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a regularizing quadratic form found from an affine transformation of the Laplacian,
raised to a possibly fractional, exponent. Conditions on the parameters defining
this quadratic form are identified under which well-defined limiting continuum
analogues of the optimization and Bayesian semi-supervised learning problems may
be found, thereby shedding light on the design of algorithms in the large graph
setting. The large graph limits of the optimization formulations are tackled through
I'-convergence, using the recently introduced 7T'LP metric. The small labeling noise
limits of the Bayesian formulations are also identified, and contrasted with pre-
existing harmonic function approaches to the problem.
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1. Introduction

1.1. Context

This paper is concerned with the semi-supervised learning problem of determining labels on an entire

set of (feature) vectors {x;};jcz, given (possibly noisy) labels {y;};cz on a subset of feature vectors with

indices j € Z' C Z. To be concrete we will assume that the z; are elements of R%, d > 2, and consider the
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binary classification problem in which the y; are elements of {£1}. Our goal is to characterize algorithms
for this problem in the large data limit where n = |Z]| — oo; additionally we will study the limit where the
noise in the label data disappears. Studying these limits yields insight into the classification problem and
algorithms for it.

Semi-supervised learning as a subject has been developed primarily over the last two decades and the
references [1,2] provide an excellent source for the historical context. Graph based methods proceed by
forming a graph with n nodes Z, and use the unlabeled data {z;},;cz to provide an n x n weight matrix
W quantifying the affinity of the nodes of the graph with one another. The labeling information on Z’
is then spread to the whole of Z, exploiting these affinities. In the absence of labeling information we
obtain the problem of unsupervised learning; for example the spectrum of the graph Laplacian L forms
the basis of widely used spectral clustering methods [3-5]. Other approaches are combinatorial, and largely
focussed on graph cut methods [6-8]. However relaxation and approximation are required to beat the
combinatorial hardness of these problems [9] leading to a range of methods based on Markov random fields
[10] and total variation relaxation [11]. In [2] a number of new approaches were introduced, including label
propagation and the generalization of kriging, or Gaussian process regression [12], to the graph setting [13].
These regression methods opened up new approaches to the problem, but were limited in scope because the
underlying real-valued Gaussian process was linked directly to the categorical label data which is (arguably)
not natural from a modeling perspective; see [14] for a discussion of the distinctions between regression and
classification. The logit and probit methods of classification [15] side-step this problem by postulating a
link function which relates the underlying Gaussian process to the categorical data, amounting to a model
linking the unlabeled and labeled data. The support vector machine [16] makes a similar link, but it lacks
a natural probabilistic interpretation.

The probabilistic formulation is important when it is desirable to equip the classification with measures
of uncertainty. Hence, we will concentrate on the probit algorithm in this paper, and variants on it, as
it has a probabilistic formulation. The statement of the probit algorithm in the context of graph based
semi-supervised learning may be found in [17]. An approach bridging the combinatorial and Gaussian
process approaches is the use of Ginzburg-Landau models which work with real numbers but use a penalty
to constrain to values close to the range of the label data {+1}; these methods were introduced in [18],
large data limits studied in [19-21], and given a probabilistic interpretation in [17]. Finally we mention
the Bayesian level set method. This approach takes the idea of using level sets for inversion in the class of
interface problems [22] and gives it a probabilistic formulation which has both theoretical foundations and
leads to efficient algorithms [23]; classification may be viewed as an interface problem on a graph (a graph
cut is an interface for example) and thus the Bayesian level set method is naturally extended to this setting
as shown in [17]. As part of this paper we will show that the probit and Bayesian level set methods are
closely related.

A significant challenge for the field, both in terms of algorithmic development, and in terms of fundamental
theoretical understanding, is the setting in which the volume of unlabeled data is high, relative to the volume
of labeled data. One way to understand this setting is through the study of large data limits in which
n = |Z| — oo. This limit is studied in [24], and was addressed more recently under different assumptions in
[25]. Both papers assume that the unlabeled data is drawn i.i.d. from a measure with Lebesgue density on
a subset of R%, but the assumptions on graph construction differ: in [24] the graph bandwidth is fixed as
n — oo resulting in the limit of the graph Laplacian being a non-local operator, whilst in [25] the bandwidth
vanishes in the limit resulting in the limit being a weighted Laplacian (divergence form elliptic operator).

In [26] it is demonstrated that algorithms based on use of the discrete Dirichlet energy computed from
the graph Laplacian can behave poorly for d > 2, in the large data limit, if they attempt pointwise labeling.
In [27] it is argued that use of quadratic forms based on powers a > % of the graph Laplacian can ame-
liorate this problem. Our work, which studies a range of algorithms all based on optimization or Bayesian
formulations exploiting quadratic forms, will take this body of work considerably further, proving large data
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limit theorems for a variety of algorithms, and showing the role of the parameter « in this infinite data
limit. In doing so we shed light on the difficult question of how to scale and tune algorithms for graph based
semi-supervised learning; in particular we state limit theorems of various kinds which require, respectively,
either o > g or a > d to hold. We also study the small noise limit and show how both the probit and
Bayesian level set algorithms coincide and, furthermore, provide a natural generalization of the harmonic
functions approach of [13,28], a generalization which is arguably more natural from a modeling perspective.

Our large data limit theorems concern the maximum a posteriori (MAP) estimator rather than a Bayesian
posterior distribution. However two remarkable recent papers [29,30] demonstrate a methodology for proving
limit theorems concerning Bayesian posterior distributions themselves, exploiting the variational character-
ization of Bayes theorem; extending the work in those papers to the algorithms considered in this paper

would be of great interest.
1.2. Our contribution

We derive a canonical continuum inverse problem which characterizes graph based semi-supervised learn-
ing: find function u : @ C R? +— R from knowledge of sign(u) on €' C 0.! The latent variable u characterizes
the unlabeled data and its sign is the labeling information. This highly ill-posed inverse problem is poten-
tially solvable because of the very strong prior information provided by the unlabeled data; we characterize
this information via a mean zero Gaussian process prior on u with covariance operator C o< (£ + 72I)~°.
The operator £ is a weighted Laplacian found as a limit of the graph Laplacian, and as a consequence
depends on the distribution of the unlabeled data.

In order to derive this canonical inverse problem we study the probit and Bayesian level set algorithms
for semi-supervised learning. We build on the large unlabeled data limit setting of [25]. In this setting there
is an intrinsic scaling parameter &, that characterizes the length scale on which edge weights between nodes
are significant; the analysis identifies a lower bound on &, which is necessary in order for the graph to
remain connected in the large data limit and under which the graph Laplacian L converges to a differential
operator £ of weighted Laplacian form. The work uses I'-convergence in the T'L? optimal transport metric,
introduced in [25], and proves convergence of the quadratic form defined by L to one defined by £. We make
the following contributions which significantly extend this work to the semi-supervised learning setting.

e We prove I'-convergence in T'L? of the quadratic form defined by (L+721)® to that defined by (L+721)
and identify parameter choices in which the limiting Gaussian measure with covariance (£ + 721)~% is
well-defined. See Theorems 2.2, 2.5 and Proposition 2.6.

e We introduce large data limits of the probit and Bayesian level set problem formulations in which the
volume of unlabeled data n = |Z| — oo, distinguishing between the cases where the volume of labeled
data |Z'| is fixed and where |Z’|/n is fixed. See section 4 for the function space analogues of the graph
based algorithms introduced in section 3.

e We use the theory of I'-convergence to derive a continuum limit of the probit algorithm when employed
in MAP estimation mode; this theory demonstrates the need for a > % and an upper bound on &, in
the large data limit where the volume of labeled data |Z’| is fixed. See Theorems 4.2 and 4.3

e We use the properties of Gaussian measures on function spaces to write down well defined limits of the
probit and Bayesian level set algorithms, when employed in Bayesian probabilistic mode, to determine
the posterior distribution on labels given observed data; this theory demonstrates the need for o > %
in order for the limiting probability distribution to be meaningful for both large data limits; indeed,
depending on the geometry of the domain from which the feature vectors are drawn, it may require
a > d for the case where the volume of labeled data is fixed. See Theorem 2.5 and Proposition 2.6 for

1 'We note that throughout the paper Q is the physical domain, and not the set of events of a probability space.
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these conditions on «, and for details of the limiting probability measures see equations (21), (22), (23)
and (24).

o We show that the probit and Bayesian level set methods have a common Bayesian inverse problem limit,
mentioned above, by studying their weak limits as noise levels on the labeled data tends to zero. See
Theorems 3.3 and 4.6.

o We provide numerical experiments which illusrate the large graph limits introduced and studied in this
paper; see section 5.

1.3. Paper structure

In section 2 we study a family of quadratic forms which arise naturally in all the algorithms that we
study. By means of the I'-convergence techniques pioneered in [25] we show that these quadratic forms have
a limit defined by families of differential operators in which the finite graph parameters appear in an explicit
and easily understood fashion. Section 3 is devoted to the definition of the three graph based algorithms
that we study in this paper: the probit and Bayesian level set algorithms, and the graph analogue of kriging.
In section 4 we write down the function space limits of these algorithms, obtained when the volume n of
unlabeled data tends to infinity, and in the case of the maximum a posteriori estimator for probit use
I'-convergence to study large graph limits rigorously; we also show that the probit and Bayesian level set
algorithms have a common zero noise limit. Section 5 contains numerical experiments for the function space
limits of the algorithms, in both optimization (MAP) and sampling (fully Bayesian MCMC) modalities.
We conclude in section 6 with a summary and directions for future research. All proofs are given in the
Appendix, section 7. This choice is made in order to separate the form and implications of the theory from
the proofs; both the statements and proofs comprise the contributions of this work, but since they may be
of interest to different readers they are separated, by use of the Appendix.

2. Key quadratic form and its limits
2.1. Graph setting

From the unlabeled data {x;}7_; we construct a weighted graph G = (Z,W) where Z = {1,---,n} are
the vertices of the graph and W the edge weight matrix; W is assumed to have entries {w;;} between nodes
i and j given by

wij = ne(|zi — x4]).

We will discuss the choice of the function 7. : R + R in detail below; heuristically it should be thought of as
proportional to a mollified Dirac mass, or a characteristic function of a small interval. From W we construct
the graph Laplacian as follows. We define the diagonal matrix D = diag{d;;} with entries d;; = > jez Wij-
We can then define the unnormalized graph Laplacian L = D — W. Our results may be generalized to the
normalized graph Laplacian L =T — D=2WD~2 and we will comment on this in the conclusions.

2.2. Quadratic form

We view u : Z — R as a vector in R™ and define the quadratic form

(. L) = 5 3 wigluli) — (i)l

,j€EZ
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here (-, -) denotes the standard Euclidean inner-product on R™. This is the discrete Dirichlet energy defined
via the graph Laplacian L which appears as a basic quantity in many unsupervised and semi-supervised
learning algorithms. In this paper our interest focusses on forms based on powers of L:

1

T () = o (u, A
n

where, for 7 > 0 and o > 0,
A = (s, L+ 721)~. (1)

The sequence parameters s, will be chosen appropriately to ensure that the quadratic form Jéa’T)(u)
converges to a well-defined limit as n — oo.

In addition to working in a set-up which results in a well-defined limit, we will also ask that this limit
results in a quadratic form defined by a differential operator. This, of course, requires some form of local-
ization and we will encode this as follows: we will assume that 7.(-) = e~%(-/¢), inducing a Dirac mass
approximation as € — 0; later we will discuss how to relate € to n. For now we state the assumptions on 7
that we employ throughout the paper:

Assumptions 1 (on n). The edge weight profile function 7 satisfies:

(K1) n(0) > 0 and 7(-) is continuous at 0;
(K2) n is non-increasing;

(K3) fooo n(r)rdttdr < oo;

Remark 2.1. The prototypical example for n is n(t) = 1 if |[t| < 1 and n(¢t) = 0 otherwise. In this example
the graph has edges between any two nodes closer than ¢; this is often referred to as the random geometric
graph. Clearly this choice of n satisfies Assumptions 1.

Notice that assumption (K3) implies that

1
o= /77(|h|)|h|2dh oo and By = /77(|h|)dh < . @)
Rd Rd

A notable fact about the limits that we study in the remainder of the paper is that they depend on 1 only
through the constants o, 8,, provided Assumptions 1 holds and € = ¢, and s,, are chosen as appropriate
functions of n.

2.8. Limiting quadratic form

The limiting quadratic form is defined on an open and bounded set  C R<.

Assumptions 2 (on ). We assume that €2 is a connected, open and bounded subset of R?. We also assume
that Q has C1! boundary.?

2 The assumption that Q is connected is not essential but makes stating the results simpler. We remark that a number of the
results, and in particular the convergence of Theorem 2.2, hold if we only assume that the boundary of 2 is Lipschitz. We need
the stronger assumption in order to be able to employ elliptic regularity to characterize functions in fractional Sobolev spaces, see
Section 2.4 and Lemma 7.1; this is essential to be able to define Gaussian measures on function spaces, and therefore needed to
define a Bayesian approach in which uncertainty of classifiers may be estimated.
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Assumptions 3 (on density p). We assume that n feature vectors x; € (2 are sampled i.i.d. from a probability
measure p supported on € with smooth Lebesgue density p bounded above and below by finite strictly
positive constants p* uniformly on .

We index the data by Z = {1,---,n} and let Q, = {x;};,cz be the data set. This data set induces the
empirical measure

P = %Zéml

i€z
Given a measure v on {2 we define the weighted Hilbert space L2 = L2({2; R) with inner-product
(@b = [ ahop(do) Q
Q

and the induced norm defined by the identity || - |2, = (-,-),. Note that with these definitions we have
1
J,(la’T) : Lin — [0, +00), J,(lo"T) (u) = §<u,A(”)u>M.

In what follows we apply a form of I'-convergence to establish that for large n the quadratic form Jr(la’T) is
well approximated by the limiting quadratic form

o, T o, T 1
JET Ly e [0,+00) U oo}, IS (u) = o (u, Au),.

Here p is the measure on €2 with density p, and we define the Li self-adjoint differential operator £ by

1 ou
Lu=—=V-(p°V Q — =0 Q. 4
u=—2V-(pVu), el 5, =0 =€ (4)
The operator A is then defined by A = (£ + 721)~.
We may now relate the quadratic forms defined by A and A. The TL? topology is introduced in [25]
and defined in the Appendix section 7.2.2 for convenience. The following theorem is proved in section 7.4.

Theorem 2.2. Let Assumptions 1-3 hold. Let a > 0, {ey,}n=12,.. be a positive sequence converging to zero,
and such that

lim (1°g”)1/di=0 ifd>3,

n—00 n En
logny1/2 (logn) 7 ©)
hm( 5 ) 8T _o  ifd=2,
n— 00 n En
and assume that the scale factor s, is defined by
2
= ) 6
° opne2 (©)

Then, with probability one, we have
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1. T'-limy, o J,(la’T) = JC(X?’T) with respect to the TL? topology;

2. if T =0, any sequence {un} with u, : Qy = R satisfying sup,, |[unl|r2 < 0o and sup, ey g0 (up) < 00
is pre-compact in the TL? topology;

3. if T >0, any sequence {uy,} with u, : Q, — R satisfying sup,, N Jy(La’T)(

TL? topology.

Up) < 00 is pre-compact in the

Remark 2.3. As we discuss in section 7.2.1 of the appendix, I'-convergence and pre-compactness allow one
to show that minimizers of a sequence of functionals converge to the minimizer of the limiting functional.
The results of Theorem 2.2 provide the I'-convergence and pre-compactness of fractional Dirichlet energies,
which are the key term of the functionals, such as (10) below, that define the learning algorithms that we
study. In particular Theorem 2.2 enables us to prove the convergence, in the large data limit n — oo, of
minimizers of functionals such as (10) (i.e. of outcomes of learning algorithms), as shown in Theorem 4.2.

2.4. Function spaces

The operator £ given by (4) is uniformly elliptic as a consequence of the assumptions on p, and is
self-adjoint with respect to the inner product (3) on Li. By standard theory, it has a discrete spectrum:
0= XA < Ay < ---, where the fact that 0 < Ay uses the connectedness of the domain and the uniform
positivity of p on the domain. Let ¢; for ¢ = 1,... be the associated Li—orthonormal eigenfunctions. They
form a basis of L?..

By Weyl’s law the eigenvalues of {\;};>1 of L satisfy \; =< §2/4. For completeness a simple proof is
proved in Lemma 7.10; the analogous and more general results applicable to the Laplace-Beltrami operator
may be found in, Hérmander [31].

Spectrally defined Sobolev spaces. For s > 0 we define

H(Q) = {u € Li : i)\iai < oo},
k=1

where aj, = (u, ¢r), and thus u = Y-, arpy in L7,. We note that H*(£2) is a Hilbert space with respect to
the inner product

<<U, U>>s7p, = albl + Z )‘Zak:bk

k=2

where by, = (v, pi),. It follows from the definition that for any s > 0, H*(Q2) is isomorphic to a weighted
(?(N) space, where the weights are formed by the sequence 1, A3, A3, . . ..

In Lemma 7.1 in the Appendix section 7.1 we show that for any integer s > 0, H*(Q2) C H*(2) where
H*(Q) is the standard fractional Sobolev space. More precisely we characterize H*(£2) as the set of those
functions in H*(2) which satisfy the appropriate boundary condition and show that the norms of H?*(12)
and H*() are equivalent on H*(2).

We also note that for any integer s and 6 € (0,1) the space H* is a interpolation space between H* and
HeFL. In particular H5H0 = [H*, 15y 2, where the real interpolation space used is as in Definition 3.3 of
Abels [32]. This identification of H?® follows from the characterization of interpolation spaces of weighted LP
spaces by Peetre [33], as referenced by Gilbert [34]. Together these facts allow us to characterize the Holder
regularity of functions in H?*(€2).

Lemma 2.4. Under Assumptions 2-3, for all s > 0 there exists a bounded, linear, extension mapping E :
HE(Q) — H*(RY). That is for all f € H*(Q), E(f)|a = f a.e. Furthermore:
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then H?(Q2) embeds continuously in L1(QY) for any q < dzés ;

then H*(Q) embeds continuously in C%7(Q) for any v < min{l,s — 4}.

(i) ifs <
(i) if s >

NN

The proof is presented in the Appendix 7.1.

We note that this implies that when a > % pointwise evaluation is well-defined in the limiting quadratic
form J5&™); this will be used in what follows to show that the limiting labeling model obtained when |Z'|
is fixed is well-posed.

2.5. Gaussian measures of function spaces

Using the ellipticity of £, Weyl’s law, and Lemma 2.4 allows us to characterize the regularity of samples
of Gaussian measures on Li. The proof of the following theorem is a straightforward application of the
techniques in [35, Theorem 2.10] to obtain the Gaussian measures on H°(£2). Concentration of the measure
on H® and on C%7(Q) then follows from Lemma 2.4. When 7 = 0 we work on the space orthogonal to
constants in order that C (defined in the theorem below) is well defined.

Theorem 2.5. Let Assumptions 2-3 hold. Let L be the operator defined in (4), and define C = (L~+721)~“. For

any fived oo > g and T > 0, the Gaussian measure N(O,C) is well-defined on Li. Draws from this measure

d

are almost surely in H*(Q) for any s < o — §, and consequently in C*7(Q) for any v < min{1, o — d} if

o >d.

We note that if the operator £ has eigenvectors which are as regular as those of the Laplacian on a flat
torus then the conclusions of Theorem 2.5 can be strengthened. Namely if in addition to what we know
about L, there is C' > 0 such that

.
(Iellim + SiLinten) ) < %

sup
Jj=1
then the Kolmogorov continuity technique [35, Section 7.2.5] can be used to show additional Holder conti-
nuity.

Proposition 2.6. Let Assumptions 2-3 hold. Assume the operator L satisfies condition (7) and define C =
(L + 721)=. For any fized o > d/2 and 7 > 0, the Gaussian measure N(0,C) is well-defined on Li.
Draws from this measure are almost surely in H*(Q;R) for any s < o — d/2, and in C*7V(;R) for any
v < min{l,a — 2} if a > 4.

We note that in general one cannot expect that the operator £ satisfies the bound (7). For example,
for the ball there is a sequence of eigenfunctions which satisfy [|@g||pe ~ )\,(Cdfl)/zl ~ kld=2)/(2d) " see [36).
In fact this is the largest growth of eigenfunctions possible, as on general domains with smooth boundary
lellne < /\,(Cd_l)/ * . as follows from the work of Grieser, [36]. Analogous bounds have first been established
for operators on manifolds without boundary by Hérmander, [31]. This bound is rarely saturated as shown by
Sogge and Zeldtich [37], but determining the scaling for most sets and manifolds remains open. Establishing
the conditions on 2 under which the Theorem 2.5 can be strengthened as in Proposition 2.6 is of great
interest.

3. Graph based formulations

We now assume that we have access to label data defined as follows. Let Q' C Q and let QF be two
subsets of €)' such that
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QtuQ =9, QtnQ- =0.
We will consider two labeling scenarios:

o Labeling Model 1. |Z’|/n — t € (0,00). We assume that QF have positive Lebesgue measure. We
assume that the {z;};en are drawn i.i.d. from measure p. Then if z; € QT we set y; = L and if z; € Q
then y; = —1. The label variables y; are not defined if z; € Q\Q' where ' = QT U Q™. We assume
dist(Q21,Q7) > 0 and define Z’' C Z to be the subset of indices for which we have labels.

« Labeling Model 2. |Z'| fixed as n — co. We assume that QF comprise a fixed number of points, n*

respectively. We assume that the {z;};5,+,,- are drawn i.i.d. from measure p whilst {x;},<;<,+ are

a fixed set of points in Q% and {z;},+ 1<j<n+in- are a fixed set of points in Q~. We label these

fixed points by y : QF +— {£1} as in Labeling Model 1. We define Z’' C Z to be the subset of indices

{1,--+-,n" +n~} for which we have labels and ' = QT UQ".

In both cases j € Z’ if and only if z; € . But in Model 1 the z; are drawn i.i.d. and assigned labels when
they lie in €', assumed to have positive Lebesgue measure; in Model 2 the {(z;,y;)} ez are provided, in a
possibly non-random way, independently of the unlabeled data.

We will identify v € R™ and u € Lin(Q;R) by u; = u(x;) for each j € Z. Similarly, we will identify
ye R " andy e Lin(ﬂ’; R) by y; = y(z;) for each j € Z'. We may therefore write, for example,

1
E <u, Lu>Rn == <U, Lu>#n

where u is viewed as a vector on the left-hand side and a function on Z on the right-hand side.

The algorithms that we study in this paper have interpretations through both optimization and proba-
bility. The labels are found from a real-valued function u : Z — R by setting y = Sowu : Z — R with S the
sign function defined by

S0)=0; Su)=1,u>0; and S(u)=-1, u<0.

The objective function of interest takes the form
1) () = (g A (n)
() = 5, AP}, + 1@ (),

The quadratic form depends only on the unlabeled data, while the function ®™ is determined by the labeled
data. Choosing r, = % in Labeling Model 1 and r,, = 1 in Labeling Model 2 ensures that the total labeling
information remains of O(1) in the large n limit. Probability distributions constructed by exponentiating
multiples of J(™ (u) will be of interest to us; the probability is then high where the objective function is
small, and vice-versa. Such probabilities represent the Bayesian posterior distribution on the conditional
random variable uly.

3.1. Probit

The probit algorithm on a graph is defined in [17] and here generalized to a quadratic form based on
A rather than L. We define

1

B = o [ oo (— /207 ®)

N
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\I/(a?, 1) - log(\I‘l(x, 1)‘)
1r 50 :
0.8 4 il
0.6 - 3r b
0.4 2L i
0.2 1r b
0 0r
5 4 s 2 4 o 1 2 3 4 5 5 4 3 2 4 0o 1 2 3 4 5
Fig. 1. The function ¥(+;1), defined by (8), and its logarithm, which appears in the probit objective function.
and then

O (uy) = = Y log(W(ysuz7))- (9)

JjeZ!

The function ¥ and its logarithm are shown in Fig. 1 in the case v = 1. The probit objective function is
() = 57 w) + 1@ (3 7), (10)

where r, = % in Labeling Model 1 and 7, = 1 in Labeling Model 2. The proof of Proposition 1 in [17] is
readily modified to prove the following.

Proposition 3.1. Let o >0, 7> 0, v > 0 and r,, > 0. Then Jén), defined by (8-10), is strictly conver.

It is also straightforward to check, by expanding u in the basis given by eigenvectors of A that J;”) is
coercive. This is proved by establishing that Jy () s coercive on the orthogonal complement of the constant
function. The coercivity in the remaining direction is provided by <I>1()n)(u;fy) using the fact that Q% and
Q~ are nonempty. Consequently JE)") has a unique minimizer; Lemma 4.1 has the proof of the continuum
analog of this; the proof on a graph is easily reconstructed from this.

The probabilistic analogue of the optlmlzatlon problem for J( ") is as follows. We let V(n) (du;r) denote the
centred Gaussian with covariance C' = r,,(A™)~! (with respect to the 1nner product (-,-),, ). We assume
that the latent variable u is a priori distributed according to measure VO )(du ry). If we then define the
likelihood y|u through the generative model

vj = S(u; +&) (11)
with 5] SN (0,+?) then the posterior probability on u|y is given by

" 1 ety (n
vy (du) = e g (dus ) (12)

p

with ZI()n) the normalization to a probability measure. The measure Vén) has Lebesgue density proportional

1)
to e " (W)



M.M. Dunlop et al. / Appl. Comput. Harmon. Anal. 49 (2020) 655-697 665

3.2. Bayesian level set

‘We now define

. 1
o™ (u;y) = 57 Sy - S (uj)|*. (13)

jez’
The relevant objective function is
() = 707 () 4 @l (i),
where again r,, = % in Labeling Model 1 and r,, = 1 in Labeling Model 2. We have the following:

Proposition 3.2. The infimum of Jl(sn) is not attained.

This follows using the argument introduced in a related context in [23]: assuming that a non-zero min-
imizer does exist leads to a contradiction upon multiplication of that minimizer by any number less than
one; and zero does not achieve the infimum.

We modify the generative model (11) slightly to read

vi = S(u;) + &,
where now &; N (0,7,42). In this case, because the noise is additive, multiplying the objective function
by r, simply results in a rescaling of the observational noise; multiplication by 7, does not have such a
simple interpretation in the case of probit. As a consequence the resulting Bayesian posterior distribution
has significant differences with the probit case: the latent variable u is now assumed a priori to be distributed
according to measure Vén)(du; 1) Then

1

7 ) = e s (1)
len

where 1/(()”) is the same centred Gaussian as in the probit case. Note that e

s 1s also the measure with

Lebesgue density proportional to eI (W)
3.83. Small noise limit

When the size of the noise on the labels is small, the probit and Bayesian level set approaches behave
similarly. More precisely, the measures Vén) and 1/1(:) share a common weak limit as v — 0. The following
result is given without proof — this is because its proof is almost identical to that arising in the continuum
limit setting of Theorem 4.6(ii) given in the appendix; indeed it is technically easier due to the fully discrete

setting. Here = denotes the weak convergence of probability measures.

Theorem 3.3. Let Vé")(du) denote a Gaussian measure of the form V(gn) (du;r) for any r, possibly depending
on n. Define the set

B, ={u € R"|yju; > 0 foreach j € Z'}
and the probability measure

v (du) = 27" g, (u)p{" (du)
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where Z = V(gn)(Bn). Consider the posterior measures Z/I()n) defined in (12) and 1/1(:) defined in (14). Then
v =™ and v =™ as 4 — 0.

3.4. Kriging

Instead of classification, where the sign of the latent variable u is made to agree with the labels, one can
alternatively consider regression where u itself is made to agree with the labels [13,28]. We consider this
situation numerically in section 5. Here the objective is to

minimize Jf{n) (u) := J{7) (u) subject to u(z;) = y; for all j € Z'.

In the continuum setting this minimization is referred to as kriging, and we extend the terminology to our
graph based setting. Kriging may also be defined in the case where the constraint is enforced as a soft least
squares penalty; however we do not discuss this here.

The probabilistic analogue of this problem can be linked with the original work of Zhu et al. [13,28] which
based classification on a centred Gaussian measure with inverse covariance given by the graph Laplacian,
conditioned to take the value exactly 1 on labeled nodes where y; = 1, and to take the value exactly —1 on
labeled nodes where y; = —1.

4. Function space limits of graph based formulations

In this section we state ['-limit theorems for the objective functions appearing in the probit algorithm. The
proofs are given in the appendix. They rely on arguments which use the fact that we study perturbations
of the I'-limit theorem for the quadratic forms stated in section 2. We also write down formal infinite
dimensional formulations of the probit and Bayesian level set posterior distributions, although we do not
prove that these limits are attained. We do, however, show that the probit and level set posteriors have a
common limit as v — 0, as they do on a finite graph.

4.1. Probit
Under Labeling Model 1, the natural continuum limit of the probit objective functional is
Jp(v) = I (v) + @1 (v 7) (15)

where

Bpa(v7) = = [ log(W(y(a)o(w); ) din(e) (16)
Q/
for a given measurable function y : Q' — {£1}. For any v € LZ, log(¥(y(x)v(x);7)) is integrable by

Corollary 7.9. The proof of the following theorem is given in the appendix, in section 7.5.

Lemma 4.1. Let Assumptions 1-3 hold. For o« > 1 and 7 > 0, consider the functional J, with Labeling
Model 1 defined by (15). Then, the functional J, has a unique minimizer in H(Q2).

Proof. Convexity of J, follows from the proof of Proposition 1 in [17]. Let v; and v_ be the averages of v
on Q4 and Q_ respectively. Namely let vy = @ fQi v(z) dz. Note that
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()Nt

3o(e) 2 I () 2 X7 L0 W) = =87 [0V (P dox P

Q

IVl Zzo)-

Using the form of Poincaré inequality given in Theorem 13.27 of [38] implies that

Jo(®) 2 190200 2 / o — 52 + o — o da. (17)
Q

The convexity of @, 1(v;7) implies that

Qp1(v;y) = —log(W(vy);v)p(Q4) — log(W(—v-);v)u(Q2-)

Using that lims_, o —log(¥(s;7)) = oo we see that a bound on @, ;(v;7) provides a lower bound on v
and an upper bound on v_. To see this let © be the inverse of s — —log(¥(s;v)). The preceding shows

that
wzo(Nian) 20 i) o= () =0 i)

Let ¢ = max{—@ <:€f(li))> ,—0O (:(péi))) ,O}. Then vy > —c and v_ < c¢. Using that, for any a € R,

v? < 2|v — a|? + 2a%, we obtain

/v2(ar) dz < / v (x) dz + / v (z) dz + 2|9
Q {v(@)<—c} {v(@)2c}
<2 / v+ c|? + ?dx 42 / lv — ¢c|® + ¢* dz + 29|
{v(@)<—c} {v(@)=c}

<520 + 2 / v — 0y |?dax + 2 / lv—o_|* dz
{v(@)<—c} {v(@)=c}
< 0 + Jp(v).

Then ||v| .2 is bounded by a function of J,(v) and €.
Combining with (17) implies that a function of J,(v) bounds HUH%G(Q) which establishes the coercivity of

Jp. The functional J,, is weakly lower-semicontinuous in H“, due to the convexity of both J&™) and Dy,
Thus the direct method of the calculus of variations proves that J, has a unique minimizer in H*(Q2). O

The following theorem is proved in section 7.5.

Theorem 4.2. Let the assumptions of Labeling Model 1 and Theorem 2.2 hold with T > 0. Then, with
probability one, any sequence of minimizers v, of J;n) converge in TL? to veo, the unique minimizer of J,

in L?

5, and furthermore lim,, JI()") (V) = Jp(ve0) = min,erz Jp(v).

The analogous result under Labeling Model 2, i.e. convergence of minimizers, is an open question. In this
case the natural continuum limit of the probit objective functional is

Ip(v) = I (0) + By p(v57) (18)

where
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Opo(vsy) = — Y log(U(y(x;)ulz;);y) (19)

Jjez’

for a given measurable function y : Q' — {£1}. When a < g this limiting model is not well-posed. In
particular the regularity of the functional is not sufficient to impose pointwise data. More precisely, when

a < 2 then there exists a sequence of smooth functions v, € C*°(Q) such that limy_o0 Jp(vy) = 0. In
d
2
vp(x) = ¢ Zf\il Y(z:)Ci/p(x — z5) where ¢ — oo sufficiently slowly. Then @, 5(vy;y) — 0 as k — oo and,

particular when o < consider a smooth, compactly supported, mollifier ¢, with ((0) > 0 and define
by a simple scaling argument (for appropriate cx), Jiem (vk) — 0 as k — oco. Another way to see that the
problem is not well defined is that the functions in H*(£2) (which is the natural space to consider J, on)
are not continuous in general and evaluating ®, 2(v;7) is not well defined.

When a > £ the existence of minimizers of (18) in H*() is established by the direct method of the
calculus of Varlatlons using the convexity of J,, and the fact that, by Lemma 2.4, H* continuously embeds
into a set of Holder continuous functions.

For a > £ we believe that the minimizers of Jp of Labeling Model 2 converge to minimizers of (18) in
an appropriate regime, but the situation is more complicated than for Labeling Model 1: under Labeling
Model 2 (5) is no longer a sufficient condition on the scaling of ¢ with n for the convergence to hold. Thus if
€ — 0 too slowly the problem degenerates. In particular in the following theorem we identify the asymptotic
behavior of minimizers of J, both when a < %, and if a > % but € — 0 too slowly.

The proof of the following may be found in section 7.6. The theorem is similar in spirit to Proposi-
tion 2.2(ii) in [39] where a similar phenomenon was discussed for the p-Laplacian regularized semi-supervised
learning. We also mention that the PDE approach to a closely related p-Laplacian problem was recently
introduced by Calder [40].

Theorem 4.3. Let the assumptions of Labeling Model 2, and Theorem 2.2 hold. If o > %, 7> 0, and
Enne — 00 as n — oo (20)

orifa < d then, with probability one, the sequence of minimizers v, of JS‘) converge to 0 in TL? asn — oo.

JlaeT)

That 1is, the minimizers of J( ") converge to the minimizer of Joo ' with the information about the labels

being lost in the limit.
Remark 4.4. We believe, but do not have a proof, that for o > % and 7 > 0, if
enni —0 as n — oo

then, with probability one, any sequence of minimizers v, of J%,n) is sequentially compact in TL? with
lim,, Jl(on)(vn) = minyer2 Jp(v) given by (18), (19). If this holds then, under Labeling Model 2, JI(Dn) (u)
converges in an appropriate sense to a limiting objective function J,(u). Our numerical results support this
conjecture.

It is also of interest to consider the limiting probability distributions which arise under the two labeling
models. Under Labeling Model 2 this density has, in physicist’s notation, “Lebesgue density” exp(—Jp(u)).
Under Labeling Model 1, however, we have shown that Jén) (u) converges in an appropriate sense to a limiting
objective function J,(u) implying that (again in physicist’s notation) exp(—r, 1J§,”) (u)) ~ exp(—ndp(u)).
Thus under Labeling Model 1 the posterior probability concentrates on a Dirac measure at the minimizer
of Jp(u).

Based on this remark, the natural continuum probability limit concerns Labeling Model 2. The posterior
probability is then given by
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1 )
l/p72(du) = Z_2€—<I>p,z(u,v)yo(du) (21)
P

where vy is the centred Gaussian with covariance C given in Theorem 2.5 and @, 5 is given by (19). Since
we require pointwise evaluation to make sense of ®p, o(u;7) we, in general, require o > d; however Proposi-
tion 2.6 gives conditions under which o > g will suffice. We will also consider the probability measure v}, ;

defined by

1 ‘
Vpi(du) = Z—le_(bp’l(“”)v() (du) (22)
P,

where @}, 1 is given by (16). The function ®, 1 (u; ) is defined in an Li sense and thus we require only a > g
— see Theorem 2.5. Note, however, that this is not the limiting probability distribution that we expect for
Labeling Model 1 with the parameter choices leading to Theorem 4.2 since the argument above suggests
that this will concentrate on a Dirac. However we include the measure v}, ; in our discussions because, as
we will show, it coincides with the analogous Bayesian level set measure 151 (defined below) in the small
observational noise limit. Since v} 1 can be obtained by a natural scaling of the graph algorithm, which does
not concentrate on Dirac, the relationship between 14, 1 and 11 is of interest as they are both, for small
noise, relaxations of the same limiting object.

4.2. Bayesian level set
We now study probabilistic analogues of the Bayesian level set method, again using the measure 1y which

is the centred Gaussian with covariance C given in Theorem 2.5 for some o > %. Note that, from equation
(13), for Labeling Model 1,

rn @ (usy) = 37 2 @) = S(u(a))[*
jeZ’
~ [ 2—;}1/(9:) ~ S (u(2))[* du(z)
ks
= ‘1915,1(%7)

by a law of large numbers type argument of the type underlying the proof of Theorem 4.2.

Recall that, from the discussion following Proposition 3.2, this scaling corresponds to employing the finite
dimensional Bayesian level set model with observational variance v?n so that the variance per observation
is constant. Then the natural limiting probability measure is, in physicists notation, exp(—Jls(u)) where

Jis(u) = Jég‘”)(u) + Py 1 (u3 7).

Expressed in terms of densities with respect to the Gaussian prior this gives

1 :
Va1 (du) = Z— e~ P () o (du). (23)

)

Since P51 (u;y) makes sense in Li we require only a > g. The measure v ; is the natural analogue of the

finite dimensional measure Vl(sn ) under this label model. Under Labeling Model 2 we take r,, = 1. We obtain
a measure Vg o in the form (23) found by replacing vi51 by 15,2 and ®i51 by

Droa(uiy) = 3 2i72|y<a:j> — S(u(zy)|” (24)

jez’
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In this case the observational variance is not-rescaled by n since the total number of labels is fixed. Since
we require pointwise evaluation to make sense of @5 2(u;7y) we, in general, require o > d; however Proposi-
tion 2.6 gives conditions under which o > % will suffice.

Remark 4.5. Note that Jl(: ) and Jis cannot be connected via I'-convergence. Indeed, if Jis = I'-lim,, Jl(: )
then Jis would be lower semi-continuous [41]. When 7 > 0 compactness of minimizers follows directly
from the compactness property of the quadratic forms JT(LQ’T), see Theorem 2.2. Now since compactness of
minimizers plus lower semi-continuity implies existence of minimizers then the above reasoning implies there
exists minimizers of Jis. But as in the discrete case, Proposition 3.2, multiplying any u by a constant less tl(la)n
n

one leads to a smaller value of Jis. Hence the infimum cannot be achieved. It follows that Jis # I'-lim,, o J), -

4.8. Small noise limit

As for the finite graph problems, the labeled data can be viewed as arising from different generative
models. In the probit formulation, the generative models for the labels are given by

y(z) = S(u(z) +&(x)), €~ N(0,7°1),
iid
for Labeling Model 1, Labeling Model 2 respectively; S is the sign function. The functionals ®, 1, ®, 2 then
arise as the negative log-likelihoods from these models. Similarly, in the Bayesian level set formulation the
generative models are given by

y(@) = S(u(x)) +&(x), &~ N(0,7°1),
yl(e;) = S(u(x)) + &, &~ N(©0,7).
leading to the functionals ®js 1, Pis 2.

We show that in the zero noise limit the Bayesian level set and probit posterior distributions coincide.
However for v > 0 they differ: note, for example, that the probit model enforces binary data, whereas the
Bayesian level set model does not. It has been observed that the Bayesian level set posterior can be used to
produce similar quality classification to the Ginzburg-Landau posterior, at significantly lower computational
cost [42]. The small noise limit is important for two reasons: firstly in many applications labeling is very
accurate and considering the zero noise limit is therefore instructive; secondly recent work [43] shows that
the zero noise limit provides useful information about the efficiency of algorithms applied to sample the
posterior distribution and, in particular, constants derived from the zero noise limit appear in lower bounds
on average acceptance probability and mean square jump in such algorithms.

Proof of the following is given in section 7.7.

Theorem 4.6.

(i) Let Assumptions 2-3 hold, and assume that o > d. Let the assumptions of Labeling Model 1 hold.
Define the set

Boo1 ={u € C(R) |y(z)u(z) > 0 fora.e. z € Q'}
and the probability measure

vi(du) = Z_llle?1 (u)vp(du)
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where Z = vy(Boo,1). Consider the posterior measures vy 1 defined in (22) and vs, defined in (23).
Then vy 1 =11 and g1 = v asy — 0.

(ii) Let Assumptions 2-3 hold, and assume that o > d. Let the assumptions of Labeling Model 2 hold.
Define the set

B2 ={uec C(%R)|y(zj)u(z;) > 0 foreach j € Z'}
and the probability measure
vo(du) = Zflllez(u)Vg(du)
where Z = vy(Boo,2). Then vp o =12 and vig2 =12 asy — 0.

Remark 4.7. The assumption that « > d in both parts of the above theorem can be relaxed to o > d/2 if
the conclusions of Proposition 2.6 are satisfied.

4.4. Kriging

One can define kriging in the continuum setting [12] analogously to the discrete setting; we consider this
numerically in section 5. In the case of Labeling Model 2, the limiting problem is to

minimize Ji (u) := J{&) (u) subject to u(x;) = y; for all j € Z.

Kriging may also be defined for Labeling Model 1 and without the hard constraint in the continuum setting,
but we do not discuss either of these scenarios here.

5. Numerical illustrations

In this section we describe the results of numerical experiments which illustrate or extend the devel-
opments in the preceding sections. In section 5.1 we study the effect of the geometry of the data on the
classification problem, by studying an illustrative example in dimension d = 2. Section 5.2 studies how the
relationship between the length-scale € and the graph size n affects limiting behavior. In section 5.3 we study
graph based kriging. Finally, in section 5.4, we study continuum problems from the Bayesian perspective,
studying the quantification of uncertainty in the resulting classification.

5.1. Effect of data geometry on classification

We study how the geometry of the data affects the classification under Labeling Model 1, using the con-
tinuum probit model. Let Q = (0,1)2. We first consider a uniform distribution p on the domain, and choose
Q4,9 to be balls of radius 0.05 centred at (0.25,0.25), (0.75,0.75) respectively. The decision boundary is
then naturally the perpendicular bisector of the line segment joining the centers of these balls. We then
modify p by introducing a channel of increasing depth in p dividing the domain in two vertically, and look
at how this affects the decision boundary. Specifically, given h € [0,1] we define pj to be constant in the
y-direction, and assume the cross-sections in the z-direction are as shown in Fig. 2, so that the channel
has depth 1 — h. In order to numerically estimate the continuum probit minimizers, we construct a finite-
difference approximation to each £ on a uniform grid of 65536 points, which then provides an approximation
to A. The objective function Jéoo) is then minimized numerically using the linearly-implicit gradient flow
method described in [17], Algorithm 4.
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Fig. 2. The cross sections of the data densities p; we consider in subsection 5.1.
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Fig. 3. The minimizers of the functional J}()"o) for different values of h and «, as described in subsection 5.1.

We consider both the effect of the channel depth parameter h and the parameter o on the classification;
we fix 7 = 10 and v = 0.01. In Fig. 3 we show the minimizers arising from 5 different choices of h
and o = 1,2,3. As the depth of the channel is increased, the minimizers begin to develop a jump along
the channel. As « is increased, the minimizers become less localized around the labeled regions, and the
jump along the channel becomes sharper as a result. Note that the scale of the minimizers decreases as «
increases. This could formally be understood from a probabilistic point of view: under the prior we have
Ellul2. = Tr(A™!) < 7729, and so a similar scaling may be expected to hold for the MAP estimators. In
Fig. 4 we show the sign of each minimizer in Fig. 3 to illustrate the resulting classifications. As the depth
of the channel is increased, the decision boundary moves continuously from the diagonal to the vertical
bisector of the domain, with the transitional boundaries appearing almost as a piecewise linear combination
of both boundaries. We also see that, despite the minimizers themselves differing significantly for different
«, the classifications are almost invariant with respect to a.

5.2. Localization bounds for kriging and probit

We study how the rate affects convergence to the continuum limits when the localization parameter
decreases and the number of data points n is increased. We consider Labeling model 2 using both the
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Fig. 4. The sign of minimizers from Fig. 3, showing the resulting classification.

kriging and probit models; this serves to illustrate the result of Theorem 4.3, motivate Remark 4.4, and
provide a relation to the results of [39].

We work on the domain = (0,1)? and take a uniform data distribution p. In all cases we fix two
datapoints which we label with opposite signs, and sample the remaining n — 2 datapoints. For kriging we
consider the situation where the data is viewed as noise-free so that the label values are interpolated. We
calculate the minimizer w,, of Jl({”) numerically via the closed form solution

Uy = A(n)’_lR*(RA(n)’_lR*)_ly,

where R € R%2X" is the mapping taking vectors to their values at the labeled points. In order to numerically
estimate the continuum minimizer u of Jl({oo), we construct a finite-difference approximation to £ on a
uniform grid of 65536 points. This leads to an approximation A to A, from which we again use the closed
form solution to compute 4 =~ u:

a=A"R(RAT Ry,

where R € R2%65556 takes discrete functions to their values at the labeled points.

In Fig. 5 (left) we show how the Lin error between u, and « varies with respect to ¢ for increasing
values of n. All errors are averaged over 200 realizations of the unlabeled datapoints, and we consider 100
uniformly spaced values of € between 0.005 and 0.5. We see that ¢ must belong to a ‘sweet-spot’ in order
to make the error small — if € is too small or too large convergence doesn’t occur. The right hand side of
the figure shows how these lower and upper bounds vary with n; the bounds are defined numerically as the
points where the second derivative of the error curve changes sign. The rates are in agreement with the
results and conjectures up to logarithmic terms, although the sharp bounds are not obtained — we see that
the lower bounds are larger than (’)(n’%), and the upper bounds are smaller than (’)(n’%). It is possible
that the sharp bounds may be approached in a more asymptotic (and computationally infeasible) regime.

Similarly, we note that the minimum error for &« = 2 in Fig. 5 decreases very slowly in the range of n
we considered. This again indicates that we are not yet in the asymptotic regime at n = 1600. Further
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Fig. 5. (Left) The Li" error between discrete minimizers and continuum minimizers of the kriging model versus localization pa-
rameter e, for different values of n. (Right) The upper and lower bounds for (n) to provide convergence. The slopes of the lines

of best fit provide estimates of the rates.
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experiments (not included) for larger values of n show that the minimum error does converge as n — oo as
expected.

For the probit model we take v = 0.01 and use the same gradient flow algorithm as in subsection 5.1
for both the continuum and discrete minimizers. Fig. 6 shows the errors, analogously to Fig. 5. Note that
the errors are plotted on logarithmic axes here, as unlike the kriging minimizers, there is no restriction for
the minimizers to be on the same scale as the labels. We see that the same trend is observed in terms of
requiring upper and lower bounds on ¢, and a shift of the error curves towards the left as n is increased.

5.3. Extrapolation on graphs

We consider the problem of smoothly extending a sparsely defined function on a graph to the entire graph.
Such extrapolation was studied in [44], and was achieved via the use of a weighted nonlocal Laplacian. We
use the kriging model with Labeling Model 2, labeling two points with opposite signs, and setting v = 0.
We fix a set of datapoints {x;}%_,, n = 1600, drawn from the uniform density on the domain Q = (0,1).

We fix 7 = 1 and look at how the smoothness of minimizers of the kriging functional Jl((n) varies with a.
The minimizers are computed directly from the closed form solution, as in subsection 5.2. When o > d/2
we choose € to approximately minimize the Lin errors between the discrete and continuum solutions (since
the continuum solution is non-trivial). When a < d/2 a representative ¢ is chosen which is approximately
twice the connectivity radius. The minimizers are shown in Fig. 7 for « = 0.5,1.0, 1.5, 2.0. Spikes are clearly
visible for o < d/2 = 1: the requirement for o > d/2 to avoid spikes appears to be essential.

5.4. Bayesian level set for sampling

We now turn to the problem of sampling the conditioned continuum measures introduced in subsec-
tions 4.1 and 4.2, specifically their common v — 0 limit. From this sampling we can, for example, calculate
the mean of the classification, which may be used to define a measure of uncertainty of the classification at
each point. This is because, for binary random variables, the mean determines the variance. Knowing the
uncertainty in classification has great potential utility, for example in active learning in guiding where to
place resources in labeling in order to reduce uncertainty.

We fix 2 = (0,1)2. The data distribution p is shown in Fig. 8; it is constructed as a continuum analogue
of the two moons distribution [45], with the majority of its mass concentrated on two curves. The contrast
ratio in the sampling density p is approximately 100:1 between the values on and off of the curves. The
resulting operator £ contains significant clustering information: in Fig. 8 we show the second eigenfunction
of L, termed the Fiedler vector in analogy with second eigenvector of the graph Laplacian. The sign of this
function provides a good estimate for the decision boundary in an unsupervised context. We use Labeling
Model 2, labeling a single point on each curve with opposing signs as indicated by e and o in Fig. 8.

Sampling is performed using the preconditioned Crank-Nicolson MCMC algorithm [46], which has
favourable dimension-independent statistical properties, as demonstrated in [30] in the graph-based setting
of relevance here. We consider three choices of o > d/2, and two choices of inverse length-scale parameter 7.
In general we require a > d for the measure v, in Theorem 4.6 to be well-defined. However numerical
evidence suggests that the conclusions of Proposition 2.6 are satisfied with this choice of p, implying that
we may make use of Remark 4.7 and that a > % suffices. The operator £ is discretized using a finite
difference method on a square grid of 40000 points, and sampling is performed on the span of its first 500
eigenfunctions.

In Fig. 9 we show the mean of the sign of samples on the left hand side, for each choice of «, after
fixing 7 = 1. Note that uncertainty is greater the further the values of the mean are from +1: specifically
we have that Var(S(u(z)) =1 — [IE(S(u(yc)))]2 We see that the classification on the curves where the
data concentrates is fairly certain, whereas classification away from the curves is uncertain; furthermore the
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Fig. 6. (Left) The L2 error between discrete minimizers and continuum minimizers of the probit model versus localization parameter
e, for different values of n. (Right) The upper and lower bounds for e(n) to provide convergence. The slopes of the lines of best fit
provide estimates of the rates.
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Fig. 7. The extrapolation of a sparsely defined function on a graph using the kriging model, for various choices of parameter .
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Fig. 8. (Left) The data distribution p used in the MCMC experiments, and the locations of the two labeled datapoints. (Right) The
second eigenfunction of the operator £ corresponding to p.

certainty increases away from the curves slightly as « is increased. Samples S(u) are also shown in the same
figure; the uncertainty away from the curves is illustrated also by these samples.

In Fig. 10 we show the same results, but with the choice 7 = 0.2 so that samples possess a longer
length scale. The classification certainty now propagates away from the curves more easily. The effect of
the asymmetry of the labeling is also visible in the mean for the case v = 4: uncertainty is higher in the
bottom-left corner than the top-left corner.

Since the prior on the latent random field u may be difficult to ascertain in applications, the sensitivity of
the classification on the choice of the parameters a, 7 indicates that it could be wise to employ hierarchical
Bayesian methods to learn appropriate values for them along with the latent field u. Dimension robust
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MCMC methods are available to sample such hierarchical distributions [47], and application to classification
problems are shown in that paper.

6. Conclusions

In this paper we have studied large graph limits of semi-supervised learning problems in which smoothness
is imposed via a shifted graph Laplacian, raised to a power. Both optimization and Bayesian approaches
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have been considered. To keep the exposition manageable in length we have confined our attention to
the unnormalized graph Laplacian. However, one may instead choose to work with the normalized graph
Laplacian L = [ — D’%WD’%, in place of L = D —W. In the normalized case the continuum PDE operator
is given by

Lu = —#V' <p2V<pl%)>

with no flux boundary conditions: V(#) -v =0 on 082, where v is the outside unit normal vector to 0f2.
Theorems 2.2, 4.2 and 4.6 generalize in a straightforward way to such a change in the graph Laplacian.

Future directions stemming from the work in this paper include: (i) providing a limit theorem for probit
MAP estimators under Labeling Model 2; (ii) providing limit theorems for the Bayesian probability dis-
tributions considered, using the machinery introduced in [29,30]; (iii) using the limiting problems in order
to analyze and quantify efficiency of algorithms on large graphs; (iv) invoking specific sources of data and
studying the effectiveness of PDE limits in comparison to non-local limits.

7. Appendix
7.1. Function spaces

Here we establish the equivalence between the spectrally defined Sobolev spaces, H*(£2) and the standard
Sobolev spaces.
We denote by

H%(Q) = {u € H*(Q) : g—z =0on GQ}

the domain of £. Analogously we denote by Ha™(2) the domain of £™, that is

0L ™ u
on

HJQVm(Q):{uEHQm(Q) : =0forall0<r<m-—1on 0(2}
Finally we let Hy" 1 (Q) = H>"+1(Q) N HZ™(Q).

For m > 0 and u,v € HY"(Q) let (u,v)omi1,p = [ VL™ u - VL™ vp?dz and for u,v € HI(Q) let
(U, V)am.u = o (L™u)(L™v)pdz. We note that on the L2 orthogonal complement of the constant function
1, (-, )2m+1,, defines an inner product, which due to Poincaré inequality is equivalent to the standard
inner product on H?™*+1(Q). We also note that (¢r, or)am+1,, = A\p" "', where we recall that ¢y, is unit
eigenvector of £ corresponding to \g.

Lemma 7.1. Under Assumptions 2 - 3, for any integer s > 0
HR () = H* ()

and the associated inner products (-, -)s, and (-, -))s, are equivalent on the Li orthogonal complement
of the constant function.

Proof. For s =0, HY, = L? by definition and H° = L? by the fact that {¢; : k= 1,...} is an orthonormal
basis.
To show the claim for s = 1, we recall that [V - VopPde = [opLypjpde = A6i. There-

fore {% k> 1} is an orthonormal basis of the orthogonal complement of the constant function,
k
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1+, in H) with respect to the inner product (u,v) = [V, - Vup?dz which is equivalent to the stan-
dard inner product of H} on 11. Since an expansion in the basis {py}, is unique, this implies that
for any u € Hi = H' the series > rpr converges in H' to u. Consequently if u € H} then
o0 > [|Vul?p?de = [|Y, arVer|>p?dx = 3", ai )\, which implies that u € H'. So Hy C H'.

On the other hand, if u € H' then u = Y, axpy with Y, Agai < oo. Therefore u = U+ po , arpy/Ax f—;f—k,
where u is the average of u. Since ff—k are orthonormal in scalar product with topology equivalent to H*,

the series converges in H'. Therefore u € H' = HY .

Assume now that the claim holds for all integers less than s. We split the proof of the induction step into
two cases:

Case 1° Consider s even; that is s = 2m for some integer m > 0.

Assume u € H™. Then VL u-7t = 0 on 98 for all 7 < m. By the induction hypothesis >, )\im_la% < 0.
Since £ is a continuous operator from H? to L? one obtains by induction that £™ tu = >, ap L™ oy =
S apAP oy, Let v = L™ ', By assumption v € HZ,. By above v = >, ax A" oy,

Since ¢y, is solution of Ly = Ak

<£80kav>u = O‘Mplﬁv”)u'

Using that v € H2, Vv -ii = 0 on 9Q and integration by parts we obtain

(s L) = Mkor Y a AT 05} = Al ag.

J

Given that Lv is an L? function, we conclude that Lv = Y7, A{*ag@y. Therefore 3, A7™aj, < oo and hence

u € H>™.

To show the opposite inclusion, consider w € H?™. Then u = > oparprand ), )\%mai < 00. By induction
step we know that u € szvm—z and thus v = £™ 'y € L?. We conclude as before that v = >k )\’kn_lakgok.
Let by, = A" 'aj,. Assumptions on u imply Y, A\2b? < co. Arguing as above in the case s = 1 we conclude
that the series converges in H' and that Vo = >k bk V. Combining this with the fact that Lo, = Appp
in Q for all k£ implies that v is a weak solution of

Lo=>Y Mbrpr inQ,
k

v

— =0 on JQ.

on
Since RHS of the equation is in L? and 9Q is C™!, by elliptic regularity [48], v € H? and [|v|%. <
C(,p) >, biXZ. Furthermore v satisfies the Neumann boundary condition and thus v € H¥,.

Case 2° Consider s odd; that is s = 2m + 1 for some integer m > 0. Assume u € H?Vm“. Let v = L™u.
Then v € H'. The result now follows analogously to the case s = 1. If u € H*™T! then, u =, arpr with
S A" a2 < oo. By induction hypothesis, v = £ u € HY and v = Y, brpy, where b, = ™ 1ay,. Thus
> Akbi < 0o and the argument proceeds as in the case s = 1.

Proving the equivalence of inner products is straightforward. O

We now present the proof of Lemma 2.4.

Proof of Lemma 2.4. If s is an integer the claim follows form Lemma 7.1 and Sobolev embedding the-
orem. Assume s = m + 6 for some 6 € (0,1). Since € is Lipschitz, by extension theorem of Stein
(Leoni [38] 2nd edition, Theorem 13.17) there is a bounded linear extension mapping F,, : H™(Q2) —
H™(RY) such that E,.(f)|o = f. From the construction (see remark 13.9 in [38]) it follows that
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E,, and F,,y1 agree on smooth functions and thus F,,+1 = E,| am(q)- Therefore, by Theorem
16.12 in Leoni’s book (or Lemma 3.7 of Abels [32]) E,, provides a bounded mapping from the in-
terpolation space [H™(2), H"T1(Q)]g> — [H™(RY), H"T1(RY)]p2. As discussed above the statement
of Lemma 2.4 H™T(Q) = [H™(Q),H" 1 (Q)]p2. By Lemma 7.1, [H™(Q), H™1(Q)]p2 embeds into
[H™(Q), H™1(Q)]g.2. Furthermore, we use that, see Abels [32] Corollary 4.15, [H™(R®), H™t1(R%)]po =
H™*9(R?). Combining these facts yields the existence of an bounded, linear, extension mapping H™*%(Q) —
H™*9(R?). The results (i) and (ii) follows by the Sobolev embedding theorem. O

7.2. Passage from discrete to continuum

There are two key tools we use to pass from the discrete to continuum limit. The first is I'-convergence.
I'-convergence was introduced in the 1970’s by De Giorgi as a tool for studying sequences of variational
problems. More recently this methodology has been applied to study the large data limits of variational
problems that arise from statistical inference, e.g. [20,25,49-51]. Accessible introductions to I'-convergence
can be found in [41,52]

The I'-convergence methodology provides a notion of convergence of functionals that captures the behav-
ior of minimizers. In particular the minimizers converge along a subsequence to a minimizer of the limiting
functional. In our setting, the objects of interest are functions on discrete domains and hence it is not
immediate how one should define convergence. This brings us to our second key tool. Recently a suitable
topology has been identified to characterize the convergence of discrete to continuum using an optimal
transport framework [49]. The main idea is, given a discrete function u,, : 2, — R and a continuum func-
tion u : 2 — R, to include the measures with respect to which they are defined in the comparison. Namely,
one can think of the function u,, as belonging to the L? space over the empirical measure pu,, = % S O
and u belonging to the LP space over the measure pu. One defines a continuum function 4, : £ — R by
Uy, = Uy o 1y, where T, : Q,, — £ is a measure preserving map between p and p,,. One then compares u,,
and ., in the L? distance, and simultaneously compares T,, and identity. In other words one considers both
the difference in values and the how far the matched points are. We give a brief overview of I'-convergence
and the T'LP space.

7.2.1. A brief introduction to I'-convergence

We present the definition of I'-convergence in terms of an abstract topology. In the next section we will
discuss what topology we will use in our results. For now, we simply point out that the space X needs to
be general enough to include functions defined with respect to different measures.

Definition 7.1. Given a topological space X, we say that a sequence of functions F,, : X — R U {+oc}
[-converges to Foo : X — R U {400}, and we write Foo = I-lim,, o0 F),, if the following two conditions
hold:

o (the liminf inequality) for any convergent sequence u,, — u in X

lim inf F}, (uy,) > Foo (u);

n— o0

o (the limsup inequality) for every u € X there exists a sequence u,, in X with u,, — u and

limsup Fj, (up,) < Foo ().

n— o0
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In the above definition we also call any sequence {uy, },=1,... that satisfies the limsup inequality a recovery
sequence. The justification of I'-convergence as the natural setting to study sequences of variational problems
is given by the next proposition. The proof can be found in, for example, [41].

Proposition 7.2. Let F,,, F, : X — R U {+o0}. Assume that Fy, is the T'-limit of F,, and the sequence of
minimizers {up tn=1,.. of Fy, is precompact. Then

lim min F,, = lim F,,(u,) = min F,
n—oo X n— 00 X

and furthermore, any cluster point w of {un}n=1,.. is a minimizer of Fu,.

Note that I'-lim,,_,s F, = Fso and I'-lim, .o, G, = G do not imply F), +G,, I'-converges to G + Fino.
Hence, in order to build optimization problems by considering individual terms it is not enough, in general,

)

to know that each term I'-converges. In particular, we consider using the quadratic form J,(la’T as a prior

and adding fidelity terms, e.g.
I () = JEm) (1) + ) (w).

We show that, with probability one, I'-lim,, Jfla’T) = Jég’T). In order to show that J(™) I'-converges it
suffices to show that ®(™) converges along any sequence (i, u,) along which (o) (uy,) is finite. This is
similar to the notion of continuous convergence, which is typically used [52, Proposition 6.20]. However we
note that ®™ does not converge continuously since as a functional on TLP(f) it takes the value infinity
whenever the measure considered is not p,.

7.2.2. The TLP space

In this section we give an overview of the topology that was introduced in [49] to compare sequences of
functions on graphs. We motivate the topology in the setting considered in this paper. Recall that u € P ()
has density p and that p,, is the empirical measure. Given u,, : €, — R and u : Q — R the idea is to
consider pairs (u,u) and (uy, u,) and compare them as such. We define the metric as follows.

Definition 7.2. Given a bounded open set 2, the space T'LP(2) is the space of pairs (p, f) such that u is a
probability measure supported on Q and f € LP(u). The metric on T'L? is defined by

P

drre((f, 1), (9,v)) = infy) /Iw—y”+|f(x)—g(y)pd7f(x,y)
xQ

me€(p,

Above II(p,v) is the set of transportation plans (i.e. couplings) between p and v; that is the set of
probability measures on §2 x 2 whose first marginal is ;1 and second marginal in v.

For a proof that drp» is a metric on TLP see [49, Remark 3.4].

To connect the T'L? metric defined above with the ideas discussed previously we make several observa-
tions. The first is that when p has a continuous density then one can consider transport maps 7' : Q — €,
that satisfy T = pu,, instead of transport plans 7 € II(u, ). Hence, one can show that

— : _ p _ p %
dree(F.0). (9.0) =, inf (4= T, +11f =90 Tl5,) "

p=v

In the setting when we compare (u,u) and (puy,, uy,) the second term is nothing but ||u — ﬂn”ip(u), where

Uy = Un © Ty, and Ty, : 0 — €, is a transport map.
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We note that for a sequence (fin, u,) to T'LP converge to (u, u) it is necessary that |[Id—T||»(,,) converges
to zero, in other words it is necessary that the measures p, converge to p in p-optimal transportation
distance. We recall that since €2 is bounded this is equivalent to weak convergence of j,, to . Assuming this to
be the case, we call any sequence of transportation maps T}, satisfying (T,)xp = pin and [[Id =T}, || e () — 0
a stagnating sequence. One can then show (see [49, Proposition 3.12]) that convergence in T'L” is equivalent
to weak™ convergence of measures i, to p and convergence ||u — u, o T,/ 1»(,) — 0 for arbitrary sequence
of stagnating transportation maps. Furthermore if convergence |[u —uy o Ty || L»(,) — 0 holds for a sequence
of stagnating transportation maps it holds for every sequence of stagnating transportation maps.

The intrinsic scaling of the graph Laplacian, i.e. the parameter &,,, depends on how far one needs to

move “mass” to couple p and pu.,, that is on upper bounds on transportation distance between p and pi,.
The following result can be found in [53], the lower bound in the scaling of € = ¢,, is so that there exists a
stagnating sequence of transport maps with W — 0.
Proposition 7.3. Let Q C R? with d > 2 be open, connected and bounded with Lipschitz boundary. Let
w € P(Q) with density p which is bounded above and below by strictly positive constants. Let Q, = {x;}1"
where x; Y, woand let p, = %Z?:l 0z, be the associated empirical measure. Then, there exists C > 0 such
that, with probability one, there exists a sequence of transportation maps T, : @ — Q,, that pushes p onto
Wy and such that

T, — Id|| e
lim sup | Iz () <C

where

ifd=2

1
(f=2)" azs.
7.8. Estimates on eigenvalues of the graph Laplacian

The following lemma is nonasymptotic and holds for all n. However we will use it in the asymptotic
regime and note that our assumptions on ¢, (5), and results of Proposition 7.3 ensure that the assumptions
of the lemma are satisfied.

Lemma 7.4. Consider the operator A™ defined in (1) for a =1 and 7 > 0. Assume that dope (jin, 1) < €.
Then the spectral radius Apmaz of AT is bounded by Ca% + 72 where C > 0 is independent of n and «.

Let R > 0 be such that n(3R) > 0. Assume that dore (tin, ) < Re. Then there exists ¢ > 0, independent
of n and €, such that Ay > ¢ + 72.

€

Proof. Let 7j(z) = n((Jz] — 1)4). Note that 7 > n(] - |) and that since 7 is decreasing and integrable

Jra 1(x)dz < oo.
Let T be the dore transport map from p to u,. By assumption ||7,(z) — z|| < € a.e. By definition
of A

n 2
Amaz =  Sup <u,A( )U>un =74+ sup (u,s,Lu),,
||UHLEL”:1 ”u”Lanzl

We estimate
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4 1 |x; — 4]
sup  (u, s, Lu),, < sup - — Z ——rrzl < - J ) (uf + u?)
On ij

lullpz =1 w2l ui=1
n n
1 |z; — ;]
< 3 E E : L 2
S P n2edt2’! € Ui
i ui=l 2y =1

1 N2 |z = T()|
= EUP _, nedt? z;“z /U(f dp(z)
= Q

) duta)

n
2
S _suwp n5d+2 Zul /77<

n =1

n i=1 z Q
<1 n(z)dz < —.
Rd

Above < means < up to a factor independent of € and n.

To prove the second claim of the lemma consider v = y/nd,,, a singleton concentrated at an arbitrary
i, that is v; = /n and v; = 0 for all j # . Then |v[|r2 = 1. Using that for a.e. x € B(z;,2eR),
|x; — T(x)| < 3e R we estimate:

sup  (u, spLu),, > (v, s,Lv),,

u =1
I HLﬁn

|z — 4]
> J
N e

J#
1 x; — T(x)
O\T 1 (24)
1 > 1
> nBR)du(z) 2 5 (25)

B(x;,2e R)\B(x;,eR)

which implies the claim. O

An immediate corollary of the claim is the characterization of the energy of a singleton. For any o > 1
and 7 > 0.

o 1/1 “ 1
T (B) n (6_2 +72> "~ neze (26)

n

The upper bound is immediate from the first part of the lemma, while the lower bound follows from
the second part of the lemma via Jensen’s inequality. Namely, ()\,gn),qk )) be elgenpalrs of L and let us
expand 0, in the terms of q,(cn): Le. 0z = D1y akq,(cn) where >, af = [|6,,]|2. = L. We know that
>k A,i”)ai > —3— ~ 1, from (25) (using the expansion (27) and noting that v = \/nd,, in (25)). Hence

ne2 sy

1 & N o 1 . Y11 @
JfLa’T)(5xi) =3, Z (snA; ) +T2> na? > o < Z)\( ) 2 4 ) > o <€_2 —i—7'2> .
k=1 n
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7.4. The limiting quadratic form

Here we prove Theorem 2.2. The key tool is to use spectral decomposition of the relevant quadratic forms,
and to rely on the limiting properties of the eigenvalues and eigenvectors of L established in [25].
Let ( ") )\(n)) be eigenpairs of L with eigenvalues A\, ordered so that

0=A" <Al <A < A

where )\gn) < )\én) provided that the graph G is connected. We extend F' : R — R to a matrix-valued
function F via F(L) = Q™ (A%)(Q™)* where Q™ is the matrix with columns {g\™}7_, and A" is the
diagonal matrix with entries {F' ()\(n)) ™ _,. For constants o > 1, 7 > 0 and a scaling factor s,,, given by (6),
we recall the definition of the precision matrlx A s A = (5,1 + 721)® and the fractional Sobolev
energy Jéa’T) is

a,T) . T2 @, T n
T L2 [0,400), () = (uA nys

Note that
a,T 1 - n) n)\2
T (1) = 5 }_:(snxg +72)% (u, g2 (27)

When showing I'-convergence, all functionals are considered as functionals on the T'LP space. When evalu-
ating JET) at (v, u) we consider it infinite for any measure v other than pu,,, and having the value Jieem (u)
defined above if v = p,.

We let (qi, Ax) for k =1,2,... be eigenpairs of £ ordered so that

0=X <A <3<

We extend F : R — R to an operator valued function via the identity F(£) = > ;2 F(Ax)(u, qx),qi. For

constants a > 1 and 7 > 0 we recall the definition of the precision operator A as A = (£ + 71)® and the

continuum Sobolev energy JS&7) as

a,T) . 172 @, T
Je ).LMHRU{—l—oo}, Jem) (4) = (u Au),,.

Note that the Sobolev energy can be written
JEeD (g Zli/\k-f—T (U, qr)s
2 :

Proof of Theorem 2.2. We prove the theorem in three parts. In the first part we prove the liminf inequality
and in the second part the limsup inequality. The third part is devoted to the proof of the two compactness
results.

The liminf inequality

Let u,, — u in TLP, we wish to show that

lim inf J(7) (u,) > J7 (u).

— [ee]
n— o0

By [25, Theorem 1.2], if all eigenvalues of £ are simple, we have with probability one (where the set
of probability one can be chosen independently of the sequence w,, and u) that sn/\;n) — A and q,g")
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converge in TL? to q;. If there are eigenspaces of £ of dimension higher than one then q,(en) converge along

a subsequence in TL? to eigenfunctions §, corresponding to the same eigenvalue as gj. In this case we
replace g by G, which does not change any of the functionals considered. We note that while eigenvectors
in the general case only converge along subsequences, the projections to the relevant spaces of eigenvectors
converge along the whole sequence, see [25, statement 3. Theorem 1.2]. To prove the convergence of the
functional one would need to use these projections, which makes the proof cumbersome. For that reason in
the remainder of the proof we assume that all eigenvalues of £ are simple, in which case we can express the
projections using the inner product with eigenfunctions.

Since q( m qr and u,, — u in TL? as n — o0, <q,(€n),un>#n — (q,u), as n — oo.

First we assume that J5&™ (u) < 0o. Let ¢ > 0 and choose K such that

1 K
53+ ) u, i) = T (w) — 6.
k=1

[\)

Now,

K
o ar o1 n n
hnrrilgf Jm) () > hmlnf§ (sn)\,(C 47 2y <un,q,g )>un

n— o0
k=1

K
1 «
= §Z(>\k+72) (tn, qr)},
k=1
> J@m) () — 4.

Let § — 0 to complete the liminf 1nequahty for when J5& (u) < oco. If J&™ (u) = +oo then choose any
M > 0 and find K such that % Zk LAk 4+ 72)* (U, qr);, > M, the same argument as above implies that

lim inf J$7) (u,) > M

n— o0

and therefore liminf,,_s o Jn (e T)( n) = +00.

The limsup inequality. As above, we assume for simplicity, that all eigenvalues of £ are simple. We remark
that there are no essential difficulties to carry out the proof in the general case.

Let u € L7 with J. (o) (u) < oo (the proof is trivial if gl = 00). Define u,, € L2 by u, = Zk 1 wkq(n)
where ¢y, = (u, gi),. Let T, be the transport maps from 1 to pu,, as in Proposition 7.3. Let a} = ¢qu oT,
and aj = 1,qr. By Lemma 7.7, there exists a sequence K,, — oo such that u,, converges to u in T'L? metric.

We recall from the proof of the liminf inequality that <q,(€n),un>un — (qr,u), as n — oo. Combining with

the convergence of eigenvalues, [25, Theorem 1.2], implies

(50 A 4+ 72 % (1, g)2 = (A + 72 (u, q1)?

as n — oo. Taking a} = (s, )\(n) + 72) <Un,q,in)>in and ap = (A, + 72)0‘<u qr)7 and using Lemma 7.7
1mphes that there exists K, < K, converging to infinity such that Zk Lay = > peq ar as n — oo. Let
Ek 1¢kq ") Then @, — u in TL2. Furthermore Jna’T)( n) = Zk L ap and J& T)( ) = > pe ak

Wthh implies that J(a T)( n) = J(a’T)( ) as n — oo.

Compactness. If 7> 0 and sup,,cy T4 T)( n) < C then

n n
T un[Fe =72 (unqt™)h, < D (s N+ 7 (s g2, < C
k=1 k=1
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Therefore [|un[lrz is bounded. Hence in statements 2 and 3 of the theorem we have that [|u,[|rz and
g (uy,) are bounded. That is there exists C' > 0 such that

n n

lullZe = (un gy, <C and sy (M) (un,q”)7, < C. (28)

k=1 k=1

We will show there exists u € Li and a subsequence n,, such that u,,_, converges to u in TL?.

Let ¢} = (un,q,(cn)hn for all & < n. Due to (28) [¢}| are uniformly bounded. Therefore, by a diagonal
procedure, there exists a increasing sequence n,, — 0o as m — oo such that for every k, 1;'™ converges
as m — 00. Let ¢y = limy,—00 ¥)™. By Fatou’s lemma, > 7o, [¢x|* < liminf, o0 > o7y |¥p™]? < C.
Therefore u := Y7 | rqi € Li. Using Lemma 7.7 and arguing as in the proof of the limsup inequality

we obtain that there exists a sequence K, increasing to infinity such that ZkK:ml ¢Z’”q,(€nm) converges to

u in TL? metric as m — oo. To show that wu,, converges to u in TL? we now only need to show that
I, — ZkK:ml (e q,(gnm) |2 converges to zero. This follows from the fact that

- n 1 . Nm )\ |, /,n c
D WP e D W) <
k=K +1 ()\KZ ) k=K +1 (SnTn}\K: )

using that the sequence of eigenvalues is nondecreasing. Now since s, )\g?:’) > Sy, /\([?"") — Ak for all

K,, > K, and limg_,, Ax = +00 we have that snm)\%:) — 400 as m — 00, hence u,,,, converges to v in
TL?. O

Remark 7.5. Note that when o > 1 the compactness property holds trivially from the compactness property
for a = 1, see [25, Theorem 1.4], as A (up) > JEH0 (up).

7.5. Variational convergence of probit in labeling model 1

To prove minimizers of the Probit model in Labeling Model 1 converge we apply Proposition 7.2. This
requires us to show that Jl()n) I'-converges to JI(DOO) and the compactness of sequences of minimizers. Recall
that Jén) = J*m) 4 %fbén)(g 7). Hence Theorem 2.2 establishes the I'-convergence of the first term. We now
show that %@é”) (un;Yn;y) = Ppa(w;y;y) whenever (pn,u,) — (i,u) in the TL? sense, which is enough
to establish I'-convergence. Namely since, by definition, fLa’T) applied to an element (v,v) € TLP(2) is co
if v # p, it suffices to consider sequences of the form (g, u,) to show the liminf inequality. The limsup

)

inequality is also straightforward since the recovery sequence for Jég 7 is also of the form (uy,, uy,).

Lemma 7.6. Consider domain ) and measure p satisfying Assumptions 2-3. Let x; i w fori=1,...,n,
0, ={z1,...,x,} and p, be the empirical measure of the sample. Let Q' be an open subset of Q, !, = pin | o
and @' = plq. Let y, € L>(ul,) and y € L>®(u') and let §, € L>(uy) and § € L (n) be their extensions
by zero. Assume

(tns Gn) = (u,9)  in TL™ as n — oo.

Let CI)I(J") and @, 1 be defined by (9) and (16) respectively, where Z' = {j : x; € @'} and v > 0 (and where
we explicitly include the dependence of y, and y in <I>§)n) and @, 1 ).
Then, with probability one, if (fn, un) — (1, u) in TLP then

1
E@S“)(un;yn;v) = ®pa(u;y;y)  asn— oo
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Proof. Let (pn,u,) — (p,u) in TLP. We first note that since ¥ (uy;vy) = ¥ <“W—y, 1) and since multiplying
all functions by a constant does not affect the T'LP convergence, it suffices to consider v = 1. For brevity,
we omit v in the functionals that follow. We have that ¢, o T,, — 4 and u,, o T,, — u. Recall that

%@E)")(un;yn) - / log W (yn (Tn(z))un(Tn(2))) dp(z)

T ()
Bya(uiy) = [ log Uly(o)u(a)) dufe)
Q/
where Q) = {x; : z; € , fori = 1,...,n}. Recall also that symmetric difference of sets is denoted by

AAB = (A\ B)U (B \ A). It follows that

1 N
E‘I)én) (Un; Yn) — Pp1(u; y)' < / log ¥ (§(z)u(z))du(z)
VAT Q)

+ / log (¥ (yn (T () Yun (T (2)); 7) — log (§(2)ulz)) du(z)] .
T, Q)

Define
0., ={z : dist(z,00") <e,}.

Then Q' AT, () € 0.,Q'. Since § € L and u € L, then ju € L7, and so by Corollary 7.9 log ¥(ju) € L'.
Hence, by the dominated convergence theorem

[ v < [ log¥a)u(@)] dutz) 0.

QAT Oc,, SV

We are left to show that the second term on the right hand side of (29) converges to 0. Let F(w,v) =
|log ¥(w) — log W(v)|. Let M > 1 and define the following sets

Anr = {2 € T (2,) « min{g(2)u(@), yn(Tu(2))un(Ta ()} > —M}
Buar = {z € T, 1) « g(a)u(z) = yo(Tn(@))ua(Ta(z)) < M}
Cnm = {x € T, Q)+ Yn(Tn(2))un(Tn(2)) > G(z)u(z) < *M} :

The quantity we want to estimate satisfies

/ log (U (yn (Tn(2))un(Tn(2))) — log ¥ (§(x)u(z)) dp(z)

()

< / F(yn (T ()t (T (), §(2)u(z)) dpa(i).

T ' (2,)
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Since T, 1(Q),) = Apn.p U By UCy s we proceed by estimating the integral over each of the sets, utilizing
the bounds in Lemma 7.8.

/ E(yn(Tn(2))un(To(x)), §(x)u(z)) dpu(z)

An v
1 N
< WA/M |yn (T (@) )un (T (2)) — §(z)u()| du(z)
1

- (lnllzg, Jun o o = wllzg + el om0 T 1) -

/ F(yn(Tn(2))un(Tn(2)), §(2)u(x)) dp(z)

B, v

< [ 2l (T ) Pl (T P i) + 115

Bn,M

<2l [ lun(Tuo) P (o) +

Bn,M

M?

1

< AlgalTee | lun o T — ull7z + / [w(@) Ty, @ (@) (T ey 200 W) | + 775
Q

/ E(yn(Tn(2))un(To(2)), §(x)u(z)) du(z)

cn,M

< [ A@PluP i) + 5

cn,M

. 1
<203l [ 1) Tyaruconzar o) + 1
Q

For every subsequence there exists a further subsequence such that (y, o T},)(u, o T),) — yu pointwise
a.e., hence by the dominated convergence theorem

/|u(m)|2]I|yn(Tn(z))un(Tn(ac))|>M dp(x) _>/|u(x)|2]1y(x)u(ac)|>M du(r) asn — oo.
Q Q

Hence, for M > 1 fixed we have

i s / Log (¥ (g (T () yun (T ()): 7) — log (9(a)u(e);7) dya(e)
Tt ()

2 "
< 3z 00l [ 1) Pl duo).
Q

Taking M — oo completes the proof. O
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The proof of Theorem 4.2 is now just a special case of the above lemma and an easy compactness result
that follows from Theorem 2.2.

Proof of Theorem 4.2. The following statements all hold with probability one. Let

(z) = 1 ifz e QF
TI=Y 21 ifeeq.

Since dist(27,27) > 0 there exists a minimal Lipschitz extension § € L*> of y to Q. Let vy, = y|q, and
Un = |, - Since
190 © T = Gl Los ) = pi-ess sup |G (T () — §(2)]
zEQ
= p-esssup [§(T(2)) — §(x)]

e
< Lip(§) 1T, — 1] =

we conclude that (pn,9n) — (u,9) in TL*°. Hence, by Lemma 7.6, %q)l(gn) (un;y) = Pp,1(u;y) whenever
(tn, upn) = (g, u) in TLP. Combining with Theorem 2.2 implies that Jl()n) I-converges to JI(DOO) via a straight-
forward argument.

If 7 > 0 then the compactness of minimizers follows from Theorem 2.2 using that sup,,cyn min, ¢ L2
I (0n) < sup,en J57(0) = 5.

When 7 = 0 we consider the sequence w,, = v,, — v,, where v,, is a minimizer of
Jo vn(z) dpin (). Then, I (wy,) = T8 (v,) and

JI(Dn) and vy, = (U, q1)p, =

n
1
2 _ a2, — 2 (,0)
||wn||Lﬁn = ||Un UnHLin = ;(vn,qwﬂn < ( )\(n)) JIp ( n)
As in the case 7 > 0 the quadratic form is bounded, i.e. sup,,cn J;n) (vn) < 3. Hence Jie) (w,) < 3 and
w2, < é for n large enough. By Theorem 2.2 wy, is precompact in T'L?. Therefore sup,, o lonllzz <
n n

M + sup,,cy |Un| for some M > 0. Since J57) is insensitive to the addition of a constant, and —1 <y < 1,
then for any minimiser v, one must have v, € [-1,1]. Hence sup, e [[vnllzz < M + 1 so by Theorem 2.2
{v,} is precompact in TL?.

o0)

Since the minimizers of J%, are unique (due to convexity, see Lemma 4.1), by Proposition 7.2 we have

that the sequence of minimizers v,, of JI(,") converges to the minimizer of Jl(fo). |
7.6. Variational convergence of probit in labeling model 2

Proof of Theorem 4.3. It suffices to show that Jl(on) [-converges in T'L? to Jso (>7) and that the sequence of
minimizers v,, of Jl(Dn) is precompact in TL?. We note that the liminf statement of the I-convergence follows
immediately from statement 1. of Theorem 2.2.

To complete the proof of I'-convergence it suffices to construct a recovery sequence. The strategy is
analogous to the one of the proof on Theorem 4.9 of [39]. Let v € H*(2). Since J4™) T-converges to J&™)
by Theorem 2.2 there exists Let v(™) € Li/ such that Ji*7 (0™ — g (v) as n — oo. Consider the
functions

() eny(x;) ifi=1,...,N.
@y =
v\ (z;) ifi=N+1,...,n

— 0 as n — o0.

where ¢,, — oo and 62%
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Note that condition (5) implies that when o < % then (20) still holds. Therefore (26) implies that
TS (enbs,) — 0 as n — oo. Also note that since ¢, — oo, ®”(5™;7) — 0 as n — oo. It is now
straightforward to show, using the form of the functional, the estimate on the energy of a singleton and the
fact that £,n%s — 0o as n — oo, that J5 (5(™) = J) (v) as desired.

The precompactness of {v, },en follows from Theorem 2.2. Since 0 is the unique minimizer of g ’T), due
to 7 > 0, the above results imply that v(") converge to 0. O

7.7. Small noise limits

Proof of Theorem 4.6. First observe that since Assumptions 2-3 hold and a > d/2, the measure vy, and
hence the measures v}, 1, vy 2, V1, are all well-defined measures on L?(Q) by Theorem 2.5.

(i) For any continuous bounded function g : C(€;R) — R we have

]EVO e_q)P,l (uvw)g(u)

E¥o1
E"tg(u) = Eroe—Fralan) Booa (W)g(u)

Evolp,, , (u)

E"g(u) =
For the first convergence it thus suffices to prove that, as v — 0,

]El/oe*cbp,l(uW)g(u) — ]EVO]]-BOOJ (U)g(u)

for all continuous functions g : C(;R) — [—1,1].
We first define the standard normal cumulative distribution function ¢(z) = ¥(z, 1), and note that we
may write

Bpa(uin) = = [ log(elu(@)uta)/n))de 2 0
zeQ)
In what follows it will be helpful to recall the following standard Mills ratio bound: for all ¢ > 0,

2
o—1%/2

a 21

p(t) > 1 (30)

Suppose first that u € Bog 1, then y(z)u(z)/y > 0 for a.e. € . The assumption that QT N Q= = ()
ensures that y is continuous on ' = QT UQ~. As u is also continuous on §', given any £ > 0, we may
find QL C @ such that y(x)u(x)/y > ¢/ for all = € QL. Moreover, these sets may be chosen such that
leb(©'\ QL) — 0 as € — 0. Applying the bound (30), we see that for any z € Q,

e—u(@)y(z)?/29* e—c’ /27’

7 u(z)y(z)V2r =17 eV2om

Additionally, for any x € Q' \ Q, we have o(y(z)u(z)/v) > ¢(0) = 1/2. We deduce that

oy(x)u(z)/v) > 1 -

1 (usy) = — / log(p(y(x)u() /) du(x) - / log(p(u(z)u(z)/7) du(z)

Q; Q\QL
e s /2" + / + / /
< —lo 1—y——- -1leb(QL) + log(2) - <leb (2 \ Q).
< —log Lol N (9) +1log(2) - p (Q\ Q)
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The right-hand term may be made arbitrarily small by choosing £ small enough. For any given ¢ > 0,
the left-hand term tends to zero as v — 0, and so we deduce that ®, ;(u;y) — 0 and hence

e~ g(u) — g(u) = 1p,, , (u)g(u).

Now suppose that v ¢ B 1, and assume first that there is a subset £ C € with leb(E) > 0 and
y(z)u(x) < 0 for all x € E. Then similarly to above, there exists ¢ > 0 and E. C E with leb(E.) > 0
such that y(z)u(x)/y < —e/~ for all x € E.. Observing that ¢(t) = 1 —¢(—t), we may apply the bound
(30) to deduce that, for any x € E.,

emu@@?t

@y e

p(y(z)u(z)/v) < —

We therefore deduce that

from which we see that
=y 1 (u;y) 0=1
e g(u) — Boo 1 (W)g(u).

Assume now that y(z)u(z) > 0 for a.e. x € . Since u ¢ Bo 1 there is a subset Q" C ' such that
y(x)u(x) =0 for all x € Q" y(z)u(z) > 0 a.e. x € 2\ ", and leb(2”) > 0. We then have

B (i) = — / log(¢(0)) dps(z) — / log(p(y(z)u(z)/7) du(z)

% Q"
—logu() ~ [ logloly()ule)/) dulz)
o\
> log(2)(").

We hence have e~ (4¥ M g(y) 4 0 =1p5_ , (u)g(u). However, the event
oo,1

D := {u € C(;R) | There exists Q" C Q' with leb(©2”) > 0 and u|q» = 0}
C {ue C(QR)|leb(u'{0}) >0} = D’
has probability zero under vy. This can be deduced from Proposition 7.2 in [23]: since Assumptions 2—-3
hold and a > d, Theorem 2.5 tells us that draws from 1 are almost-surely continuous, which is
sufficient in order to deduce the conclusions of the proposition, and so vy(D) < vy(D’) = 0. We thus

have pointwise convergence of the integrand on D€, and so using the boundedness of the integrand by
1 and the dominated convergence theorem,

EvoePe1 () g(y) = B0 e P01 () g(u) 1 pe (u) — E L5, (u)g(u)

which proves that v, 1 = v1.
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For the convergence vi1 = v it similarly suffices to prove that, as v — 0,
EVUe_Cbls,l(u?'Y)g(u) N IEVO]]‘Boo,l (u)g(u)

for all continuous functions g : C(Q;R) — [—1, 1]. For fixed u € B 1 we have e~ %11 (47 =15 (u) =
1 and hence e~ %=1 (M g(u) = 15, (u)g(u) for all v > 0. For fixed u ¢ Beo 1 there is a set £ C Q' with

positive Lebesgue measure on which y(z)u(xz) < 0. As a consequence Py 1 (u;vy) > #leb(E)p* and so

e~ PN g(u) — 0 =1p_,(u)g(u) as v — 0. Pointwise convergence of the integrand, combined with
boundedness by 1 of the integrand, gives the result.
The structure of the proof is similar to part (i). To prove v}, 2 = s, it suffices to show that, as v — 0,

Ee 20 g(u) — EX1p, ,(u)g(u)

for all continuous functions g : C'(2;R) — [—1, 1]. We write

B (wsy) =~ 3 log iyl )ula) /7)) > 0.

jeZ’
Note that <I>I()n) (u;7y) is well-defined almost-surely on samples from v since v is supported on continuous
functions (Theorem 2.5). Suppose first that u € B 2, then y(z;)u(x;)/y > 0 for all j € Z" and v > 0.

It follows that for each j € Z’, y(z;)y(x;)/y — o0 as v — 0 and so p(y(x;)u(z;)/v) — 1. Thus,
&, 2(u;y) = 0 and so

€—<I>p,z(u;v)g(u) —g(u) =1p_,(u)g(u).

Now suppose that © ¢ Bu 2. Assume first that there is a j € Z’ such that y(z;)u(z;) < 0, so that
y(zj)u(z;)/y — —oo and hence (y(z;)u(z;)/v) — 0. Then we may bound

Py, 2(u;y) > —log(w(y(zj)ulzy)/v) — o0
from which we see that
e P2 g(u) - 0= 1p_,(u)g(w).

Assume now that y(z;)u(z;) > 0 for all j € Z’, then since u ¢ B 2 there is a subcollection Z"” C Z’
such that y(z;)u(z;) =0 for all j € Z” and y(z;)u(z;) > 0 for all j € Z'\ Z”. We then have

Oy 2(u;7) = —% > log(w(o)) —% > log(w(y(wj)U(xj)/v)>

jezn JEZ\Z"
Z// 1
_ | - log(2) — ~ log<s0(y(xj)U($j)/7))
jeZ/\Z//
Z//
— | |log(2).

Thus, in this case e~ ®»2(“Mg(u) 4 0 =1p_,(u)g(u). However, the event

D = {ue C(;R)|u(x;) =0 for some j € Z'}
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has probability zero under ry. To see this, observe that 1 is a non-degenerate Gaussian measure on
C(2;R) as a consequence of Theorem 2.5. Thus u ~ vy implies that the vector (u(z1), ..., u(zp+1n-))
is a non-degenerate Gaussian random variable on R""+77 | Its law is hence equivalent to the Lebesgue
measure, and so the probability that it takes value in any given hyperplane is zero. We therefore have
pointwise convergence of the integrand on D¢. Since the integrand is bounded by 1, we deduce from the
dominated convergence theorem that

Evoe P2t g(y) = B0 e P2 g(u) 1 pe (u) — E 15, (u)g(u)

which proves that v, 2 = vs.
To prove vig 2 = vo we show that, as v — 0,

Eoem P2 g(u) = E* g, (u)g(u)

for all continuous functions g : C(;R) ~— [—1, 1]. For fixed u € Bog » we have e~ ®1:2(47) =15 (u) =
1 and hence e~ %2 g(u) = 1p_,(u)g(u) for all v > 0. For fixed u ¢ Boo o there is at least one

J € Z' such that y(z;)u(z;) < 0. As a consequence ®ig2(u;7y) > ﬁ%p_ and so e~ ®=2(t N g(y) — 0 =

Ip._,(u)g(u) as v — 0. Pointwise convergence of the integrand, combined with boundedness by 1 of
the integrand, gives the desired result. O

7.8. Technical lemmas

We include technical lemmas which are used in the main I'-convergence result (Theorem 2.2) and in the
proof of convergence for the probit model.

Lemma 7.7. Let X be a normed space and a,&n) € X forallme N andk=1,...,n. Assume a € X be such
that >"p=, llax| < oo and that for all k
a,(cn) —ar  asmn — oo.

Then there exists a sequence {Ky}n=1,.. converging to infinity as n — oo such that

K, o0
E a,(cn)—>g ap  asmn — 0o.
k=1 k=1

Note that if the conclusion holds for one sequence K, it also holds for any other sequence converging to
infinity and majorized by K.

Proof. Note that by our assumption for any fixed s, Y 7_, af — > ;_; ay as n — oo. Let K,, be the largest

number such that for all m > n, ’Zfz"l aém) — Zsznl ak“ < % Due to observation above, K,, — oo as

n — o0o. Furthermore

K, o0 K, K, [e'e]
g ay — g apl| < g ay — g apl| + E ak
k=1 k=1 k=1 k=1 k=K, +1

which converges to zero an n — oco. O

The second result is an estimate on the behavior of the function ¥ defined in (8)
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Lemma 7.8. Let F(w,v) = log U(w; 1) —log W(v; 1) where ¥ is defined by (8) with v = 1. For all w > v and
M>1,

2@2—|—ﬁ ifv<-—-M

<
Flw) = [ S vz M

Proof. We consider the two cases: v < —M and v > —M separately. From inequality 7.1.13 in [54] directly
follows that

2 1 u?
Yu <0, \/j—e_7<\llu
- T —u+vu?2+4 ()

When v < —M, by taking the logarithm we obtain

log W(v;7) < —1 ,/2 ! e <\/?( 214 v)+v2

—lo v; 0 <4/ = v - -

g W (v;y e\Wr oo viri© 5 5
v? \/27T]v| 1

\/ 3 ~ o] (\/1+ ) 5 = +—<2v + 35

using the elementary bound |[v1+ 22 — 1| < |z| for all x > 0. When v > —M,

F(w,v)

IN

IN
|
_

+2
~t dt 2 d —
F(w,v) = log Y(w) = log f;’ c fv ‘ — < _]\1;) 1:2
¥ (v) f_oo -5 dt f_oo ez dt [ e zdt

This completes the proof. O

Corollary 7.9. Let ' C R? be open and bounded. Let 1’ be a bounded, nonnegative measure on € and v > 0.
Define W(+;7) as in (8). If v e L2, then log ¥(v;y) € L' (1).

Proof. Lemma 7.8, and using that ¥(v;vy) = ¥(v/v;1), shows that —log ¥ (v,v) grows quadratically as
v — —o0. Note that —log ¥(v,~) asymptotes to zero as v — oo. Therefore |log ¥(v,7)| < C(Jv]? + 1) for
some C' > 0, which implies the claim. O

7.9. Weyl’s law

Lemma 7.10. Let Q2 and p satisfy Assumtptions 2-3 and let \i, be the eigenvalues of L defined by (4). Then,
there exist positive constants ¢ and C' such that for all k large enough

cki <\, < Cka.

Proof. Let B be a ball compactly contained in 2 and U a ball which compactly contains 2. By assumptions
on p for all u € H}(B)\{0}

[z [Vul*da - Jo IVul?p?da
u“dr updx
pu*d ’ o u?pd

where on RHS we consider the extension by zero of u to 2. Therefore for any k-dimensional subspace V}, of
Hy(B)
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2d 2 2d
fB |Vul*dz > ¢y max fQ |Vul?p?dx
uevi\{0}  [puldzx ueVi\{0} [ updz

Consequently, using the Courant—Fisher characterization of eigenvalues,

Vul|?dz Vul|?p?dx
ap = inf max f3|72| > co inf max fg)'# = Co )\
ViCHY(B), ueVi\{0} [ uldx ViCHY(9), ueVi\{0} [, u?pdx
dim Vi, =k dim Vi, =k

Since € is an extension domain (as it has a Lipschitz boundary), there exists an bounded extension
operator E : H*(Q) — Hg(U). Therefore for some constant Cy and all u € H'(2), Cs [, |Vu|?p* +u?pdx >
[y IVEu[?dz. Arguing as above gives Ca(A\; + 1) > Sy

These inequalities imply the claim of the lemma, since the Dirichlet eigenvalues of the Laplacian on B, ay,
satisfy ap < C ki for some C; and that Dirichlet eigenvalues of the Laplacian on U, S satisfy S > ek
for some ¢; > 0. O
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