with a disordered solid in which J-type (leading to an absorption red-shift) aggregates exist.40

The insolubility of AV in neat H₂O motivated us to use the surfactant SDS as an alternative way to expose AV to H₂O molecules while preventing aggregation. Absorption spectral data show that aggregation of AV depends on the concentration of SDS in the solution (Fig. 1). At concentrations below the SDS CMC (8 mM), the absorption profile is similar to that of colloidal AV, with a broadening of the absorption spectrum as well as a baseline offset due to scattering. But as the SDS concentration increases above the CMC, there is a sudden increase in the absorbance accompanied by a narrowing of the absorption, so that it resembles the fully solubilized AV in nonaqueous solutions.

To gain a better understanding of the molecule's incorporation into the micelle, data from steady-state and time-resolved fluorescence measurements were analyzed. The normalized fluorescence spectra of AV in several different solvents, including the aggregated form in neat H₂O (0 mM SDS), are shown in

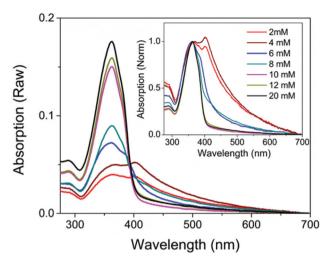


Fig. 1 Avobenzone in increasing SDS concentration. Solubility improves with increasing SDS concentration, where the aggregates that broaden the spectrum below the CMC (8 mM) disappear with a concomitant increase in the left shoulder of the enol absorption.

Fig. 2. As with the absorption spectra, there is a systematic red shift as the solvent polarity is increased. In contrast to the spectra in organic solvents, the spectrum of the aggregates in water is very broad, with the peak at 430 nm followed by large shoulder at 530 nm. The shoulder at 530 nm disappears as the concentration of SDS in water increases above the CMC (ESI, Fig. S2†) and is completely absent in 20 mM SDS. The loss of this shoulder is consistent with the assumption that it reflects an aggregated form of AV rather than the molecular emission, which appears only at SDS concentrations above the CMC. AV is not a strongly emissive species, which is consistent with its ability to return to the ground state via internal conversion on a sub-nanosecond timescale.30 While this rapid internal conversion is useful for it to fulfill its function as a UV filter, it makes measurement of the fluorescence spectrum challenging, especially in non-polar solvents like cyclohexane. Because of the low signal levels, we could not reliably measure absolute quantum yields. We could determine the relative fluorescence intensity increase in more polar solvents, with AV emitting ~6× more in methanol than in cyclohexane and ~10× more in 20 mM SDS than in methanol (ESI, Fig. S3†).

Both absorption and fluorescence data suggest that once the micelles are formed, the AV molecules de-aggregate. Presumably it is incorporated into the SDS micelle. Given that the micelle interior is composed of hydrophobic alkyl chains, one would expect that if AV was encapsulated fully within the hydrophobic core, then the absorption and emission shifts would be similar to those of cyclohexane ($\lambda_{\rm max}=352$ nm, Table 1). Instead, the absorption (Fig. S1,† Table 1) and fluorescence (Fig. 2, Table 1) shifts of AV in SDS micelles are similar to those in polar, protic solvents, indicating that the molecule resides in an environment even more polar than that provided by methanol or ethylene glycol.

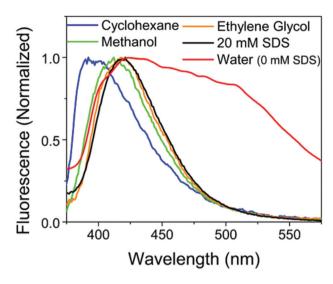


Fig. 2 Fluorescence emission spectra of dilute solutions of avobenzone excited at 320 nm in cyclohexane (blue), methanol (green), ethylene glycol (orange), 20 mM SDS (black), and of aggregated colloidal avobenzone in water (0 mM SDS). The spectra shift to the red with increasing dielectric constant (Table 1).

The question of whether AV resides in the micelle can be addressed by steady-state anisotropy experiments. The interior of the micelle tends to isolate the molecules in more viscous surroundings, preventing depolarization due to energy migration and rotation diffusion. Fig. 3a shows that in 20 mM SDS the anisotropy is well-behaved with a single value across the first absorption band. This spectrally flat anisotropy value was observed in all solvents (ESI, Fig. S4†). The anisotropy undergoes a sudden increase at the CMC of SDS (8 mM) (Fig. 3b), similar to the jump in absorption intensity seen in Fig. 2. Below the CMC, the anisotropy of the aggregated form in water is low (r = 0.15), which we attribute to intermolecular energy transfer within the aggregate that depolarizes the fluorescence. Above the CMC, the anisotropy peaks at r =0.35 (20 mM SDS) similar to that measured in methanol (r =0.32), and to values reported for other dyes in micelles.44 These higher anisotropy values likely reflect the fact that the transition dipole orientation in micelles and methanol can only be randomized by molecular rotation. The rotational diffusion time of AV has not been measured, but typical values for small aromatic molecules are in the range of 10-50 ps in pure liquids, as compared to its fluorescence lifetime of less than 20 ps. 45 These timescales are comparable, and the steadystate anisotropy depends on their ratio (ESI†). There are several additional factors that can slow rotational diffusion in the micelles and in methanol and give rise to higher steadystate anisotropies. One is the hindered environment leading to higher anisotropy values for small molecules in the SDS micelle.44 A second is the association of hydrogen-bonded solvent molecules to the solute, as in the work by Das et al. showing that intermolecular hydrogen bonding between 3-hydroxyflavone and protic solvents slows down rotational

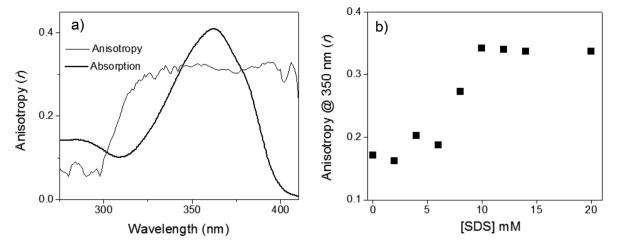


Fig. 3 (a) The excitation anisotropy spectrum (thin black line) and the absorption spectrum (thick black line) of avobenzone in 20 mM SDS. (b) The anisotropy at 350 nm near the λ_{max} of the enol species at different concentrations of SDS. The CMC of SDS is 8 mM, which is at the midpoint of the graph.

diffusion and leads to higher fluorescence anisotropy values. 46 Taken together, the spectral shifts and anisotropy changes are both consistent with AV being successfully encapsulated inside the SDS micelles and sequestered near the headgroup-water interface rather than the hydrophobic core.

Time-resolved fluorescence lifetime measurements also support the idea that AV exists in a polar environment in the SDS micelle. The increased fluorescence yield in methanol and 20 mM SDS suggested that the fluorescence lifetime has increased due to slower internal conversion. To confirm this, we used a picosecond streak camera to measure AV's fluorescence decay after excitation at 370 nm. In methanol, the signal decayed within the instrument response function of our system (<7 ps), and we observed a very weak longer-lived nanosecond decay at <1% of the total signal amplitude (Fig. 4). We could not rule out that this emission was the result of an impurity, so we did not analyze it further. In contrast, the fluorescence decay (τ_f) of the 20 mM SDS sample could be resolved (Fig. 4) and exhibited bi-exponential behavior reflecting two emitting species and was fit to the function $A_1e^{-t/\tau_1} + A_2e^{-t/\tau_2}$. Convolution with the instrument response yielded a dominant species $(A_1 = 0.9)$ with $\tau_1 = 18$ ps and a second longer lived species with a smaller amplitude ($A_2 = 0.1$) with $\tau_2 = 125$ ps. The integrated fluorescence signal from a biexponential decay is proportional to its average weighted lifetime given by $A_1\tau_1$ + $A_2\tau_2$ = 28.7 ps for AV in SDS micelles. Given the fact that AV's fluorescence yield is 10-60× greater in SDS micelles than in methanol and cyclohexane, respectively, this result implies that the excited state lifetime in those solvents should be ≤3 ps, in good agreement with femtosecond transient absorption results.30 Both our steady-state and time-resolved measurements suggest that AV's excited state lifetime is significantly extended in SDS micelles, most likely due to a polar local environment. This stabilization in polar solvents was inferred from transient absorption experiments and is also consistent with the observation that the internal conversion

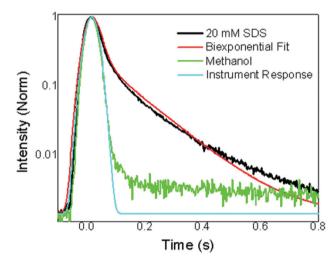


Fig. 4 Fluorescence lifetime data of avobenzone in 20 mM SDS (black), which was fit to a biexponential decay (red). Avobenzone in methanol (green) exhibited a lifetime that was within the instrument response (cyan), compared to the longer lived lifetime exhibited in 20 mM SDS.

rate of dibenzoylmethane (DBM), an AV analog, slowed down in more polar solvents. 30,47,48 They hypothesized that a U-shaped complex between the DBM keto-enol and hydrogen bonding solvents can enhance the rigidity of the molecule, reducing the likelihood of energy dissipation through rotational pathways. Intermolecular hydrogen bonding also helps reconcile the high anisotropy and longer lifetime values experienced by AV in micelles (ESI†).

The preceding results have shown that AV's photophysics are quite sensitive to its environment, although its UVA absorption is always present. From a practical standpoint, because of its worldwide use in sunscreens, it is an interesting question whether the different solvent environments also affect the long-term photostability of AV. As described in the

Introduction, the first step in the loss of UVA protection is the formation of the diketone isomer with a characteristic absorption peak ca. 270 nm. In non-polar cyclohexane, solar UV irradiation leads to rapid loss of the keto-enol absorption at 352 nm and growth of the diketone peak at 270 nm (Fig. 5a). The presence of an isosbestic point at 295 nm is consistent with a simple two-state tautomerization. In cyclohexane, AV undergoes almost complete tautomerization to the diketone structure ($f_{\text{Enol}} = 0.03$ at 1200 s (Table 1)), consistent with the results of Mturi et al.20 In aqueous colloidal suspensions, tautomerization also dominates the change in absorption of the molecule where the isosbestic point at 310 nm identifies the change in molecular structure from the UVA absorbing enol to the UVC absorbing diketone (Fig. 5b). In both of these samples, there is an absence of intermolecular hydrogen bonding opportunities due to a local environment composed of either cyclohexane molecules or other AV molecules. However, when we switched to methanol, the absorption spectrum of AV changed only by ~1% under solar-simulated UV irradiation up to 1200 s (Fig. 5c), which is also consistent with the literature. 17-22 However, interestingly, AV showed a similar

level of stability in 20 mM SDS (Fig. 5d), losing only 4% of its initial absorbance at 356 nm.

The role of micellar encapsulation in stabilizing AV can be seen in Fig. 6a, which shows the fraction of the enol absorbance at 356 nm remaining ($f_{\rm Enol}$) after 1200 s of UV irradiation, for different SDS concentrations. In neat water (0 mM SDS), AV rapidly degrades in aggregate particles and $f_{\rm Enol}$ = 0.03. As the concentration of SDS is increased, $f_{\rm Enol}$ increases as well, approaching 1.0 at SDS concentrations above the CMC. To achieve maximum stability, the concentration of SDS must be above the CMC to fully separate the AV molecules while allowing access to H2O molecules. We found that the ability of a surfactant to stabilize AV also depends on its chemical structure. While SDS was the most effective at preserving the enol form, other surfactants also showed varying degrees of photostabilization of AV. Fig. 6b shows the initial decay of the AV absorbance in surfactants SDS, CTAB, SL, and TTAB. Interestingly, AV in CTAB undergoes the most rapid decay. These results suggest that encapsulation of AV inside a micelle is not enough to prevent diketonization, and that the surfactant chemical structure or micelle shape also plays a

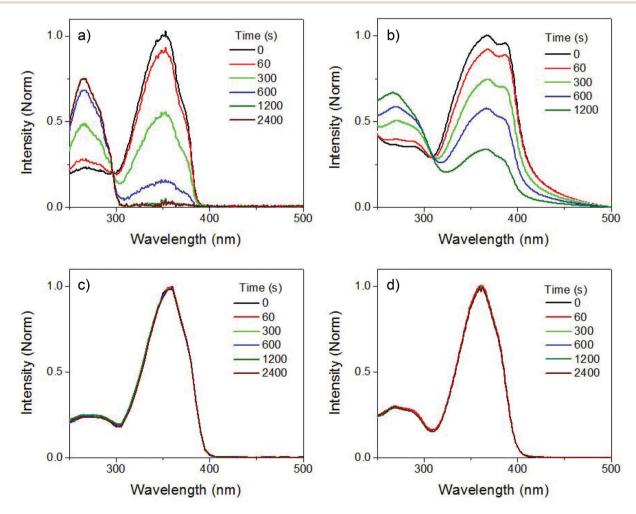


Fig. 5 The absorption spectrum of \sim 6 μ M avobenzone in cyclohexane (a), water (b), methanol (c), and 20 mM SDS (d) as a function of solar-simulated UV irradiation time.

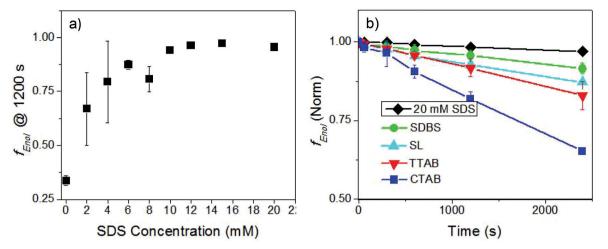


Fig. 6 (a) The fraction of enol remaining after 1200 s of UVA/UVB irradiation at different concentrations of SDS. (b) The fraction of enol remaining as a function of irradiation time for micellular solutions of different surfactants.

role. Presumably the presence of labile hydrogen donors is required to facilitate intramolecular chelate recovery. This observation may help explain why encapsulation of AV in hydroxypropyl-b-cyclodextrin also improved photostability.49

The ability of polar, protic solvents to prevent diketonization has been observed for other keto-enol systems. Tobita and coworkers postulated a mechanism for DBM by which an intermolecular hydrogen bond acts as an intermediate to catalyze the reformation of the intramolecular chelate, allowing the process to compete more effectively with the diketone tautomerization pathway.47 In this model, the presence of even a few H2O molecules inside the micelle may be sufficient to reform the chelate. We tested this hypothesis by performing the photostability experiment using polar, aprotic acetonitrile under both wet and dry conditions. We found that in the presence of 1% water, 85% of the enol absorption remains after 2400 s of solar simulated UV irradiation (ESI, Fig. S5a†). Additionally, there was no clear isosbestic point in the spectra, indicating that photodegradation may be occurring through pathways different than tautomerization. In contrast, a clear isosbestic point and dramatic decrease in the enol portion of the absorption spectra of AV is detected in dry acetonitrile (ESI, Fig. S5b†). These data suggest that it is the ability of the micelle to allow H₂O molecules to access isolated AV molecules that leads to enhanced photostability.

It is interesting to compare AV with curcumin, another wellstudied keto-enol molecule, where micellar encapsulation leads to enhanced stability. Curcumin undergoes a ground state hydrolysis of the enol, and micellar encapsulation protects the molecule from the surrounding water. 50-53 We found that AV slowly undergoes hydrolysis in SDS solutions below the CMC, with the decrease occurring over a period of 24 hours (ESI, Fig. S6†). Above the CMC, the AV absorption remained stable indefinitely in the absence of light. As with curcumin, the micelles appear to protect AV from water hydrolysis. In SDS micelles, we appear to have a balanced situation in which specific interactions with H₂O can suppress AV photoketonization, but the H2O molecules do not have completely free access to the AV molecule, which would lead to ground state hydrolysis. In fact, we may be able to draw an analogy to the photophysics of curcumin, where it is proposed that it is the access to water that facilitates excited state proton transfer within 50-80 ps in micelles and within 21 ps in cyclodextrin systems. 50,54 Rapid excited state proton transfer in turn allows for the stabilization of the enol structure. Although the detailed ground state (AV) and excited state (curcumin) proton transfer pathways remain to be elucidated, in both molecules the presence of a hydrogen bonding partner appears to play a key role for increasing their photostability in micelles.

Conclusion

The results in this paper clarify how AV, the only UV filter approved by FDA to absorb UVA radiation, undergoes photodegradation. AV is highly susceptible to diketonization in both nonpolar solvents and in its aggregated form but is considerably more stable in polar, protic solvents like methanol. By studying its stability in different surfactant solutions, we show that incorporation of AV into SDS micelles can achieve stability levels comparable to neat methanol. Steady-state spectral shifts, fluorescence anisotropy, and time-resolved fluorescence decay measurements are all consistent with AV experiencing a polar environment after encapsulation. We propose that AV is encapsulated in the palisade layer of the SDS micelles, which allows access to water molecules that facilitate the re-formation of the enol form after photon absorption and relaxation. Although the detailed mechanism of AV tautomerization remains unclear, this work suggests that a microheterogeneous strategy might be a fruitful approach to make improved sunscreens with stable UVA blocking capability. The advantage

of the micellar systems is that they can be adapted to formulations that are required for practical sunscreens. An improved understanding of the role of proton transfer in microheterogeneous systems may provide a route to more stable and effective sunscreens

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was supported by the National Science Foundation grants DMR-1810514.

References

- 1 S. Amano, Characterization and mechanisms of photoaging-related changes in skin: damages of basement membrane and dermal structures, *Exp. Dermatol.*, 2016, **25**, 14–19.
- 2 J. J. Bernard, R. L. Gallo and J. Krutmann, Photoimmunology: how ultraviolet radiation affects the immune system, *Nat. Rev. Immunol.*, 2019, 19, 688–701.
- 3 P. M. Farr and B. L. Diffey, The erythemal response of human skin to ultraviolet radiation, *Br. J. Dermatol.*, 1985, 113, 65–76.
- 4 V. Grandi, P. Di Gennaro, S. Torrigani, L. Basco, I. Lastrucci and N. Pimpinelli, Ingenol mebutate-mediated reduction in p53-positive keratinocytes in skin cancerization field directly correlates with clinical response in patients with multiple actinic keratoses, *J. Eur. Acad. Dermatol. Venereol.*, 2019, 33, 1297–1303.
- 5 V. T. Natarajan, P. Ganju, A. Ramkumar, R. Grover and R. Gokhale, Multifaceted pathways protect human skin from UV radiation, *Nat. Chem. Biol.*, 2014, **10**, 542–551.
- 6 C. Nishigori, Current concept of photocarcinogensis, *Photochem. Photobiol. Sci.*, 2015, **14**, 1713–1721.
- 7 M. Norval, The mechanisms and consequences of ultraviolet-induced immunosuprresion, *Prog. Biophys. Mol. Biol.*, 2006, **92**, 108–118.
- 8 L. A. Baker, S. E. Grennough and V. G. Stavros, A perspective on the ultrafast photochemistry of solution-phase sunscreen molecules, *J. Phys. Chem. Lett.*, 2016, 7, 4655–4665.
- 9 C. A. Bonda, in *Sunscreens: Regulation and Commercial Development*, ed. H. A. Shaath, Taylor & Francis, Boca Raton, 2005.
- 10 B. Diffey, R. P. Stokes, S. Forestier, C. Mazailier and A. Rougier, Suncare product photostability: a key parameter for a more realistic in vitro efficacy evaluation, *Eur. J. Dermatol.*, 1997, 7, 226–228.

- 11 E. L. Holt and V. G. Stavros, Applications of ultrafast spectroscopy to sunscreen development, from first principles to complex mixtures, *Int. Rev. Phys. Chem.*, 2019, 38, 243–285.
- 12 S. P. Huong, V. Andriew, J.-P. Reynier, E. Rocher and J.-D. Fourneeron, The photoisomerization of the sunscreen ethylhexyl p-methoxy cinnamate and its influence on the sun protection factor, *J. Photochem. Photobiol.*, A, 2007, 186, 65–70.
- 13 R. M. Sayre, J. C. Dowdy, A. J. Gerwig, W. J. Shields and R. V. Lloyd, Unexpected photolysis of the sunscreen octinoxate in the presence of the sunscreen avobenzone, *Photochem. Photobiol.*, 2005, 81, 452–456.
- 14 N. Serpone, A. Salinar, A. V. Emeline, S. Horikoshi, H. Hidaka and J. Zaho, An in vitro systematic spectroscopic examination of the photostabilities of a random set of commercial sunscreen lotions and their chemical UVB/UVA active agents, *Photochem. Photobiol. Sci.*, 2002, 1, 970–981.
- 15 R. Stokes and B. Diffey, In vitro assessment of sunscreen photostability: the effect of radiation source, sunscreen application thickness and substrate, *Int. J. Cosmet. Sci.*, 1999, 21, 341–351.
- 16 Sunscreen Drug Products for Over-the-Counter Use: Final Rule and Proposed Rules, Food and Drug Administration, Department of Health and Human Services, 2011, vol. 76, pp. 35620–35665, .
- 17 A. Cantrell and D. J. McGarvey, Photochemical studeis of 4-tert-butyl-4'-methoxydibenzoylmethane (BM-DBM), *J. Photochem. Photobiol., B,* 2001, **64**, 117–122.
- 18 D. Dondi, A. Albini and N. Serpone, Interactions between different solar UVB/UVA filters contained in commerical sunscreens and consquent loss of UV protection, *Photochem. Photobiol. Sci.*, 2006, 5, 835–843.
- 19 A. Kikuchi, N. Ogachi and M. Yagi, Optical and electron parametic resonance studies of the excited states of 4-tert-butyl-4'-methoxydibenzoylmethane and 4-ter-butyl-4'-methoxydibenzoylpropane, *J. Photochem. Photobiol.*, *A*, 2009, 200, 1474–1479.
- 20 G. J. Mturi and B. S. Martinicigh, Photostability of the sunscreening agent 4-tert-butyl-4'-methoxydibenzoylmethane (avobenzone) in solvents of different polarity and proticity, *J. Photochem. Photobiol.*, A, 2008, 200, 410–420.
- 21 N. M. Roscher, M. K. O. Lindermann, S. B. Kong, C. G. Cho and P. Jiang, Photodecomposition of several compounds commonly used as sunscreen agents, *J. Photochem. Photobiol.*, *A*, 1994, **80**, 417–421.
- 22 W. Schwack and T. Rudolph, Photochemistry of dibenzoyl methane UVA filters Part I, *J. Photochem. Photobiol., B*, 1995, **28**, 229–234.
- 23 M. P. Kojic and M. Etinski, A new insight into the photochemistry of avobenzone in gas phase and acetonitrile from ab initio calculations, *Phys. Chem. Chem. Phys.*, 2016, **18**, 22168–22178.
- 24 G. H. Trossini, V. G. Maltarollo, R. D. A. Garcia, C. A. S. O. Pinto, M. V. R. Velasco, K. M. Honorio and A. R. Baby, Theoretical study of tautomers and photoisomers of avovenzone by DFT methods, *J. Mol. Model.*, 2015, 21, 319–325.

- 25 I. Andrae, F. Bohn, A. O. Bringhen, H. Gozenbach, T. Hill, I. Mulroy and T. G. Truscott, J. Photochem. Photobiol., B, 1997, 37, 147–150.
- 26 P. Markov and I. Petkov, On the photosensitivity of dibenzoylmethane, benzoylacetone and ethyl benzoylacetate in solution, *Tetrahedron*, 1977, 33, 1013–1015.
- 27 M. Dubois, P. Gilard, P. Tiercet, A. Deflandre and M. A. Lefebvre, Photoisomerization of the sunscreen filter PARSOL 1789, J. Chim. Phys., 1998, 95, 388–394.
- 28 H. Gozenbach, T. J. Hill and T. G. Truscott, The triplet energy levels of UVA and UVB sunscreens, *J. Photochem. Photobiol.*, *B*, 1992, **16**, 377–379.
- 29 C. A. Bonda, A. Pavlovic, K. M. Hanson and C. J. Bardeen, Singlet quenching proves faster is better for photostability, *Cosmet. Toiletries*, 2010, **125**, 40–48.
- 30 A. D. Dunkelberger, R. D. Kieda, B. M. Marsh and F. F. Crim, Picosecond dynamics of avobenzone in solution, *J. Phys. Chem. A*, 2015, **119**, 6155–6161.
- 31 C. A. Bonda, P. Marinelli, P. Trivedi, S. Hopper and G. Wentworth, Avobenzone photostability in simple polar and non-polar solvent systems, *J. Cosmet. Sci.*, 1998, 49, 210–212.
- 32 A. Deflandre and G. Lang, Photostability assessment of sunscreens-benzylidene camphor and dibenzoylmethane derivatives, *Int. J. Cosmet. Sci.*, 1988, **10**, 53–62.
- 33 G. Marti-Mestres, C. Fernandez, N. Parsotam, F. Nielloud, J. P. Mestres and H. HMaillols, Stability of UV filters in different vehicles: solvents and emulusions, *Drug Dev. Ind. Pharm.*, 1997, 23, 647–655.
- 34 N. Tarras-Wahlberg, G. Stenhagen, O. Larko, A. Rosen and A. M. Wennberg, Changes in ultraviolet absorption of sunscreens after ultraviolet irradiation, *J. Invest. Dermatol.*, 1999, 113, 547–553.
- 35 V. Vanquerp, C. Rodriguez, C. Coiffard, L. J. M. Coiffard and Y. Roeck-Holtzhauer, High performance liquid chromatogrphic method for the comparison of the photostability of five sunscreen agents, *J. Chromatogr.*, *A*, 1999, 832, 273–277.
- 36 K. M. Hanson, S. Narayanan, V. M. Nichols and C. J. Bardeen, Photochemical degradation of the UV filter octyl methoxycinnamate in solution and in aggregates, *Photochem. Photobiol. Sci.*, 2015, 14, 1607–1616.
- 37 American Society for Testing and Materials International. ASTM G173-03(2012) Standard Tables for Reference Solar Spectral Irradiance http://www.astm.org/Standards/G173.htm.
- 38 J. R. Lakowicz, *Principles of Fluorescence Spectroscopy*, Kluwer Academic/Plenum, New York, 2nd edn, 1999, pp. 291–366.
- 39 I. E. Agrapidis-Paloympis, R. A. Nash and N. A. Shaath, The effect of solvents on the ultraviolet absorbance of sunscreens, *J. Soc. Cosmet. Chem.*, 1987, 38, 209–221.
- 40 F. C. Spano, The spectral signatures of Frenkel polarons in H- and J-aggregates, *Acc. Chem. Res.*, 2010, **43**, 429–439.

- 41 K. M. Gaab and C. J. Bardeen, Wavelength and temperature dependence of the femtosecond pump-probe anisotropies in the conjugated polymer MEH-PPV: Implications for energy-transfer dynamics, *J. Phys. Chem. B*, 2004, 108, 4619–4626.
- 42 A. Kawski, Excitation energy transfer and its manifestation in isotropic media, *Photochem. Photobiol.*, 1983, 38, 487– 504
- 43 J. R. Lakowicz, *Principles of Fluorescence Spectroscopy*, Kluwer Academic/Plenum, New York, 1999.
- 44 N. C. Maiti, M. M. G. Krishna, P. J. Britto and N. Periasamy, Fluorescence dynamics of dye probes in micelles, *J. Phys. Chem. B*, 1997, **101**, 11051–11060.
- 45 G. R. Fleming, *Chemical Applications of Ultrafast Spectroscopy*, Oxford University Press, New York, 1986.
- 46 S. Das, S. Ghosh and N. Chattopadhyay, Unprecedented high fluorescence anisotropy in protic solvents: Hydrogen bond induced solvent caging?, *Chem. Phys.*, 2016, 644, 284– 287.
- 47 S. Tobita, J. Ohba, K. Nakagawa and H. Shizuka, Recovery mechanism of the reaction intermediate produced by photoinduced cleavage of the intramolecular hydrogen bond of dibenzoylmethane, *J. Photochem. Photobiol.*, *A*, 1995, 92, 61–67.
- 48 M. Yamaji and M. Kida, Photothermal tautomerization of a UV sunscreen (4-tert-Butyl-4'-methoxydibenzoylmethane) in acetonitrile studied by steady-state and laser flash photolysis, *J. Phys. Chem. A*, 2013, 117, 1946–1951.
- 49 J. Yang, C. J. Wiley, D. A. Godwin and L. A. Felton, Influence of hydroxylpropl-B-cyclodextrin on transdermal penetration and photostability of avobenzone, *Eur. J. Pharm. Biopharm.*, 2008, 69, 605–612.
- 50 R. Adhikary, P. J. Carlson, T. W. Kee and J. W. Petrich, Excited-state intramolecular hydrogen atom transfer of curcumin in surfactant micelles, *J. Phys. Chem. B*, 2010, 114, 2997–3004.
- 51 C. Banerjee, S. Ghosh, S. Mandal, J. Kuchlyan, N. J. Kundu and N. Sarkar, Expoloring the photophysics of curcumin in zwitterionic micelar system: an approach to control ESIPT process in the presence of room temperature ionic liquids and anionic surfactant, *J. Phys. Chem. B*, 2014, 118, 3669– 3681.
- 52 M. H. M. Leung and T. W. Kee, Effective stabilization of curcumin by association to plasma proteins: human serum albumin and fibrinogen, *Langmuir*, 2009, 25, 5773–5777.
- 53 Y.-J. Wang, M.-H. Pan, A.-L. Cheng, L.-I. Lin, Y.-S. Ho, C.-Y. Hsieh and J.-K. Lin, Stability of curcumin in buffer solutions and characterization of its degradation products, *J. Pharm. Biomed. Anal.*, 1997, 15, 1867–1876.
- 54 T. Harada, H. L. McTernan, D.-T. Pham, S. F. Lincoln and T. W. Kee, Femtosecond transient absorption spectroscopy of the medicial agent curcumin in diamide linked γ-cyclodextrin dimers, *J. Phys. Chem. B*, 2015, **119**, 2425–2433.