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a regularizing quadratic form found from an affine transformation of the Laplacian, 
raised to a possibly fractional, exponent. Conditions on the parameters defining 
this quadratic form are identified under which well-defined limiting continuum 
analogues of the optimization and Bayesian semi-supervised learning problems may 
be found, thereby shedding light on the design of algorithms in the large graph 
setting. The large graph limits of the optimization formulations are tackled through 
Γ-convergence, using the recently introduced T Lp metric. The small labeling noise 
limits of the Bayesian formulations are also identified, and contrasted with pre-
existing harmonic function approaches to the problem.
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1. Introduction

1.1. Context

This paper is concerned with the semi-supervised learning problem of determining labels on an entire 

set of (feature) vectors {xj}j∈Z , given (possibly noisy) labels {yj}j∈Z′ on a subset of feature vectors with 

indices j ∈ Z ′ ⊂ Z. To be concrete we will assume that the xj are elements of R
d, d ≥ 2, and consider the 
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binary classification problem in which the yj are elements of {±1}. Our goal is to characterize algorithms 
for this problem in the large data limit where n = |Z| → ∞; additionally we will study the limit where the 
noise in the label data disappears. Studying these limits yields insight into the classification problem and 

algorithms for it.

Semi-supervised learning as a subject has been developed primarily over the last two decades and the 

references [1,2] provide an excellent source for the historical context. Graph based methods proceed by 

forming a graph with n nodes Z, and use the unlabeled data {xj}j∈Z to provide an n × n weight matrix 

W quantifying the affinity of the nodes of the graph with one another. The labeling information on Z ′

is then spread to the whole of Z, exploiting these affinities. In the absence of labeling information we 

obtain the problem of unsupervised learning; for example the spectrum of the graph Laplacian L forms 

the basis of widely used spectral clustering methods [3–5]. Other approaches are combinatorial, and largely 

focussed on graph cut methods [6–8]. However relaxation and approximation are required to beat the 

combinatorial hardness of these problems [9] leading to a range of methods based on Markov random fields 

[10] and total variation relaxation [11]. In [2] a number of new approaches were introduced, including label 

propagation and the generalization of kriging, or Gaussian process regression [12], to the graph setting [13]. 

These regression methods opened up new approaches to the problem, but were limited in scope because the 

underlying real-valued Gaussian process was linked directly to the categorical label data which is (arguably) 

not natural from a modeling perspective; see [14] for a discussion of the distinctions between regression and 

classification. The logit and probit methods of classification [15] side-step this problem by postulating a 

link function which relates the underlying Gaussian process to the categorical data, amounting to a model 

linking the unlabeled and labeled data. The support vector machine [16] makes a similar link, but it lacks 

a natural probabilistic interpretation.

The probabilistic formulation is important when it is desirable to equip the classification with measures 

of uncertainty. Hence, we will concentrate on the probit algorithm in this paper, and variants on it, as 

it has a probabilistic formulation. The statement of the probit algorithm in the context of graph based 

semi-supervised learning may be found in [17]. An approach bridging the combinatorial and Gaussian 

process approaches is the use of Ginzburg-Landau models which work with real numbers but use a penalty 

to constrain to values close to the range of the label data {±1}; these methods were introduced in [18], 

large data limits studied in [19–21], and given a probabilistic interpretation in [17]. Finally we mention 

the Bayesian level set method. This approach takes the idea of using level sets for inversion in the class of 

interface problems [22] and gives it a probabilistic formulation which has both theoretical foundations and 

leads to efficient algorithms [23]; classification may be viewed as an interface problem on a graph (a graph 

cut is an interface for example) and thus the Bayesian level set method is naturally extended to this setting 

as shown in [17]. As part of this paper we will show that the probit and Bayesian level set methods are 

closely related.

A significant challenge for the field, both in terms of algorithmic development, and in terms of fundamental 

theoretical understanding, is the setting in which the volume of unlabeled data is high, relative to the volume 

of labeled data. One way to understand this setting is through the study of large data limits in which 

n = |Z| → ∞. This limit is studied in [24], and was addressed more recently under different assumptions in 

[25]. Both papers assume that the unlabeled data is drawn i.i.d. from a measure with Lebesgue density on 

a subset of Rd, but the assumptions on graph construction differ: in [24] the graph bandwidth is fixed as 

n → ∞ resulting in the limit of the graph Laplacian being a non-local operator, whilst in [25] the bandwidth 

vanishes in the limit resulting in the limit being a weighted Laplacian (divergence form elliptic operator).

In [26] it is demonstrated that algorithms based on use of the discrete Dirichlet energy computed from 

the graph Laplacian can behave poorly for d ≥ 2, in the large data limit, if they attempt pointwise labeling. 

In [27] it is argued that use of quadratic forms based on powers α > d
2 of the graph Laplacian can ame-

liorate this problem. Our work, which studies a range of algorithms all based on optimization or Bayesian 

formulations exploiting quadratic forms, will take this body of work considerably further, proving large data 



M.M. Dunlop et al. / Appl. Comput. Harmon. Anal. 49 (2020) 655–697 657

limit theorems for a variety of algorithms, and showing the role of the parameter α in this infinite data 

limit. In doing so we shed light on the difficult question of how to scale and tune algorithms for graph based 

semi-supervised learning; in particular we state limit theorems of various kinds which require, respectively, 

either α > d
2 or α > d to hold. We also study the small noise limit and show how both the probit and 

Bayesian level set algorithms coincide and, furthermore, provide a natural generalization of the harmonic 

functions approach of [13,28], a generalization which is arguably more natural from a modeling perspective.

Our large data limit theorems concern the maximum a posteriori (MAP) estimator rather than a Bayesian 

posterior distribution. However two remarkable recent papers [29,30] demonstrate a methodology for proving 

limit theorems concerning Bayesian posterior distributions themselves, exploiting the variational character-

ization of Bayes theorem; extending the work in those papers to the algorithms considered in this paper 

would be of great interest.

1.2. Our contribution

We derive a canonical continuum inverse problem which characterizes graph based semi-supervised learn-

ing: find function u : Ω ⊂ R
d Ô→ R from knowledge of sign(u) on Ω′ ⊂ Ω.1 The latent variable u characterizes 

the unlabeled data and its sign is the labeling information. This highly ill-posed inverse problem is poten-

tially solvable because of the very strong prior information provided by the unlabeled data; we characterize 

this information via a mean zero Gaussian process prior on u with covariance operator C ∝ (L + τ2I)−α. 

The operator L is a weighted Laplacian found as a limit of the graph Laplacian, and as a consequence 

depends on the distribution of the unlabeled data.

In order to derive this canonical inverse problem we study the probit and Bayesian level set algorithms 

for semi-supervised learning. We build on the large unlabeled data limit setting of [25]. In this setting there 

is an intrinsic scaling parameter εn that characterizes the length scale on which edge weights between nodes 

are significant; the analysis identifies a lower bound on εn which is necessary in order for the graph to 

remain connected in the large data limit and under which the graph Laplacian L converges to a differential 

operator L of weighted Laplacian form. The work uses Γ-convergence in the TL2 optimal transport metric, 

introduced in [25], and proves convergence of the quadratic form defined by L to one defined by L. We make 
the following contributions which significantly extend this work to the semi-supervised learning setting.

• We prove Γ-convergence in TL2 of the quadratic form defined by (L +τ2I)α to that defined by (L +τ2I)α

and identify parameter choices in which the limiting Gaussian measure with covariance (L + τ2I)−α is 

well-defined. See Theorems 2.2, 2.5 and Proposition 2.6.

• We introduce large data limits of the probit and Bayesian level set problem formulations in which the 

volume of unlabeled data n = |Z| → ∞, distinguishing between the cases where the volume of labeled 

data |Z ′| is fixed and where |Z ′|/n is fixed. See section 4 for the function space analogues of the graph 

based algorithms introduced in section 3.

• We use the theory of Γ-convergence to derive a continuum limit of the probit algorithm when employed 

in MAP estimation mode; this theory demonstrates the need for α > d
2 and an upper bound on εn in 

the large data limit where the volume of labeled data |Z ′| is fixed. See Theorems 4.2 and 4.3

• We use the properties of Gaussian measures on function spaces to write down well defined limits of the 

probit and Bayesian level set algorithms, when employed in Bayesian probabilistic mode, to determine 

the posterior distribution on labels given observed data; this theory demonstrates the need for α > d
2

in order for the limiting probability distribution to be meaningful for both large data limits; indeed, 

depending on the geometry of the domain from which the feature vectors are drawn, it may require 

α > d for the case where the volume of labeled data is fixed. See Theorem 2.5 and Proposition 2.6 for 

1 We note that throughout the paper Ω is the physical domain, and not the set of events of a probability space.
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these conditions on α, and for details of the limiting probability measures see equations (21), (22), (23)

and (24).

• We show that the probit and Bayesian level set methods have a common Bayesian inverse problem limit, 

mentioned above, by studying their weak limits as noise levels on the labeled data tends to zero. See 

Theorems 3.3 and 4.6.

• We provide numerical experiments which illusrate the large graph limits introduced and studied in this 

paper; see section 5.

1.3. Paper structure

In section 2 we study a family of quadratic forms which arise naturally in all the algorithms that we 

study. By means of the Γ-convergence techniques pioneered in [25] we show that these quadratic forms have 

a limit defined by families of differential operators in which the finite graph parameters appear in an explicit 

and easily understood fashion. Section 3 is devoted to the definition of the three graph based algorithms 

that we study in this paper: the probit and Bayesian level set algorithms, and the graph analogue of kriging. 

In section 4 we write down the function space limits of these algorithms, obtained when the volume n of 

unlabeled data tends to infinity, and in the case of the maximum a posteriori estimator for probit use 

Γ-convergence to study large graph limits rigorously; we also show that the probit and Bayesian level set 

algorithms have a common zero noise limit. Section 5 contains numerical experiments for the function space 

limits of the algorithms, in both optimization (MAP) and sampling (fully Bayesian MCMC) modalities. 

We conclude in section 6 with a summary and directions for future research. All proofs are given in the 

Appendix, section 7. This choice is made in order to separate the form and implications of the theory from 

the proofs; both the statements and proofs comprise the contributions of this work, but since they may be 

of interest to different readers they are separated, by use of the Appendix.

2. Key quadratic form and its limits

2.1. Graph setting

From the unlabeled data {xj}n
j=1 we construct a weighted graph G = (Z, W ) where Z = {1, · · · , n} are 

the vertices of the graph and W the edge weight matrix; W is assumed to have entries {wij} between nodes 

i and j given by

wij = ηε(|xi − xj |).

We will discuss the choice of the function ηε : R Ô→ R
+ in detail below; heuristically it should be thought of as 

proportional to a mollified Dirac mass, or a characteristic function of a small interval. From W we construct 

the graph Laplacian as follows. We define the diagonal matrix D = diag{dii} with entries dii =
∑

j∈Z wij . 

We can then define the unnormalized graph Laplacian L = D − W . Our results may be generalized to the 

normalized graph Laplacian L = I − D− 1
2 WD− 1

2 and we will comment on this in the conclusions.

2.2. Quadratic form

We view u : Z Ô→ R as a vector in Rn and define the quadratic form

〈u, Lu〉 = 1
2

∑

i,j∈Z

wij |u(i)− u(j)|2;
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here 〈·, ·〉 denotes the standard Euclidean inner-product on Rn. This is the discrete Dirichlet energy defined 

via the graph Laplacian L which appears as a basic quantity in many unsupervised and semi-supervised 

learning algorithms. In this paper our interest focusses on forms based on powers of L:

J (α,τ)
n (u) =

1

2n
〈u, A(n)u〉

where, for τ ≥ 0 and α > 0,

A(n) = (snL+ τ2I)α. (1)

The sequence parameters sn will be chosen appropriately to ensure that the quadratic form J
(α,τ)
n (u)

converges to a well-defined limit as n → ∞.
In addition to working in a set-up which results in a well-defined limit, we will also ask that this limit 

results in a quadratic form defined by a differential operator. This, of course, requires some form of local-

ization and we will encode this as follows: we will assume that ηε(·) = ε−dη(·/ε), inducing a Dirac mass 

approximation as ε → 0; later we will discuss how to relate ε to n. For now we state the assumptions on η

that we employ throughout the paper:

Assumptions 1 (on η). The edge weight profile function η satisfies:

(K1) η(0) > 0 and η(·) is continuous at 0;
(K2) η is non-increasing;

(K3)
∫ ∞
0

η(r)rd+1dr < ∞;

Remark 2.1. The prototypical example for η is η(t) = 1 if |t| < 1 and η(t) = 0 otherwise. In this example 

the graph has edges between any two nodes closer than ε; this is often referred to as the random geometric 

graph. Clearly this choice of η satisfies Assumptions 1.

Notice that assumption (K3) implies that

ση :=
1

d

∫

Rd

η(|h|)|h|2dh < ∞ and βη :=

∫

Rd

η(|h|)dh < ∞. (2)

A notable fact about the limits that we study in the remainder of the paper is that they depend on η only 

through the constants ση, βη, provided Assumptions 1 holds and ε = εn and sn are chosen as appropriate 

functions of n.

2.3. Limiting quadratic form

The limiting quadratic form is defined on an open and bounded set Ω ⊂ R
d.

Assumptions 2 (on Ω). We assume that Ω is a connected, open and bounded subset of Rd. We also assume 

that Ω has C1,1 boundary.2

2 The assumption that Ω is connected is not essential but makes stating the results simpler. We remark that a number of the 
results, and in particular the convergence of Theorem 2.2, hold if we only assume that the boundary of Ω is Lipschitz. We need 
the stronger assumption in order to be able to employ elliptic regularity to characterize functions in fractional Sobolev spaces, see 
Section 2.4 and Lemma 7.1; this is essential to be able to define Gaussian measures on function spaces, and therefore needed to 
define a Bayesian approach in which uncertainty of classifiers may be estimated.
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Assumptions 3 (on density ρ). We assume that n feature vectors xj ∈ Ω are sampled i.i.d. from a probability 

measure µ supported on Ω with smooth Lebesgue density ρ bounded above and below by finite strictly 

positive constants ρ± uniformly on Ω.

We index the data by Z = {1, · · · , n} and let Ωn = {xi}i∈Z be the data set. This data set induces the 

empirical measure

µn =
1

n

∑

i∈Z

δxi
.

Given a measure ν on Ω we define the weighted Hilbert space L2
ν = L2

ν(Ω; R) with inner-product

〈a, b〉ν =

∫

Ω

a(x)b(x)ν(dx) (3)

and the induced norm defined by the identity ‖ · ‖2L2
ν
= 〈·, ·〉ν . Note that with these definitions we have

J (α,τ)
n : L2

µn
Ô→ [0,+∞), J (α,τ)

n (u) =
1

2
〈u, A(n)u〉µn

.

In what follows we apply a form of Γ-convergence to establish that for large n the quadratic form J
(α,τ)
n is 

well approximated by the limiting quadratic form

J (α,τ)
∞ : L2

µ Ô→ [0,+∞) ∪ {+∞}, J(α,τ)
∞ (u) =

1

2
〈u, Au〉µ.

Here µ is the measure on Ω with density ρ, and we define the L2
µ self-adjoint differential operator L by

Lu = −1
ρ

∇ · (ρ2∇u), x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω. (4)

The operator A is then defined by A = (L + τ2I)α.

We may now relate the quadratic forms defined by A(n) and A. The TL2 topology is introduced in [25]

and defined in the Appendix section 7.2.2 for convenience. The following theorem is proved in section 7.4.

Theorem 2.2. Let Assumptions 1–3 hold. Let α > 0, {εn}n=1,2,... be a positive sequence converging to zero, 

and such that

lim
n→∞

( logn

n

)1/d 1

εn
= 0 if d ≥ 3,

lim
n→∞

( logn

n

)1/2 (logn)
1
4

εn
= 0 if d = 2,

(5)

and assume that the scale factor sn is defined by

sn =
2

σηnε2n
. (6)

Then, with probability one, we have
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1. Γ- limn→∞ J
(α,τ)
n = J

(α,τ)
∞ with respect to the TL2 topology;

2. if τ = 0, any sequence {un} with un : Ωn → R satisfying supn ‖un‖L2
µn

< ∞ and supn∈N J
(α,0)
n (un) < ∞

is pre-compact in the TL2 topology;

3. if τ > 0, any sequence {un} with un : Ωn → R satisfying supn∈N J
(α,τ)
n (un) < ∞ is pre-compact in the 

TL2 topology.

Remark 2.3. As we discuss in section 7.2.1 of the appendix, Γ-convergence and pre-compactness allow one 

to show that minimizers of a sequence of functionals converge to the minimizer of the limiting functional. 

The results of Theorem 2.2 provide the Γ-convergence and pre-compactness of fractional Dirichlet energies, 

which are the key term of the functionals, such as (10) below, that define the learning algorithms that we 

study. In particular Theorem 2.2 enables us to prove the convergence, in the large data limit n → ∞, of 
minimizers of functionals such as (10) (i.e. of outcomes of learning algorithms), as shown in Theorem 4.2.

2.4. Function spaces

The operator L given by (4) is uniformly elliptic as a consequence of the assumptions on ρ, and is 

self-adjoint with respect to the inner product (3) on L2
µ. By standard theory, it has a discrete spectrum: 

0 = λ1 < λ2 ≤ · · ·, where the fact that 0 < λ2 uses the connectedness of the domain and the uniform 

positivity of ρ on the domain. Let ϕi for i = 1, . . . be the associated L2
µ-orthonormal eigenfunctions. They 

form a basis of L2
µ.

By Weyl’s law the eigenvalues of {λj}j≥1 of L satisfy λj ≍ j2/d. For completeness a simple proof is 

proved in Lemma 7.10; the analogous and more general results applicable to the Laplace-Beltrami operator 

may be found in, Hörmander [31].

Spectrally defined Sobolev spaces. For s ≥ 0 we define

Hs(Ω) =
{

u ∈ L2
µ :

∞
∑

k=1

λs
ka2

k < ∞
}

,

where ak = 〈u, ϕk〉µ and thus u =
∑

k akϕk in L2
µ. We note that Hs(Ω) is a Hilbert space with respect to 

the inner product

〈〈u, v〉〉s,µ = a1b1 +
∞

∑

k=2

λs
kakbk

where bk = 〈v, ϕk〉µ. It follows from the definition that for any s ≥ 0, Hs(Ω) is isomorphic to a weighted 

ℓ2(N) space, where the weights are formed by the sequence 1, λs
2, λs

3, . . ..

In Lemma 7.1 in the Appendix section 7.1 we show that for any integer s > 0, Hs(Ω) ⊂ Hs(Ω) where 

Hs(Ω) is the standard fractional Sobolev space. More precisely we characterize Hs(Ω) as the set of those 

functions in Hs(Ω) which satisfy the appropriate boundary condition and show that the norms of Hs(Ω)

and Hs(Ω) are equivalent on Hs(Ω).

We also note that for any integer s and θ ∈ (0, 1) the space Hs+θ is a interpolation space between Hs and 

Hs+1. In particular Hs+θ = [Hs, Hs+1]θ,2, where the real interpolation space used is as in Definition 3.3 of 

Abels [32]. This identification of Hs follows from the characterization of interpolation spaces of weighted Lp

spaces by Peetre [33], as referenced by Gilbert [34]. Together these facts allow us to characterize the Hölder 

regularity of functions in Hs(Ω).

Lemma 2.4. Under Assumptions 2–3, for all s ≥ 0 there exists a bounded, linear, extension mapping E :

Hs(Ω) → Hs(Rd). That is for all f ∈ Hs(Ω), E(f)|Ω = f a.e. Furthermore:
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(i) if s < d
2 then Hs(Ω) embeds continuously in Lq(Ω) for any q ≤ 2d

d−2s ;

(ii) if s > d
2 then Hs(Ω) embeds continuously in C0,γ(Ω) for any γ < min{1, s − d

2}.

The proof is presented in the Appendix 7.1.

We note that this implies that when α > d
2 pointwise evaluation is well-defined in the limiting quadratic 

form J
(α,τ)
∞ ; this will be used in what follows to show that the limiting labeling model obtained when |Z ′|

is fixed is well-posed.

2.5. Gaussian measures of function spaces

Using the ellipticity of L, Weyl’s law, and Lemma 2.4 allows us to characterize the regularity of samples 

of Gaussian measures on L2
µ. The proof of the following theorem is a straightforward application of the 

techniques in [35, Theorem 2.10] to obtain the Gaussian measures on Hs(Ω). Concentration of the measure 

on Hs and on C0,γ(Ω) then follows from Lemma 2.4. When τ = 0 we work on the space orthogonal to 

constants in order that C (defined in the theorem below) is well defined.

Theorem 2.5. Let Assumptions 2–3 hold. Let L be the operator defined in (4), and define C = (L +τ2I)−α. For 

any fixed α > d
2 and τ ≥ 0, the Gaussian measure N

(

0, C
)

is well-defined on L2
µ. Draws from this measure 

are almost surely in Hs(Ω) for any s < α − d
2 , and consequently in C0,γ(Ω) for any γ < min{1, α − d} if 

α > d.

We note that if the operator L has eigenvectors which are as regular as those of the Laplacian on a flat 

torus then the conclusions of Theorem 2.5 can be strengthened. Namely if in addition to what we know 

about L, there is C > 0 such that

sup
j≥1

(

‖ϕj‖L∞ +
1

j1/d
Lip(ϕj)

)

≤ C, (7)

then the Kolmogorov continuity technique [35, Section 7.2.5] can be used to show additional Hölder conti-

nuity.

Proposition 2.6. Let Assumptions 2–3 hold. Assume the operator L satisfies condition (7) and define C =
(L + τ2I)−α. For any fixed α > d/2 and τ ≥ 0, the Gaussian measure N

(

0, C
)

is well-defined on L2
µ. 

Draws from this measure are almost surely in Hs(Ω; R) for any s < α − d/2, and in C0,γ(Ω; R) for any 

γ < min{1, α − d
2} if α > d

2 .

We note that in general one cannot expect that the operator L satisfies the bound (7). For example, 
for the ball there is a sequence of eigenfunctions which satisfy ‖ϕk‖L∞ ∼ λ

(d−1)/4
k ∼ k(d−2)/(2d), see [36]. 

In fact this is the largest growth of eigenfunctions possible, as on general domains with smooth boundary 

‖ϕk‖L∞ . λ
(d−1)/4
k , as follows from the work of Grieser, [36]. Analogous bounds have first been established 

for operators on manifolds without boundary by Hörmander, [31]. This bound is rarely saturated as shown by 

Sogge and Zeldtich [37], but determining the scaling for most sets and manifolds remains open. Establishing 

the conditions on Ω under which the Theorem 2.5 can be strengthened as in Proposition 2.6 is of great 

interest.

3. Graph based formulations

We now assume that we have access to label data defined as follows. Let Ω′ ⊂ Ω and let Ω± be two 

subsets of Ω′ such that
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Ω+ ∪ Ω− = Ω′, Ω+ ∩ Ω− = ∅.

We will consider two labeling scenarios:

• Labeling Model 1. |Z ′|/n → r ∈ (0, ∞). We assume that Ω± have positive Lebesgue measure. We 

assume that the {xj}j∈N are drawn i.i.d. from measure µ. Then if xj ∈ Ω+ we set yj = 1 and if xj ∈ Ω−

then yj = −1. The label variables yj are not defined if xj ∈ Ω\Ω′ where Ω′ = Ω+ ∪ Ω−. We assume 

dist(Ω+, Ω−) > 0 and define Z ′ ⊂ Z to be the subset of indices for which we have labels.

• Labeling Model 2. |Z ′| fixed as n → ∞. We assume that Ω± comprise a fixed number of points, n±

respectively. We assume that the {xj}j>n++n− are drawn i.i.d. from measure µ whilst {xj}1≤j≤n+ are 

a fixed set of points in Ω+ and {xj}n++1≤j≤n++n− are a fixed set of points in Ω−. We label these 

fixed points by y : Ω± Ô→ {±1} as in Labeling Model 1. We define Z ′ ⊂ Z to be the subset of indices 

{1, · · · , n+ + n−} for which we have labels and Ω′ = Ω+ ∪ Ω−.

In both cases j ∈ Z ′ if and only if xj ∈ Ω′. But in Model 1 the xj are drawn i.i.d. and assigned labels when 

they lie in Ω′, assumed to have positive Lebesgue measure; in Model 2 the {(xj, yj)}j∈Z′ are provided, in a 

possibly non-random way, independently of the unlabeled data.

We will identify u ∈ R
n and u ∈ L2

µn
(Ω; R) by uj = u(xj) for each j ∈ Z. Similarly, we will identify 

y ∈ R
n++n−

and y ∈ L2
µn
(Ω′; R) by yj = y(xj) for each j ∈ Z ′. We may therefore write, for example,

1

n
〈u, Lu〉Rn = 〈u, Lu〉µn

where u is viewed as a vector on the left-hand side and a function on Z on the right-hand side.

The algorithms that we study in this paper have interpretations through both optimization and proba-

bility. The labels are found from a real-valued function u : Z Ô→ R by setting y = S ◦ u : Z Ô→ R with S the 

sign function defined by

S(0) = 0; S(u) = 1, u > 0; and S(u) = −1, u < 0.

The objective function of interest takes the form

J
(n)(u) =

1

2
〈u, A(n)u〉µn

+ rnΦ
(n)(u).

The quadratic form depends only on the unlabeled data, while the function Φ(n) is determined by the labeled 

data. Choosing rn =
1
n in Labeling Model 1 and rn = 1 in Labeling Model 2 ensures that the total labeling

information remains of O(1) in the large n limit. Probability distributions constructed by exponentiating 

multiples of J(n)(u) will be of interest to us; the probability is then high where the objective function is 

small, and vice-versa. Such probabilities represent the Bayesian posterior distribution on the conditional 

random variable u|y.

3.1. Probit

The probit algorithm on a graph is defined in [17] and here generalized to a quadratic form based on 

A(n) rather than L. We define

Ψ(v; γ) =
1

√

2πγ2

v
∫

−∞

exp
(

− t2/2γ2
)

dt (8)
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Fig. 1. The function Ψ(·; 1), defined by (8), and its logarithm, which appears in the probit objective function.

and then

Φ(n)
p (u; γ) = −

∑

j∈Z′

log
(

Ψ(yjuj ; γ)
)

. (9)

The function Ψ and its logarithm are shown in Fig. 1 in the case γ = 1. The probit objective function is

J
(n)
p (u) = J (α,τ)

n (u) + rnΦ
(n)
p (u; γ), (10)

where rn =
1
n in Labeling Model 1 and rn = 1 in Labeling Model 2. The proof of Proposition 1 in [17] is 

readily modified to prove the following.

Proposition 3.1. Let α > 0, τ ≥ 0, γ > 0 and rn > 0. Then J
(n)
p , defined by (8-10), is strictly convex.

It is also straightforward to check, by expanding u in the basis given by eigenvectors of A(n), that J
(n)
p is 

coercive. This is proved by establishing that J
(α,τ)
n is coercive on the orthogonal complement of the constant 

function. The coercivity in the remaining direction is provided by Φ
(n)
p (u; γ) using the fact that Ω+ and 

Ω− are nonempty. Consequently J(n)
p has a unique minimizer; Lemma 4.1 has the proof of the continuum 

analog of this; the proof on a graph is easily reconstructed from this.

The probabilistic analogue of the optimization problem for J
(n)
p is as follows. We let ν

(n)
0 (du; r) denote the 

centred Gaussian with covariance C = rn(A
(n))−1 (with respect to the inner product 〈·, ·〉µn

). We assume 

that the latent variable u is a priori distributed according to measure ν
(n)
0 (du; rn). If we then define the 

likelihood y|u through the generative model

yj = S
(

uj + ξj

)

(11)

with ξj
iid∼ N(0, γ2) then the posterior probability on u|y is given by

ν(n)
p (du) =

1

Z
(n)
p

e−Φ(n)
p (u;y)ν

(n)
0 (du; rn) (12)

with Z
(n)
p the normalization to a probability measure. The measure ν

(n)
p has Lebesgue density proportional 

to e−r−1
n J(n)

p (u).
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3.2. Bayesian level set

We now define

Φ
(n)
ls (u; γ) =

1

2γ2

∑

j∈Z′

∣

∣yj − S
(

uj

)∣

∣

2
. (13)

The relevant objective function is

J
(n)
ls (u) = J (α,τ)

n (u) + rnΦ
(n)
ls (u; γ),

where again rn =
1
n in Labeling Model 1 and rn = 1 in Labeling Model 2. We have the following:

Proposition 3.2. The infimum of J
(n)
ls is not attained.

This follows using the argument introduced in a related context in [23]: assuming that a non-zero min-

imizer does exist leads to a contradiction upon multiplication of that minimizer by any number less than 

one; and zero does not achieve the infimum.

We modify the generative model (11) slightly to read

yj = S
(

uj

)

+ ξj ,

where now ξj
iid∼ N(0, r−1

n γ2). In this case, because the noise is additive, multiplying the objective function 

by rn simply results in a rescaling of the observational noise; multiplication by rn does not have such a 

simple interpretation in the case of probit. As a consequence the resulting Bayesian posterior distribution 

has significant differences with the probit case: the latent variable u is now assumed a priori to be distributed 

according to measure ν
(n)
0 (du; 1) Then

ν
(n)
ls (du) =

1

Z
(n)
ls

e−rnΦ
(n)
ls (u;γ)ν

(n)
0 (du; 1) (14)

where ν
(n)
0 is the same centred Gaussian as in the probit case. Note that ν

(n)
ls is also the measure with 

Lebesgue density proportional to e−J
(n)
ls (u).

3.3. Small noise limit

When the size of the noise on the labels is small, the probit and Bayesian level set approaches behave 

similarly. More precisely, the measures ν
(n)
p and ν

(n)
ls share a common weak limit as γ → 0. The following 

result is given without proof – this is because its proof is almost identical to that arising in the continuum 

limit setting of Theorem 4.6(ii) given in the appendix; indeed it is technically easier due to the fully discrete 

setting. Here ⇒ denotes the weak convergence of probability measures.

Theorem 3.3. Let ν
(n)
0 (du) denote a Gaussian measure of the form ν

(n)
0 (du; r) for any r, possibly depending 

on n. Define the set

Bn = {u ∈ R
n | yjuj > 0 for each j ∈ Z ′}

and the probability measure

ν(n)(du) = Z
−1

1Bn
(u)ν

(n)
0 (du)
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where Z = ν
(n)
0 (Bn). Consider the posterior measures ν

(n)
p defined in (12) and ν

(n)
ls defined in (14). Then 

ν
(n)
p ⇒ ν(n) and ν

(n)
ls ⇒ ν(n) as γ → 0.

3.4. Kriging

Instead of classification, where the sign of the latent variable u is made to agree with the labels, one can 

alternatively consider regression where u itself is made to agree with the labels [13,28]. We consider this 

situation numerically in section 5. Here the objective is to

minimize J
(n)
k (u) := J (α,τ)

n (u) subject to u(xj) = yj for all j ∈ Z ′.

In the continuum setting this minimization is referred to as kriging, and we extend the terminology to our 

graph based setting. Kriging may also be defined in the case where the constraint is enforced as a soft least 

squares penalty; however we do not discuss this here.

The probabilistic analogue of this problem can be linked with the original work of Zhu et al. [13,28] which 

based classification on a centred Gaussian measure with inverse covariance given by the graph Laplacian, 

conditioned to take the value exactly 1 on labeled nodes where yj = 1, and to take the value exactly −1 on 

labeled nodes where yj = −1.

4. Function space limits of graph based formulations

In this section we state Γ-limit theorems for the objective functions appearing in the probit algorithm. The 

proofs are given in the appendix. They rely on arguments which use the fact that we study perturbations 

of the Γ-limit theorem for the quadratic forms stated in section 2. We also write down formal infinite 

dimensional formulations of the probit and Bayesian level set posterior distributions, although we do not 

prove that these limits are attained. We do, however, show that the probit and level set posteriors have a 

common limit as γ → 0, as they do on a finite graph.

4.1. Probit

Under Labeling Model 1, the natural continuum limit of the probit objective functional is

Jp(v) = J (α,τ)
∞ (v) + Φp,1(v; γ) (15)

where

Φp,1(v; γ) = −
∫

Ω′

log(Ψ(y(x)v(x); γ)) dµ(x) (16)

for a given measurable function y : Ω′ → {±1}. For any v ∈ L2
µ, log(Ψ(y(x)v(x); γ)) is integrable by 

Corollary 7.9. The proof of the following theorem is given in the appendix, in section 7.5.

Lemma 4.1. Let Assumptions 1–3 hold. For α ≥ 1 and τ ≥ 0, consider the functional Jp with Labeling

Model 1 defined by (15). Then, the functional Jp has a unique minimizer in Hα(Ω).

Proof. Convexity of Jp follows from the proof of Proposition 1 in [17]. Let v̄+ and v̄− be the averages of v

on Ω+ and Ω− respectively. Namely let v̄± =
1

|Ω±|
∫

Ω±
v(x) dx. Note that
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Jp(v) ≥ J (α,τ)
∞ (v) ≥ λα−1

2 J (1,0)
∞ (v) = −1

2
λα−1
2

∫

Ω

v∇ · (ρ2∇v) dx ≥ (ρ−)2λα−1
2

2
‖∇v‖2L2(Ω).

Using the form of Poincaré inequality given in Theorem 13.27 of [38] implies that

Jp(v) & ‖∇v‖2L2(Ω) &

∫

Ω

|v − v̄+|2 + |v − v̄−|2 dx. (17)

The convexity of Φp,1(v; γ) implies that

Φp,1(v; γ) ≥ − log(Ψ(v̄+); γ)µ(Ω+)− log(Ψ(−v̄−); γ)µ(Ω−)

Using that lims→−∞ − log(Ψ(s; γ)) = ∞ we see that a bound on Φp,1(v; γ) provides a lower bound on v̄+
and an upper bound on v̄−. To see this let Θ be the inverse of s Ô→ − log(Ψ(s; γ)). The preceding shows 

that

v̄+ ≥ Θ
(

Φp,1(v; γ)

µ(Ω+)

)

≥ Θ
(

Jp(v)

µ(Ω+)

)

and v̄− ≤ −Θ
(

Φp,1(v; γ)

µ(Ω−)

)

≤ −Θ
(

Jp(v)

µ(Ω−)

)

.

Let c = max
{

−Θ
(

Jp(v)
µ(Ω+)

)

, −Θ
(

Jp(v)
µ(Ω−)

)

, 0
}

. Then v̄+ ≥ −c and v̄− ≤ c. Using that, for any a ∈ R, 

v2 ≤ 2|v − a|2 + 2a2, we obtain

∫

Ω

v2(x) dx ≤
∫

{v(x)≤−c}

v2(x) dx+

∫

{v(x)≥c}

v2(x) dx+ c2|Ω|

≤ 2
∫

{v(x)≤−c}

|v + c|2 + c2 dx+ 2

∫

{v(x)≥c}

|v − c|2 + c2 dx+ c2|Ω|

≤ 5c2|Ω|+ 2
∫

{v(x)≤−c}

|v − v̄+|2 dx+ 2
∫

{v(x)≥c}

|v − v̄−|2 dx

. c2|Ω|+ Jp(v).

Then ‖v‖L2 is bounded by a function of Jp(v) and Ω.

Combining with (17) implies that a function of Jp(v) bounds ‖v‖2Hα(Ω) which establishes the coercivity of 

Jp. The functional Jp is weakly lower-semicontinuous in Hα, due to the convexity of both J
(α,τ)
∞ and Φp,1. 

Thus the direct method of the calculus of variations proves that Jp has a unique minimizer in Hα(Ω). ✷

The following theorem is proved in section 7.5.

Theorem 4.2. Let the assumptions of Labeling Model 1 and Theorem 2.2 hold with τ ≥ 0. Then, with 

probability one, any sequence of minimizers vn of J
(n)
p converge in TL2 to v∞, the unique minimizer of Jp

in L2
µ, and furthermore limn→∞ J

(n)
p (vn) = Jp(v∞) = minv∈L2

µ
Jp(v).

The analogous result under Labeling Model 2, i.e. convergence of minimizers, is an open question. In this 

case the natural continuum limit of the probit objective functional is

Jp(v) = J (α,τ)
∞ (v) + Φp,2(v; γ) (18)

where
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Φp,2(v; γ) = −
∑

j∈Z′

log(Ψ(y(xj)u(xj); γ) (19)

for a given measurable function y : Ω′ → {±1}. When α ≤ d
2 this limiting model is not well-posed. In 

particular the regularity of the functional is not sufficient to impose pointwise data. More precisely, when 

α ≤ d
2 then there exists a sequence of smooth functions vk ∈ C∞(Ω) such that limk→∞ Jp(vk) = 0. In 

particular when α < d
2 , consider a smooth, compactly supported, mollifier ζ, with ζ(0) > 0 and define 

vk(x) = ck

∑N
i=1 y(xi)ζ1/k(x − xi) where ck → ∞ sufficiently slowly. Then Φp,2(vk; γ) → 0 as k → ∞ and, 

by a simple scaling argument (for appropriate ck), J
(α,τ)
∞ (vk) → 0 as k → ∞. Another way to see that the 

problem is not well defined is that the functions in Hα(Ω) (which is the natural space to consider Jp on) 

are not continuous in general and evaluating Φp,2(v; γ) is not well defined.

When α > d
2 the existence of minimizers of (18) in Hα(Ω) is established by the direct method of the 

calculus of variations using the convexity of Jp and the fact that, by Lemma 2.4, Hα continuously embeds 

into a set of Hölder continuous functions.

For α > d
2 we believe that the minimizers of J

n
p of Labeling Model 2 converge to minimizers of (18) in 

an appropriate regime, but the situation is more complicated than for Labeling Model 1: under Labeling

Model 2 (5) is no longer a sufficient condition on the scaling of ε with n for the convergence to hold. Thus if 

ε → 0 too slowly the problem degenerates. In particular in the following theorem we identify the asymptotic 

behavior of minimizers of Jp both when α < d
2 , and if α > d

2 but ε → 0 too slowly.

The proof of the following may be found in section 7.6. The theorem is similar in spirit to Proposi-

tion 2.2(ii) in [39] where a similar phenomenon was discussed for the p-Laplacian regularized semi-supervised 

learning. We also mention that the PDE approach to a closely related p-Laplacian problem was recently 

introduced by Calder [40].

Theorem 4.3. Let the assumptions of Labeling Model 2, and Theorem 2.2 hold. If α > d
2 , τ > 0, and

εnn
1

2α → ∞ as n → ∞ (20)

or if α < d
2 then, with probability one, the sequence of minimizers vn of J

(n)
p converge to 0 in TL2 as n → ∞. 

That is, the minimizers of J
(n)
p converge to the minimizer of J

(α,τ)
∞ with the information about the labels 

being lost in the limit.

Remark 4.4. We believe, but do not have a proof, that for α > d
2 and τ > 0, if

εnn
1

2α → 0 as n → ∞

then, with probability one, any sequence of minimizers vn of J
(n)
p is sequentially compact in TL2 with 

limn→∞ J
(n)
p (vn) = minv∈L2

µ
Jp(v) given by (18), (19). If this holds then, under Labeling Model 2, J

(n)
p (u)

converges in an appropriate sense to a limiting objective function Jp(u). Our numerical results support this 

conjecture.

It is also of interest to consider the limiting probability distributions which arise under the two labeling

models. Under Labeling Model 2 this density has, in physicist’s notation, “Lebesgue density” exp
(

−Jp(u)
)

. 

Under Labeling Model 1, however, we have shown that J
(n)
p (u) converges in an appropriate sense to a limiting 

objective function Jp(u) implying that (again in physicist’s notation) exp
(

−r−1
n J

(n)
p (u)

)

≈ exp
(

−nJp(u)
)

. 

Thus under Labeling Model 1 the posterior probability concentrates on a Dirac measure at the minimizer 

of Jp(u).

Based on this remark, the natural continuum probability limit concerns Labeling Model 2. The posterior 

probability is then given by
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νp,2(du) =
1

Zp,2
e−Φp,2(u;γ)ν0(du) (21)

where ν0 is the centred Gaussian with covariance C given in Theorem 2.5 and Φp,2 is given by (19). Since 

we require pointwise evaluation to make sense of Φp,2(u; γ) we, in general, require α > d; however Proposi-

tion 2.6 gives conditions under which α > d
2 will suffice. We will also consider the probability measure νp,1

defined by

νp,1(du) =
1

Zp,1
e−Φp,1(u;γ)ν0(du) (22)

where Φp,1 is given by (16). The function Φp,1(u; γ) is defined in an L2
µ sense and thus we require only α > d

2

– see Theorem 2.5. Note, however, that this is not the limiting probability distribution that we expect for

Labeling Model 1 with the parameter choices leading to Theorem 4.2 since the argument above suggests 

that this will concentrate on a Dirac. However we include the measure νp,1 in our discussions because, as 

we will show, it coincides with the analogous Bayesian level set measure νls,1 (defined below) in the small 

observational noise limit. Since νls,1 can be obtained by a natural scaling of the graph algorithm, which does 

not concentrate on Dirac, the relationship between νp,1 and νls,1 is of interest as they are both, for small 

noise, relaxations of the same limiting object.

4.2. Bayesian level set

We now study probabilistic analogues of the Bayesian level set method, again using the measure ν0 which 

is the centred Gaussian with covariance C given in Theorem 2.5 for some α > d
2 . Note that, from equation 

(13), for Labeling Model 1,

rnΦ
(n)
ls (u; γ) =

1

2γ2

1

n

∑

j∈Z′

∣

∣y(xj)− S
(

u(xj)
)∣

∣

2

≈
∫

Ω′

1

2γ2

∣

∣y(x)− S
(

u(x)
)∣

∣

2
dµ(x)

:= Φls,1(u; γ)

by a law of large numbers type argument of the type underlying the proof of Theorem 4.2.

Recall that, from the discussion following Proposition 3.2, this scaling corresponds to employing the finite 

dimensional Bayesian level set model with observational variance γ2n so that the variance per observation 

is constant. Then the natural limiting probability measure is, in physicists notation, exp
(

−Jls(u)
)

where

Jls(u) = J (α,τ)
∞ (u) + Φls,1(u; γ).

Expressed in terms of densities with respect to the Gaussian prior this gives

νls,1(du) =
1

Zls,1
e−Φls,1(u;γ)ν0(du). (23)

Since Φls,1(u; γ) makes sense in L2
µ we require only α > d

2 . The measure νls,1 is the natural analogue of the 

finite dimensional measure ν
(n)
ls under this label model. Under Labeling Model 2 we take rn = 1. We obtain 

a measure νls,2 in the form (23) found by replacing νls,1 by νls,2 and Φls,1 by

Φls,2(u; γ) :=
∑

j∈Z′

1

2γ2

∣

∣y(xj)− S
(

u(xj)
)∣

∣

2
. (24)
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In this case the observational variance is not-rescaled by n since the total number of labels is fixed. Since 

we require pointwise evaluation to make sense of Φls,2(u; γ) we, in general, require α > d; however Proposi-

tion 2.6 gives conditions under which α > d
2 will suffice.

Remark 4.5. Note that J
(n)
ls and Jls cannot be connected via Γ-convergence. Indeed, if Jls = Γ- limn→∞ J

(n)
ls

then Jls would be lower semi-continuous [41]. When τ > 0 compactness of minimizers follows directly 

from the compactness property of the quadratic forms J
(α,τ)
n , see Theorem 2.2. Now since compactness of 

minimizers plus lower semi-continuity implies existence of minimizers then the above reasoning implies there 

exists minimizers of Jls. But as in the discrete case, Proposition 3.2, multiplying any u by a constant less than 

one leads to a smaller value of Jls. Hence the infimum cannot be achieved. It follows that Jls Ó= Γ- limn→∞ J
(n)
ls .

4.3. Small noise limit

As for the finite graph problems, the labeled data can be viewed as arising from different generative 

models. In the probit formulation, the generative models for the labels are given by

y(x) = S(u(x) + ξ(x)), ξ ∼ N(0, γ2I),

y(xj) = S(u(xj) + ξj), ξj
iid∼ N(0, γ2),

for Labeling Model 1, Labeling Model 2 respectively; S is the sign function. The functionals Φp,1, Φp,2 then 

arise as the negative log-likelihoods from these models. Similarly, in the Bayesian level set formulation the 

generative models are given by

y(x) = S(u(x)) + ξ(x), ξ ∼ N(0, γ2I),

y(xj) = S(u(xj)) + ξj , ξj
iid∼ N(0, γ2).

leading to the functionals Φls,1, Φls,2.

We show that in the zero noise limit the Bayesian level set and probit posterior distributions coincide. 

However for γ > 0 they differ: note, for example, that the probit model enforces binary data, whereas the 

Bayesian level set model does not. It has been observed that the Bayesian level set posterior can be used to 

produce similar quality classification to the Ginzburg-Landau posterior, at significantly lower computational 

cost [42]. The small noise limit is important for two reasons: firstly in many applications labeling is very 

accurate and considering the zero noise limit is therefore instructive; secondly recent work [43] shows that 

the zero noise limit provides useful information about the efficiency of algorithms applied to sample the 

posterior distribution and, in particular, constants derived from the zero noise limit appear in lower bounds 

on average acceptance probability and mean square jump in such algorithms.

Proof of the following is given in section 7.7.

Theorem 4.6.

(i) Let Assumptions 2–3 hold, and assume that α > d. Let the assumptions of Labeling Model 1 hold. 

Define the set

B∞,1 = {u ∈ C(Ω;R) | y(x)u(x) > 0 for a.e. x ∈ Ω′}

and the probability measure

ν1(du) = Z
−1

1B∞,1
(u)ν0(du)
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where Z = ν0(B∞,1). Consider the posterior measures νp,1 defined in (22) and νls,1 defined in (23). 

Then νp,1 ⇒ ν1 and νls,1 ⇒ ν1 as γ → 0.

(ii) Let Assumptions 2–3 hold, and assume that α > d. Let the assumptions of Labeling Model 2 hold. 

Define the set

B∞,2 = {u ∈ C(Ω;R) | y(xj)u(xj) > 0 for each j ∈ Z ′}

and the probability measure

ν2(du) = Z
−1

1B∞,2
(u)ν0(du)

where Z = ν0(B∞,2). Then νp,2 ⇒ ν2 and νls,2 ⇒ ν2 as γ → 0.

Remark 4.7. The assumption that α > d in both parts of the above theorem can be relaxed to α > d/2 if 

the conclusions of Proposition 2.6 are satisfied.

4.4. Kriging

One can define kriging in the continuum setting [12] analogously to the discrete setting; we consider this 

numerically in section 5. In the case of Labeling Model 2, the limiting problem is to

minimize Jk(u) := J (α,τ)
∞ (u) subject to u(xj) = yj for all j ∈ Z ′.

Kriging may also be defined for Labeling Model 1 and without the hard constraint in the continuum setting, 

but we do not discuss either of these scenarios here.

5. Numerical illustrations

In this section we describe the results of numerical experiments which illustrate or extend the devel-

opments in the preceding sections. In section 5.1 we study the effect of the geometry of the data on the 

classification problem, by studying an illustrative example in dimension d = 2. Section 5.2 studies how the 

relationship between the length-scale ǫ and the graph size n affects limiting behavior. In section 5.3 we study 

graph based kriging. Finally, in section 5.4, we study continuum problems from the Bayesian perspective, 

studying the quantification of uncertainty in the resulting classification.

5.1. Effect of data geometry on classification

We study how the geometry of the data affects the classification under Labeling Model 1, using the con-

tinuum probit model. Let Ω = (0, 1)2. We first consider a uniform distribution ρ on the domain, and choose 

Ω+, Ω− to be balls of radius 0.05 centred at (0.25,0.25), (0.75,0.75) respectively. The decision boundary is 

then naturally the perpendicular bisector of the line segment joining the centers of these balls. We then 

modify ρ by introducing a channel of increasing depth in ρ dividing the domain in two vertically, and look 

at how this affects the decision boundary. Specifically, given h ∈ [0, 1] we define ρh to be constant in the 

y-direction, and assume the cross-sections in the x-direction are as shown in Fig. 2, so that the channel 

has depth 1 − h. In order to numerically estimate the continuum probit minimizers, we construct a finite-

difference approximation to each L on a uniform grid of 65536 points, which then provides an approximation 

to A. The objective function J(∞)
p is then minimized numerically using the linearly-implicit gradient flow 

method described in [17], Algorithm 4.
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Fig. 2. The cross sections of the data densities ρh we consider in subsection 5.1.

Fig. 3. The minimizers of the functional J(∞)
p for different values of h and α, as described in subsection 5.1.

We consider both the effect of the channel depth parameter h and the parameter α on the classification; 

we fix τ = 10 and γ = 0.01. In Fig. 3 we show the minimizers arising from 5 different choices of h

and α = 1, 2, 3. As the depth of the channel is increased, the minimizers begin to develop a jump along 

the channel. As α is increased, the minimizers become less localized around the labeled regions, and the 

jump along the channel becomes sharper as a result. Note that the scale of the minimizers decreases as α

increases. This could formally be understood from a probabilistic point of view: under the prior we have 

E‖u‖2L2 = Tr(A−1) ≍ τ−2α, and so a similar scaling may be expected to hold for the MAP estimators. In 

Fig. 4 we show the sign of each minimizer in Fig. 3 to illustrate the resulting classifications. As the depth 

of the channel is increased, the decision boundary moves continuously from the diagonal to the vertical 

bisector of the domain, with the transitional boundaries appearing almost as a piecewise linear combination 

of both boundaries. We also see that, despite the minimizers themselves differing significantly for different 

α, the classifications are almost invariant with respect to α.

5.2. Localization bounds for kriging and probit

We study how the rate affects convergence to the continuum limits when the localization parameter 

decreases and the number of data points n is increased. We consider Labeling model 2 using both the 
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Fig. 4. The sign of minimizers from Fig. 3, showing the resulting classification.

kriging and probit models; this serves to illustrate the result of Theorem 4.3, motivate Remark 4.4, and 

provide a relation to the results of [39].

We work on the domain Ω = (0, 1)2 and take a uniform data distribution ρ. In all cases we fix two 

datapoints which we label with opposite signs, and sample the remaining n − 2 datapoints. For kriging we 
consider the situation where the data is viewed as noise-free so that the label values are interpolated. We 

calculate the minimizer un of J
(n)
k numerically via the closed form solution

un = A(n),−1R∗(RA(n),−1R∗)−1y,

where R ∈ R
2×n is the mapping taking vectors to their values at the labeled points. In order to numerically 

estimate the continuum minimizer u of J
(∞)
k , we construct a finite-difference approximation to L on a 

uniform grid of 65536 points. This leads to an approximation Â to A, from which we again use the closed 

form solution to compute û ≈ u:

û = Â−1R̂∗(R̂Â−1R̂∗)−1y,

where R̂ ∈ R
2×65556 takes discrete functions to their values at the labeled points.

In Fig. 5 (left) we show how the L2
µn
error between un and û varies with respect to ε for increasing 

values of n. All errors are averaged over 200 realizations of the unlabeled datapoints, and we consider 100 

uniformly spaced values of ε between 0.005 and 0.5. We see that ε must belong to a ‘sweet-spot’ in order 

to make the error small – if ε is too small or too large convergence doesn’t occur. The right hand side of 

the figure shows how these lower and upper bounds vary with n; the bounds are defined numerically as the 

points where the second derivative of the error curve changes sign. The rates are in agreement with the 

results and conjectures up to logarithmic terms, although the sharp bounds are not obtained – we see that 

the lower bounds are larger than O(n− 1
2 ), and the upper bounds are smaller than O(n− 1

2α ). It is possible 

that the sharp bounds may be approached in a more asymptotic (and computationally infeasible) regime.

Similarly, we note that the minimum error for α = 2 in Fig. 5 decreases very slowly in the range of n

we considered. This again indicates that we are not yet in the asymptotic regime at n = 1600. Further 
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Fig. 5. (Left) The L2
µn

error between discrete minimizers and continuum minimizers of the kriging model versus localization pa-
rameter ε, for different values of n. (Right) The upper and lower bounds for ε(n) to provide convergence. The slopes of the lines 
of best fit provide estimates of the rates.
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experiments (not included) for larger values of n show that the minimum error does converge as n → ∞ as 

expected.

For the probit model we take γ = 0.01 and use the same gradient flow algorithm as in subsection 5.1

for both the continuum and discrete minimizers. Fig. 6 shows the errors, analogously to Fig. 5. Note that 

the errors are plotted on logarithmic axes here, as unlike the kriging minimizers, there is no restriction for 

the minimizers to be on the same scale as the labels. We see that the same trend is observed in terms of 

requiring upper and lower bounds on ε, and a shift of the error curves towards the left as n is increased.

5.3. Extrapolation on graphs

We consider the problem of smoothly extending a sparsely defined function on a graph to the entire graph. 

Such extrapolation was studied in [44], and was achieved via the use of a weighted nonlocal Laplacian. We 

use the kriging model with Labeling Model 2, labeling two points with opposite signs, and setting γ = 0. 

We fix a set of datapoints {xj}n
j=1, n = 1600, drawn from the uniform density on the domain Ω = (0, 1)2. 

We fix τ = 1 and look at how the smoothness of minimizers of the kriging functional J
(n)
k varies with α. 

The minimizers are computed directly from the closed form solution, as in subsection 5.2. When α > d/2

we choose ε to approximately minimize the L2
µn
errors between the discrete and continuum solutions (since 

the continuum solution is non-trivial). When α ≤ d/2 a representative ε is chosen which is approximately 

twice the connectivity radius. The minimizers are shown in Fig. 7 for α = 0.5, 1.0, 1.5, 2.0. Spikes are clearly 

visible for α ≤ d/2 = 1: the requirement for α > d/2 to avoid spikes appears to be essential.

5.4. Bayesian level set for sampling

We now turn to the problem of sampling the conditioned continuum measures introduced in subsec-

tions 4.1 and 4.2, specifically their common γ → 0 limit. From this sampling we can, for example, calculate 

the mean of the classification, which may be used to define a measure of uncertainty of the classification at 

each point. This is because, for binary random variables, the mean determines the variance. Knowing the 

uncertainty in classification has great potential utility, for example in active learning in guiding where to 

place resources in labeling in order to reduce uncertainty.

We fix Ω = (0, 1)2. The data distribution ρ is shown in Fig. 8; it is constructed as a continuum analogue 

of the two moons distribution [45], with the majority of its mass concentrated on two curves. The contrast 

ratio in the sampling density ρ is approximately 100:1 between the values on and off of the curves. The 

resulting operator L contains significant clustering information: in Fig. 8 we show the second eigenfunction 

of L, termed the Fiedler vector in analogy with second eigenvector of the graph Laplacian. The sign of this 

function provides a good estimate for the decision boundary in an unsupervised context. We use Labeling

Model 2, labeling a single point on each curve with opposing signs as indicated by • and ◦ in Fig. 8.

Sampling is performed using the preconditioned Crank-Nicolson MCMC algorithm [46], which has 

favourable dimension-independent statistical properties, as demonstrated in [30] in the graph-based setting 

of relevance here. We consider three choices of α > d/2, and two choices of inverse length-scale parameter τ . 

In general we require α > d for the measure ν2 in Theorem 4.6 to be well-defined. However numerical 

evidence suggests that the conclusions of Proposition 2.6 are satisfied with this choice of ρ, implying that 

we may make use of Remark 4.7 and that α > d
2 suffices. The operator L is discretized using a finite 

difference method on a square grid of 40000 points, and sampling is performed on the span of its first 500

eigenfunctions.

In Fig. 9 we show the mean of the sign of samples on the left hand side, for each choice of α, after 

fixing τ = 1. Note that uncertainty is greater the further the values of the mean are from ±1: specifically 
we have that Var

(

S(u(x)
)

= 1 −
[

E(S(u(x)))
]2
. We see that the classification on the curves where the 

data concentrates is fairly certain, whereas classification away from the curves is uncertain; furthermore the 
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Fig. 6. (Left) The L2
µn

error between discrete minimizers and continuum minimizers of the probit model versus localization parameter 
ε, for different values of n. (Right) The upper and lower bounds for ε(n) to provide convergence. The slopes of the lines of best fit 
provide estimates of the rates.
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Fig. 7. The extrapolation of a sparsely defined function on a graph using the kriging model, for various choices of parameter α.

Fig. 8. (Left) The data distribution ρ used in the MCMC experiments, and the locations of the two labeled datapoints. (Right) The 
second eigenfunction of the operator L corresponding to ρ.

certainty increases away from the curves slightly as α is increased. Samples S(u) are also shown in the same 

figure; the uncertainty away from the curves is illustrated also by these samples.

In Fig. 10 we show the same results, but with the choice τ = 0.2 so that samples possess a longer 

length scale. The classification certainty now propagates away from the curves more easily. The effect of 

the asymmetry of the labeling is also visible in the mean for the case α = 4: uncertainty is higher in the 

bottom-left corner than the top-left corner.

Since the prior on the latent random field u may be difficult to ascertain in applications, the sensitivity of 

the classification on the choice of the parameters α, τ indicates that it could be wise to employ hierarchical 

Bayesian methods to learn appropriate values for them along with the latent field u. Dimension robust 
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Fig. 9. (Left) The mean E(S(u)) of the classification arising from the conditioned measure ν2. (Right) Examples of samples S(u)
where u ∼ ν2. Here we choose τ = 1.

Fig. 10. (Left) The mean E(S(u)) of the classification arising from the conditioned measure ν2. (Right) Examples of samples S(u)
where u ∼ ν2. Here we choose τ = 0.2.

MCMC methods are available to sample such hierarchical distributions [47], and application to classification 

problems are shown in that paper.

6. Conclusions

In this paper we have studied large graph limits of semi-supervised learning problems in which smoothness 

is imposed via a shifted graph Laplacian, raised to a power. Both optimization and Bayesian approaches 
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have been considered. To keep the exposition manageable in length we have confined our attention to 

the unnormalized graph Laplacian. However, one may instead choose to work with the normalized graph 

Laplacian L = I −D− 1
2 WD− 1

2 , in place of L = D−W . In the normalized case the continuum PDE operator 

is given by

Lu = − 1

ρ3/2
∇ ·

(

ρ2∇
( u

ρ1/2

)

)

with no flux boundary conditions: ∇
(

u
ρ1/2

)

· ν = 0 on ∂Ω, where ν is the outside unit normal vector to ∂Ω. 

Theorems 2.2, 4.2 and 4.6 generalize in a straightforward way to such a change in the graph Laplacian.

Future directions stemming from the work in this paper include: (i) providing a limit theorem for probit 

MAP estimators under Labeling Model 2; (ii) providing limit theorems for the Bayesian probability dis-

tributions considered, using the machinery introduced in [29,30]; (iii) using the limiting problems in order 

to analyze and quantify efficiency of algorithms on large graphs; (iv) invoking specific sources of data and 

studying the effectiveness of PDE limits in comparison to non-local limits.

7. Appendix

7.1. Function spaces

Here we establish the equivalence between the spectrally defined Sobolev spaces, Hs(Ω) and the standard 

Sobolev spaces.

We denote by

H2
N (Ω) =

{

u ∈ H2(Ω) :
∂u

∂n
= 0 on ∂Ω

}

the domain of L. Analogously we denote by H2m
N (Ω) the domain of Lm, that is

H2m
N (Ω) =

{

u ∈ H2m(Ω) :
∂Lru

∂n
= 0 for all 0 ≤ r ≤ m − 1 on ∂Ω

}

Finally we let H2m+1
N (Ω) = H2m+1(Ω) ∩ H2m

N (Ω).

For m ≥ 0 and u, v ∈ H2m+1
N (Ω) let 〈u, v〉2m+1,µ =

∫

Ω
∇Lmu · ∇Lmvρ2dx and for u, v ∈ H2m

N (Ω) let 

〈u, v〉2m,µ =
∫

Ω
(Lmu)(Lmv)ρ dx. We note that on the L2

µ orthogonal complement of the constant function 

1, 〈 · , · 〉2m+1,µ defines an inner product, which due to Poincaré inequality is equivalent to the standard 

inner product on H2m+1(Ω). We also note that 〈ϕk, ϕk〉2m+1,µ = λ2m+1
k , where we recall that ϕk is unit 

eigenvector of L corresponding to λk.

Lemma 7.1. Under Assumptions 2 - 3, for any integer s ≥ 0

Hs
N (Ω) = Hs(Ω)

and the associated inner products 〈 · , · 〉s,µ and 〈 〈 · , · 〉 〉s,µ are equivalent on the L2
µ orthogonal complement 

of the constant function.

Proof. For s = 0, H0
N = L2 by definition and H0 = L2 by the fact that {ϕk : k = 1, . . .} is an orthonormal 

basis.

To show the claim for s = 1, we recall that 
∫

∇ϕk · ∇ϕjρ2dx =
∫

ϕkLϕjρdx = λkδj
k. There-

fore 
{

ϕk√
λk
: k ≥ 1

}

is an orthonormal basis of the orthogonal complement of the constant function, 
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1⊥, in H1
N with respect to the inner product (u, v) =

∫

∇u · ∇vρ2dx which is equivalent to the stan-

dard inner product of H1
N on 1⊥. Since an expansion in the basis {ϕk}k is unique, this implies that 

for any u ∈ H1
N = H1 the series 

∑

k akϕk converges in H1 to u. Consequently if u ∈ H1
N then 

∞ >
∫

|∇u|2ρ2dx =
∫

| ∑k ak∇ϕk|2ρ2dx =
∑

k a2
kλk which implies that u ∈ H1. So H1

N ⊆ H1.

On the other hand, if u ∈ H1 then u =
∑

k akϕk with 
∑

k λka2
k < ∞. Therefore u = ū+

∑∞
k=2 ak

√
λk

ϕk√
λk
, 

where ū is the average of u. Since ϕk√
λk
are orthonormal in scalar product with topology equivalent to H1, 

the series converges in H1. Therefore u ∈ H1 = H1
N .

Assume now that the claim holds for all integers less than s. We split the proof of the induction step into 

two cases:

Case 1◦ Consider s even; that is s = 2m for some integer m > 0.

Assume u ∈ H2m
N . Then ∇Lru ·þn = 0 on ∂Ω for all r < m. By the induction hypothesis 

∑

k λ2m−1
k a2

k < ∞. 
Since L is a continuous operator from H2 to L2 one obtains by induction that Lm−1u =

∑

k akLm−1ϕk =
∑

akλm−1
k ϕk. Let v = Lm−1u. By assumption v ∈ H2

N . By above v =
∑

k akλm−1
k ϕk.

Since ϕk is solution of Lϕk = λkϕk

〈Lϕk, v〉µ = 〈λkϕk, v〉µ.

Using that v ∈ H2, ∇v · þn = 0 on ∂Ω and integration by parts we obtain

〈ϕk, Lv〉µ = 〈λkϕk,
∑

j

ajλm−1
j ϕj〉µ = λm

k ak.

Given that Lv is an L2
µ function, we conclude that Lv =

∑

k λm
k akϕk. Therefore 

∑

k λ2m
k a2

k < ∞ and hence 

u ∈ H2m.

To show the opposite inclusion, consider u ∈ H2m. Then u =
∑

k akϕk and 
∑

k λ2m
k a2

k < ∞. By induction 
step we know that u ∈ H2m−2

N and thus v = Lm−1u ∈ L2. We conclude as before that v =
∑

k λm−1
k akϕk. 

Let bk = λm−1
k ak. Assumptions on u imply 

∑

k λ2
kb2k < ∞. Arguing as above in the case s = 1 we conclude 

that the series converges in H1 and that ∇v =
∑

k bk∇ϕk. Combining this with the fact that Lϕk = λkϕk

in Ω for all k implies that v is a weak solution of

Lv =
∑

k

λkbkϕk in Ω,

∂v

∂n
= 0 on ∂Ω.

Since RHS of the equation is in L2 and ∂Ω is C1,1, by elliptic regularity [48], v ∈ H2 and ‖v‖2H2 ≤
C(Ω, ρ) 

∑

k b2kλ2
k. Furthermore v satisfies the Neumann boundary condition and thus v ∈ H2

N .

Case 2◦ Consider s odd; that is s = 2m + 1 for some integer m > 0. Assume u ∈ H2m+1
N . Let v = Lmu. 

Then v ∈ H1. The result now follows analogously to the case s = 1. If u ∈ H2m+1 then, u =
∑

k akϕk with 
∑

k λ2m+1
k a2

k < ∞. By induction hypothesis, v = Lm−1u ∈ H1
N and v =

∑

k bkϕk where bk = λm−1ak. Thus 
∑

k λkb2k < ∞ and the argument proceeds as in the case s = 1.

Proving the equivalence of inner products is straightforward. ✷

We now present the proof of Lemma 2.4.

Proof of Lemma 2.4. If s is an integer the claim follows form Lemma 7.1 and Sobolev embedding the-

orem. Assume s = m + θ for some θ ∈ (0, 1). Since Ω is Lipschitz, by extension theorem of Stein 

(Leoni [38] 2nd edition, Theorem 13.17) there is a bounded linear extension mapping Em : Hm(Ω) →
Hm(Rd) such that Em(f)|Ω = f . From the construction (see remark 13.9 in [38]) it follows that 
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Em and Em+1 agree on smooth functions and thus Em+1 = Em|Hm(Ω). Therefore, by Theorem 

16.12 in Leoni’s book (or Lemma 3.7 of Abels [32]) Em provides a bounded mapping from the in-

terpolation space [Hm(Ω), Hm+1(Ω)]θ,2 → [Hm(Rd), Hm+1(Rd)]θ,2. As discussed above the statement 

of Lemma 2.4 Hm+θ(Ω) = [Hm(Ω), Hm+1(Ω)]θ,2. By Lemma 7.1, [Hm(Ω), Hm+1(Ω)]θ,2 embeds into 

[Hm(Ω), Hm+1(Ω)]θ,2. Furthermore, we use that, see Abels [32] Corollary 4.15, [H
m(Rd), Hm+1(Rd)]θ,2 =

Hm+θ(Rd). Combining these facts yields the existence of an bounded, linear, extension mapping Hm+θ(Ω) →
Hm+θ(Rd). The results (i) and (ii) follows by the Sobolev embedding theorem. ✷

7.2. Passage from discrete to continuum

There are two key tools we use to pass from the discrete to continuum limit. The first is Γ-convergence. 

Γ-convergence was introduced in the 1970’s by De Giorgi as a tool for studying sequences of variational 

problems. More recently this methodology has been applied to study the large data limits of variational 

problems that arise from statistical inference, e.g. [20,25,49–51]. Accessible introductions to Γ-convergence 

can be found in [41,52]

The Γ-convergence methodology provides a notion of convergence of functionals that captures the behav-

ior of minimizers. In particular the minimizers converge along a subsequence to a minimizer of the limiting 

functional. In our setting, the objects of interest are functions on discrete domains and hence it is not 

immediate how one should define convergence. This brings us to our second key tool. Recently a suitable 

topology has been identified to characterize the convergence of discrete to continuum using an optimal 

transport framework [49]. The main idea is, given a discrete function un : Ωn → R and a continuum func-

tion u : Ω → R, to include the measures with respect to which they are defined in the comparison. Namely, 

one can think of the function un as belonging to the L
p space over the empirical measure µn =

1
n

∑n
i=1 δxi

and u belonging to the Lp space over the measure µ. One defines a continuum function ũn : Ω → R by 

ũn = un ◦ Tn where Tn : Ωn → Ω is a measure preserving map between µ and µn. One then compares un

and ũn in the Lp distance, and simultaneously compares Tn and identity. In other words one considers both 

the difference in values and the how far the matched points are. We give a brief overview of Γ-convergence 

and the TLp space.

7.2.1. A brief introduction to Γ-convergence

We present the definition of Γ-convergence in terms of an abstract topology. In the next section we will 

discuss what topology we will use in our results. For now, we simply point out that the space X needs to 

be general enough to include functions defined with respect to different measures.

Definition 7.1. Given a topological space X , we say that a sequence of functions Fn : X → R ∪ {+∞}
Γ-converges to F∞ : X → R ∪ {+∞}, and we write F∞ = Γ- limn→∞ Fn, if the following two conditions 

hold:

• (the liminf inequality) for any convergent sequence un → u in X

lim inf
n→∞

Fn(un) ≥ F∞(u);

• (the limsup inequality) for every u ∈ X there exists a sequence un in X with un → u and

lim sup
n→∞

Fn(un) ≤ F∞(u).
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In the above definition we also call any sequence {un}n=1,... that satisfies the limsup inequality a recovery 

sequence. The justification of Γ-convergence as the natural setting to study sequences of variational problems 

is given by the next proposition. The proof can be found in, for example, [41].

Proposition 7.2. Let Fn, F∞ : X → R ∪ {+∞}. Assume that F∞ is the Γ-limit of Fn and the sequence of 

minimizers {un}n=1,... of Fn is precompact. Then

lim
n→∞

min
X

Fn = lim
n→∞

Fn(un) = minX
F∞

and furthermore, any cluster point u of {un}n=1,... is a minimizer of F∞.

Note that Γ- limn→∞ Fn = F∞ and Γ- limn→∞ Gn = G∞ do not imply Fn+Gn Γ-converges to G∞+F∞. 

Hence, in order to build optimization problems by considering individual terms it is not enough, in general, 

to know that each term Γ-converges. In particular, we consider using the quadratic form J
(α,τ)
n as a prior 

and adding fidelity terms, e.g.

J
(n)(u) = J (α,τ)

n (u) + Φ(n)(u).

We show that, with probability one, Γ- limn→∞ J
(α,τ)
n = J

(α,τ)
∞ . In order to show that J(n) Γ-converges it 

suffices to show that Φ(n) converges along any sequence (µn, un) along which J
(α,τ)
n (un) is finite. This is 

similar to the notion of continuous convergence, which is typically used [52, Proposition 6.20]. However we 

note that Φ(n) does not converge continuously since as a functional on TLp(Ω) it takes the value infinity 

whenever the measure considered is not µn.

7.2.2. The TLp space

In this section we give an overview of the topology that was introduced in [49] to compare sequences of 

functions on graphs. We motivate the topology in the setting considered in this paper. Recall that µ ∈ P(Ω)
has density ρ and that µn is the empirical measure. Given un : Ωn → R and u : Ω → R the idea is to 

consider pairs (µ, u) and (µn, un) and compare them as such. We define the metric as follows.

Definition 7.2. Given a bounded open set Ω, the space TLp(Ω) is the space of pairs (µ, f) such that µ is a 

probability measure supported on Ω and f ∈ Lp(µ). The metric on TLp is defined by

dT Lp((f, µ), (g, ν)) = inf
π∈Π(µ,ν)





∫

Ω×Ω

|x − y|p + |f(x)− g(y)|p dπ(x, y)





1
p

.

Above Π(µ, ν) is the set of transportation plans (i.e. couplings) between µ and ν; that is the set of 

probability measures on Ω × Ω whose first marginal is µ and second marginal in ν.

For a proof that dT Lp is a metric on TLp see [49, Remark 3.4].

To connect the TLp metric defined above with the ideas discussed previously we make several observa-

tions. The first is that when µ has a continuous density then one can consider transport maps T : Ω → Ωn

that satisfy T#µ = µn instead of transport plans π ∈ Π(µ, ν). Hence, one can show that

dT Lp((f, µ), (g, ν)) = inf
T : T#µ=ν

(

‖Id− T ‖p
Lp(µ) + ‖f − g ◦ T ‖p

Lp(µ)

)
1
p

.

In the setting when we compare (µ, u) and (µn, un) the second term is nothing but ‖u − ũn‖p
Lp(µ), where 

ũn = un ◦ Tn and Tn : Ω → Ωn is a transport map.
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We note that for a sequence (µn, un) to TLp converge to (µ, u) it is necessary that ‖Id−T‖Lp(µ) converges 

to zero, in other words it is necessary that the measures µn converge to µ in p-optimal transportation 

distance. We recall that since Ω is bounded this is equivalent to weak convergence of µn to µ. Assuming this to 

be the case, we call any sequence of transportation maps Tn satisfying (Tn)#µ = µn and ‖Id−Tn‖Lp(µ) → 0

a stagnating sequence. One can then show (see [49, Proposition 3.12]) that convergence in TLp is equivalent 

to weak* convergence of measures µn to µ and convergence ‖u − un ◦ Tn‖Lp(µ) → 0 for arbitrary sequence 

of stagnating transportation maps. Furthermore if convergence ‖u − un ◦ Tn‖Lp(µ) → 0 holds for a sequence 

of stagnating transportation maps it holds for every sequence of stagnating transportation maps.

The intrinsic scaling of the graph Laplacian, i.e. the parameter εn, depends on how far one needs to 

move “mass” to couple µ and µn, that is on upper bounds on transportation distance between µ and µn. 

The following result can be found in [53], the lower bound in the scaling of ε = εn is so that there exists a 

stagnating sequence of transport maps with ‖Tn−Id‖L∞

εn
→ 0.

Proposition 7.3. Let Ω ⊂ R
d with d ≥ 2 be open, connected and bounded with Lipschitz boundary. Let 

µ ∈ P(Ω) with density ρ which is bounded above and below by strictly positive constants. Let Ωn = {xi}n
i=1

where xi
iid∼ µ and let µn =

1
n

∑n
i=1 δxi

be the associated empirical measure. Then, there exists C > 0 such 

that, with probability one, there exists a sequence of transportation maps Tn : Ω → Ωn that pushes µ onto 

µn and such that

lim sup
n→∞

‖Tn − Id‖L∞(Ω)

δn
≤ C

where

δn =











(log n)
3
4√

n
if d = 2

(

log n
n

)
1
d

if d ≥ 3.

7.3. Estimates on eigenvalues of the graph Laplacian

The following lemma is nonasymptotic and holds for all n. However we will use it in the asymptotic 

regime and note that our assumptions on ε, (5), and results of Proposition 7.3 ensure that the assumptions 

of the lemma are satisfied.

Lemma 7.4. Consider the operator A(n) defined in (1) for α = 1 and τ ≥ 0. Assume that dOT∞(µn, µ) < ε. 

Then the spectral radius λmax of A(n) is bounded by C 1
ε2 + τ2 where C > 0 is independent of n and ε.

Let R > 0 be such that η(3R) > 0. Assume that dOT∞(µn, µ) < Rε. Then there exists c > 0, independent 

of n and ε, such that λmax > c 1
ε2 + τ2.

Proof. Let η(x) = η((|x| − 1)+). Note that η ≥ η(| · |) and that since η is decreasing and integrable 
∫

Rd η(x)dx < ∞.
Let T be the dOT ∞ transport map from µ to µn. By assumption ‖Tn(x) − x‖ ≤ ε a.e. By definition 

of A(n)

λmax = sup
‖u‖L2

µn
=1

〈u, A(n)u〉µn
= τ2 + sup

‖u‖L2
µn

=1

〈u, snLu〉µn

We estimate
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sup
‖u‖L2

µn
=1

〈u, snLu〉µn
≤ sup

1
n

∑n
i=1 u2

i=1

4

ση

∑

i,j

1

n2εd+2
η

( |xi − xj |
ε

)

(u2
i + u2

j )

. sup
1
n

∑n
i=1 u2

i=1

n
∑

i=1

n
∑

j=1

1

n2εd+2
η

( |xi − xj |
ε

)

u2
i

= sup
1
n

∑n
i=1 u2

i=1

1

nεd+2

n
∑

i=1

u2
i

∫

Ω

η

( |xi − T (x)|
ε

)

dµ(x)

≤ sup
1
n

∑n
i=1 u2

i=1

1

nεd+2

n
∑

i=1

u2
i

∫

Ω

η

(

xi − x

ε

)

dµ(x)

.
1

ε2

∫

Rd

η(z)dz .
1

ε2
.

Above . means ≤ up to a factor independent of ε and n.

To prove the second claim of the lemma consider v =
√

nδxi
, a singleton concentrated at an arbitrary 

xi, that is vi =
√

n and vj = 0 for all j Ó= i. Then ‖v‖L2
µn
= 1. Using that for a.e. x ∈ B(xi, 2εR), 

|xi − T (x)| ≤ 3εR we estimate:

sup
‖u‖L2

µn
=1

〈u, snLu〉µn
≥ 〈v, snLv〉µn

&
∑

j Ó=i

n

n2εd+2
η

( |xi − xj |
ε

)

=
1

εd+2

∫

Ω\T −1(xi)

η

( |xi − T (x)|
ε

)

dµ(x)

≥ 1

εd+2

∫

B(xi,2εR)\B(xi,εR)

η(3R)dµ(x) &
1

ε2
(25)

which implies the claim. ✷

An immediate corollary of the claim is the characterization of the energy of a singleton. For any α ≥ 1
and τ ≥ 0.

J (α,τ)
n (δxi

) ∼ 1

n

(

1

ε2n
+ τ2

)α

∼ 1

nε2α
n

. (26)

The upper bound is immediate from the first part of the lemma, while the lower bound follows from 

the second part of the lemma via Jensen’s inequality. Namely, (λ
(n)
k , q

(n)
k ) be eigenpairs of L and let us 

expand δxi
in the terms of q

(n)
k : i.e. δxi

=
∑n

k=1 akq
(n)
k where 

∑

k a2
k = ‖δxi

‖2L2
µn
= 1

n . We know that 
∑

k λ
(n)
k a2

k & 1
nε2

nsn
∼ 1, from (25) (using the expansion (27) and noting that v =

√
nδxi

in (25)). Hence

J (α,τ)
n (δxi

) =
1

2n

n
∑

k=1

(

snλ
(n)
k + τ2

)α

na2
k ≥ 1

2n

(

nsn

n
∑

k=1

λ
(n)
k a2

k + τ2

)α

≥ 1

2n

(

1

ε2n
+ τ2

)α

.
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7.4. The limiting quadratic form

Here we prove Theorem 2.2. The key tool is to use spectral decomposition of the relevant quadratic forms, 

and to rely on the limiting properties of the eigenvalues and eigenvectors of L established in [25].

Let (q
(n)
k , λ

(n)
k ) be eigenpairs of L with eigenvalues λk ordered so that

0 = λ
(n)
1 ≤ λ

(n)
2 ≤ λ

(n)
3 ≤ . . . λ(n)

n

where λ
(n)
1 < λ

(n)
2 provided that the graph G is connected. We extend F : R Ô→ R to a matrix-valued 

function F via F (L) = Q(n)(Λ
(n)
F )(Q(n))∗ where Q(n) is the matrix with columns {q

(n)
k }n

k=1 and Λ
(n)
F is the 

diagonal matrix with entries {F (λ
(n)
i )}n

i=1. For constants α ≥ 1, τ ≥ 0 and a scaling factor sn, given by (6), 

we recall the definition of the precision matrix A(n) is A(n) = (snL + τ2I)α and the fractional Sobolev 

energy J
(α,τ)
n is

J (α,τ)
n : L2

µn
Ô→ [0,+∞), J (α,τ)

n (u) =
1

2
〈u, A(n)u〉µn

.

Note that

J (α,τ)
n (u) =

1

2

n
∑

k=1

(snλ
(n)
k + τ2)α〈u, q

(n)
k 〉2µn

. (27)

When showing Γ-convergence, all functionals are considered as functionals on the TLp space. When evalu-

ating J
(α,τ)
n at (ν, u) we consider it infinite for any measure ν other than µn, and having the value J

(α,τ)
n (u)

defined above if ν = µn.

We let (qk, λk) for k = 1, 2, . . . be eigenpairs of L ordered so that

0 = λ1 ≤ λ2 ≤ λ3 ≤ . . . .

We extend F : R Ô→ R to an operator valued function via the identity F (L) = ∑∞
k=1 F (λk)〈u, qk〉µqk. For 

constants α ≥ 1 and τ ≥ 0 we recall the definition of the precision operator A as A = (L + τI)α and the 

continuum Sobolev energy J
(α,τ)
∞ as

J (α,τ)
∞ : L2

µ Ô→ R ∪ {+∞}, J (α,τ)
∞ (u) =

1

2
〈u, Au〉µ.

Note that the Sobolev energy can be written

J (α,τ)
∞ (u) =

1

2

∞
∑

k=1

(λk + τ2)α〈u, qk〉2µ.

Proof of Theorem 2.2. We prove the theorem in three parts. In the first part we prove the liminf inequality 

and in the second part the limsup inequality. The third part is devoted to the proof of the two compactness 

results.

The liminf inequality

Let un → u in TLp, we wish to show that

lim inf
n→∞

J (α,τ)
n (un) ≥ J (α,τ)

∞ (u).

By [25, Theorem 1.2], if all eigenvalues of L are simple, we have with probability one (where the set 

of probability one can be chosen independently of the sequence un and u) that snλ
(n)
k → λk and q

(n)
k
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converge in TL2 to qk. If there are eigenspaces of L of dimension higher than one then q
(n)
k converge along 

a subsequence in TL2 to eigenfunctions q̃k corresponding to the same eigenvalue as qk. In this case we 

replace qk by q̃k, which does not change any of the functionals considered. We note that while eigenvectors 

in the general case only converge along subsequences, the projections to the relevant spaces of eigenvectors 

converge along the whole sequence, see [25, statement 3. Theorem 1.2]. To prove the convergence of the 

functional one would need to use these projections, which makes the proof cumbersome. For that reason in 

the remainder of the proof we assume that all eigenvalues of L are simple, in which case we can express the 

projections using the inner product with eigenfunctions.

Since q
(n)
k → qk and un → u in TL2 as n → ∞, 〈q(n)

k , un〉µn
→ 〈q, u〉µ as n → ∞.

First we assume that J
(α,τ)
∞ (u) < ∞. Let δ > 0 and choose K such that

1

2

K
∑

k=1

(λk + τ2)α〈u, qk〉2µ ≥ J (α,τ)
∞ (u)− δ.

Now,

lim inf
n→∞

J (α,τ)
n (un) ≥ lim inf

n→∞
1

2

K
∑

k=1

(snλ
(n)
k + τ2)α〈un, q

(n)
k 〉2µn

=
1

2

K
∑

k=1

(λk + τ2)α〈un, qk〉2µ

≥ J (α,τ)
∞ (u)− δ.

Let δ → 0 to complete the liminf inequality for when J
(α,τ)
∞ (u) < ∞. If J (α,τ)

∞ (u) = +∞ then choose any 

M > 0 and find K such that 12
∑K

k=1(λk + τ2)α〈un, qk〉2µ ≥ M , the same argument as above implies that

lim inf
n→∞

J (α,τ)
n (un) ≥ M

and therefore lim infn→∞ J
(α,τ)
n (un) = +∞.

The limsup inequality. As above, we assume for simplicity, that all eigenvalues of L are simple. We remark 
that there are no essential difficulties to carry out the proof in the general case.

Let u ∈ L2
µ with J

(α,τ)
∞ (u) < ∞ (the proof is trivial if J

(α,τ)
∞ =∞). Define un ∈ L2

µn
by un =

∑Kn

k=1 ψkq
(n)
k

where ψk = 〈u, qk〉µ. Let Tn be the transport maps from µ to µn as in Proposition 7.3. Let an
k = ψkq

(n)
k ◦ Tn

and ak = ψkqk. By Lemma 7.7, there exists a sequence Kn → ∞ such that un converges to u in TL2 metric.

We recall from the proof of the liminf inequality that 〈q(n)
k , un〉µn

→ 〈qk, u〉µ as n → ∞. Combining with 

the convergence of eigenvalues, [25, Theorem 1.2], implies

(snλ
(n)
k + τ2)α〈un, q

(n)
k 〉2µn

→ (λk + τ2)α〈u, qk〉2µ

as n → ∞. Taking an
k = (snλ

(n)
k + τ2)α〈un, q

(n)
k 〉2µn

and ak = (λk + τ2)α〈u, qk〉2µ and using Lemma 7.7

implies that there exists K̃n ≤ Kn converging to infinity such that 
∑K̃n

k=1 an
k → ∑∞

k=1 ak as n → ∞. Let 
ũn =

∑K̃n

k=1 ψkq
(n)
k . Then ũn → u in TL2. Furthermore J

(α,τ)
n (ũn) =

∑K̃n

k=1 an
k and J

(α,τ)
∞ (u) =

∑∞
k=1 ak

which implies that J
(α,τ)
n (ũn) → J

(α,τ)
∞ (u) as n → ∞.

Compactness. If τ > 0 and supn∈N J
(α,τ)
n (un) ≤ C then

τ2α‖un‖2L2
µn
= τ2α

n
∑

k=1

〈un, q
(n)
k 〉2µn

≤
n

∑

k=1

(snλ
(n)
k + τ2)α〈un, q

(n)
k 〉2µn

≤ C.
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Therefore ‖un‖L2
µn
is bounded. Hence in statements 2 and 3 of the theorem we have that ‖un‖L2

µn
and 

J
(α,τ)
n (un) are bounded. That is there exists C > 0 such that

‖u‖2L2
µn
=

n
∑

k=1

〈un, q
(n)
k 〉µn

≤ C and sα
n

n
∑

k=1

(λ
(n)
k )α〈un, q

(n)
k 〉2µn

≤ C. (28)

We will show there exists u ∈ L2
µ and a subsequence nm such that unm

converges to u in TL2.

Let ψn
k = 〈un, q

(n)
k 〉µn

for all k ≤ n. Due to (28) |ψn
k | are uniformly bounded. Therefore, by a diagonal 

procedure, there exists a increasing sequence nm → ∞ as m → ∞ such that for every k, ψnm

k converges 

as m → ∞. Let ψk = limm→∞ ψnm

k . By Fatou’s lemma, 
∑∞

k=1 |ψk|2 ≤ lim infm→∞
∑nm

k=1 |ψnm

k |2 ≤ C. 

Therefore u :=
∑∞

k=1 ψkqk ∈ L2
µ. Using Lemma 7.7 and arguing as in the proof of the limsup inequality 

we obtain that there exists a sequence Km increasing to infinity such that 
∑Km

k=1 ψnm

k q
(nm)
k converges to 

u in TL2 metric as m → ∞. To show that unm
converges to u in TL2, we now only need to show that 

‖unm
− ∑Km

k=1 ψnm

k q
(nm)
k ‖L2

µnm
converges to zero. This follows from the fact that

nm
∑

k=Km+1

|ψnm

k |2 ≤ 1
(

λ
(nm)
Km

)α

nm
∑

k=Km+1

(λ
(nm)
k )α|ψnm

k |2 ≤ C
(

snm
λ
(nm)
Km

)α

using that the sequence of eigenvalues is nondecreasing. Now since snm
λ
(nm)
Km

≥ snm
λ
(nm)
K → λK for all 

Km ≥ K, and limK→∞ λK = +∞ we have that snm
λ
(nm)
Km

→ +∞ as m → ∞, hence unm
converges to u in 

TL2. ✷

Remark 7.5. Note that when α ≥ 1 the compactness property holds trivially from the compactness property 

for α = 1, see [25, Theorem 1.4], as J
(α,τ)
n (un) ≥ J

(1,0)
n (un).

7.5. Variational convergence of probit in labeling model 1

To prove minimizers of the Probit model in Labeling Model 1 converge we apply Proposition 7.2. This 

requires us to show that J
(n)
p Γ-converges to J

(∞)
p and the compactness of sequences of minimizers. Recall 

that J
(n)
p = J

(α,τ)
n + 1

nΦ
(n)
p (·; γ). Hence Theorem 2.2 establishes the Γ-convergence of the first term. We now 

show that 1
nΦ

(n)
p (un; yn; γ) → Φp,1(u; y; γ) whenever (µn, un) → (µ, u) in the TL2 sense, which is enough 

to establish Γ-convergence. Namely since, by definition, J
(α,τ)
n applied to an element (ν, v) ∈ TLp(Ω) is ∞

if ν Ó= µn it suffices to consider sequences of the form (µn, un) to show the liminf inequality. The limsup 

inequality is also straightforward since the recovery sequence for J
(α,τ)
∞ is also of the form (µn, un).

Lemma 7.6. Consider domain Ω and measure µ satisfying Assumptions 2–3. Let xi
iid∼ µ for i = 1, . . . , n, 

Ωn = {x1, . . . , xn} and µn be the empirical measure of the sample. Let Ω′ be an open subset of Ω, µ′
n = µn⌊Ω′

and µ′ = µ⌊Ω. Let yn ∈ L∞(µ′
n) and y ∈ L∞(µ′) and let ŷn ∈ L∞(µn) and ŷ ∈ L∞(µ) be their extensions 

by zero. Assume

(µn, ŷn)→ (µ, ŷ) in TL∞ as n → ∞.

Let Φ
(n)
p and Φp,1 be defined by (9) and (16) respectively, where Z ′ = {j : xj ∈ Ω′} and γ > 0 (and where 

we explicitly include the dependence of yn and y in Φ
(n)
p and Φp,1).

Then, with probability one, if (µn, un) → (µ, u) in TLp then

1

n
Φ(n)

p (un; yn; γ)→ Φp,1(u; y; γ) as n → ∞.
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Proof. Let (µn, un) → (µ, u) in TLp. We first note that since Ψ(uy; γ) = Ψ 
(

uy
γ ; 1

)

and since multiplying 

all functions by a constant does not affect the TLp convergence, it suffices to consider γ = 1. For brevity, 

we omit γ in the functionals that follow. We have that ŷn ◦ Tn → ŷ and un ◦ Tn → u. Recall that

1

n
Φ(n)

p (un; yn) =

∫

T −1
n (Ω′

n)

logΨ(yn(Tn(x))un(Tn(x))) dµ(x)

Φp,1(u; y) =

∫

Ω′

logΨ(y(x)u(x)) dµ(x),

where Ω′
n = {xi : xi ∈ Ω′, for i = 1, . . . , n}. Recall also that symmetric difference of sets is denoted by 

A△B = (A \ B) ∪ (B \ A). It follows that

∣

∣

∣

∣

1

n
Φ(n)

p (un; yn)− Φp,1(u; y)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∫

Ω′△T −1
n (Ω′

n)

logΨ(ŷ(x)u(x))dµ(x)

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∫

T −1
n (Ω′

n)

log (Ψ(yn(Tn(x))un(Tn(x)); γ)− log (ŷ(x)u(x)) dµ(x)

∣

∣

∣

∣

∣

∣

∣

.

(29)

Define

∂εn
Ω′ = {x : dist(x, ∂Ω′) ≤ εn} .

Then Ω′△T −1
n (Ω′

n) ⊆ ∂εn
Ω′. Since ŷ ∈ L∞ and u ∈ L2

µ then ŷu ∈ L2
µ and so by Corollary 7.9 logΨ(ŷu) ∈ L1. 

Hence, by the dominated convergence theorem

∣

∣

∣

∣

∣

∣

∣

∫

Ω′△T −1
n (Ω′

n)

logΨ(ŷ(x)u(x))dµ(x)

∣

∣

∣

∣

∣

∣

∣

≤
∫

∂εnΩ′

|logΨ(ŷ(x)u(x))| dµ(x)→ 0.

We are left to show that the second term on the right hand side of (29) converges to 0. Let F (w, v) =

| logΨ(w) − logΨ(v)|. Let M ≥ 1 and define the following sets

An,M =
{

x ∈ T −1
n (Ω′

n) : min{ŷ(x)u(x), yn(Tn(x))un(Tn(x))} ≥ −M
}

Bn,M =
{

x ∈ T −1
n (Ω′

n) : ŷ(x)u(x) ≥ yn(Tn(x))un(Tn(x)) ≤ −M
}

Cn,M =
{

x ∈ T −1
n (Ω′

n) : yn(Tn(x))un(Tn(x)) ≥ ŷ(x)u(x) ≤ −M
}

.

The quantity we want to estimate satisfies

∣

∣

∣

∣

∣

∣

∣

∫

T −1
n (Ω′

n)

log (Ψ(yn(Tn(x))un(Tn(x)))− logΨ (ŷ(x)u(x)) dµ(x)

∣

∣

∣

∣

∣

∣

∣

≤
∫

T −1
n (Ω′

n)

F (yn(Tn(x))un(Tn(x)), ŷ(x)u(x)) dµ(x).
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Since T −1
n (Ω′

n) = An,M ∪ Bn,M ∪ Cn,M we proceed by estimating the integral over each of the sets, utilizing 

the bounds in Lemma 7.8.

∫

An,M

F (yn(Tn(x))un(Tn(x)), ŷ(x)u(x)) dµ(x)

≤ 1
∫ −M

−∞ e− t2

2 dt

∫

An,M

|yn(Tn(x))un(Tn(x))− ŷ(x)u(x)| dµ(x)

≤ 1
∫ −M

−∞ e− t2

2 dt

(

‖yn‖L2
µn

‖un ◦ Tn − u‖L2
µ
+ ‖u‖L2

µ
‖ŷn ◦ Tn − ŷ‖L2

µ

)

.

∫

Bn,M

F (yn(Tn(x))un(Tn(x)), ŷ(x)u(x)) dµ(x)

≤
∫

Bn,M

2|yn(Tn(x))|2|un(Tn(x))|2 dµ(x) +
1

M2

≤ 2‖ŷn‖2L∞
µn

∫

Bn,M

|un(Tn(x))|2 dµ(x) +
1

M2

≤ 4‖ŷn‖2L∞
µn



‖un ◦ Tn − u‖2L2
µ
+

∫

Ω

|u(x)|2I|yn(Tn(x))un(Tn(x))|≥M dµ(x)



+
1

M2
.

∫

Cn,M

F (yn(Tn(x))un(Tn(x)), ŷ(x)u(x)) dµ(x)

≤
∫

Cn,M

2|ŷ(x)|2|u(x)|2 dµ(x) + 1

M2

≤ 2‖ŷ‖2L∞
µ

∫

Ω

|u(x)|2I|y(x)u(x)|≥M dµ(x) +
1

M2
.

For every subsequence there exists a further subsequence such that (yn ◦ Tn)(un ◦ Tn) → yu pointwise 

a.e., hence by the dominated convergence theorem

∫

Ω

|u(x)|2I|yn(Tn(x))un(Tn(x))|≥M dµ(x)→
∫

Ω

|u(x)|2I|y(x)u(x)|≥M dµ(x) as n → ∞.

Hence, for M ≥ 1 fixed we have

lim sup
n→∞

∣

∣

∣

∣

∣

∣

∣

∫

T −1
n (Ω′

n)

log (Ψ(yn(Tn(x))un(Tn(x)); γ)− log (ŷ(x)u(x); γ) dµ(x)

∣

∣

∣

∣

∣

∣

∣

≤ 2

M2
+ 6‖ŷ‖L∞

µ

∫

Ω

|u(x)|2I|ŷ(x)u(x)|≥M dµ(x).

Taking M → ∞ completes the proof. ✷
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The proof of Theorem 4.2 is now just a special case of the above lemma and an easy compactness result 

that follows from Theorem 2.2.

Proof of Theorem 4.2. The following statements all hold with probability one. Let

y(x) =

{

1 if x ∈ Ω+

−1 if x ∈ Ω−.

Since dist(Ω+, Ω−) > 0 there exists a minimal Lipschitz extension ŷ ∈ L∞ of y to Ω. Let yn = y⌊Ωn
and 

ŷn = ŷ⌊Ωn
. Since

‖ŷn ◦ Tn − ŷ‖L∞(µ) = µ-ess sup
x∈Ω

|ŷn(Tn(x))− ŷ(x)|

= µ-ess sup
x∈Ω

|ŷ(Tn(x))− ŷ(x)|

≤ Lip(ŷ)‖Tn − Id‖L∞

we conclude that (µn, ŷn) → (µ, ŷ) in TL∞. Hence, by Lemma 7.6, 1
nΦ

(n)
p (un; γ) → Φp,1(u; γ) whenever 

(µn, un) → (µ, u) in TLp. Combining with Theorem 2.2 implies that J
(n)
p Γ-converges to J

(∞)
p via a straight-

forward argument.

If τ > 0 then the compactness of minimizers follows from Theorem 2.2 using that supn∈N minvn∈L2
µn

J
(n)
p (vn) ≤ supn∈N J

(n)
p (0) = 1

2 .

When τ = 0 we consider the sequence wn = vn − v̄n where vn is a minimizer of J
(n)
p and v̄n = 〈vn, q1〉µn

=
∫

Ω
vn(x) dµn(x). Then, J

(α,0)
n (wn) = J

(α,0)
n (vn) and

‖wn‖2L2
µn
= ‖vn − v̄n‖2L2

µn
=

n
∑

k=2

〈vn, qk〉2µn
≤ 1

(snλ
(n)
2 )α

J (α,0)
n (vn).

As in the case τ > 0 the quadratic form is bounded, i.e. supn∈N J
(n)
p (vn) ≤ 1

2 . Hence J
(α,τ)
n (wn) ≤ 1

2 and 

‖wn‖2L2
µn

≤ 1
λα

2
for n large enough. By Theorem 2.2 wn is precompact in TL2. Therefore supn∈N ‖vn‖L2

µn
≤

M + supn∈N |v̄n| for some M > 0. Since J
(α,τ)
n is insensitive to the addition of a constant, and −1 ≤ y ≤ 1, 

then for any minimiser vn one must have v̄n ∈ [−1, 1]. Hence supn∈N ‖vn‖L2
µn

≤ M + 1 so by Theorem 2.2

{vn} is precompact in TL2.

Since the minimizers of J
(∞)
p are unique (due to convexity, see Lemma 4.1), by Proposition 7.2 we have 

that the sequence of minimizers vn of J
(n)
p converges to the minimizer of J

(∞)
p . ✷

7.6. Variational convergence of probit in labeling model 2

Proof of Theorem 4.3. It suffices to show that J
(n)
p Γ-converges in TL2 to J

(α,τ)
∞ and that the sequence of 

minimizers vn of J
(n)
p is precompact in TL2. We note that the liminf statement of the Γ-convergence follows 

immediately from statement 1. of Theorem 2.2.

To complete the proof of Γ-convergence it suffices to construct a recovery sequence. The strategy is 

analogous to the one of the proof on Theorem 4.9 of [39]. Let v ∈ Hα(Ω). Since J
(α,τ)
n Γ-converges to J

(α,τ)
∞

by Theorem 2.2 there exists Let v(n) ∈ L2
µn
such that J

(α,τ)
n (v(n)) → J

(α,τ)
∞ (v) as n → ∞. Consider the 

functions

ṽ(n)(xi) =

{

cny(xi) if i = 1, . . . , N.

v(n)(xi) if i = N + 1, . . . , n

where cn → ∞ and cn

ε2α
n n → 0 as n → ∞.
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Note that condition (5) implies that when α < d
2 then (20) still holds. Therefore (26) implies that 

J
(α,τ)
n (cnδxi

) → 0 as n → ∞. Also note that since cn → ∞, Φ(n)
p (ṽ(n); γ) → 0 as n → ∞. It is now 

straightforward to show, using the form of the functional, the estimate on the energy of a singleton and the 

fact that εnn
1

2α → ∞ as n → ∞, that J(n)
p (ṽ(n)) → J

(α,τ)
∞ (v) as desired.

The precompactness of {vn}n∈N follows from Theorem 2.2. Since 0 is the unique minimizer of J
(α,τ)
∞ , due 

to τ > 0, the above results imply that v(n) converge to 0. ✷

7.7. Small noise limits

Proof of Theorem 4.6. First observe that since Assumptions 2–3 hold and α > d/2, the measure ν0, and 

hence the measures νp,1, νp,2, ν1, are all well-defined measures on L2(Ω) by Theorem 2.5.

(i) For any continuous bounded function g : C(Ω; R) → R we have

E
νp,1g(u) =

E
ν0e−Φp,1(u;γ)g(u)

Eν0e−Φp,1(u;γ)
, E

ν1g(u) =
E

ν01B∞,1
(u)g(u)

Eν01B∞,1
(u)

.

For the first convergence it thus suffices to prove that, as γ → 0,

E
ν0e−Φp,1(u;γ)g(u) → E

ν01B∞,1
(u)g(u)

for all continuous functions g : C(Ω; R) → [−1, 1].
We first define the standard normal cumulative distribution function ϕ(z) = Ψ(z, 1), and note that we 

may write

Φp,1(u; γ) = −
∫

x∈Ω′

log
(

ϕ(y(x)u(x)/γ)
)

dx ≥ 0.

In what follows it will be helpful to recall the following standard Mills ratio bound: for all t > 0,

ϕ(t) ≥ 1− e−t2/2

t
√
2π

. (30)

Suppose first that u ∈ B∞,1, then y(x)u(x)/γ > 0 for a.e. x ∈ Ω′. The assumption that Ω+ ∩ Ω− = ∅
ensures that y is continuous on Ω′ = Ω+ ∪Ω−. As u is also continuous on Ω′, given any ε > 0, we may 

find Ω′
ε ⊆ Ω′ such that y(x)u(x)/γ > ε/γ for all x ∈ Ω′

ε. Moreover, these sets may be chosen such that 

leb(Ω′ \ Ω′
ε) → 0 as ε → 0. Applying the bound (30), we see that for any x ∈ Ω′

ε,

ϕ(y(x)u(x)/γ) ≥ 1− γ
e−u(x)2y(x)2/2γ2

u(x)y(x)
√
2π

≥ 1− γ
e−ε2/2γ2

ε
√
2π

.

Additionally, for any x ∈ Ω′ \ Ω′
ε, we have ϕ(y(x)u(x)/γ) ≥ ϕ(0) = 1/2. We deduce that

Φp,1(u; γ) = −
∫

Ω′
ε

log(ϕ(y(x)u(x)/γ) dµ(x)−
∫

Ω′\Ω′
ε

log(ϕ(y(x)u(x)/γ) dµ(x)

≤ − log
(

1− γ
e−ε2/2γ2

ε
√
2π

)

· ρ+ · leb(Ω′
ε) + log(2) · ρ+ · leb(Ω′ \ Ω′

ε).
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The right-hand term may be made arbitrarily small by choosing ε small enough. For any given ε > 0, 

the left-hand term tends to zero as γ → 0, and so we deduce that Φp,1(u; γ) → 0 and hence

e−Φp,1(u;γ)g(u) → g(u) = 1B∞,1
(u)g(u).

Now suppose that u /∈ B∞,1, and assume first that there is a subset E ⊆ Ω′ with leb(E) > 0 and 

y(x)u(x) < 0 for all x ∈ E. Then similarly to above, there exists ε > 0 and Eε ⊆ E with leb(Eε) > 0

such that y(x)u(x)/γ < −ε/γ for all x ∈ Eε. Observing that ϕ(t) = 1 −ϕ(−t), we may apply the bound 

(30) to deduce that, for any x ∈ Eε,

ϕ(y(x)u(x)/γ) ≤ −γ
e−u(x)2y(x)2/2γ2

u(x)y(x)
√
2π

≤ γ

ε
√
2π

.

We therefore deduce that

Φp,1(u; γ) ≥
∫

Eε

− log(ϕ(y(x)u(x)/γ) dµ(x)

≥ − log
(

γ

ε
√
2π

)

· ρ− · leb(Eε)→ ∞

from which we see that

e−Φp,1(u;γ)g(u)→ 0 = 1B∞,1
(u)g(u).

Assume now that y(x)u(x) ≥ 0 for a.e. x ∈ Ω′. Since u /∈ B∞,1 there is a subset Ω
′′ ⊆ Ω′ such that 

y(x)u(x) = 0 for all x ∈ Ω′′, y(x)u(x) > 0 a.e. x ∈ Ω′ \ Ω′′, and leb(Ω′′) > 0. We then have

Φp,1(u; γ) = −
∫

Ω′′

log(ϕ(0)) dµ(x)−
∫

Ω′\Ω′′

log(ϕ(y(x)u(x)/γ) dµ(x)

= log(2)µ(Ω′′)−
∫

Ω′\Ω′′

log(ϕ(y(x)u(x)/γ) dµ(x)

→ log(2)µ(Ω′′).

We hence have e−Φp(u;y,γ)g(u) Ó→ 0 = 1B∞,1
(u)g(u). However, the event

D := {u ∈ C(Ω;R) |There exists Ω′′ ⊆ Ω′ with leb(Ω′′) > 0 and u|Ω′′ = 0}
⊆ {u ∈ C(Ω;R) | leb

(

u−1{0}
)

> 0} = D′

has probability zero under ν0. This can be deduced from Proposition 7.2 in [23]: since Assumptions 2–3

hold and α > d, Theorem 2.5 tells us that draws from ν0 are almost-surely continuous, which is 

sufficient in order to deduce the conclusions of the proposition, and so ν0(D) ≤ ν0(D
′) = 0. We thus 

have pointwise convergence of the integrand on Dc, and so using the boundedness of the integrand by 

1 and the dominated convergence theorem,

E
ν0e−Φp,1(u;γ)g(u) = E

ν0e−Φp,1(u;γ)g(u)1Dc(u)→ E
ν01B∞,1

(u)g(u)

which proves that νp,1 ⇒ ν1.
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For the convergence νls,1 ⇒ ν1 it similarly suffices to prove that, as γ → 0,

E
ν0e−Φls,1(u;γ)g(u) → E

ν01B∞,1
(u)g(u)

for all continuous functions g : C(Ω; R) → [−1, 1]. For fixed u ∈ B∞,1 we have e
−Φls,1(u;γ) = 1B∞,1

(u) =

1 and hence e−Φls,1(u;γ)g(u) = 1B∞,1
(u)g(u) for all γ > 0. For fixed u /∈ B∞,1 there is a set E ⊆ Ω′ with 

positive Lebesgue measure on which y(x)u(x) ≤ 0. As a consequence Φls,1(u; γ) ≥ 1
2γ2 leb(E)ρ

− and so 

e−Φls,1(u;γ)g(u) → 0 = 1B∞,1
(u)g(u) as γ → 0. Pointwise convergence of the integrand, combined with 

boundedness by 1 of the integrand, gives the result.

(ii) The structure of the proof is similar to part (i). To prove νp,2 ⇒ ν2, it suffices to show that, as γ → 0,

E
ν0e−Φp,2(u;γ)g(u) → E

ν01B∞,2
(u)g(u)

for all continuous functions g : C(Ω; R) Ô→ [−1, 1]. We write

Φ(n)
p (u; γ) = − 1

n

∑

j∈Z′

log
(

ϕ(y(xj)u(xj)/γ)
)

≥ 0.

Note that Φ
(n)
p (u; γ) is well-defined almost-surely on samples from ν0 since ν0 is supported on continuous 

functions (Theorem 2.5). Suppose first that u ∈ B∞,2, then y(xj)u(xj)/γ > 0 for all j ∈ Z ′ and γ > 0. 

It follows that for each j ∈ Z ′, y(xj)y(xj)/γ → ∞ as γ → 0 and so ϕ(y(xj)u(xj)/γ) → 1. Thus, 

Φp,2(u; γ) → 0 and so

e−Φp,2(u;γ)g(u) → g(u) = 1B∞,2
(u)g(u).

Now suppose that u /∈ B∞,2. Assume first that there is a j ∈ Z ′ such that y(xj)u(xj) < 0, so that 

y(xj)u(xj)/γ → −∞ and hence ϕ(y(xj)u(xj)/γ) → 0. Then we may bound

Φp,2(u; γ) ≥ − log(ϕ(y(xj)u(xj)/γ)→ ∞

from which we see that

e−Φp,2(u;γ)g(u)→ 0 = 1B∞,2
(u)g(u).

Assume now that y(xj)u(xj) ≥ 0 for all j ∈ Z ′, then since u /∈ B∞,2 there is a subcollection Z ′′ ⊆ Z ′

such that y(xj)u(xj) = 0 for all j ∈ Z ′′ and y(xj)u(xj) > 0 for all j ∈ Z ′ \ Z ′′. We then have

Φp,2(u; γ) = − 1
n

∑

j∈Z′′

log
(

ϕ(0)
)

− 1

n

∑

j∈Z′\Z′′

log
(

ϕ(y(xj)u(xj)/γ)
)

=
|Z ′′|

n
log(2)− 1

n

∑

j∈Z′\Z′′

log
(

ϕ(y(xj)u(xj)/γ)
)

→ |Z ′′|
n
log(2).

Thus, in this case e−Φp,2(u;γ)g(u) Ó→ 0 = 1B∞,2
(u)g(u). However, the event

D = {u ∈ C(Ω;R) | u(xj) = 0 for some j ∈ Z ′}
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has probability zero under ν0. To see this, observe that ν0 is a non-degenerate Gaussian measure on 

C(Ω; R) as a consequence of Theorem 2.5. Thus u ∼ ν0 implies that the vector (u(x1), . . . , u(xn++n−))

is a non-degenerate Gaussian random variable on Rn++n−

. Its law is hence equivalent to the Lebesgue 

measure, and so the probability that it takes value in any given hyperplane is zero. We therefore have 

pointwise convergence of the integrand on Dc. Since the integrand is bounded by 1, we deduce from the 

dominated convergence theorem that

E
ν0e−Φp,2(u;γ)g(u) = E

ν0e−Φp,2(u;γ)g(u)1Dc(u)→ E
ν01B∞,2

(u)g(u)

which proves that νp,2 ⇒ ν2.

To prove νls,2 ⇒ ν2 we show that, as γ → 0,

E
ν0e−Φls,2(u;γ)g(u) → E

ν01B∞,2
(u)g(u)

for all continuous functions g : C(Ω; R) Ô→ [−1, 1]. For fixed u ∈ B∞,2 we have e
−Φls,2(u;γ) = 1B∞,2

(u) =

1 and hence e−Φls,2(u;γ)g(u) = 1B∞,2
(u)g(u) for all γ > 0. For fixed u /∈ B∞,2 there is at least one 

j ∈ Z ′ such that y(xj)u(xj) ≤ 0. As a consequence Φls,2(u; γ) ≥ 1
2γ2

1
n ρ− and so e−Φls,2(u;γ)g(u) → 0 =

1B∞,2
(u)g(u) as γ → 0. Pointwise convergence of the integrand, combined with boundedness by 1 of 

the integrand, gives the desired result. ✷

7.8. Technical lemmas

We include technical lemmas which are used in the main Γ-convergence result (Theorem 2.2) and in the 

proof of convergence for the probit model.

Lemma 7.7. Let X be a normed space and a
(n)
k ∈ X for all n ∈ N and k = 1, . . . , n. Assume ak ∈ X be such 

that 
∑∞

k=1 ‖ak‖ < ∞ and that for all k

a
(n)
k → ak as n → ∞.

Then there exists a sequence {Kn}n=1,... converging to infinity as n → ∞ such that

Kn
∑

k=1

a
(n)
k →

∞
∑

k=1

ak as n → ∞.

Note that if the conclusion holds for one sequence Kn it also holds for any other sequence converging to 

infinity and majorized by Kn.

Proof. Note that by our assumption for any fixed s, 
∑s

k=1 an
k → ∑s

k=1 ak as n → ∞. Let Kn be the largest 

number such that for all m ≥ n, 
∥

∥

∥

∑Kn

k=1 a
(m)
k − ∑Kn

k=1 ak

∥

∥

∥ < 1
n . Due to observation above, Kn → ∞ as 

n → ∞. Furthermore
∥

∥

∥

∥

∥

Kn
∑

k=1

an
k −

∞
∑

k=1

ak

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

Kn
∑

k=1

an
k −

Kn
∑

k=1

ak

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

k=Kn+1

ak

∥

∥

∥

∥

∥

which converges to zero an n → ∞. ✷

The second result is an estimate on the behavior of the function Ψ defined in (8)
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Lemma 7.8. Let F (w, v) = logΨ(w; 1) − logΨ(v; 1) where Ψ is defined by (8) with γ = 1. For all w > v and 

M ≥ 1,

F (w, v) ≤











2v2 + 1
M2 if v ≤ −M

|w−v|
∫

−M
−∞

e− t2
2 dt

if v ≥ −M.

Proof. We consider the two cases: v ≤ −M and v ≥ −M separately. From inequality 7.1.13 in [54] directly 

follows that

∀u ≤ 0,
√

2

π

1

−u+
√

u2 + 4
e− u2

2 ≤ Ψ(u)

When v ≤ −M , by taking the logarithm we obtain

F (w, v) ≤ − logΨ(v; γ) ≤ − log
(

√

2

π

1

−v +
√

v2 + 4
e− v2

2

)

≤
√

π

2

(

√

v2 + 4− v
)

+
v2

2

≤
√

π

2
|v|

(

√

1 +
4

M2
− 1

)

+
v2

2
≤

√
2π|v|
M

+
v2

2
≤ 2v2 +

1

M2

using the elementary bound |
√
1 + x2 − 1| ≤ |x| for all x ≥ 0. When v ≥ −M ,

F (w, v) = log
Ψ(w)

Ψ(v)
= log

(

1 +

∫ w

v
e− t2

2 dt
∫ v

−∞ e− t2

2 dt

)

≤
∫ w

v
e− t2

2 dt
∫ v

−∞ e− t2

2 dt
≤ w − v

∫ −M

−∞ e− t2

2 dt

This completes the proof. ✷

Corollary 7.9. Let Ω′ ⊂ R
d be open and bounded. Let µ′ be a bounded, nonnegative measure on Ω′ and γ > 0. 

Define Ψ(·; γ) as in (8). If v ∈ L2
µ′ then logΨ(v; γ) ∈ L1(µ′).

Proof. Lemma 7.8, and using that Ψ(v; γ) = Ψ(v/γ; 1), shows that − logΨ(v, γ) grows quadratically as 

v → −∞. Note that − logΨ(v, γ) asymptotes to zero as v → ∞. Therefore | logΨ(v, γ)| ≤ C(|v|2 + 1) for 
some C > 0, which implies the claim. ✷

7.9. Weyl’s law

Lemma 7.10. Let Ω and ρ satisfy Assumtptions 2–3 and let λk be the eigenvalues of L defined by (4). Then, 

there exist positive constants c and C such that for all k large enough

ck
2
d ≤ λk ≤ Ck

2
d .

Proof. Let B be a ball compactly contained in Ω and U a ball which compactly contains Ω. By assumptions 

on ρ for all u ∈ H1
0 (B)\{0}

∫

B
|∇u|2dx

∫

B
u2dx

≥ c2

∫

Ω
|∇u|2ρ2dx

∫

Ω
u2ρdx

where on RHS we consider the extension by zero of u to Ω. Therefore for any k-dimensional subspace Vk of 

H1
0 (B)
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max
u∈Vk\{0}

∫

B
|∇u|2dx

∫

B
u2dx

≥ c2 max
u∈Vk\{0}

∫

Ω
|∇u|2ρ2dx

∫

Ω
u2ρdx

.

Consequently, using the Courant–Fisher characterization of eigenvalues,

αk = inf
Vk⊂H1

0 (B),
dim Vk=k

max
u∈Vk\{0}

∫

B
|∇u|2dx

∫

B
u2dx

≥ c2 inf
Vk⊂H1(Ω),
dim Vk=k

max
u∈Vk\{0}

∫

Ω
|∇u|2ρ2dx

∫

Ω
u2ρdx

= c2λk

Since Ω is an extension domain (as it has a Lipschitz boundary), there exists an bounded extension 

operator E : H1(Ω) → H1
0 (U). Therefore for some constant C2 and all u ∈ H1(Ω), C2

∫

Ω
|∇u|2ρ2+u2ρdx ≥

∫

U
|∇Eu|2dx. Arguing as above gives C2(λk + 1) ≥ βk.

These inequalities imply the claim of the lemma, since the Dirichlet eigenvalues of the Laplacian on B, αk

satisfy αk ≤ C1k
2
d for some C1 and that Dirichlet eigenvalues of the Laplacian on U , βk satisfy βk ≥ c1k

2
d

for some c1 > 0. ✷
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