WAL SOCIETY
EMISTRY

ROY
CF CH

Nanoscale

View Article Online

View Journal | View |ssue

High-throughput sequential excitation for
nanoscale mapping of electrochemical strain
in granular ceriat

"} Check for updates |

Cite this: Nanoscale, 2019, 11, 23188

Boyuan Huang, (*® Ehsan Nasr Esfahani, 2 Junxi Yu,®< Brian S. Gerwe, (&4
Stuart B. Adler® and Jiangyu Li (8+**°

Dynamic strain based atomic force microscopy (AFM) modes often fail at the interfaces where the most
interesting physics occurs because of their incapability of tracking contact resonance accurately under
rough topography. To overcome this difficulty, we develop a high-thraughput sequential excitation AFM
that captures contact dynamics of probe-sample interactions with high fidelity and efficiency, acguiring
the spectrum of data on each pixel over a range of frequencies that are excted in a sequential manner.
Using electrochemically active granular ceria as an example, we map both linear and guadratic electro-
chemical strain accurately across grain boundaries with high spatial resolution where the conventional
approach fails. The enhanced electrochemical responses point 1o the accumulation of small polarons in
the space charge region at the grain boundaries, thought to be responsible for the enhanced electronic
conductivity in nanocrystalline ceria. The spectrum of data can be processed very efficiently by physics-
informed principal component analysis (PCAL speeding data processing by several orders of magnitude.
This approach can be applied to a variety of AFM modes for studying a wide range of materials and struc-
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Introduction

Atomic force microscopy (AFM) was invented in 1986," and has
since emerged as a powerful tool to probe a wide range of
materials, structures, and systems with nanometer
resohition.>™® Underlying the working principle of AFM is the
dynamics of its cantilever, which is very sensitive to the
sample-tip interactions, making it possible to probe a wide
variety of functional properties.” ** Central to this operation is
the resonance of the cantilever, tracking of which is essential
to accurately capture the material characteristics of interest, or
substantial crosstalk and artifacts will be resulted."® This is
particulary important for an AFM operating in contact mode,
such as piezoresponse force microscopy (PFMJ Y and
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electrochemical strain microscopy (ESM),'''*?'  wherein
contact resonance is greatly affected not only by material het-
erogeneity but also by surface topography. For samples with
rough surfaces, for example, granular materials that are widely
used in electrochemical conversions,®' ™ accurate contact
resonance tracking is mather challenging, and the spatial
resolution is often compromised as a result.

A number of techniques have been developed to address
this issue. For example, dual amplitude resonance tracking
(DART]) excites the cantilever using two frequencies across the
resonance, and utilizes the difference in their amplitudes as
the error signal for tracking.®*™ This works reasonably well
for a smooth surface, but tracking often fails under a rough
topography.'*'** Band excitation (BE) has also been devel-
oped by synthesizing a signal summing all harmonic exci-
tarions within a frequency band,™ so that resonance is covered
within the band and thus tracking becomes unnecessary.
Nevertheless, the excitation power of BE is distributed among
the band of frequencies, resulting in much reduced strength
and signal-to-noise ratios (5/N) at each individual frequency.*”
Alternatively, a series of excitation signals of varying frequen-
cies can be applied to the cantilever in a sequential instead of
a concurrent manner, one frequency at a time, so that the
signal strength and S/N are not compromised.”® Such sequen-
tial excitation (SE) turns out to be very effective at capturing

Thiss joum is © The Roval Seciety of Cherristry 2019




Published on 21 Movember 2019, Downloaded by University of Washington on 7/29/2020 10:21:00 PM.

Hanoscale

the cantilever dynamics,®® though it requires multiple scans
that are not only slow and inefficient but also tend to induce
drifting, probe wearing and surface damage that complicates
the analysis. For sensitive electrochemical materials that are
not very stable, such as halide perovskites,™™ we may not
even have time to complete all the necessary scans.

Here we develop a high-throughput SE APM that is capable
of accurately capturing the cantilever dynamics, and thus the
underlying physical interactions, in just one instead of mul-
tiple scans. It has a scanning speed comparable to convention-
al DART, yet with much enhanced spatial resolution and
quantitative accuracy, especially ar the interface where steep
steps locate. This approach can be applied to any AFM modes
that rely on cantilever resonance for imaging, and we demon-
strate this here using ESM to probe defect-induced Vegard
strain near the grain boundaries in polycrystalline ceria. These
defects (small polarons) are thought to accumulate near the
grain boundaries, leading to enhanced electronic conductivity
in nanoscrystalline ceria.***! Using SE, we have mapped both
the linear and quadratic electrochemical strains in ceria near
the gmin boundaries at much higher resclution and fidelity
than that afforded by DART.

Results
Failure of resonance tracking

Atomic force microscopy (APM) works by probing its cantilever
dynamics as affected by sample—tip interactions, which can be
accurately described using a damped harmonic oscillator
model (DHO),*

Aﬂ"’ﬁ 5
\/"‘"2* ~ap+ (%) )

Alw) =

where Ag, ¢ho, @, and @y are the intrinsic amplitude, phase,
quality factor and resonance frequency of the system, respect-
ively, that are of interest to us, while Alw) and (@) are the
measured amplitude and phase at excitation frequency «. In
order to track the shifting resonance during a scan, which is
essential to accurately capture the sample-tip interactions,
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DART measures two pairs of amplitudes and phases as [4,(ay ),
hylen )] and [Ax(an)4ha(as]] at two excitation frequencies a, and
a)y, utilizing the difference between 4,(a,) and 4,(@;) as an
error signal for feedback control. One set of A,(s,) mappings
carefully acquired during trace and retrace scanning using
DART on granular cerda overlaid on its 3D topography are
shown in Fig. 1a, which covers one grain and a number of
grain boundaries, with more data presented in Fig. 51 of the
ESL{ The scale of the color bar is set for the best image con-
trast, so the values on the color bar shown in Fig. 1a do not
indicate the real range [1.3, 3.5]. While the trace and retrace
mappings resemble each other well in most pant of the scans,
a closer examination reveals that they differ substantially at
grain boundaries. This is made clearer by the comparison of
the line scans shown in Fig. 1b, where it is evident that during
tracing, the amplitude is reduced at the grain boundaries
while during retracing, it is enhanced. As such, the trends are
completely opposite between tracing and retracing at the grain
boundaries, while away from the grain boundaries they agree
well with each other. This difference highlights the failure of
resonance tracking when there is significant topography vari-
ation often encountered in materials, even though the scan is
carried out slowly with carefully adjusted parameters to ensure
reliable tracking. For more casual scans, the problem will be
more serious, as shown in Fig. 1c with more data in Fig. 82,1
where there are noticeable wavelet scratch-like patterns in the
mapping of frequency w, that extends along the scanning
direction of the probe, especially at the grain boundaries. Such
an artifact clearly indicates the failure of resonance tracking,
even within a grain where topography variation is insignifi-
cant, and such mappings are not reliable even for qualitative
analysis.

High-throughput sequential excitation

One solution to overcome the difficulties of resonance tracking
is to eliminate it altogether, for example by exciting the cantile-
ver over a range of frequencies that cover the resonance. Band
excitation (BE) implements this concept by applying all the fre-
quencies concurrently,” while sequential excitation (SE)
carries this out in a sequential manner.**™* The difference
between these two approaches seems subtle, yet the impli-
cation is significant. The excitation power under SE is concen-
trated in each individual frequency, while under BE it is dis-

—Retrace
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Fig. 1 The difficulty and failure of resonance tracking: (a) amplitude mappings from trace and retrace acquired under DART: (b} comparison of the
corresponding line scans between trace and retrace; (c) artifacts in the mapping of excitation frequency.
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Fig. 2 Schematic of high-throughput SE-ESM.

tributed over the entire band, and thus SE has much stronger
signal strength and S/N. Original SE requires multiple scans
each with a distinct excitation frequency, which can be
implemented on any standard AFM. Yet it is time consuming
and prone to shifting during different scans, and it tends to
induce probe wearing and sample damage. Here, we develop
an advanced implementation for high-throughput SE that
requires just one scan, as schematically shown in Fig. 2.
Central to our approach is a high-resolution waveform
designated as Drive in Fig. 2 drawn in the time domain, where
it is seen that the frequency increases over time. This drive
signal consists of m joined sinusoidal waves with discrete fre-
quencies, which can be produced by an Arbitrary Waveform
Generator (AWG) for each pixel during scan, as detailed in
Fig. 53.f The resulting deflection signal of the cantilever at
each pixel is recorded in the time domain, and then Fourier
transformed into the frequency domain using the corres-
ponding drive as a reference. This is equivalent to a digital
lock-in, from which m pairs of amplitudes and phases are
obtained at each pixel over the frequency range of interest. As
a demonstration, the actual excitation and response in one of
our experiments are presented in Fig. 3. The drive consists of
15 sinuscidal waveforms with distinet frequencies ranging
from 347 to 390 kHz connected in a sequential manner over a
time span of 2.14 ms, as seen in Fig. 3a, with a zoomed in
image of 3 such waveforms shown in Fig. 3b. Each waveform
lasts for 50 cycles, leaving sufficient time to acquire response
data accurately, corresponding to a line scan mate of 0.8 Hz
that is comparable to a typical DART - it takes just 5 min to
complete a 256 x 256 pixel scan. The response is recorded in
the time domain, as shown in Fig. 3c and d, which contains a
large volume of data and is quite noisy. Yet after being Fourier
transformed into the frequency domain, a clear resonant peak
emerges in amplitude, due to which the phase jumps by 180°,
as shown in Fig. 3e and f along with the drve signal. Such
dynamics is expected from DHO governed by eqn (1), and this
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illustrates how high-throughput SE works on signal generation
as well as data acquisition and processing.
Linear and quadratic electrochemical strains
We now apply high throughput SE to probe linear and quadra-
tic electrochemical strains of granular ceria vig first and
second harmonic ESM measurements,”*~* for which high fide-
lity mappings at the grain boundaries are essential to examine
the proposed accumulation of space charges in its interfacial
regions. Since a sequence of Aey) and ¢{e;) are acquired
under SE at each pixel, which can be fitted by egn (1) of DHO
as shown in Fig. 54,1 we can obtain parameters intrinsic to the
probed system, including the intrinsic amplitude, phase,
quality factor, and resonant frequency. Note that both ampli-
tude and phase equations can be used, yielding consistent
mappings as shown in Fig. 84.1

Linear electrochemical strain obtained as such is shown in
Fig. 4a, acquired wig first harmonic measurements at each of
the excitation frequencies, while quadratic strain is shown in
Fig. 4b, acquired viz second harmonic measurements at fre-
quencies that double each excitation frequency. For both map-
pings, it is evident that the responses are substantially
enhanced at the grain boundaries, which can be seen more
clearly from point-wise comparison of the first and second har-
monic responses at the grain boundares and within a grain,
as shown in Fig. 4i. Furthermore, histogram distributions of
the first and second harmonic responses in Fig. 4c reveal that
the electrochemical strain is predominantly linear, arising
from Vegard strain due to fluctuations in the small polaron
concentration under the AC excitation, while the gquadratic
strain due to an electrochemical dipole and thus electrostric-
tion is also present.® Further insight can be gained from the
mappings of quality factors associated with the first (Fig. 4d)
and second (Fig. 4e] harmonic measurements, where it is
observed that the second harmonic electrostriction has a
higher quality factor (Fig. 4f), and thus smaller dissipation, as
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Fig. 3 Excitation and response of 5E in time- and frequency-domains; (a, b) drive in the time domain; (c. d} response in the time domain; (e f) drive

and response in the frequency domain.

15
C st
§'m 2nd
Zs
)
o5 W 28
Amplitude [pm]
f 15
st
gm- 2nd
Es
4]

300 350 400 300 350 400
Frequency [kHz]

Fig. 4 Linearand quadratic strains in granular ceria; amplitude mappings of the first (al and second (b} harmonic responses. and their histogram dis-
tribution [ck: quality factor mappings of the first [d) and second harmonic measurements [e), and their histogram distribution (f); mappings of the R®
of the first (gl and second (h) harmonic responses indicating DHO fitting fidelity; and (i) point-wise first and second harmonic response at the grain

boundaries with a grain.
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Vegard strain from small polarons is an energy-dissipative
process. These observations are consistent with the proposed
accumulation of space charges at the grain boundaries, result-
ing in enhanced response at the grain boundaries in both first
and second harmonics.

We also examine the mappings of resonant frequencies
from the first and second harmonic measurements presented
in Fig. 85,1 which match well with each other, demonstrating
the high fidelity of the measurement. More importantly, we
can examine the accuracy of the DHO fitting at each pixel in
terms of the R* coefficient,® a statistical measure on how close
the data points are to the fitted regression line. Mappings of
the R? coefficients are presented in Fig. 4g and h for the first
and second hamonic measurements, ranging from 0.8 to 1.0
with respective mean values of 0.97 and 0.96, demonstrating
high fidelity of the fitting. Even at the grain boundaries, the
fitting coefficients are mostly over 0.91. This is another advan-
tage of SE, wherein the sequence of data enables us to accu-
rately assess the reliability of the DHO fitting for quantitative
analysis. Under conventional DART, on the other hand, only
two data points are available to solve the highly nonlinear
DHO equations, which is not expected to be very accurate.
Indeed, we compare the mappings of the intrinsic amplitude,
quality factor, and resonant frequencies acquired from DART
and SE in Fig. 5, and it is evident that DART not only fails near
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the grain boundaries, as marked by all the white dots wherein
there is no solution found for DHO, but it is also quantitatively
different from SE, made evident by the comparison of histo-
gram distributions in the amplitude - it underestimates the
amplitude response substantially. Nevertheless, it is also quite
remarkable to note that DART appears to be able to track the
resonant frequency pretty well for the most part of grains, and
majority of the issues occur at the grain boundaries.

Data-accelerated physical analysis

While DHO is able to fit SE data accurately, it is a relatively
slow process not amenable to real time control and adjust-
ment, which is necessary for machine learning and artificial
intelligence AFM that could be enabled by the big data gener-
ated under SE.*” On the other hand, a large volume of spectral
information collected by SE is well suited for data analytics
such as principal component analysis (PCA), which is highly
efficient, though such pure statistical analytics often lacks
clear physical insight. By carefully comparing the underlying
mathematics of both approaches, we are able to draw a close
connection bebween PCA modes and DHO expansion,*® render-
ing clear physical significance to otherwise purely statistical
PCA modes. To this end, we first recast the 3D dataset of Alw,
xy] into a 2D matrix of A(e,n), where the 2D spatial grid col-
lapsed into 1D. Here each row of A contains spatial data from
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Fig. 5 Comparson ofthe ESM mappings of ceria acquired by DART (first row) and SE (second row], along with their histogram distribution (third row).
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a mapping scanned at a particular frequency, while each
column represents the spectral responses of a particular grid
point acquired under various excitations. Principal component
analysis (PCA) of Alw,n) can then be carried out through singu-
lar value decomposition (SVD),**

A=Y o]
=1

where {u} and {w} are the left and right singular vectors of A,
comresponding to the principal spectral and spatial modes
sorted by their singular values {s}. In other words, any row/
column of A can be represented with a combination of {u;} or
{wi}, separately.

In a parallel manner, we can also construct a new set of
orthonormal modes from the Taylor expansion series of DHO
eqn (1) via the Gram-Schmidt process,”™ with i, = AyQay, and
B. and B, derived from @—AgQuy - (@ @) and
=M Qudy - (@ — é@)°, where the operator - denotes the
Hadamard product of two vectors, AyQey = Ay-Q-ay, while the
overhead bar denotes spatial averaging. It turns out that there
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is one-torone comespondence between the PCA modes and
DHO expansion basis,”® which is confirmed by the good agree-
ment, as shown in Fig. 6. The structural similarity (SSIM)
(99.1%, 95.8%, and 94.3%) and Pearson correlation coeffi-
cients (PCC) (80.4%, 90.7%, and 83.9%) between the PCA
spatial modes and DHO basis in Fig. 6b and c are pretty high,
validaring our analysis numerically. Note that PCA s much
more efficient than DHO fitting, speeding up the data proces-
sing by 4 orders of magnitude, while we show that it provides
essentially the same physical insight as DHO.

Discussion

With ever-increasing hardware capabilities and computational
powers, we are on the brink of a big data revolution for physi-
cal science™ ™" and AFM provides an ideal playground for the
data-driven nanoscience that promises unprecedented new
insight.**"** A good example is the recently developed
G-mode APM that relies on brute force big data analytics

without pre-committing to a pamicular physical process,®'**

Fig. § Comparison of PCA modes and DHO expansion for the first harmonic ESM data of granular ceria; (a) first three PCA spectral modes in com-
parison with the corresponding DHO spectral basis; (b) first three PCA spatial modes; (c) corresponding DHO spatial basis.
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which is capable of uncovering “unknown” mechanisms under-
lying the physical systems. Here we adopt a more targeted
approach, taking advantage of both physical understanding
and data power. In particular, we design our excitation signals
and data analysis specifically to capture cantilever resonance
accurately, without acquiring too many redundant data, and
ensuring that the data are clean and relevant to our physical
system under the probe. As a result, our experimentation and
analysis are highly efficient and accurate, which can be further
accelerated by DHO-informed PCA analysis. Depending on
particular systems under investigation, other forms of exci-
tation signals can be designed and analyzed in a similar
manner, for example by varying the excitation amplitude for
ferroelectric switching, it is possible to implement a particular
form of excitation on demand. In a sense, our approach is well
aligned with the movement from big data to deep data, ie,
from data mining, correlation analysis, and unsupervised
classification to causative data analytics that fuses physical
understanding into big data. **®*"*% For this purpose, innova-
tive experimental and/or computational methodologies to
acquire high quality (less noisy), efficient (less redundant),
and physically relevant scientific data are essential, and this
work is an attempt along this direction.

The power of our approach is best illustrated at the grain
boundaries of ceria, wherein enhanced electrochemical strain
is evident, attributed to the accumulation of space charges.
Since SE does not depend on resonance tracking, it outper-
forms the conventional approach as expected when it comes to
large spatial variation. Moreover, SE is able to justify the fitting
results and the validity of raw data by taking advantages of
multiple datapoints and statistics, while DART lacks this
ability and is more vulnerable to various measurement errors
with only two datapoints. As shown in Fig. 5, even though
maps probed by DART on grains look relatively smooth, it
may still underestimate response without awareness.
Furthermore, we also conduct SE-ESM on a solid electrolyte
L, 34l 3Ti, ;{P0y); at a high temperature (115 °C), which is
usually challenging for conventional resonance tracking due to
continuous deformation of the sample originating from
environmental tempemature variation. But the B* map of the SE
approach in Fg. Seet is overall greater than 0.9, implying it is
still very trustworthy in a temperature-controlled environment,
given that the fitting is based on multple datapoints.
Therefore, we believe that our high throughput SE will provide
a powerful tool to resolve the spatial varation of such cases
with nanometer resolution.

Conclusions

In conclusion, we have developed a high-throughput AFM that
captures the electrochemical strain of ceria in just one secan,
having scanning speed comparable to conventional DART, yet
with much enhanced spatial resolution and high quantitative
fidelity. This enables us to image the accumulation of space
charges across the grain boundaries of ceria with nanometer
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resolution, and DHO-informed PCA has also been developed,
speeding up the data analysis by several orders of magnitude.
These ideas can be applied to a vadety of AFM modes for
studying a wide range of materials and structures on the nano-
scale, especially at the interfaces, and it embodies the spirit of
deep data wherein targeted data acquisition and physics-
informed data analytics prove to be powerful.

Methods

DART-ESM

This measurement is performed on a Cypher AFM with an AC
amplitude of 4 V applied to a Nanosensor PPP-EFM condu ctive
probe. The scan rate is 1.0 Hz and the dynamics of the cantile-
ver mation is characterized using built-in lock-in amplifiers,
which physically reduces full time-domain information to
limited frequency-domain data in terms of mw amplitudes
and phases. The mappings of corrected amplitude, phase, res-
onant frequency, and quality factor were then calculated via
the DHO model.

SE-ESM

Both first and second harmonic resonance SE-ESM scannings
were implemented using a UHF-AWG in combination with a
Cypher AFM. Before scanning, the UHF-AWG has synthesized
the desired waveform associated digital markers. Once the
digital trigger from the AFM is received, the AWG begins to
convert the waveform into analog signals with a 3.5 MHz ADC
rate, which will then be fed into the AFM to excite the probe.
At the same time, a data acquisition (DAQ) system in UHF is
also triggered and it started to record the full motion of the
probe in the time domain vig a deflection channel of the AFM,
sampling at 3.5 MHz. The synchronization is well tuned
beforehand by adjusting the input waveform so that the exci-
tation can work in parallel with the AFM XY scanners with
delays less than 0.7 ms for each line, which is about a quarter
of the scanning time for one pixel. The turn-around time
between trace/retrace passes is enough for the DAQ to transfer
the data to a computer for FT on-the-fly. The same sample and
probe were used for the DART-ESM measurement.

The design of the SE waveform

The unit waveform used for one pixel usually consists of 15
different segments, each of which contains multiple periods of
sinusoidal waves with a specific frequency belonging to [300
kHz, 400 kHz]. The amplitude of all sinuscidal waves is the
same as DART-ESM used. Segments are sorted by the frequen-
cies and joined with 20 sampling points of zero amplitude,
forming a unit waveform. Finally, the unit waveform is first
joined with 100 sampling points of zero amplitude, which
helps the relaxation of the probe and the postprocessing of
data, and then repeated multiple times for one trace of scan-
ning. Parameters may be slightly changed in the real experi-
ment to meet the requirement of gynchronization mentioned
above. For the first harmonic measurement, the input wave-
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form is also used as the reference wave of FT. For the second
harmonic measurement, the input waveform is repeated once
and then half sampled to generate the reference wave of FT,
considering that the sample response was measured at the
double frequency of the excitation.

Principal components analysis

PCA is a statistical procedure that converts a set of obser-
vations of possibly comelated varables into a set of linearly
uncorrelated variables called principal components. In this
work, PCA is computed vig a SVD function in MATLAR, that is

r
A=UIW' = Z .-r,-u,-wf
=1

where r is the rank of A. Thus, spectral and spatial modes of
dataset A correspond to the left and right singular vectors ({u}
and {w;}) of A, which are ranked in the order of their importance
(or say singular values {s;}]. According to low rank approx-
mation, A can be perfectly reconstructed using first p modes if
the last r = p + 1 singular values are below the level of noise,

r P
A= Z aruw? = Z gl
=1

i=1

In this sense, PCA is an efficient algorithm for dimension
reduction and data compression.

Structural similarity

SS5IM is a perceptual metric that quantifies the similarity
between two images. It is the average of the local SSIM value
map:

(2pg pt, + €2 (20ap +€2)

SSIM(x.y) = ,
oY) = T e T a)(o? + ot + 02)

where pa, pn, G2, on, and o are the average, variance, and
covariance of 4 » 4 windows a and b that are centered in the

pixel (x, ¥) of two images. ¢, and ¢, are the two constants to
stabilize the division with a weak denominator.

Pearson correlation coefficient

PCC can take a range of values from +1 to -1. A value of
0 implies that there is no linear correlation between two
vectors X and ¥ that are reshaped from two images respect-
ively, while +1 means total positive linear cormrelation and
-1 means total negative linear correlation.

Fxy

SxEY

where ay is the covariance, and ¢ and oy, are the standard
deviation of X and ¥, respectively.

Pey =

Data availability

The data that support the findings of this study are available
from the corresponding author upon request.
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