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Received: 29 January 2018 / Revised: 20 November 2018 / Accepted: 6 August 2019
© SFoCM 2019

Abstract
We study the convergence of the graph Laplacian of a random geometric graph gen-
erated by an i.i.d. sample from a m-dimensional submanifoldM inRd as the sample
size n increases and the neighborhood size h tends to zero. We show that eigenvalues

and eigenvectors of the graph Laplacian converge with a rate of O
(( log n

n

) 1
2m
)
to the

eigenvalues and eigenfunctions of the weighted Laplace–Beltrami operator ofM. No
information on the submanifold M is needed in the construction of the graph or the
“out-of-sample extension” of the eigenvectors. Of independent interest is a general-
ization of the rate of convergence of empirical measures on submanifolds in Rd in
infinity transportation distance.
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List of Symbols
M Compact manifold without boundary embedded in Rd . Riemann

metric on M is the one inherited from Rd

m The dimension of M
Vol(A) The volume of A ⊂ M according to Riemann volume form
d(x, y) The geodesic distance between points x, y ∈ M

BM(x, r) Ball inM with respect to geodesic distance onM
B(r) Ball in Rd of radius r , centered at the origin

μ Probability measure supported onM that describes the data distri-
bution

p Density of μ with respect to volume form on M
ρ Density of the weight measure (which allows us to consider the

normalized graph Laplacian) with respect to μ

α Constant describing the bounds on the densities p and ρ, see (1.2)
and (1.9)

X Point cloud X = {x1, . . . , xn} ⊂ M drawn from distribution μ.
Also considered as the set of vertices of the associated graph

μn Empirical measure of the sample X
m The vector giving the values of the discrete weights used in various

forms of graph Laplacian, see Sects. 1.2.1 and 1.2.2
wi, j Edge weight between vertices xi and x j

δu Differential of function u : X → R. It maps edges to R and is
defined by δui, j = u(x j ) − u(xi )

i0 Injectivity radius of M. The injectivity radius at a point p ∈ M
is the largest radius of a ball for which the exponential map at p
is a diffeomorphism. The injectivity radius i0 is the infimum of the
injectivity radii at all points ofM

K Maximum of the absolute value of sectional curvature of M
R Reach of M, defined in (1.37)
η Nonnegative function setting the edge weights as a function of the

distance between the vertices, see (1.5)
h Length scale such that weight between vertices is large if their dis-

tance is comparable to or less than h
ση Is the kernel-dependent scaling factor relating the graph Laplacian

and the continuum Laplacian; defined in (1.4)
ωm The volume of unit ball in Rm

d∞(μ, ν) Infinity transportation distance between measures μ, ν
ε Upper bounds on the transportation distance between μ and μn

L Lipschitz constant of various functions: p, ρ and η

P Discretization operator defined in (1.24)
P∗ Is the adjoint of P if ρ ≡ 1 and an approximate adjoint otherwise
I Interpolation operator defined in (1.24)
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1 Introduction

Given an i.i.d. sample X = {x1, . . . , xn} from the data generating measure μ in
Euclidean space Rd , the goal of most tasks in machine learning and statistics is to
infer properties of μ. A particularly interesting case is when μ has support on a m-
dimensional compact submanifoldM inRd , e.g., due to strong dependencies between
the individual features. In this case, one can construct a neighborhood graph on the
sample by connecting all vertices of Euclidean distance less than a certain length
scale h, and in this way produce a discrete approximation of the unknown manifold
M. Laplacian Eigenmaps [2] and Diffusion Maps [8] have been proposed as tools
to extract intrinsic structure of the manifold by considering the eigenvectors of the
resulting unnormalized resp. normalized graph Laplacian; in particular, Laplacian
eigenmaps are used in the first step of spectral clustering [29], one of the most popular
graph-based clustering methods. In general, it is well known that the spectrum of the
graph Laplacian resp. Laplace–Beltrami operator captures important structural resp.
geometric properties of the graph [17] resp. manifold [7].

In this paper, we examine this question: Under what conditions, and at what rate,
does the spectrum of the graph Laplacian built from i.i.d. samples on a submanifold
converge to the spectrum of the (weighted) Laplace–Beltrami operator of the subman-
ifold as the sample size n → ∞ and the neighborhood radius h → 0?

Graph-based approximations to the Laplace–Beltrami operator have been studied
by several authors and in a variety of settings. The pointwise convergence of the
graph Laplacian toward the Laplace–Beltrami operator has been proven in [4,13–
15,25,28]. The spectral convergence of the graph Laplacian for fixed neighborhood
size h for Euclidean domains has been established in [21,30], and error rates have been
given. The spectral convergence of the graph Laplacian toward the Laplace–Beltrami
operator for the uniform distribution has been discussed, for Gaussian weights, in [3],
and in [26] for the more general connection Laplacian (as well as the usual graph
Laplacian), without precise information on allowable scaling of neighborhood radius,
h and without convergence rates. In [12], the authors establish the conditions on graph
connectivity for the spectral convergence on domains inRm . In particular, they prove
convergence when h → 0 as n → ∞ and

h � (log n)pm

n
1
m

,

where

pm =
{

3
4 if m = 2
1
m if m ≥ 3.

(1.1)

However, no error estimates were established.
The preprint [23] establishes (in Theorem 1.1) the spectral convergence of graph

Laplacians constructed from data sampled from a submanifold in Rd with a conver-

gence rate of O
(( log n

n

) 1
4m+14

)
, wherem is the intrinsic dimension of the submanifold.
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In this paper, we propose a general framework to analyze the rates of spectral con-
vergence for a large family of graph Laplacians. This framework in particular allows

us to improve the results in [23] and establish a convergence rate of O
(( log n

n

) 1
2m
)

which is a significant improvement, in particular for small dimensions m. These con-
vergence rates hold for different reweighing schemes of the graph Laplacian found
in the literature including the unnormalized Laplacian, normalized Laplacian, and the
randomwalk Laplacian.When the intrinsic dimension of the submanifoldM is small,
our results show, to some extent, why Laplacian eigenmaps can effectively extract geo-
metric information from the data set, even though the number of features d may be
high. Moreover, similar to [12], we show that the conditions in (1.1) are sufficient for
spectral convergence. This is essentially the same condition required to ensure that the
constructed graph is almost surely connected [20] and thus is close to optimal. It is
interesting to note that for pointwise consistency of the graph Laplacian [13,15], the
required stronger condition is nhm+2

log n → ∞.
Our framework is rather different from those in [3,23] and builds on twomain ideas.

First, it builds on an extension of the recent result of Burago, Ivanov und Kurylev [6],
see also [10], which shows in a non-probabilistic setting how one can approximate
eigenvalues and eigenfunctions of the Laplace–Beltrami operator using the eigenval-
ues/eigenvectors of the graph Laplacian associated with an ε-net of the submanifold.
As in our setting the manifoldM is unknown, we generalize the result of [6] by using
a graph construction which requires no knowledge about the submanifold M but
which achieves the same approximation guarantees for the eigenvalues. In addition,
we introduce a new out-of-sample extension of the eigenvectors for the approximation
of the eigenfunctions which requires no information about the submanifold without
significant loss in the convergence rate compared to the corresponding construction
used in [6]. Our second main result generalizes the recent work of García Trillos
and Slepčev [11] to the setting of empirical measures on submanifolds M ⊂ Rd

and establishes their rate of convergence in ∞-optimal transportation (OT) distance;
the∞-OT distance between the empirical measure associated with a point cloud and
the volume form of the submanifold can be seen to be closely related to the notion
of ε-net used in [6]. These estimates encompass all the probabilistic computations
that we need to obtain our main results, and in particular, when combined with our
deterministic computations, provide all the probabilistic estimates that quantify the
rate of convergence of the spectrum of graph Laplacians constructed from randomly
generated data toward the spectrum of a (weighted) Laplace–Beltrami operator onM.
We believe that both the generalization of [6] as well as the generalization of [11] are
of independent interest. The combination of these two ideas and a number of careful
estimates lead to our main results.

In what follows, we make the setting that we consider in the sequel precise, as well
as define precisely the different graph Laplacians and their continuous counterparts.

1.1 Graph Construction

LetM be a compact connected m-dimensional Riemannian manifold without bound-
ary, embedded in Rd , with m ≥ 2. We assume that the absolute value of sectional
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curvature is bounded by K , the injectivity radius is i0 and with reach R. We write
d(x, y) for the distance between x and y on the manifold and |x − y| for the Euclidean
distance in Rd .

Letμ be a probability measure onM that has a non-vanishing Lipschitz continuous
density p with respect to the Riemannian volume on M with Lipschitz constant L p.
Compactness of M and continuity of p guarantee the existence of a constant α ≥ 1
such that

1

α
≤ p(x) ≤ α for all x ∈ M. (1.2)

We let x1, x2, . . . , xn, . . . be a sequence of i.i.d. samples fromμ. In order to leverage
the geometry ofM from the data, we build a graph with vertex set X := {x1, . . . , xn}.
In the simplest setting, for each n ∈ N we choose a neighborhood parameter h = hn
and we put an edge from xi to x j and from x j to xi (and write xi ∼ x j ) provided
that

∣∣xi − x j
∣∣ ≤ h; we let E = {(i, j) ∈ {1, . . . , n}2 : xi ∼ x j } be the set of such

edges. More generally, we consider weighted graphs, with weights that depend on the
distance between the vertices connected by them. For that purpose, let us consider a
decreasing function η : [0,∞) → [0,∞) with support on the interval [0, 1] such that
the restriction of η to [0, 1] is Lipschitz continuous. Normalizing η if needed allows
us to assume from here on that

∫

Rm
η(|x |)dx = 1. (1.3)

For convenience, we assume that η(1/2) > 0. We denote by

ση :=
∫

Rm
|y1|2 η(|y|)dy, (1.4)

the surface tension of η, where y1 represents the first coordinate of the vector y ∈ Rm .
To every given edge (i, j) ∈ E , we assign the weight wi, j , where

wi, j = 1

nhm
η

(∣∣xi − x j
∣∣

h

)
(1.5)

and we consider the weighted graph (X , w) with wi, j as in (1.5) for every (i, j). In
fact, note that if the points xi , x j are not connected by an edge in E then wi, j = 0.

Remark 1 The function η can be chosen as c1[0,1] as well as a smooth function like

η(t) := c

{
exp

(
1

t−1

)
0 ≤ t < 1

0 t ≥ 1,

where c is the appropriate constant ensuring normalization or simply a truncated
version of a Gaussian. Also, we note that for η = 1

ωm
1[0,1] it follows from [6, (2.7)]
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that ση = 1
m+2 , where ωm is the volume of the unit ball inRm . While the definition of

the weights is up to the constant ση and a slightly different rescaling in terms of h is
similar to [6], the main difference is that we use the Euclidean metric of the ambient
space Rd in (1.5), whereas in [6] neighborhoods are throughout defined in terms of
the geodesic distance. Here, we are forced to use the metric from the ambient space
as the manifold M is in general assumed to be unknown.

Remark 2 We have assumed that η : [0, 1] → R is decreasing and that η(1/2) > 0,
which would imply that η(0) > 0. Nevertheless, we remark that none of the results
presented in this paper change if we modify the value of η(0). In particular, we allow
for η(0) = 0 if desired and we can simply assume that η is decreasing and Lipschitz
in (0, 1) (then the condition η(0) > 0 changes to η(0+) > 0). This observation is
relevant in order to allow for graphs where vertices have no edges with themselves.

Remark 3 The requirement that η is compactly supported is purely a technical one. It
is in principle possible to carry out the arguments of this work for noncompact kernels,
like the Gaussian one. However, that would require obtaining error bounds on extra
terms and would make the already involved estimates even more complicated.

1.2 Dirichlet Forms and Laplacians

In this section, we introduce the Laplacians in both discrete and continuous settings.
We use the graph structure defined in the previous section to define a Dirichlet form

in the discrete setting. First, the weights wi, j serve as a measure on the set E and thus
induce a scalar product of functions F,G : E → R given by

〈F,G〉 := 〈F,G〉L2(E,w) :=
1

nση

∑
(i, j)∈E

wi, j F(i, j)G(i, j).

Second, for functions u, v : X → R on the vertices, we define the discrete differential

(δu)(i, j) := 1

h

(
u(x j ) − u(xi )

)
for (i, j) ∈ E . (1.6)

We can then define the discrete Dirichlet form between u, v : X → R as

b(u, v) := 〈δu, δv〉L2(E,w). (1.7)

In the continuous setting, on the domain V := H1(M, μ) (the Sobolev space
of functions in L2(M, μ) with distributional derivative in L2(M, μ)) we define the
Dirichlet form D : V × V → R as

D( f , g) :=
∫

M
〈∇ f ,∇g〉x p2(x)dVol(x), (1.8)

where Vol stands for the Riemannian volume form ofM,∇ f and∇g are the gradients
of f and g and 〈·, ·〉 represents the Riemannian metric induced on M. Since p is
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bounded from above, this symmetric bilinear form is continuous, i.e., |D( f , g)| ≤
C ′ ‖ f ‖V ‖g‖V for a suitable constant C ′ > 0 and all f , g ∈ V . For the remainder, we
use b(u) and D( f ) as shorthand for b(u, u) and D( f , f ), respectively.

Next, we choose measures on X and on the manifoldM and define corresponding
operators associated with the forms b and D on L2(X) and L2(M), respectively. The
idea is that bymodifying the inner product in L2(X) and in L2(M), we obtain different
realizations of Laplacian operators. The so-called unnormalized and random walk
graph Laplacian (see definitions below), as well as their continuous counterparts, are
instances of the general framework that we consider. Let μn be the empirical measure
of the random sample, i.e.,

μn = 1

n

n∑
i=1

δxi .

On X , we consider the measure μn endowed with a density m = (m1, . . . ,mn),
denoted bymμn . On the other hand, onM, we consider the measure ρμ, where ρ is a
Lipschitz continuous density with Lipschitz constant Lρ with respect to μ satisfying

1

α
≤ ρ(x) ≤ α for all x ∈ M. (1.9)

On the graph Γ = Γ (X ,mμn, E, w), we define the associated weighted graph
Laplacian ΔΓ as δ∗δ, i.e., as the unique operator satisfying

〈ΔΓ u, v〉L2(X ,mμn)
= 〈δu, δv〉L2(E,w)

for all u, v ∈ L2(X).
At the continuum level, we define a weighted Laplacian associated with the form

D and the measure ρμ as follows. On the domain

Dom(Δ) :=
{
f ∈ V : ∃ h ∈ L2(M, ρμ) s. t. D( f , g) = 〈h, g〉L2(M,ρμ) ∀ g ∈ V

}

we set Δ f := h. The operator Δ is formally defined as

Δ f = − 1

ρ p
div(p2∇ f ),

where div stands for the divergence operator on M.
One of the main results of this paper is that the spectrum of ΔΓ approximates well

that of Δ. Intuitively, one of the elements needed for this to be true is that the measure
mμn approximates ρμ as n → ∞. We use

‖m− ρ‖∞ := max
i=1,...,n

|mi − ρ(xi )| (1.10)

to quantify this approximation.

123



Foundations of Computational Mathematics

We now describe particular forms of the graph Laplacian frequently used in the
machine learning literature.

1.2.1 Unnormalized Graph Laplacian

To obtain the unnormalized graph Laplacian, we choose the density vector m as
(1, 1, . . . ). Then, ΔΓ is explicitly given by

(ΔΓ u)(xi ) = 2

ση h2
∑
j :i∼ j

wi, j (u(xi ) − u(x j ))

for all xi ∈ X , which is, up to the factor 2
ση h2

, known as the unnormalized graph

Laplacian. In this case, ρ ≡ 1, since ρ is the limit of m as n → ∞. This results in a
realization of the Laplacian on L2(M, ρμ) that satisfies

∫

M
Δ f gp(x)dx =

∫

M
〈∇ f ,∇g〉x p2(x)dx = D( f , g)

for all f , g ∈ Dom(Δ). In case p ∈ C1(M), this operator Δ coincides with

Δ f = −p · Δ2 f = − 1

p
div(p2∇ f )

from Definition 8 of [15], where it was identified as the pointwise limit of the unnor-
malized graph Laplacian.

1.2.2 RandomWalk Graph Laplacian

In order to obtain the random walk graph Laplacian, we choose the density vector m
as the vertex degrees, i.e.,

mi :=
n∑
j=1

wi j = 1

nhm

n∑
j=1

η

(∣∣xi − x j
∣∣

h

)
for i ∈ {1, . . . , n} (1.11)

and ρ(x) = p(x) for all x ∈ M. Then, ΔΓ is given by

(ΔΓ u)(xi ) = 2

ση h2
∑
j :i∼ j

wi, j

mi

(
u(xi ) − u(x j )

)

for all xi ∈ X and Δ satisfies

∫

M
Δ f · g · p2dVol = D( f , g)
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for all f , g ∈ Dom(Δ). In case that p ∈ C1(M), Δ is nothing but

Δ f = −Δ2 f = − 1

p2
div(p2∇ f )

from [15, Definition 8]. In the remainder, we useΔrw
Γ to denote the randomwalk graph

Laplacian and Δrw for its continuous counterpart. Showing the closeness ofm and ρ,
(1.10), reduces to showing a kernel-density estimate on a manifold. In “Appendix B,”
we show that provided h satisfies Assumption 3, we have

max
i=1,...,n

|mi − p(xi )| ≤ CL ph + Cαη(0)mωm
ε

h
+ Cαm

(
K + 1

R2

)
h2, (1.12)

where C > 0 is a universal constant and ε is the ∞-OT distance between μn and
μ (see (1.13) and Sect. 2). These estimates are proved using a simple and general
approach using the transportation maps introduced in Sect. 2, in contrast to usual
kernel-density estimation approaches. The estimates are not optimal, but they are on
the same order of error as the approximation error of the Dirichlet form D by the
discrete Dirichlet form b that we present in Lemmas 13 and 14; the bottom line is
that the rates of convergence for the spectrum of the random walk graph Laplacian are
unaffected by the non-optimal estimate (1.12). On the other hand, our proof of (1.12)
has the advantage of reducing all probabilistic estimates in our problem to estimating
the∞-OT distance between μn and μ; which is done in Sect. 2.

1.2.3 Normalized Graph Laplacian

So far, we have described how one can obtain the unnormalized and random walk
Laplacians as examples of the general framework introduced in this section. Let us
recall another popular version of normalized Laplacian usually referred to as sym-
metric normalized graph Laplacian. For given u : X → R, the symmetric normalized
Laplacian of u is given by

(ΔS
Γ u)(xi ) := 2

ση h2
∑
j :i∼ j

wi, j√
mi

(
u(xi )√
mi

− u(x j )√
m j

)

with mi defined by (1.11). We remark that ΔS
Γ cannot be obtained by appropriately

choosing themeasuremμ as described in this section. (In order to recover it, we would
have to modify the definition of discrete differential in (1.6).) Nevertheless, we can
indirectly analyze the rate convergence of its spectrum toward that of a continuous
counterpart noting thatΔS andΔrw are similar matrices. Indeed, we recall thatΔS

Γ u =
λu if and only if Δrw

Γ v = λv, where v(xi ) := m−1/2
i u(xi ). Thus, Δrw

Γ and ΔS
Γ share

the same spectrum.
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1.3 Main Results

1.3.1 Convergence of Eigenvalues and Transportation Estimates

Our first main result is the following.

Theorem 1 Let x1, . . . , xn be i.i.d. samples from a distribution μ supported on M,
with density p satisfying (1.2). Consider m and ρ as in Sect. 1.2.1 or Sect. 1.2.2. For
k ≥ 2, let λk(Γ ) be the kth eigenvalue of the graph Laplacian ΔΓ defined in Sect. 1.2
with

h :=
√
log(n)pm

n1/m
,

where pm = 3/4 if m = 2 and pm = 1/m if m ≥ 3. Let λk(M) be the kth eigenvalue
of the Laplacian Δ defined in Sect. 1.2. Then,

|λk(Γ ) − λk(M)|
λk(M)

= O

(√
log(n)pm

n1/m

)
, almost surely.

The actual choice of h in the previous theorem is explained by the more general
and detailed result stated in Theorem 4, together with the estimates for the ∞-OT
distance between μ and μn in Theorem 2. Indeed, we have taken h to scale like

√
ε,

where ε is the ∞-OT distance between μ and μn . More precisely,

ε = d∞(μ,μn) := min
T :T�μ=μn

esssupx∈M d(x, T (x)). (1.13)

where T�μ = μn means that μ(T−1(U )) = μn(U ) for every Borel subset U of M.
Such mappings T are called transport maps from μ to μn . One of the key ingredi-
ents needed to establish Theorem 1 is the probabilistic estimate on ∞-OT distance
contained in our next theorem.

Theorem 2 Let M be a smooth, connected, compact manifold with dimension m.
Let p : M → R be a probability density satisfying (1.2) and consider the measure
dμ = p dVol. Let x1, . . . , xn be an i.i.d sample of μ. Then, for any β > 1 and every
n ∈ N there exists a transportation map Tn : M → X and a constant A such that

sup
x∈M

d(x, Tn(x)) ≤ � := A

{
log(n)3/4

n1/2
, if m = 2,

(log n)1/m

n1/m
, if m ≥ 3,

(1.14)

holds with probability at least 1−CK ,Vol(M),m,i0 · n−β , where A depends only on K ,
i0, m, Vol(M), α and β.

The exact dependency of A in (1.14) on the geometry of M is given in Lemma 1.
We remark that the scaling on n on the right-hand side is optimal, even in the Euclidean
case [11].
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With the estimates in Theorem 2 at hand, Theorem 1 follows from the more general
Theorem 4 below (more precisely from its corollaries). Indeed, convergence rates
for the spectrum of graph Laplacians can be written in terms of h and ε as long as
0 < ε � h � 1. Throughout this paper, we assume that h, ε, ε

h and ‖m − ρ‖∞ are
sufficiently small. In particular, we make the following assumptions.

Assumption 3 Assume that

h < min

{
1,

i0
10

,
1√
mK

,
R√
27m

}
and (m + 5)ε < h,

where i0 is the injectivity radius of the manifoldM, K is a global upper bound on the
absolute value of sectional curvatures of M, m is the dimension of M, and R is the
reach of M (seen as a submanifold embedded in Rd ).

Theorem 4 For k ∈ N, let λk(Γ ) be the kth eigenvalue of the graph Laplacian ΔΓ

defined in Sect. 1.2 using the weights m, and let λk(M) be the kth eigenvalue of the
LaplacianΔ defined in Sect. 1.2 using the weight function ρ. Finally let ε be the∞-OT
distance between μn and μ and assume that h > 0 satisfies Assumptions 3. Then,

1. (Upper bound) If ε and ‖m− ρ‖∞ are such that

√
λk(M) ε + ‖m− ρ‖∞ < c, (1.15)

for a positive constant c that depends only on m, α, Lρ, L p and η,
then,

λk(Γ )−λk(M)

λk(M)
≤ C̃

(
L ph+ ε

h
+√

λk(M)ε+Kh2+ h2

R2 +‖m−ρ‖∞
)

(1.16)

where C̃ only depends on m, α, Lρ, L p, and η. We recall that L p and Lρ stand
for the Lipschitz constants of p and ρ, respectively.

2. (Lower bound) If h and ‖m− ρ‖∞ are such that

√
λk(M)h + ‖m− ρ‖∞ < c, (1.17)

for a positive constant c that depends only on m, α, Lρ, L p, and η, then,

λk(Γ )−λk(M)

λk(M)
≥−C̃

(
L ph+ ε

h
+√

λk(M)h+Kh2+‖m−ρ‖∞
)

(1.18)

where C̃ only depends on m, α, Lρ, L p, and η.

Remark 4 Note that the lower bound does not depend on the reach R. This is due to
the one-sided inequality

|x − y| ≤ d(x, y), ∀x, y ∈ M.
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In contrast, for the upper bound one must use a reverse inequality with an additional
higher-order correction term that depends on R. See Proposition 2.

It is also worth pointing out that the presence of the term
√

λk(M)ε in the upper
bound ultimately comes from the estimate on how far is the map P in (1.22) from
being an isometry when restricted to the first k eigenspaces of Δ; the relevant length
scale for this estimate is the size of transport cells, i.e., ε. On the other hand, the term√

λk(M)h in the lower bound comes from the estimate on how far is the map I in
(1.24) from being an isometry when restricted to the first k eigenspaces of ΔΓ ; the
relevant length scale for this estimate is h, which is of the same order as the bandwidth
for the kernel used to define the map I . This can be seen from Lemmas 13 and 14,
respectively.

Remark 5 From the estimates (1.16) and (1.18), we see that curvature ofM only intro-
duces a second-order correction to the rate of convergence of λk(Γ ) toward λk(M).

The estimates on ε from Theorem 2 combined with Theorem 4 imply that λk(Γ )

converges toward λk(M) with probability one whenever ‖m − ρ‖∞ → 0, h → 0,
ε
h → 0. We can specialize Theorem 4 to the examples from Sect. 1.2, where in
particular we provide estimates on ‖m− ρ‖∞ in terms of n.

Corollary 1 (Convergence of eigenvalues unnormalized graph Laplacian) In the con-
text of Theorem 4 suppose that the weights are taken to be m ≡ 1 and ρ ≡ 1. If h is
small enough for

(
√

λk(M) + 1)h ≤ c,

to hold for a positive constant c that depends only on m, α, L p, and η,
then

|λk(Γ ) − λk(M)|
λk(M)

≤ C̃

(
ε

h
+ (1+√

λk(M))h +
(
K + 1

R2

)
h2
)

, (1.19)

where C̃ only depends on m, α, L p, and η.

Proof The result follows directly from Theorem 4 after noticing that in this case
‖m− ρ‖∞ = 0 and Lρ = 0. ��
Corollary 2 (Convergence of eigenvalues randomwalk graph Laplacian) In the context
of Theorem 4 suppose that the weightsm are as in (1.11) and ρ ≡ p. If h and ε/h are
such that

(
√

λk(M) + 1)h + ε

h
≤ c,

for a positive constant c that depends only on m, α, L p, and η, then,

|λk(Γ ) − λk(M)|
λk(M)

≤ C̃

(
ε

h
+ (1+√

λk(M))h +
(
K + 1

R2

)
h2
)

, (1.20)

where C̃ only depends on m, α, L p, and η.
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Proof The result follows directly from Theorem 4 after using (1.12). Indeed, notice
that the term ‖m−ρ‖∞ can be absorbed in the h, ε

h and h
2 terms by enlarging constants

if necessary. ��
Remark 6 Notice that the estimates in the previous results provide a lower bound on
the mode at which the spectrum of the graph Laplacian stops being informative about
the spectrum of the Laplace–Beltrami operator. Namely, notice that the right-hand
sides of (1.19) and (1.20) are small when h

√
λk(M) is small. Using Weyl’s law for

the growth of eigenvalues of the Laplace–Beltrami operator, we know that

√
λk(M) ∼ k1/m,

and thus, the relative error of approximating λk(M)with λk(Γ ) is small when k � 1
hm

and ε � h. In particular, if h is taken to scale like h = √
ε (as is the case in Theorem 1)

then λk(M) is approximated by λk(Γ ) if k �
√

n
log(n)

for m ≥ 3 and k �
√

n
log(n)3/2

for m = 2.

Remark 7 We would like to remark that one of the main advantages of writing all
our estimates in Theorem 4 in terms of the quantity ε (which is the only one where
randomness is involved) is that we can transfer probabilistic estimates for ε into proba-
bilistic estimates for the error of approximation ofλk(Γ ). In particular,when combined
with Theorem 2, Corollary 1 and Corollary 2 can be read as follows: Suppose that
log(n)pm

n1/m
� h � 1. Let k := kn be such that kn � 1

hm . Let β > 1. Then, with

probability at least 1− CK ,Vol(M),m,i0n
−β ,

|λ j (Γ ) − λ j (M)|
λ j (M)

≤ C̃β

(
log(n)pm

hn1/m
+ (1+

√
λ j (M))h +

(
K + 1

R2

)
h2
)

for all j = 1, . . . , kn .

Remark 8 Moreover, writing all our estimates in Theorem 4 in terms of the quantity ε

is also convenient because the conclusion of the theorem holds even when the points
x1, . . . , xn are not i.i.d. samples from the measureμ. That is, one only needs to ensure
that the assumption (1.15) is satisfied. In other words, whenever one has an estimate on
the ∞-OT distance between the point cloud and the measure μ and a kernel-density
estimate to ensure that (1.15) holds, the theorem provides an error estimate on the
eigenvalues. We note that the kernel-density estimate in terms of the ∞-OT distance
we provide in Lemma 18 implies that one in fact only needs an estimate on the∞-OT
distance between the point cloud and the measure μ.

1.3.2 Convergence of Eigenfunctions

We prove that eigenvectors of ΔΓ converge toward eigenfunctions of Δ and provide
quantitative error estimates. To make the statements precise, we need to make sense
of how to compare functions defined on the graph/sample X with functions defined
on the manifold M. In this paper, we consider two different ways of doing this.
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The first approach involves an interpolation step by composing with the optimal
transportation map T : M → X from (1.13) followed by a smoothening step. Both of
these steps require the knowledge of M. The map T induces a partition U1, . . . ,Un

of M, where

Ui := T−1({xi }). (1.21)

We note that μ(Ui ) = 1
n for all i = 1, . . . , n. We define the contractive discretization

map P : L2(M, ρμ) → L2(X ,mμn) by

(P f )(xi ) := n ·
∫

Ui

f (x)dμ(x), f ∈ L2(M, ρμ), (1.22)

and the extension map P∗ : L2(X ,mμn) → L2(M, ρμ) by

(P∗u)(x) :=
n∑

i=1

u(xi )1Ui (x), u ∈ L2(X ,mμn). (1.23)

We note that P∗u can be written as P∗u = u ◦ T . We then consider the interpolation
operator I : L2(X ,mμn) → Lip(M)

I u := Λh−2εP
∗u (1.24)

where Λh−2ε is defined in (3.4) and is simply a convolution operator using some
particularly chosen kernel; see Sect. 1.4 for a discussion on why we need to consider
a specific kernel.

Theorem 5 Let ΔΓ be the graph Laplacian defined in Sect. 1.2 using the weights m,
and let Δ be the Laplacian defined in Sect. 1.2 using the weight function ρ. Let ε be
the∞-OT distance between μn and μ and assume that h > 0 satisfies Assumptions 3.
Finally, assume that h and ‖m− ρ‖∞ are small enough so that

(1+√
λk(M))h + ‖m− ρ‖∞ ≤ c,

for a constant c that depends only on m, α, L p, Lρ, η.
Then, for every u ∈ L2(X ,mμn) normalized eigenfunction of ΔΓ with eigenvalue

λk(Γ ), there exists a normalized eigenfunction f ∈ L2(M, ρμ) ofΔ with eigenvalue
λk(M) such that

‖I u − f ‖L2(M,ρμ) ≤
C̃

γk,ρμ

(
ε

h
+ (1+√

λk(M))h + Kh2 + h2

R2 + ‖m− ρ‖∞
)

,

where C̃ is a constant that only depends on m, η, α, Lρ, L p and where γk,ρμ is the
spectral gap, that is

γk,ρμ = min{|λ j − λk | : j ∈ N and λ j �= λk}
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In particular, if we take

h :=
√
log(n)pm

n1/m
,

where pm = 3/4 for m = 2 and pm = 1/m for m ≥ 3, then,

‖I u − f ‖L2(M,ρμ) = O

(√
log(n)pm

n1/m

)
, almost surely.

Remark 9 As in Remark 7, we would like to emphasize that the probabilistic estimates
for ε translate directly into probabilistic estimates for the convergence of eigenfunc-
tions in Theorem 5. Likewise, we would like to point out that Theorem 5 can be made
concrete in the context of Sects. 1.2.1 and 1.2.2 using the corresponding estimates for
‖m− ρ‖∞ in terms of ε and h.

The second approach to compare eigenvectors ofΔΓ with eigenfunctions ofΔ is to
extrapolate the values of discrete eigenvectors to the Euclidean Voronoi cells induced
by the points {x1, . . . , xn}. That is, for an arbitrary function u : X → R we assign
to each point x ∈ M the value u(xi ) where xi is the nearest neighbor of x in X with
respect to the Euclidean distance. More formally, for i ∈ {1, . . . , n} we consider the
Voronoi cells

Vi := {x ∈ M : |x − xi | = min
j=1,...,n

∣∣x − x j
∣∣}, (1.25)

and define the function ū ∈ L2(M, ρμ) by

ū(x) :=
n∑

i=1

u(xi )1Vi (x) for x ∈ M. (1.26)

We notice that the Voronoi cells V1, . . . , Vn form a partition of M, up to a set of
ambiguity of μ-measure zero. Besides being a computationally simple interpolation,
the Voronoi extension can be constructed exclusively from the data and no informa-
tion on M is needed. We show that the interpolation u of a discrete eigenvector u
approximates the corresponding eigenfunction f on M with almost the same rate as
in Theorem 5. In order to obtain convergence of the Voronoi extensions ū, we require
h = hn to satisfy

lim
n→∞ logmpm (n) ·

(
h + ε

h

)
= 0 (1.27)

This condition holds, for instance, when h is chosen as
√

ε, which minimizes the error
in the following result.

Theorem 6 Fix β > 1. Let ΔΓ be the graph Laplacian defined in Sect. 1.2 using the
weights m, and let Δ be the Laplacian defined in Sect. 1.2 using the weight function
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ρ. Let ε be the ∞-OT distance between μn and μ and assume that h > 0 satisfies
Assumptions 3. Finally, assume that h and ‖m − ρ‖∞ are small enough so that in
particular

(1+√
λk(M))h + ‖m− ρ‖∞ ≤ c,

for a constant c that depends only on m, α, L p, Lρ, η.
Then, with probability at least 1−Cm,K ,Vol(M),i0

·n−β , for every u ∈ L2(X ,mμn)

normalized eigenfunction of ΔΓ corresponding to the eigenvalue λk(M), it holds

‖ū − f ‖L2(M,ρμ) ≤
C̃β

√
log(n)mpm

γk,ρμ

(
ε

h
+ (1+√

λk(M))h

+ Kh2 + h2

R2 + ‖m− ρ‖∞
)
+ CMλk(M)

m+1
4 ε,

(1.28)

where f and γk,ρμ are as in Theorem 5, ū is as in (1.26), and CM is a constant that
depends on the manifold M.

Remark 10 We remark that the first term in (1.28) is worse than the estimate in Theo-
rem 5 by a logarithmic factor of n. This is due to our uniform estimates on the size of
Voronoi cells based on transportation (see Lemma 17). On the other hand, the extra
factor in (1.28) is an estimate for the difference of the averages of f over transport cells
and Voronoi cells; here, we use the regularity of an eigenfunction f and in particular
we use a bound for ‖∇ f ‖∞ found in [22].

1.4 Outline of the Approach and Discussion

To prove our main results, we exploit well-known variational characterizations for the
spectra ofΔΓ andΔ. Our results are then deduced from a careful comparison between
the objective functionals of the variational problems.

From the definition ofΔΓ in Sect. 1.2, it clear thatΔΓ is positive-semidefinite with
respect to the inner product of L2(X ,mμn). We denote by

0 = λ1(Γ ) ≤ λ2(Γ ) ≤ λ3(Γ ) ≤ · · ·

the eigenvalues of ΔΓ , repeated according to their multiplicities. By the minmax
principle, we have

λk(Γ ) = min
Lk

max
u∈Lk\{0}

b(u)

‖u‖2L2(X ,mμn)

(1.29)

where the minimum is over all k-dimensional subspaces Lk of L2(X ,mμn). At the
continuum level, and given that ρ and p are bounded from below, one can show thatΔ
is a closed and densely defined symmetric operator with compact resolvent [1, Lemma
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2.7]. Therefore, its spectrum consists of positive eigenvalues only, which we denote
by

0 = λ1(M) ≤ λ2(M) ≤ λ3(M) ≤ · · · ,

where eigenvalues are repeated according to their multiplicities. Moreover, by
Courant’s minmax principle we have

λk(M) = min
Lk

max
f ∈Lk\{0}

D( f )

‖ f ‖2L2(M,ρμ)

(1.30)

where the minimum is over all k-dimensional subspaces Lk of L2(M, ρμ), see [18,
Lemma 2.9].

The proof of our results may be split into two main parts. The first part contains all
the probabilistic estimates needed in the rest of the paper and is devoted to the proof of
Theorem 2. The study of the estimates for d∞(μ,μn) goes back to [16,24,27], where
the problem was considered in a simpler setting: μ is the Lebesgue measure on the
unit cube (0, 1)m and the points x1, . . . , xn are i.i.d. uniformly distributed on (0, 1)d .
In that context, with very high probability,

d∞(μ,μn) ≈ (log(n))pm

n1/m
,

where pm is defined in (1.1). In [11], the estimates are extended to measures defined
on more general domains, that is to bounded open domains in Rd with Lipschitz
boundary, and to general densities (with positive upper and lower bounds). In this
paper, we extend the results in [11] to the manifold case. In order to prove Theorem 2,
we use a similar proof scheme to the one used in [11]. Indeed, we first establish
Lemma 1 below which is analogous to [11, Theorem 1.2] and is of interest on its own.
The result includes explicit estimates on how the distance depends on the geometry
of M.

Lemma 1 Let ρ1, ρ2 be two probability densities defined on M with

1

α
≤ ρi (x) ≤ α for all x ∈ M and i ∈ {1, 2}

for some α ≥ 1. Then, it holds for the corresponding measures ν1, ν2, defined as
dν1 = ρ1dx and dν2 = ρ2dx,

d∞(ν1, ν2) ≤ A‖ρ1 − ρ2‖L∞(M), (1.31)

where A = Cm,αVol(M)3

r3m−1 max
{
Ñc,

diam(M)
r

}
, Ñc = (1+ CmKr2) 2

mVol(M)
ωmrm

and r =
1
5 min{1, i0, 1√

K
}.
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With Lemma 1 at hand, the next step is to construct a careful partition of the manifold
M into patches in which we can use directly the results from [11]. The construction
requires some geometric estimates which are obtained in Sect. 2.1. Using properties
of the constructed partition of M and Lemma 1, we can establish Theorem 2.

The second part of the proof of our main results consists of a set of precise deter-
ministic computations used to relate the discrete and continuum Dirichlet energies
appearing in the variational characterization of the spectra of the graph and contin-
uum Laplacians; these computations are based on ideas from [6]. Roughly speaking,
the proof of our main results relies on the following upper and lower bounds. We first
show the upper bound

b(P f ) ≤ (1+ error)Er ( f ) ≤ (1+ error)D( f ), f ∈ L2(M, ρμ),

where Er is the non-local kernel approximation of the continuum Dirichlet energy
defined in (3.1) and r is a length scale which up to leading order is equal to h; the term
error can be explicitlywritten in terms of h, ε and geometric quantities associatedwith
the manifoldM. It is possible to interpret the first inequality as a “variance” estimate
as it relates an energy constructed exclusively from the graphwith an “average” energy.
The second inequality on the other hand can be thought as a “bias” estimate.Wewould
like to point out that the second inequality is a manifestation of the intuitive fact that
local energies bound non-local ones. Our lower bound takes the form

D(I (u)) ≤ (1+ error)Er (P
∗u) ≤ (1+ error)b(u), u ∈ L2(X).

We remark that it is not too hard to obtain a relation of the form D(I (u)) ≤ CEr (P∗u)

for some constantC . Nevertheless, since our goal is to find error estimates, the constant
C must be sharp (up to some small error). We obtain this sharp constant using the
specific form of the convolution operator Λ in the definition of I (see (3.5)). Our
analysis of convergence of the spectra is completed by showing that the maps P , P∗
and I are almost isometries when restricted to eigenspaces (discrete or continuum).

We want to highlight the fact that in contrast to the construction in [6], our graphs
and our “out-of-sample extensions” of eigenvectors are defined exclusively from the
ambient space Euclidean distance. Theorem 6 is obtained a posteriori from Theorem 2
and uses Theorem 2 to bound the measure of Voronoi cells. We also use uniform
estimates for the gradient of eigenfunctions of the Laplace–Beltrami operator from
[22].

1.5 Outline

The rest of the paper is organized as follows. In Sect. 1.6, we recall some notation
and state some results from differential geometry that we need for the sequel. Sec-
tion 2 is devoted to the estimation of the ∞-transportation distance between μn and
μ and in particular contains the proof of Theorem 2. Section 3 contains results on
the kernel-based approximation of the Laplacian operator; in more precise terms, we
relate the (weighted) Dirichlet energy D with the non-local Dirichlet energy (3.1).
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Section 4 addresses the convergence of eigenvalues and in particular contains the
proof of Theorem 4. Finally, in Sect. 5 we establish the convergence of eigenvectors
of graph Laplacians, first in the sense of the interpolationmap I from 1.24 (Theorem 5)
and then in the sense of Voronoi extensions (Theorem 6). “Appendix B” contains the
optimal transportation-based proof of kernel-density estimates on manifolds.

1.6 Some Estimates fromDifferential Geometry

We conclude this introduction by recalling some notation and stating a few results
from differential geometry.

For a point x ∈ M, we denote by TxM the tangent space of M at x . Fix
0 < r ≤ min{i0, 1/

√
K } and let us denote by expx : B(r) ⊆ TxM → M the

Riemannian exponential map. Since r < i0, the map is a diffeomorphism between
the ball B(r) and the geodesic ball BM(x, r). In particular, exp−1

x defines a local
chart at x . Let g be the pull back of the metric of M by the exponential map.
That is, for an orthonormal basis e1, . . . , em of TxM and for given v ∈ B(r) let
gi, j |v := 〈(d expx )v(ei ), (d expx )v(e j )〉, where we have identified the tangent space
of TxM at v with TxM itself. Then,

δi, j − CK |v|2 ≤ gi, j ≤ δi, j + CK |v|2 , (1.32)

where |v| is the Euclidean length of v, δi, j is 1 if i = j and 0 otherwise and where
C is a universal constant. Such estimates are bounds on the metric distortion by the
exponential map and follow from Rauch comparison theorem ([9, Chapter 10] and [6,
Section 2.2]). Similarly, since r < 1/

√
K , one can show that for any v ∈ B(r) and

any w ∈ TxM ∼= Tv(TxM),

1

2
|w|x ≤ |(d expx )v(w)|expx (v) ≤ 2|w|x . (1.33)

These estimates imply the following:

Proposition 1 Assume 0 < r ≤ min{i0, 1/
√
K }. Let p ∈ M and consider any smooth

curve γ : [0, 1] → B(r) ⊂ TpM. Then,

1

2
Length(γ ) ≤ Length(expp ◦γ ) ≤ 2 Length(γ ).

Furthermore, on BM
(
p, r

2

)
the exponential mapping expp : B

(
0, r

2

) ⊆ TpM →
BM

(
p, r

2

)
is a bi-Lipschitz bijection with bi-Lipschitz constant 2.

The proof of this proposition is presented in “Appendix A.”
The bounds on metric distortion (1.32) imply that the Jacobian of the exponential

map (i.e., the volume element) Jx (v) := √
det(g) satisfies

(1+ CmK |v|2)−1 ≤ Jx (v) ≤ (1+ CmK |v|2). (1.34)
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A direct consequence of (1.34) is that

ωmrm

1+ CmKr2
≤ Vol(BM(x, r)) ≤ (1+ CmKr2)ωmr

m, (1.35)

which implies that

∣∣Vol(BM(x, r)) − ωmr
m
∣∣ ≤ CmKrm+2 (1.36)

where ωm is the volume of the unit ball in Rm .
Now, we want to state a relation between the intrinsic distance on the manifold and

the Euclidean distance on the ambient space. For that purpose, we recall that R, the
reach of the manifold M, is defined as

R := sup
{
t > 0 : ∀x ∈ Rd , dist(x,M) ≤ t ,

∃!y ∈ M s.t. dist(x,M) = |x − y| }. (1.37)

We note that R is an extrinsic quantity, meaning it depends on the specific embedding
ofM intoRd . In addition, we note that the quantity 1

R is related to extrinsic curvature,
as it uniformly controls the principal curvatures of M (see [19]). We now show that
the distances M are locally a second-order perturbation of the Euclidean distance in
Rd and provide explicit error bounds in terms of the reach of M.

Proposition 2 Let R be the reach of themanifoldM ⊆ Rd . Let x, y ∈ M and suppose
that |x − y| ≤ R

2 . Then,

|x − y| ≤ d(x, y) ≤ |x − y| + 8

R2
|x − y|3 .

The proof of this proposition is presented in “Appendix A.”

2 The∞-Transportation Distance

The main goal of this section is to prove Theorem 2. For that purpose, we use a
similar proof scheme to the one used in [11]. We first establish Lemma 1, and then we
construct a “nice” partition of the manifold M by using a Voronoi tessellation using
some (fixed) appropriately chosen points; what makes the partition nice is that each
of its cells is bi-Lipschitz homeomorphic (with universal bi-Lipschitz constant) to a
fixed ball inRm where we can apply the results from [11]. In Sect. 2.1, we present the
construction of such partition and prove Theorem 2.

Throughout this section, we make use of the following construction and estimates.
Let r = 1

5 min{1, i0, 1√
K
}. Let Y = {yi : i ∈ I } be a maximal subset of M such that

d(yi , y j ) ≥ r for all i �= j . Note that the balls {BM(yi , r/2)}i∈I do not overlap. From
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(1.35), we conclude that Nc := card Y satisfies

Nc(1+ CmKr2)−1ωmrm

2m
≤
∑
i∈I

Vol (BM(yi , r/2)) ≤ Vol(M)

and hence

Nc ≤ (1+ CmKr2)
2mVol(M)

ωmrm
. (2.1)

From now on, we list the elements of Y as y1, . . . , yNc . It follows from the maximality
of Y that the collection of balls {BM(yi , r)}i=1,...,Nc

coversM. We also claim that if
dist(yi , y j ) ≤ 2r , then the balls BM(yi , 2r) and BM(y j , 2r) have a “big” overlap in
the sense that

(1+ CmKr2)−1ωmr
m ≤ Vol(BM(yi , 2r) ∩ BM(y j , 2r)). (2.2)

In fact, let yi j be the point that is halfway from yi to y j on the geodesic connecting yi
and y j . Let y ∈ BM(yi j , r). Then, dist(y, yi ) ≤ dist(y, yi j )+dist(yi j , yi ) < r+r ≤
2r . This shows that BM(yi j , r) ⊆ BM(yi , 2r). Similarly, we have BM(yi j , r) ⊆
BM(y j , 2r). Inequality (2.2) now follows from the fact that

(1+ CmKr2)−1ωmr
m ≤ Vol(BM(yi j , r))

We now claim that for arbitrary yi , y j , there is a way to start from yi and move from
ball to ball until reaching y j in such a way that any two consecutive balls visited have
big overlap, i.e., that (2.2) holds. To make this idea precise, let us consider a graph
(Y ,↔) where

y j ↔ yi iff y j �= yi and dist(y j , yi ) ≤ 2r . (2.3)

We claim that (Y ,↔) is a connected graph; this is a consequence of the connected-
ness ofM. In fact, suppose for the sake of contradiction that (Y ,↔) is not connected.
Then, we can find a partition of Y into two nonempty sets S1, S2 such that for all
yi ∈ S1 and all y j ∈ S2, yi � y j (i.e., d(yi , y j ) > 2r ). Because of this, we can find
ε > 0 such that

⋃
y∈S1

BM (y, r + ε) ∩
⋃
y∈S2

BM (y, r + ε) = ∅,

but since

M =
⋃

i=1,...,Nc

BM (yi , r) ⊆
⋃
y∈S1

BM (y, r + ε) ∪
⋃
y∈S2

BM (y, r + ε) ,

this implies that M is disconnected, which is not true. Hence, we conclude that the
graph (Y ,↔) is connected. We are now ready to prove Lemma 1.
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Proof (Lemma 1) In order to estimate d∞(ρ1, ρ2), the idea is to construct intermediate
densities and estimate the distances between them using [11, Theorem 1.2]. But to use
[11, Theorem 1.2], we need to map the intermediate densities to the Euclidean space.
Motivated by this, we consider the balls BM(y1, 2r), . . . , BM(yNc , 2r) constructed
before. By relabeling if necessary, the connectedness of the graph (Y ,↔) implies that
we can assume that for every k = 1, . . . , Nc, the graph ({y1, . . . , yk} ,∼) is connected.
For k = 1, . . . , Nc, we define the sets

Ik := BM(yk, 2r) \
k−1⋃
j=1

BM(y j , 2r), Ok := BM(yk, 2r) ∩
k−1⋃
j=1

BM(y j , 2r).

Note that I1 = B(y1, 2r) and O1 = ∅. We define the functions γ+
k , γ−

k , ρ̃k iteratively
as follows. Let us start with k = Nc. If

∫
INc

ρ1dx ≥ ∫
INc

ρ2dx we set γ+
Nc

= ρ1 and

γ−
Nc

= ρ2; if not, we reverse the roles of ρ1 and ρ2. We let ρ̃Nc be

ρ̃Nc (x) =

⎧⎪⎨
⎪⎩

γ−
Nc

(x) if x ∈ INc ,

γ+
Nc

(x) + βNc if x ∈ ONc ,

γ+
Nc

(x) otherwise,

where

βNc :=
∫
INc

(γ+
Nc

− γ−
Nc

)dx

Vol(ONc)
.

Having defined the functions γ+, γ−, ρ̃ for the iterations Nc, Nc − 1, . . . , k + 1,
we define the functions γ+

k , γ−
k , ρ̃k as follows. If

∫
Ik

γ−
k+1dx ≥ ∫

Ik
ρ̃k+1dx , we set

γ+
k = γ−

k+1 and γ−
k = ρ̃k+1; if not, we reverse the roles of γ

−
k+1 and ρ̃k+1. The function

ρ̃k is defined as

ρ̃k(x) =

⎧⎪⎨
⎪⎩

γ−
k (x) if x ∈ Ik,

γ+
k (x) + βk if x ∈ Ok,

γ+
k (x) otherwise,

where

βk :=
∫
Ik
(γ+

k − γ−
k )dx

Vol(Ok)
.

We note that ρ̃1 = γ−
1 and set β1 := 0. Also, observe that for every k, βk ≥ 0 and

∫

M
γ−
k dx =

∫

M
γ+
k dx =

∫

M
ρ̃kdx,
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where the second equality follows from the definition of βk andwhere the first equality
follows iteratively from the definitions above. Using the triangle inequality and the
above definitions, we obtain

d∞(ρ1, ρ2) = d∞(γ+
Nc

, γ−
Nc

)

≤ d∞(γ+
Nc

, ρ̃Nc ) + d∞(ρ̃Nc , γ
−
Nc

)

= d∞(γ+
Nc

, ρ̃Nc ) + d∞(γ+
Nc−1, γ

−
Nc−1)

≤ d∞(γ+
Nc

, ρ̃Nc ) + d∞(γ+
Nc−1, ρ̃Nc−1) + d∞(ρ̃Nc−1, γ

−
Nc−1).

Continuing the chain of inequalities provides, by induction,

d∞(ρ1, ρ2) ≤
Nc∑
k=1

d∞(γ+
k , ρ̃k).

Our goal is to estimate each of the terms d∞(γ+
k , ρ̃k). From the definitions above, it

is straightforward to see that γ+
k and ρ̃k coincide in M \ BM(yk, 2r), and thus

d∞(ρ1, ρ2) ≤
Nc∑
k=1

d∞(γ+
k , ρ̃k) ≤

Nc∑
k=1

d∞(γ+
k |BM(yk ,2r), ρ̃k |BM(yk ,2r)). (2.4)

The last inequality is a consequence of the following observation: If two measures
ν1, ν2 give the same total mass and we can write ν1 = ν + ν̃1 and ν2 = ν + ν̃2, then
one possible way to transport mass from ν1 into ν2 is to leave the mass distributed as
ν where it is and simply focus on transporting the mass distributed as ν̃1 to have it
distributed as ν̃2. This observation leads to the desired inequality.

In order to obtain an estimate on d∞(γ+
k |BM(yk ,2r), ρ̃k |BM(yk ,2r)), we first estimate

‖γ+
k − ρ̃k‖L∞(BM(yk ,2r)). From the definitions above, we have

‖γ+
k − ρ̃k‖L∞(B(yk ,2r) ≤ max

{‖γ+
k − γ−

k ‖L∞(Ik ), βk
}
. (2.5)

Hence, we focus on obtaining estimates for ‖γ+
k − γ−

k ‖L∞(Ik ) and βk .
First, we claim that for every k, the function (γ+

k − γ−
k )1Ik has the form

(γ+
k − γ−

k )1Ik = ±(ρ1 − ρ2)1Ik +
Nc∑

j=k+1

±β j1Ik∩Oj . (2.6)
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To see this, note that in case k = Nc the result is trivial. In general, from the definitions
above it follows that

(γ+
k − γ−

k )1Ik = ±(γ−
k+1 − ρ̃k+1)1Ik

= ±((γ−
k+1 − γ+

k+1)1Ik − βk+11Ik∩Ok+1)

= ±(γ−
k+1 − γ+

k+1)1Ik +±βk+11Ik∩Ok+1

= ±(γ−
k+2 − ρ̃k+2)1Ik +±βk+11Ik∩Ok+1

= ±(γ−
k+2 − γ+

k+2)1Ik +±βk+21Ik∩Ok+2 + βk+11Ik∩Ok+1 .

Continuing the chain of inequalities proves the claim in Nc−k iterations.An immediate
consequence of the previous fact is that for k = 2, . . . , Nc

βk = ±
∫
Ik
(ρ1 − ρ2)dx

Vol(Ok)
+

Nc∑
j=k+1

±β j
Vol(Ik ∩ Oj )

Vol(Ok)
,

and in particular

βk ≤ ‖ρ1 − ρ2‖L∞(M)

Vol(Ik)

Vol(Ok)
+

∑
j :k< j≤Nc

β j
Vol(Ik ∩ Oj )

Vol(Ok)
, ∀k = 2, . . . , Nc.

(2.7)

For every k = 2, . . . , Nc, we claim that

βk ≤ ‖ρ1 − ρ2‖∞
(∑

a j1... js

)
, (2.8)

where the sum is taken over all s ≤ Nc − k and all s-tuples Nc ≥ j1 > j2 > · · · >

js−1 > js = k, and where

a j1... js :=
Vol(I j1)

Vol(Oj1)
· Vol(I j2 ∩ Oj1)

Vol(Oj2)
. . .

Vol(I js−1∩Ojs−2
)

Vol(Ojs−1)
· Vol(I js ∩ Ojs−1)

Vol(Ojs )
.

In fact, relation (2.8) is obtained inductively by using recursion (2.7) and the fact that

βNc ≤ ‖ρ1 − ρ2‖L∞(M)
Vol(INc )
Vol(ONc )

. Let us now fix s with 0 ≤ s ≤ Nc − k and k′ with
k + s ≤ k′ ≤ Nc; set j1 = k′ and js = k. Let us write a j1... js in the more convenient
way:

a j1... js =
Vol(I j1)

Vol(Ojs )
· Vol(I j2 ∩ Oj1)

Vol(Oj1)
. . .

Vol(I js−1∩Ojs−2
)

Vol(Ojs−2)
· Vol(I js ∩ Ojs−1)

Vol(Ojs−1)
.

Note that

a j1... js ≤
Vol(I j1)

Vol(Ojs )
· Vol(I j2 ∩ Oj1)

Vol(Oj1)
. . .

Vol(I js−1∩Ojs−2
)

Vol(Ojs−2)
,
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and therefore summing over js−1 we obtain

∑
js−1

a j1... js ≤
Vol(I j1)

Vol(Ojs )

Vol(I j2 ∩ Oj1)

Vol(Oj1)
. . .

Vol(I js−2 ∩ Ojs−3)

Vol(Ojs−3)

∑
js−1

Vol(I js−1 ∩ Ojs−2)

Vol(Ojs−2)
.

Observe that the sum on the right-hand side of the above expression is less than one
because the sets I js−1 are disjoint. Proceeding in this fashion adding over js−2, . . . , j2,
we conclude that

∑
j2... js−1

a j1... js ≤
Vol(Ik′)

Vol(Ok)
.

Finally, first summing over all such s and then over all such k′, it follows from (2.8)
that

βk ≤ ‖ρ1 − ρ2‖∞
∑

a j1,..., js ≤ ‖ρ1 − ρ2‖∞
∑

k<k′≤Nc

NcVol(Ik′)

Vol(Ok)

≤ ‖ρ1 − ρ2‖∞ NcVol(M)

Vol(Ok)

(2.9)

where in the last inequality we have used the fact that the sets Ik′ are disjoint.
Going back to (2.5), we note that from (2.6) and (2.9) it follows that for every

k = 1, . . . , Nc

‖γ+
k − ρ̃k‖L∞(BM(yk ,2r)) ≤ ‖ρ1 − ρ2‖L∞(M) +

Nc∑
j=k

β j

≤ ‖ρ1 − ρ2‖L∞(M)

(
1+ Nc

2Vol(M) max
j=2,...,Nc

1

Vol(Oj )

)

≤ ‖ρ1 − ρ2‖L∞(M)

(
1+ CmNc

2Vol(M)

rm

)
,

(2.10)

where the last inequality follows from the lower bound on the size of the overlaps
(2.2).

Now, we notice that from the standing assumption ρ1(x), ρ2(x) ≥ 1
α
for every

x ∈ M, it follows that for every k = 1, . . . , Nc and every x ∈ M

γ+
k (x), γ−

k (x), ρ̃k(x) ≥ 1

α
for all x ∈ M.
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Likewise, from the standing assumption ρ1(x), ρ2(x) ≤ α for all x ∈ M, it follows
that for every k = 1, . . . , Nc and every x ∈ M

γ+
k (x), γ−

k (x), ρ̃k(x) ≤ α +
Nc∑
j=1

β j ≤ α + ‖ρ1 − ρ2‖L∞(M)

CmNc
2Vol(M)

rm

Assume for a moment that ‖ρ1 − ρ2‖L∞(M) is small enough so that in particular

‖ρ1 − ρ2‖L∞(M)
CmNc

2Vol(M)
rm ≤ α. In that case, for every k = 1, . . . , Nc we would

have

1

α
≤ γ+

k , ρ̃k ≤ 2α. (2.11)

Consider the exponential map expyk : B(2r) ⊆ TykM → BM(yk, 2r) ⊆ M and
the functions g1, g2 : B(2r) → (0,∞) defined as

g1(v) := γ+
k (expyk (v))Jyk (v)

and

g2(v) := ρ̃k(expyk (v))Jyk (v),

where Jyk denotes the Jacobian of the exponential map. From (2.11), (2.10) and (1.34),
we conclude that

1

αCm(1+ Kr2)
≤ gi (v)

≤ αCm(1+ Kr2) for i = 1, 2 and all v ∈ B(2r) (2.12)

and that for all v ∈ B(2r)

|g1(v) − g2(v)| ≤ (1+ CmKr2)
∣∣∣γ+

k (expyNc (v)) − ρ̃k(expyNc (v))

∣∣∣

≤ CmNc
2Vol(M)

rm
‖ρ1 − ρ2‖L∞(M)

(2.13)

We recall that our choice of r in particular guarantees that r2K ≤ 1. Applying [11,
Theorem 1.2] to the densities g1 and g2 with the bounds given by (2.12), we conclude
that

d∞(g1, g2) ≤ Cm,αr‖g1 − g2‖L∞(B(2r)) ≤ Cm,αNc
2Vol(M)

rm−1 ‖ρ1 − ρ2‖L∞(M),
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1 where the last inequality follows from (2.13). From the second part of Proposition 1,
it follows that

d∞(γ+
k , ρ̃k) ≤ 2d∞(g1, g2) ≤ Cm,αNc

2Vol(M)

rm−1 ‖ρ1 − ρ2‖L∞(M).

Therefore, using (2.4) it follows that if

‖ρ1 − ρ2‖L∞(M)

CmNc
2Vol(M)

rm
≤ α,

then

d∞(ρ1, ρ2) ≤ Cm,αNc
3Vol(M)

rm−1 ‖ρ1 − ρ2‖L∞(M).

In case ‖ρ1 − ρ2‖L∞(M)
CmNc

2Vol(M)
rm > α ≥ 1, we have

d∞(ρ1, ρ2) ≤ diam(M)

≤ CmNc
2Vol(M) diam(M)

rm
‖ρ1 − ρ2‖L∞(M),

where we note that the first inequality in the above expression is always true, as the
maximum distance any point can travel inM is diam(M). Therefore, in any case we
have

d∞(ρ1, ρ2) ≤ C̃‖ρ1 − ρ2‖L∞(M),

where C̃ can be written as

C̃ = Cm,αNc
2Vol(M)

rm−1 max

{
Nc,

diam(M)

r

}
. (2.14)

��

2.1 Proof of Theorem 2

In the following, we consider the Voronoi tessellation induced by the set Y =
{y1, . . . , yNc } constructed in the beginning of Sect. 2, i.e., for each i ∈ {1, . . . , Nc}
we define

VM(yi ) := {x ∈ M : d(x, yi ) ≤ d(x, y j ) for all j ∈ {1, . . . , Nc}}.

1 Note that as stated, our theorems give Cm,α,r , but in this case Cm,α,r = Cm,αr because we can always
rescale to the unit ball.
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These measurable sets form a partition of M up to a negligible set of ambiguity of
measure zero. We make use of the following.

Proposition 3 For each i ∈ {1, . . . , Nc}, there exists a bi-Lipschitz bijection

Ψi : VM(yi ) → B
(
0, r

2

) ⊆ Rm with bi-Lipschitz constant at most 18.

To prove Proposition 3, we use the sequence of lemmas that follow.

Lemma 2 For all i ∈ {1, . . . , Nc}

BM(yi , r/2) ⊂ VM(yi ) ⊂ BM(yi , r).

Let V (yi ) = exp−1
yi (VM(yi )). Then, B

(
0, r

2

) ⊂ V (yi ) ⊂ B(r) and for almost every
z0 ∈ ∂V (yi )

z0
|z0| · n0 ≥

1

8
, (2.15)

where n0 is the outward unit normal vector to ∂V (yi ) at z0.

Proof Let yi ∈ Y . Since for every x ∈ BM
(
yi ,

r
2

)
and every y j ∈ Y with j �= i it holds

that d(x, y j ) ≥ d(y j , yi ) − d(yi , x) > r
2 , we conclude that BM

(
yi ,

r
2

) ⊂ VM(yi ).
On the other hand, since Y is a maximal set with the property that d(y j , yk) ≥ r for
all j �= k, we conclude that for all x ∈ M there exists y j ∈ X such that d(x, y j ) < r .
Therefore, VM(yi ) ⊂ BM(yi , r). Since expyi maps B(s) bijectively to BM(yi , s)
for s = r

2 and for s = r , it follows that B
(
0, r

2

) ⊂ V (yi ) ⊂ B(r). This establishes
the first part of the statement.

Now, let us consider the second part of the statement. For almost every z0 ∈ ∂V (yi ),
there exists a unique y j �= yi such that z0 ∈ ∂ exp−1

yi (VM(y j )); this follows from the
fact that the set of triple junctions or higher-order junctions in a Voronoi tessellation
has Hausdorff dimension smaller than m − 2. Let us fix one such z0 ∈ V (yi ) and let
y j be as before. Note that 2r ≥ d(yi , y j ) ≥ r and that d(yi , z) = |z0|yi < r . We
let z := expyi (z0). We consider the level set Γ := {x ∈ M : d(x, yi ) = d(x, y j )},
which is a C1-hypersurface around z by the implicit function theorem; moreover a
unit normal vector to Γ at the point z is given by

n := ũi − ũ j∣∣ũi − ũ j
∣∣
z

= ui − u j∣∣ui − u j
∣∣
z

,

where ũi := − exp−1
z (yi )

d(yi ,z)
, ui := − exp−1

z (yi ) and u j , ũ j are defined analogously.

Let us consider the set Γ0 := exp−1
yi (Γ ∩ BM(yi , 2r)); note that around the point

z0, Γ0 coincides with ∂V (yi ), and in particular given that Γ is a C1-hypersurface
around z, ∂V (yi ) is a C1-hypersurface around z0. Let us denote by n0 the outward
unit normal to ∂V (yi ) at z0. We write z0|z0|yi as

z0
|z0|yi

= w0 + cn0,
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where 〈w0,
z0|z0|yi 〉yi = 0 and 〈n0, z0|z0|yi 〉yi = c. Clearly, c ≥ 0. Now, by definition of

the exponential map, ũi = (d expyi )z0
(

z0|z0|yi

)
, and so

ũi = w + cñ,

where w := (d expyi )z0(w0) and ñ := (d expyi )z0(n0). Then,

〈ũi , n〉z = 〈w + cñ, n〉z = c〈ñ, n〉z ≤ c |ñ|z ≤ 2c |n0|yi = 2c,

where the second equality follows from the fact that w is tangent to Γ (which in turn
follows from the fact that w0 is tangent to Γ0) and where the last inequality follows
from (1.33). It thus remains to show that 〈ũi , n〉z ≥ 1/4. To see this, simply note that
the fact that 〈ũi + ũ j , ũi − ũ j 〉z = 0 implies

〈ũi , n〉z =
〈
ũi − ũ j

2
,

ũi − ũ j∣∣ũi − ũ j
∣∣
z

〉

z
=

∣∣ũi − ũ j
∣∣
z

2
=

∣∣ui − u j
∣∣
z

2d(z, yi )
≥ d(yi , y j )

4d(z, yi )
≥ 1

4
,

where the second to last inequality follows from Proposition 1. ��
So far, we have been able to construct a partition ofM into cells (the Voronoi cells

VM(yi )) with the property thatwhen each of the cells VM(yi ) ismapped by the inverse
of the exponential map, the resulting set Vi := exp−1

yi (VM(yi )) (which is contained
inRm) is a star-shaped domain with center the origin. We notice that condition (2.15)
implies that Vi is a star-shaped domain centered at the origin. Indeed, if the set was
not star-shaped with center the origin, we would be able to find a point z0 ∈ ∂Vi
for which n0 · z0|z0| ≤ 0 (i.e., the outer normal at that point would be pointing toward
the origin). In the next lemma, we show that when in addition the unit outer normal
to the boundary of a star-shaped domain does not deviate too much from the radial
direction emanating from its center, the domain is bi-Lipschitz homeomorphic to a
ball and more importantly the bi-Lipschitz constant can be controlled. This establishes
Proposition 3.

Lemma 3 Let V be a star-shaped subset ofRm with center at 0 and such that B(R) ⊂
V ⊂ B(2R). Assume V has Lipschitz boundary and let n be the unit outside normal
vector to ∂V . Assume there exists β ∈ (0, 1) such that for a.e. x ∈ ∂V

n · x

|x | ≥ β.

Let r : Sm−1 → [R, 2R] be the function describing ∂V in radial coordinates. That is,
let r(z) = sup{s ∈ R : sz ∈ V }. Consider the function Φ : V → B(R) given by

Φ(x) = R

r
( x
|x |
) x for x �= 0
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and Φ(0) = 0. Then, Φ is a bi-Lipschitz bijection with bi-Lipschitz constant at most
1
β
+ 1.

Proof Extend r to Rm\{0} by r̃(x) := r
( x
|x |
)
.

For x �= 0

DΦ(x) = − R

r̃2(x)
x(∇r̃(x))T + R

r̃(x)
I . (2.16)

Consider the function G : Rm\{0} → ∂V given by x  → r̃(x) x
|x | . Note that at z ∈

Sm−1

DG(z) = z(∇r̃(z))T + r(z)
(
I − zzT

)
.

Since n is orthogonal to the image of G, we conclude that (DG(z))T n = 0, which
implies

(n · z)∇r̃(z) + r(z)(n − (n · z)z) = 0.

Since n · z ≥ β, we obtain

β |∇r̃(z)| ≤ r̃(z) for all z ∈ Sm−1.

Combining this with (2.16), we deduce that Φ is ( 1
β
+ 1)-Lipschitz. Analogous

computations show that Φ−1, which is given by Φ−1(y) = r
( y
|y|
)
y, is also ( 1

β
+ 1)-

Lipschitz. ��

Proof (Proposition 3) By Proposition 1, the exponential map expyi : B(r) →
BM(yi , r) is a bi-Lipschitz bijection with bi-Lipschitz constant at most 2. By Lem-
mas 2 and 3, with R = r

2 and β = 1
8 , there exists a mapping

Ψi : exp−1
y1 (VM(yi )) → B

(
0,

r

2

)

which is a bi-Lipschitz bijection with bi-Lipschitz constant at most 9. The composition
Ψi ◦ exp−1

yi provides the desired mapping. ��

Proof (Theorem 2) We consider the maps Ψi : VM(yi ) → B(r/2) ⊆ Rm from
Proposition 3. Given the sample x1, . . . , xn from the density p, we define a func-
tion pn : M → R by

pn(x) := p(x) + μn(VM(yi )) − μ(VM(yi ))

Vol(VM(yi ))
for x ∈ VM(yi ). (2.17)
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Notice that

∫

M
pn(x)dVol(x) =

n∑
i=1

∫

VM(yi )
pn(x)dVol(x) =

n∑
i=1

μn(VM(yi )) = 1,

and that as shown in (2.18), with very high probability pn is positive. In particular,
with very high probability pn is a bona fide density function.

Let us recall that Hoeffding’s inequality states that for every t > 0,

P (|μn(VM(yi )) − μ(VM(yi ))| > t) ≤ 2e−2nt2 .

Using the previous concentration inequality, we conclude that for every i = 1, . . . , Nc

‖p − pn‖L∞(VM(yi )) ≤
1

2α

with probability at least 1−2 exp
(
−nVol(VM(yi ))2

2α2

)
In particular, using a union bound,

we conclude that with probability at least 1− 2Nc exp
(
−n Cmr2m

α2

)

1

2α
≤ pn(x) ≤ 2α, x ∈ M. (2.18)

Similarly, with probability at least 1− 2Nc exp
(
−n Cmr2m

α2

)

1

2
μ(VM(yi )) ≤ μn(VM(yi )) ≤ 3

2
μ(VM(yi )) (2.19)

Hoeffding’s inequality together with a union bound also shows that with probability
at least 1− 2Ncn−β ,

‖p − pn‖L∞(M) ≤ Cm

rm

√
β log(n)

n
. (2.20)

We let An be the event, where (2.18), (2.19) and (2.20) hold. From the above, we know
that An occurs with probability at least 1− Cn−β , where the constant C depends on
r , α, β,m,Vol(M). We denote by μ̃n the measure dμ̃n = pndx . Conditioned on the
event An , we see from Lemma 1 and from (2.20) that

d∞(μ̃n, μ) ≤ C̃‖p − pn‖L∞(M) ≤ C̃
Cm

rm

√
β log(n)

n
,

where C̃ is the constant in (2.14).
Now, we estimate d∞(μ̃n, μn) in the event An . Observe that

μ̃n(VM(yi )) = μn(VM(yi )) for all i = 1, . . . , Nc
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and hence

d∞(μn, μ̃n) ≤ max
i=1,...,Nc

d∞(μn�VM(yi ), μ̃n�VM(yi )),

where we denote by �VM(yi ) the restriction of a measure to VM(yi ). The goal is now
to estimate d∞(μn�VM(yi ), μ̃n�VM(yi )) for every i .

Let x j1 , . . . , x jni be the points in X that fall in VM(yi ).We consider the transformed
points Ψi (x j1), . . . , Ψi (x jni ) and the measure Ψi �(μ̃n�VM(yi )), which is supported

on B(r/2). The fact that Ψi is bi-Lipschitz with constant 18 implies that the mea-
sure Ψi �(μ̃n�VM(yi )) has a density with respect to the Lebesgue measure, and this
density is lower and upper bounded by constant multiples of the lower and upper
bounds of the density p. Hence, the transformed points are almost surely samples
from Ψi �(μ̃n�VM(yi )) restricted to the open ball B(r/2). Therefore, it follows from
[11, Theorem 1.1] that conditioned on the event An ,

d∞
(
Ψi �(μ̃n�VM(yi )), Ψi �(μn�VM(yi ))

) ≤ Cm,α,β r
log(ni )pm

n1/mi

holds2 for all i ∈ {1, . . . , Nc} with probability at least 1 − CNcn−β , where C is a
constant that depends on β, r , α,m. Note that we have used the fact that in the event
An , the second inequality in (2.19) is satisfied and so we can give the probability
bounds in terms of n and not in terms of ni . Moreover, from the first inequality in
(2.19) it follows that

log(ni )pm

n1/mi

≤ Cm
α1/m

r

(log(n))pm

n1/m
.

Finally, from the fact that Ψ−1
i is Lipschitz with Lipschitz constant no larger than

18, it follows that

d∞(μ̃n�VM(yi ), μn�VM(yi )) ≤ 18d∞
(
Ψi �(μ̃n�VM(yi )), Ψi �(μn�VM(yi ))

)
.

From the previous discussion, we deduce that with probability at least 1−CNcn−β =
1− Cm,β,α,r ,Vol(M) · n−β ,

d∞(μ,μn) ≤ d∞(μ, μ̃n) + d∞(μ̃n, μn)

≤ C ′
(√

log(n)

n
+ (log(n))pm

n1/m

)
≤ C ′ (log(n))pm

n1/m

for a constant C ′ that can be written as C ′ = Cα,β,m
rm C̃ , where C̃ is as in (2.14). ��

2 Note that as stated, Theorem 1.1 in [11] gives Cm,α,β,r , but in this case Cm,α,β,r = Cm,α,β r as one can
simply rescale to the unit ball.
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3 Kernel-Based Approximation of the Laplacian

Here, we focus on a kernel-based approximation of the continuous Dirichlet form
defined in (1.8). This part does not depend on the graph obtained from the sample set
X and can be seen as the bias part of the desired error estimates.

The results in this section correspond to those of Section 3 and 5 in [6] but cannot
be directly inferred from them. Instead, we need to adjust most of the proofs to our
setting.

For f ∈ L2(M), 0 < r < 2h and a Borel set V ⊆ M let

Er ( f , V ) :=
∫

V

∫

M
η

(
d(x, y)

r

)
| f (y) − f (x)|2 dμ(y)dμ(x). (3.1)

We write Er ( f ) shorthand for Er ( f ,M). The main results of this section, Lemma 5
and 9, demonstrate how this functional approximates the form Δ.

Remark 11 Let Ẽr ( f , V ) denote the functional in (3.1) when η is taken to be the kernel
1[0,1]. Then, Ẽr ( f , V ) is nothing but Er ( f , V ) as defined in [6, Def. 3.1]. Note that,
for general η satisfying the assumptions from Sect. 1.1

Ẽr ( f , V ) ≤ 1

η(1/2)
E2r ( f , V ). (3.2)

for every f ∈ L2(M) and any Borel set V ⊆ M.

Lemma 4 Suppose h satisfies Assumptions 3. Then, there exists a universal constant
C > 0 such that for every 0 < r < 2h and every f ∈ L2(M, μ)

Er ( f ) ≤ C2m(1+ αL p)Er/2( f ),

where we recall that L p stands for the Lipschitz constant of p.

Proof Let 0 < r < 2h. Then, r ≤ min{i0, 1/
√
K } by Assumptions 3. Note that it

suffices to consider f to be smooth because smooth functions are dense in L2(M, μ)

and both sides of the inequality are continuous with respect to L2-convergence; notice
that for smooth functions we can talk about pointwise values. For x, y ∈ M with
d(x, y) ≤ r , let zxy be the point in M which lies halfway along the geodesic con-
necting x and y, i.e., zxy = expx (

1
2 exp

−1
x (y)). In particular d(x, zxy) = d(y, zx,y) =

1
2d(x, y). Since | f (x) − f (y)|2 ≤ 2

∣∣ f (x) − f (zx,y)
∣∣2 + 2

∣∣ f (y) − f (zx,y)
∣∣2, by
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symmetry we obtain

Er ( f ) ≤ 4
∫

M

∫

M
η

(
d(x, y)

r

) ∣∣ f (x) − f (zx,y)
∣∣2 dμ(y)dμ(x)

= 4
∫

M

∫

B(r)
η

( |v|
r

) ∣∣∣ f (x) − f
(
expx

(v

2

))∣∣∣
2
Jx (v)p(expx (v))dvdμ(x)

≤ C2m(1+ αL p)

∫

M

∫

B( r2 )

η

(
2 |w|
r

) ∣∣ f (x) − f (expx (w))
∣∣2 Jx (w)

p(expx (w))dwdμ(x)

= C2m(1+ αL p)Er/2( f ),

where C is a universal constant. In the above, we used the change in variables w = v
2

(which explains the term 2m) and we also used the inequalities:

Jx (v) ≤ (1+ CmKr2)2 Jx
(v

2

)
≤ C Jx

(v

2

)
,

(combined with Assumptions 3) and

p(expx (v)) ≤ (1+ αL p)p(expx (v/2)).

��
Lemma 5 (cf. [6, Lemma 3.3]) Suppose h satisfies Assumptions 3. Then, there exists
a universal constant C > 0 such that

Er ( f ) := Er ( f ,M) ≤ (1+ L pαr) · (1+ CmKr2)σηr
m+2D( f ),

for every f ∈ H1(M) and 0 < r < 2h.

Proof Let us first consider the case in which η takes the form η = 1[0,1]; as we will
see, the general case follows easily from this special case. As in [6, Lemma 3.3], we
may assume that f is smooth and we write

∫

BM(x,r)
| f (y) − f (x)|2 dμ(y) =

∫

B(r)

∣∣ f (expx (v)) − f (x)
∣∣2 p(expx (v))Jx (v)dv

where Jx denotes the determinant of the Jacobian of the exponential map. We recall
from (1.34) that there exists a constant C > 0 such that Jx (v) is bounded from above
by 1+CmKr2 for all v ∈ B(r). From the fundamental theorem of calculus, it follows
that

∣∣ f (expx (v)) − f (x)
∣∣2 ≤

∫ 1

0

∣∣∣∣
d

dt
f (expx (tv))

∣∣∣∣
2

dt =
∫ 1

0
|d f (Φt (x, v))|2 dt,
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In the above,Φt denotes the time t geodesic flow,Φt (x, v) = (γx,v(t), γ ′
x,v(t)), where

γx,v(t) := expx (tv). The expression d f (Φt (x, v) has to be interpreted as: the form
d f at γx,v(t) acting on the tangent vector γ ′

x,v(t). Therefore,

A :=
∫

M

∫

B(r)

∣∣ f (expx (v)) − f (x)
∣∣2 p(expx (v))dv p(x)dVol(x)

≤
∫ 1

0

∫

M

∫

B(r)
|d f (Φt (x, v))|2 p(Φ1(x, v)1)p(Φ0(x, v)1)dvdVol(x)dt

where ξ  → ξ1 denotes the projection of ξ ∈ TM onM. From theLipschitz continuity
of p, it follows that p(x) ≤ (1 + L pαr)p(y) for all x, y ∈ M where d(x, y) ≤ r .
Using the fact that Φt preserves the canonical volume VolTM on TM and that

Br := {ξ = (x, v) ∈ TM : |v| ≤ r}

is invariant under Φt , see [5, 1.125], we obtain after a change in variables

A ≤ (1+ L pαr)
2
∫ 1

0

∫

Br

|d f (Φt (ξ))| p2(Φt (ξ)1)dVolT M (ξ)dt

= (1+ L pαr)
2
∫

Br

|d f (ξ)|2 p2(ξ1)dVolT M (ξ)

= (1+ L pαr)
2
∫

M
ωm

m + 2
rm+2 |∇ f |2 p2(x)dVol(x).

Using the previous computations, (1.34) and Remark 1, we deduce that

Er ( f ) ≤ (1+ CmKr2) · A ≤ (1+ CmKr2) · (1+ L pαr)
ωm

m + 2
rm+2D( f )

= (1+ CmKr2) · (1+ L pαr)σηr
m+2D( f )

(3.3)

for a universal constant C , which proves the claim for η = 1[0,1]. Now, notice that
one easily obtains from the previous computations that (3.3) is still valid for η of the
form η = 1[0,t] for some 0 < t < 1. Finally, since Er ( f ) and ση are linear in η,
the statement holds if η : [0, 1] → [0,∞) is a decreasing step function (and hence
can be written as linear combination of functions of the form 1[0,t]). By monotone
convergence applied on both sides of the inequality, the assertion follows for any
decreasing (and thus measurable) function η. ��

Remark 12 Note that in comparison with the case of constant p treated in [6, Lemma
3.3], the above estimates have the additional term (1+ αL pr).
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Lemma 6 (cf. [6, Lemma 3.4]) Suppose h satisfies Assumptions 3. Let ε < r < 2h,
f ∈ L2(M) and V ⊆ M a Borel set such that μ(V ) > 0 and diam(V ) ≤ 2ε. Then,

∫

V

∣∣∣∣ f (x) −
1

μ(V )

∫

V
f dμ

∣∣∣∣
2

dμ(x) ≤ 2(1+ CmKr2)

η(1/2)ωm(r − ε)m
E2r ( f , V ).

Proof The proof is almost identical to the proof of [6, Lemma 3.4], replacing the
volume with the measure μ and taking Remark 11 into account. ��

Next, we define a smoothening operatorΛ : L2(M, ρμ) → Lip(M) similar to the
one introduced in [6, Section 5] but adapted to the kernel η. To this end, we first define
a mapping ψ : [0,∞) → [0,∞) by

ψ(t) := 1

ση

∫ ∞

t
η(s)sds.

Note that, as η is supported on [0, 1], ψ(t) = 0 for all t ≥ 1.

Remark 13 We remark that for η(t) = 1[0,1](t), the aboveψ coincides with the kernel
function used in [6, Section 5].

For every r > 0, we define the operator Λ0
r : L2(M,Vol) → Lip(M) by

(Λ0
r f )(x) :=

∫

M
f (y)kr (x, y)dVol(y) (3.4)

where

kr (x, y) := 1

rm
ψ

(
d(x, y)

r

)
.

As in [6, Definition 5.2], we define the smoothing operator Λr : L2(M, ρμ) →
Lip(M) by

Λr f (x) := (θ(x))−1Λ0
r f (x), (3.5)

where θ := Λ0
r1. Note that the term θ is introduced so that Λr preserves constant

functions.
Let us deduce someuseful properties of the functions just introduced. Sinceψ ′(s) =

− 1
ση

η(s)s for all s ≥ 0, we obtain from the mean value theorem that for any 0 ≤ t ≤ r

there exists t
r ≤ s ≤ 1 such that

1

rm
ψ

(
t

r

)
= 1

σηrm
η(s)s

(
1− t

r

)
.
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Hence, by the monotonicity of η, we have

kr (x, y) ≤ 1

σηrm
η

(
d(x, y)

r

)
(3.6)

for every x, y ∈ M. If d(x, y) ≤ r , then the gradient of the kernel kr can be written
as

∇kr (·, y)(x) = 1

rm+1ψ ′
(
d(x, y)

r

) − exp−1
x (y)

d(x, y)

= 1

σηrm+2 η

(
d(x, y)

r

)
exp−1

x (y)

(3.7)

where we refer to [6, (2.6)] for the gradient of the distance function. Moreover, we
have

∫

Rm
ψ(|x |)dx = 1. (3.8)

To see this, first note that using polar coordinates we obtain

mση =
m∑
i=1

∫

Rm
η(|x |)x2i dx =

∫

Rm
η(|x |) |x |2 dx = mωm

∫ ∞

0
η(r)rm+1dr ,

where ωm is the volume of the Euclidean unit ball in Rm . Thus, using integration by
parts and polar coordinates, it follows that

∫

Rm
ψ(|x |)dx = mωm

∫ ∞

0
ψ(r)rm−1dr

= −ωm

∫ ∞

0
ψ ′(r)rmdr

= ωm

ση

∫ ∞

0
η(r)rm+1dr = 1.

For θ(x) := Λ0
r (1), we now obtain the following bounds.

Lemma 7 (cf. [6, Lemma 5.1]) There exists an absolute constant C > 0 such that

(1+ CmKr2)−1 ≤ θ(x) ≤ 1+ CmKr2

and |∇θ(x)| ≤ CmKr/ση for all x ∈ M.

Proof We have

θ(x) = 1

rm

∫

BM(x,r)
ψ

(
d(x, y)

r

)
dVol(y) = 1

rm

∫

B(r)
ψ

( |v|
r

)
Jx (v)dv.
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Thus, the first assertion now follows from (1.34) and (3.8). Since (1.34) implies
|Jx (v) − 1| ≤ CmK |v|2 and since

∫

B(r)
ψ

( |v|
r

)
vdv = 0

for symmetry reasons, the bound on the gradient of θ can be obtained from (3.7) as

|∇θ(x)| = 1

σηrm+2

∣∣∣∣
∫

BM(x,r)
ψ

(
d(x, y)

r

)
exp−1

x (y)dVol(y)

∣∣∣∣

= 1

σηrm+2

∣∣∣∣
∫

B(r)
ψ

( |v|
r

)
v Jx (v)dv −

∫

B(r)
ψ

( |v|
r

)
vdv

∣∣∣∣

= 1

σηrm+2

∣∣∣∣
∫

B(r)
ψ

( |v|
r

)
v(Jx (v) − 1)dv

∣∣∣∣

≤ CmKr3

σηrm+2

∫

B(r)
ψ

( |v|
r

)
dv = CmKr

ση

.

��
In order to establish the following properties of Λr , we make use of the fact that

the densities p and ρ are Lipschitz continuous and are bounded from below. Thus,

p(x) ≤ (1+ L pαr)p(y) and ρ(x) ≤ (1+ Lραr)ρ(y)

whenever d(x, y) ≤ r .

Lemma 8 (cf. [6, Lemma 5.4]) Suppose that h satisfies Assumptions 3. Then, there
exists a universal constant C > 0 such that

‖Λr f ‖2L2(M,ρμ)
≤ (1+ αL pr)(1+ αLρr)(1+ CmKr2)‖ f ‖2L2(M,ρμ)

and

‖Λr f − f ‖2L2(M,ρμ)
≤ Cα2

σηrm
Er ( f )

for all f ∈ L2(M) and all r < 2h.

Proof The first assertion follows from Jensen’s inequality,

∫

M
(Λr f (x))

2ρ(x)dμ(x) ≤
∫

M

∫

M
Kr (x, y)

θ(x)
ρ(x)( f (y))2dVol(y)dμ(x)

≤ (1+ αL pr)(1+ αLρr)(1+ CmKr2)‖ f ‖2L2(M,ρμ)
,

where the last inequality follows from the Lipschitz continuity of p and ρ together
with the estimates from Lemma 7.

123



Foundations of Computational Mathematics

For the second assertion notice that as in the proof of [6, Lemma 5.4], we can
conclude that for a.e. x

|Λr f (x) − f (x)|2 ≤ 1

θ(x)

∫

BM(x,r)
kr (x, y) | f (y) − f (x)|2 dVol(y).

Integrating this inequality with respect to ρμ and using (3.6), we obtain that

‖Λr f − f ‖2L2(M,ρμ)

≤ 1+ CmKr2

σηrm

∫

M

∫

M
η

(
d(x, y)

r

)
| f (x) − f (y)|2 dVol(y)ρ(x)dμ(x)

≤ C

σηrm
α2Er ( f ).

��
Lemma 9 ([cf. [6, Lemma 5.5]) Suppose that h satisfies Assumptions 3. Then, there
exists a universal constant C > 0 such that

D(Λr f ) ≤ (1+ αL pr) · (1+ C(1+ 1/ση)mKr2)
1

σηrm+2 Er ( f )

for every f ∈ L2(M) and every 0 < r < 2h.

Proof We can write

∇(Λr f ) = 1

θ(x)
A1(x) + A2(x)

where

A1(x) :=
∫

BM(x,r)
∇kr (·, y)(x)( f (y) − f (x))dVol(y)

and

A2(x) := ∇(θ−1)(x)
∫

BM(x,r)
kr (x, y)( f (y) − f (x))dVol(y).

Regarding A1, we have |A1(x)| = 〈A1(x), w〉 for some unit vector w ∈ TxM.
Therefore, using (3.7),

|A1(x)| = 〈A1(x), w〉
= 1

σηrm+2

∫

BM(x,r)
η

(
d(x, y)

r

)
( f (y) − f (x))〈exp−1

x (y), w〉dVol(y)

= 1

σηrm+2

∫

B(r)
η

( |v|
r

)
ϕ(v)〈v,w〉Jx (v)dv.
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where ϕ(v) := f (expx (v)) − f (x). By the Cauchy–Schwartz inequality,

|A1(x)|2 ≤ 1

σ 2
η r

2(m+2)

∫

B(r)
|ϕ(v)|2 Jx (v)2η

( |v|
r

)
dv

∫

B(r)
〈v,w〉2η

( |v|
r

)
dv

= 1

σηrm+2

∫

B(r)
|ϕ(v)|2 Jx (v)2η

( |v|
r

)
dv

where, in the last step, we used radial symmetry to conclude that

∫

B(r)
〈v,w〉2η

( |v|
r

)
dv = rm+2

∫

B(1)
u21η(|u|)du = rm+2ση.

Now, we obtain from (1.34) that

|A1(x)|2 ≤ 1+ CmKr2

σηrm+2

∫

B(r)
|ϕ(v)|2 η

( |v|
r

)
Jx (v)dv

= 1+ CmKr2

σηrm+2

∫

M
η

(
d(x, y)

r

)
( f (y) − f (x))2dVol(y)

Integrating this inequality with respect to the density p2 and using the Lipschitz
continuity of p, we obtain

‖A1‖2L2(M,p2Vol)

≤ 1+ CmKr2

σηrm+2

∫

M

∫

BM(x,r)
η

(
d(x, y)

r

)
| f (y) − f (x)|2 dVol(y)p2(x)dVol(x)

≤ (1+ αL pr)(1+ CmKr2)

σηrm+2

∫

M

∫

BM(x,r)
η

(
d(x, y)

r

)
| f (y) − f (x)|2 dμ(y)dμ(x)

≤ (1+ αL pr)(1+ CmKr2)

σηrm+2 Er ( f ).

Regarding A2, first note that
∣∣∇(θ−1)

∣∣ ≤ CmKr/ση and θ ≤ C by Lemma 7. There-
fore, by the Cauchy–Schwartz inequality and (3.6), we obtain

|A2(x)|2 ≤
∣∣∣∇(θ−1)

∣∣∣
2
∫

M
kr (x, y)dy

∫

M
| f (y) − f (x)|2 kr (x, y)dVol(y)

=
∣∣∣∇(θ−1)

∣∣∣
2
θ(x)

∫

M
| f (y) − f (x)|2 kr (x, y)dVol(y)

≤ Cm2K 2r2

σ 3
η r

m

∫

M
η

(
d(x, y)

r

)
| f (y) − f (x)|2 dVol(y)
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Integrating this inequality with respect to the density p2 while using the Lipschitz
continuity of p shows that

‖A2‖L2(M,p2Vol) ≤
C(1+ αL pr)mKr2

ση

√
1

σηrm+2 Er ( f )

for some universal constant C . By combining these estimates and the lower bound for
θ from Lemma 7, we obtain that

D(Λr f )
1
2 ≤ (1+ αL pr) · (1+ C(1+ 1/ση)mKr2)

√
1

σηrm+2 Er ( f ).

Hence, the claim follows. ��

4 Convergence of Eigenvalues

In order to prove Theorem 4, we estimate the discrete Dirichlet form (1.7) in terms of
the continuous one (1.8) while we interpolate and discretize between the graph and
the manifold in an almost isometric manner using the mappings P , P∗ from (1.22),
(1.23) and Λr from (3.5). We start this section with some preliminary lemmas.

Lemma 10 Let us assume that the support of η is contained in [0, 1] and that η is
Lipschitz in [0, 1]. Then, for all r , s > 0 and t ≥ 0 we have

(i) η
(

t
r+s

)
≤ η

(
(t−s)+

r

)
≤ η

(
t

r+s

)
+ Lη

s
r 1{t≤r+s}

(ii) η
( t+s

r

) ≥ η
(

t
r−s

)
− Lη

s
r 1{t≤r−s} provided that s < r .

where Lη > 0 denotes the Lipschitz constant of η restricted to [0, 1].
Proof Regarding assertion (i), first note that every term vanishes for t > r + s.
In order to prove the first inequality in the remaining case, we need to verify that
(t − s)/r ≤ t/(r + s) provided that t ≤ r + s. This follows from

t

r + s
− t − s

r
= r t − (r + s)(t − s)

r(r + s)
= s

r

r + s − t

r + s
= s

r

(
1− t

r + s

)
> 0.

Combining this estimate with the Lipschitz continuity of η shows that

0 ≤ η

(
(t − s)+

r

)
− η

(
t

r + s

)
≤ Lη

(
t

r + s
− (t − s)+

r

)

≤ Lη

(
t

r + s
− t − s

r

)
= Lη

s

r

(
1− t

r + s

)
≤ Lη

s

r

which implies the second inequality of assertion (i). The proof of assertion (ii) is
completely analogous. ��
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The next results relate the operators P and P∗ defined in (1.22) and (1.23). In
particular, we show that P and P∗ are almost adjoint to each other and that P∗ is
almost an isometry. In casemμn = μn and ρμ = μ (i.e., in case m = (1, . . . , 1) and
ρ ≡ 1), then P and P∗ are truly adjoint to each other and P∗ is truly an isometry.

Lemma 11 For all u ∈ L2(X) and f ∈ L2(M)

∣∣〈P∗u, f 〉L2(M,ρμ)−〈u, P f 〉L2(X ,mμn)

∣∣ ≤ α(‖m−ρ‖∞+εLρ)〈P∗ |u| , | f |〉L2(M,ρμ)

and

∣∣∣∥∥P∗u
∥∥2
L2(M,ρμ)

− ‖u‖2L2(X ,mμn)

∣∣∣ ≤ α(‖m− ρ‖∞ + εLρ)
∥∥P∗u

∥∥2
L2(M,ρμ)

.

Moreover, if we assume that α‖m− ρ‖∞ ≤ 1
2 then ∀u ∈ L2(X),

‖P∗u‖2L2(M,ρμ)
≤ 2(1+ αLρε) ‖u‖2L2(X ,mμn)

for some universal constant C > 0.

Proof We infer from (1.12) that

∣∣〈u, P f 〉L2(X ,mμn)
− 〈P∗u, f 〉L2(M,ρμ)

∣∣

=
∣∣∣∣∣

n∑
i=1

mi

n
u(xi ) · n

∫

Ui

f dμ −
∫

M

n∑
i=1

u(xi )1Ui f ρdμ

∣∣∣∣∣

≤
∫

M

n∑
i=1

|u(xi )|1Ui | f (x)| · |mi − ρ(xi ) + ρ(xi ) − ρ(x)| dμ

≤ α(‖m− ρ‖∞ + εLρ)〈P∗ |u| , | f |〉L2(M,ρμ).

and

∣∣∣∥∥P∗u
∥∥2
L2(M,ρμ)

− ‖u‖2L2(X ,mμn)

∣∣∣

=
∣∣∣∣∣

n∑
i=1

(∫

Ui

u2(xi )ρdμ −
∫

Ui

miu
2(xi )dμ

)∣∣∣∣∣

≤
n∑

i=1

∫

Ui

u2(xi ) |ρ(x) − ρ(xi ) + ρ(xi ) − mi | dμ

≤ α(‖m− ρ‖∞ + εLρ)
∥∥P∗u

∥∥2
L2(M,ρμ)

.
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To prove the last part of the lemma, we notice that

∥∥P∗u
∥∥2
L2(M,ρμ)

=
n∑

i=1

u(xi )
2
∫

Ui

ρ(y)dμ(y) ≤ 2(1+ αLρε)

n

n∑
i=1

u(xi )
2mi

= 2(1+ αLρε)‖u‖2L2(X ,mμn)
.

��
The next lemma is a straightforward generalization of [6, Lemma 4.2].

Lemma 12 (cf. [6, Lemma 4.2]) For every f ∈ L2(M), we have

∥∥P∗P f
∥∥2
L2(M,ρμ)

≤ (1+ 2αLρε) ‖ f ‖2L2(M,ρμ)

In addition, there exists a universal constant C > 0 such that

∥∥ f − P∗P f
∥∥
L2(M,μ)

≤ C(1+ mαL pε)m2m/2σ
1/2
η√

η(1/2)ωm
εD( f )

1
2

for all f ∈ H1(M).

Proof The first assertion follows from Jensen’s inequality and the Lipschitz continuity
of ρ:

∫

M
(P∗P f (x))2ρ(x)dμ(x) ≤

n∑
i=1

∫

Ui

∫

Ui

n f (y)2ρ(x)dμ(y)dμ(x)

≤ (1+ 2αLρε)

n∑
i=1

∫

Ui

∫

Ui

n f (y)2ρ(y)dμ(y)dμ(x)

= (1+ 2αLρε)

∫

M
f (y)2ρ(y)dμ(y).

For the second assertion, we can use Lemma 5, Lemma 6 and Assumptions 3 on h,
to obtain

∥∥ f − P∗P f
∥∥2
L2(M,μ)

≤ 2(1+ CmKr2)

η(1/2)ωm(r − ε)m
E2r ( f )

≤ C(1+ 2αL pr)2mση

η(1/2)ωm

rm

(r − ε)m
r2D( f )

for any r ∈ (ε, 2h). When choosing r = (m + 1)ε, the quotient rm
(r−ε)m

is bounded by
3 and the assertion follows. ��

The next lemma is a generalization of [6, Lemma 4.3].
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Lemma 13 (cf. [6, Lemma 4.3]) The following assertions hold:

(i) For every f ∈ H1(M),

∣∣∣‖P f ‖2L2(X ,mμn)
− ‖ f ‖2L2(M,ρμ)

∣∣∣ ≤ α(‖m− ρ‖∞ + εLρ) ‖ f ‖2L2(M,ρμ)

+ C̃ ′ε‖ f ‖L2(M,ρμ)D( f )
1
2 ,

where C̃ ′ has the form

C̃ ′ = Cα(1+ αLρ)(1+ mαL p)m2m/2σ
1/2
η√

η(1/2)ωm
, (4.1)

for some universal constant C > 0.
(ii) For every f ∈ H1(M),

b(P f ) ≤ (1+ C ′
1h + C ′

2
ε

h
+ C ′

3h
2)D( f ),

where the constants C ′
1, C

′
2, C

′
3 can be written in terms of geometric quantities as

C ′
1 = CαL p, C ′

2 = C

(
m + 2m+1Lη(1+ αL p)

η(1/2)

)
, C ′

3 = Cm

(
K + 1

R2

)
,

where C is a universal constant.

Proof Since P∗ is almost an isometry by Lemma 11, we have

∣∣∣‖P f ‖2L2(X ,mμn)
− ‖ f ‖2L2(M,ρμ)

∣∣∣
≤

∣∣∣‖P f ‖2L2(X ,mμn)
− ∥∥P∗P f

∥∥2
L2(M,ρμ)

∣∣∣
+
∣∣∣∥∥P∗P f

∥∥2
L2(M,ρμ)

− ‖ f ‖2L2(M,ρμ)

∣∣∣
≤ α(‖m− ρ‖∞ + εLρ)

∥∥P∗P f
∥∥2
L2(M,ρμ)

+ (
∥∥P∗P f

∥∥
L2(M,ρμ)

+ ‖ f ‖L2(M,ρμ))
∥∥P∗P f − f

∥∥
L2(M,ρμ)

≤ α(‖m− ρ‖∞ + εLρ)(1+ 2αLρε)‖ f ‖2L2(M,ρdμ)

+ Cα(2+ αLρε)(1+ mαL pε)m2m/2σ
1/2
η√

η(1/2)ωm
ε‖ f ‖L2(M,ρdμ)D( f )

1
2

where the last inequality follows from Lemma 12 and from the boundedness of ρ.
This proves the first assertion.

Regarding the second assertion, we follow the proof of [6, Lemma 4.3(ii)] and
obtain that

∣∣P f (x j ) − P f (xi )
∣∣2 ≤ n2

∫

Ui

∫

Uj

| f (y) − f (x)|2 dμ(y)dμ(x).
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Let ĥ := (1 + 27
R2 h

2)h. Then, by Proposition 2, Lemma 10 and by the monotonicity
of η we have

b(P f ) ≤ 1

σηhm+2

∑
i

∑
j

∫

Ui

∫

Uj

η

(∣∣xi − x j
∣∣

h

)
| f (y) − f (x)|2 dμ(y)dμ(x)

≤ 1

σηhm+2

∑
i

∑
j

∫

Ui

∫

Uj

η

(
d(xi , x j )

ĥ

)
| f (y) − f (x)|2 dμ(y)dμ(x)

≤ 1

σηhm+2

∫

M

∫

M
η

(
(d(x, y) − 2ε)+

ĥ

)
| f (y) − f (x)|2 dμ(y)dμ(x)

≤ 1

σηhm+2

∫

M

∫

M

(
η

(
d(x, y)

ĥ + 2ε

)
+ 2Lη

ε

ĥ
1BM(x,ĥ+2ε)(y)

)

| f (y) − f (x)|2 dμ(y)dμ(x)

= 1

σηhm+2

(
Eĥ+2ε( f ) +

2Lη

η(1/2)

ε

h
E2(ĥ+2ε)( f )

)
,

where we refer to Remark 11 to justify the last step. Due to Assumptions 3, we obtain
from Lemma 5 that

1

σηhm+2 Eĥ+2ε( f ) ≤ (1+ CαL ph)(1+ CmKh2)

(
1+ 27h2

R2 + 2
ε

h

)m+2

D( f )

≤ (1+ CαL ph)(1+ CmKh2)

(
1+ Cm

h2

R2 + Cm
ε

h

)
D( f ),

where the last inequality is obtained from the fact that

(1+ s)m ≤ 1+ Cs, ∀0 ≤ s ≤ 3

m
,

for some universal constant C > 0. Likewise, we obtain

1

σηhm+2

2Lη

η(1/2)

ε

h
E2(ĥ+2ε)( f ) ≤

2m+1Lη

η(1/2)
(1+ CαL ph)(1+ CmKh2)

·
(
1+ Cm

h2

R2 + Cm
ε

h

)
ε

h
D( f ).

The result follows directly from the previous estimates. ��
We can now establish an upper bound for λk(Γ ) in terms of λk(M).

Proof (of upper bound of Theorem 4) Fix k ∈ N. By the minmax principle (1.29), we
have

λk(Γ ) ≤ sup
u∈L\{0}

b(u)

‖u‖2L2(X ,mμn)
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for every k-dimensional subspace L ⊆ L2(X ,mμn). Following the proof of [6,
Prop 4.4], we denote by W ⊂ H1(M) the span of orthonormal (with respect to the
L2(M, ρμ) inner product) eigenfunctions ofΔ corresponding to λ1(M), . . . , λk(M)

and we set L := P(W ). For every f ∈ W , we have D( f ) ≤ λk(M) ‖ f ‖2L2(M,ρμ)
. It

thus follows from part (i) of Lemma 13 that

‖P f ‖2L2(X ,mμn)
≥ (1− α(‖m− ρ‖∞ + εLρ) − C̃ ′√λk(M)ε) ‖ f ‖2L2(M,ρμ)

.

(4.2)

Hence, provided that

α(‖m+ ρ‖∞ + εLρ) + C̃ ′√λk(M)ε ≤ 1

2
,

we can conclude that P is injective onW , and therefore, dim L = k. Moreover, in that
case by applying part (ii) of Lemma 13 to u = P f ∈ L we obtain that

b(u)

‖u‖2
L2(M,mμn)

≤
(
1+ C ′

1h + C ′
2

ε
h + C ′

3h
2
)

1− α(‖m− ρ‖∞ + εLρ) − C̃ ′√λk(M)ε
λk(M)

≤
(
1+ C ′

1h + C ′
2
ε

h
+ C ′

3h
2 + αC(‖m− ρ‖∞ + εLρ) + C̃ ′√λk(M)ε

)
λk(M).

Since the previous inequality holds for every u = P f with f ∈ W , the desired estimate
now follows. ��
Lemma 14 (cf. [6, Lemma 6.2]) Suppose that h satisfies Assumptions 3. Then,

(i) For every u ∈ L2(X),

∣∣∣‖I u‖2L2(M,ρμ)
− ‖u‖2L2(X ,mμn)

∣∣∣ ≤ C̃ ′′h‖u‖L2(X ,mμn)
· b(u)

1
2

+ 2α(1+ αLρ) · (‖m− ρ‖∞ + Lρε) ‖u‖2L2(X ,mμn)
,

where the constant C̃ ′′ can be written as

C̃ ′′ = Cα(1+ αL p) · (1+ αLρ) · (1+ c′′
)
, c′′ = Lη4mω2

m(1+ αL p)
2

η(1/2)(m + 2)
.

(ii) For every u ∈ L2(X),

D(I u) ≤ (1+ C ′′
1h + C ′′

2
ε

h
+ C ′′

3h
2)b(u),

where the constants C ′′
1 , C

′′
2 , C

′′
3 have the form

C ′′
1 = αL p, C ′′

2 = C(m + C ′
2), C ′′

3 = C(1+ 1/ση)mK .
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Proof First, by Lemma 11,

∣∣∣‖I u‖2L2(M,ρμ)
− ‖u‖2L2(X ,mμn)

∣∣∣
≤

∣∣∣‖I u‖2L2(M,ρμ)
− ∥∥P∗u

∥∥2
L2(M,ρμ)

∣∣∣+
∣∣∣∥∥P∗u

∥∥2
L2(M,ρμ)

− ‖u‖2L2(X ,mμn)

∣∣∣
≤ (‖I u‖L2(M,ρμ) +

∥∥P∗u
∥∥
L2(M,ρμ)

)
∥∥I u − P∗u

∥∥
L2(M,ρμ)

+ α(‖m− ρ‖∞ + εLρ)
∥∥P∗u

∥∥2
L2(M,ρμ)

.

(4.3)

Since (m + 2)ε < h (by Assumption 3), we conclude from Lemma 8 that

∥∥I u − P∗u
∥∥2
L2(M,ρμ)

= ∥∥Λh−2εP
∗u − P∗u

∥∥2 ≤ Cα2

σηhm
Eh−2ε(P

∗u).

for some universal constant C > 0.
Let us now estimate Eh−2ε in terms of b(u). First, consider the kernel η̃ = 1[0,1].

We use b̃ and Ẽ to denote the discrete Dirichlet form and the energy E when using
the kernel η̃ and we write bh and b̃h , respectively, to specify that the forms b and b̃ are
being constructed using the value h. We claim that

b̃h(u) ≥ m + 2

ωmhm+2 Ẽh−2ε(P
∗u). (4.4)

Indeed, let T denote the transportation map introduced in Sect. 1.3 satisfying Ui =
T−1(xi ), then

b̃h(u) = 1

ση̃hm+2
1

n2

∑
i

∑
j

η̃

(∣∣xi−x j
∣∣

h

) ∣∣u(xi )−u(x j )
∣∣2

= 1

ση̃hm+2
∑
i, j

∫

Ui

∫

Uj

η̃

( |T (x)−T (y)|
h

) ∣∣(P∗u)(x)−(P∗u)(y)
∣∣2 dμ(y)dμ(x)

≥ 1

ση̃hm+2

∫

M

∫

M
η̃

(
d(T (x), T (y))

h

) ∣∣(P∗u)(x)−(P∗u)(y)
∣∣2 dμ(y)dμ(x)

≥ 1

ση̃hm+2

∫

M

∫

M
η̃

(
d(x, y)

h − 2ε

) ∣∣(P∗u)(x) − (P∗u)(y)
∣∣2 dμ(y)dμ(x)

= 1

ση̃hm+2 Ẽh−2ε(P
∗u),

where we note that the last inequality follows from the fact that d(T (x), T (y)) > h
implies that d(x, y) > h−2ε; we have used Remark 1 to rewrite ση̃ . We now consider
general η. Since η(t) ≥ η(1/2) > 0 for all t ∈ [0, 1/2], it follows that

b̃h/2(u) ≤ σηωm2m+2

η(1/2)(m + 2)
bh(u). (4.5)
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On the other hand, by the monotonicity of η and Lemma 10 we obtain

bh(u) ≥ 1

σηhm+2

∫

M

∫

M
η

(
d(T (x), T (y))

h

) ∣∣(P∗u)(x) −(P∗u)(y)
∣∣2 dμ(y)dμ(x)

≥ 1

σηhm+2

∫

M

∫

M
η

(
d(x, y) + 2ε

h

) ∣∣(P∗u)(x) − (P∗u)(y)
∣∣2 dμ(y)dμ(x)

≥ 1

σηhm+2

∫

M

∫

M
η

(
d(x, y)

h − 2ε

) ∣∣(P∗u)(x) − (P∗u)(y)
∣∣2 dμ(y)dμ(x)

− Lη

ση

ε

h

1

hm+2

∫

M

∫

M
1{d(x,y)≤h−2ε}

∣∣(P∗u)(x) − (P∗u)(y)
∣∣2 dμ(y)dμ(x)

= 1

σηhm+2 Eh−2ε(P
∗u) − Lη

ση

ε

h

1

hm+2 Ẽh−2ε(P
∗u)

≥ 1

σηhm+2 Eh−2ε(P
∗u) − CLη4m(1+ αL p)

2

ση

ε

h

1

hm+2 Ẽ h
2−2ε(P

∗u),

where the last inequality follows after applying Lemma 4 twice. We conclude from
(4.4) that

bh(u) ≥ 1

σηhm+2 Eh−2ε(P
∗u) − CLη2mωm(1+ αL p)

2

(m + 2)ση

ε

h
b̃ h

2
(u).

Combining this inequality with (4.5), we deduce that

(
1+ CLη4mω2

m(1+ αL p)
2

η(1/2)(m + 2)2
ε

h

)
bh(u) ≥ 1

σηhm+2 Eh−2ε(P
∗u)

which can be rewritten as

Eh−2ε(P
∗u) ≤

(
1+ CLη4mω2

m(1+ αL p)
2

η(1/2)(m + 2)2
ε

h

)
σηh

m+2b(u). (4.6)

Hence,

∥∥I u − P∗u
∥∥2 ≤ Cα2

σηhm
Eh−2ε(P

∗u) ≤ Cα2
(
1+ Lη4mω2

m(1+ αL p)
2

η(1/2)(m + 2)2
ε

h

)
h2b(u).

(4.7)

Finally, from Lemma 11 it follows that

∥∥P∗u
∥∥2
L2(M,ρμ)

≤ 2(1+ αLρε) ‖u‖2L2(X ,mμ)
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and from Lemma 8

‖I u‖L2(M,ρμ) =
∥∥Λh−2εP

∗u
∥∥
L2(M,ρμ)

≤ C(1+ αL ph)1/2 · (1+ αLρh)1/2‖P∗u‖L2(M,ρμ)

≤ C(1+ αL ph) · (1+ αLρh)‖u‖L2(X ,mμn)

Assertion (i) follows by inserting all these estimates back in (4.3).
Regarding assertion (ii), we conclude from Lemma 9 that

D(I u) ≤ (1+ αL ph) ·
(
1+ C

(
1+ 1

ση

)
mKh2

)
1

ση(h − 2ε)m+2 Eh−2ε(P
∗u)

≤ (1+ αL ph) ·
(
1+ C

(
1+ 1

ση

)
mKh2

)(
1+ Cm

ε

h

) 1

σηhm+2 Eh−2ε(P
∗u)

≤
(
1+ αL ph + C

(
1+ 1

ση

)
mKh2 + Cm

ε

h

)
1

σηhm+2 Eh−2ε(P
∗u).

Combining with (4.6), we obtain the desired estimate. ��
We can now establish a lower bound for λk(Γ ) in terms of λk(M).

Proof (of lower bound of Theorem 4) Let k ∈ N. It follows from (1.30) that for very
k-dimensional subspace L ⊂ H1(M), we have

λk(M) ≤ sup
f ∈L\{0}

D( f )

‖ f ‖2
L2(M,ρμ)

.

As in the proof of [6, Prop 6.3] we denote by W ⊆ L2(X) the span of orthonormal
eigenvectors ofΔΓ corresponding to λ1(Γ ), . . . , λk(Γ ) andwe set L := I (W ). Then,
b(u) ≤ λk(Γ ) ‖u‖2L2(X ,mμn)

for all u ∈ W . Using this, we conclude from Lemma 14

‖I u‖2L2(M,ρμ)
≥ (

1− 2α(1+ αLρ)(‖m− ρ‖∞ + Lρε) − C̃ ′′√λk(Γ )h
)

‖u‖2L2(X ,mμn)

(4.8)

for all u ∈ W . It follows that if

2α(1+ αLρ)(‖m− ρ‖∞ + Lρε) + C̃ ′′√λk(Γ )h ≤ 1

2

then the operator I is injective on W , and thus, dim L = k; notice that this inequality
is satisfied under condition (1.17) thanks to the upper bound for λk(Γ ) in terms of
λk(M). It follows from part (ii) of Lemma 14 that for any f = I u with u ∈ W ,

D( f )

‖ f ‖2
L2(M,ρμ)

≤ 1+ C ′′
1h + C ′′

2
ε
h + C ′′

3h
2

1− 2α(1+ αLρ)(‖m− ρ‖∞ + Lρε) − C̃ ′′√λk(Γ )h
λk(Γ )
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The result now follows from the fact that the above inequality holds for arbitrary
u ∈ W and the fact that λk(Γ ) can be bounded from above by a constant multiple of
λk(M). ��

5 Approximation of Eigenfunctions

In this section, we are concerned with the convergence of eigenvectors of ΔΓ . We
start by showing that the discretization and interpolation operators P and I are almost
inverse of one another.

Lemma 15 (cf. [6, Lemma 6.4]) Under Assumptions 3, there exists a constant C ′′′
only depending on m, α, η, L p, Lρ such that

(i) ‖I P f − f ‖L2(M,ρμ) ≤ C ′′′hD( f )
1
2 for all f ∈ H1(M).

Moreover, if

α‖m− ρ‖∞ + εLρ ≤ 1

2
, then,

(ii) ‖P Iu − u‖L2(X ,mμn)
≤ C ′′′hb(u)

1
2 for all u ∈ L2(X).

Proof By definition of I , we have

‖I P f − f ‖ ≤ ∥∥Λh−2ε(P
∗P f − f )

∥∥+ ‖Λh−2ε f − f ‖ .

FromLemmas 8 and 12, and fromAssumptions 3, we know that for a constantC ′′ > 0,
depending on η, m, L p, Lρ and α,

∥∥Λh−2ε(P
∗P f − f )

∥∥
L2(M,ρμ)

≤ C ′′ ∥∥P∗P f − f
∥∥
L2(M,μ)

≤ C ′′εD( f )
1
2 .

Likewise, from Lemmas 8 and 5,

‖Λh−2ε f − f ‖2L2(M,ρμ)
≤ C ′′

(h − 2ε)m
Eh−2ε( f ) ≤ C ′′h2D( f ),

and from this we deduce assertion (i).
Regarding assertion (ii), if we assume that α‖m−ρ‖∞+εLρ ≤ 1

2 , we obtain from
Lemma 11 that

‖P Iu − u‖L2(M,ρμ) ≤ 4
∥∥P∗(P Iu − u)

∥∥
L2(M,ρμ)

≤ 4
∥∥P∗P Iu − I u

∥∥
L2(M,ρμ)

+ 4
∥∥I u − P∗u

∥∥
L2(M,ρμ)

.

From Lemmas 12 and 14, and from Assumptions 3, we obtain that

∥∥P∗P Iu − I u
∥∥
L2(M,ρμ)

≤ C ′εD(I u)
1
2 ≤ C ′εb(u)

1
2
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for a constant C ′ depending on η,m, L p, Lρ and α. Moreover, by (4.7) we know there
exists C ′′′ > 0 (depending on η, m, L p, Lρ and α) such that

∥∥I u − P∗u
∥∥
L2(M,ρμ)

≤ C ′′′hb(u)
1
2 .

This implies assertion (ii). ��

Now, we adopt some additional notation from [6, Section 7]. For a value λ ∈ R, we
denote by Hλ(M) the linear span in H1(M) of all eigenfunctions ofΔ corresponding
to eigenvalues in the interval (−∞, λ). Similarly, we define Hλ(X) as the linear span
of eigenvectors of ΔΓ corresponding to eigenvalues in (−∞, λ). We write Pλ for
both, the orthogonal projection onto Hλ(M) and Hλ(X).

Lemma 16 (cf. [6, Lemma 7.1]) Suppose that h satisfies Assumptions 3 and that

α‖m− ρ‖∞ + εLρ ≤ 1

2
.

Then, for every λ > 0 we have

(i) b(P f )
1
2 ≥

(
1− (

√
λC ′′′ + C ′′

1 )h − C ′′
2

ε
h − C ′′

3h
2
)
D( f )

1
2 .

(ii) D(I u)
1
2 ≥

(
1− (

√
λC ′′′ + C ′

1)h − C ′
2

ε
h − C ′

3h
2
)
b(u)

1
2

for all f ∈ Hλ(M) and u ∈ Hλ(X). The constants C ′′
1 ,C ′′

2 ,C ′′
3 are as in Lemma 14,

C ′
1,C

′
2,C

′
3 are as in Lemma 13, and the constant C ′′′ is as in Lemma 15.

Proof Fix some λ > 0. First note that the projectionPλ does not increase the Dirichlet
energy (neither the graph one nor the continuum one), and hence we conclude that

D(I P f )
1
2 ≥ D(Pλ I P f )1/2 ≥ D( f )1/2 − D(Pλ I P f − f )1/2.

From Lemma 15 (i) it follows that,

D(Pλ I P f − f )
1
2 = D(Pλ(I P f − f ))

1
2 ≤ √

λ ‖I P f − f ‖L2(M,ρμ) ≤ C ′′′√λhD( f )
1
2

for all f ∈ Hλ(M). Hence,

D(I P f )
1
2 ≥ (1− C ′′′h

√
λ)D( f )

1
2 .

Moreover, we know from Lemma 14 (ii) that

D(I P f )
1
2 ≤

(
1+ C ′′

1h + C ′′
2

ε

h
+ C ′′

3h
2
)
b(P f )

1
2
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and thus

b(P f )
1
2 ≥ 1− C ′′′h

√
λ

1+ C ′′
1h + C ′′

2
ε
h + C ′′

3h
2 D( f )

1
2

≥
(
1− (

√
λC ′′′ + C ′′

1 )h − C ′′
2

ε

h
− C ′′

3h
2
)
D( f )

1
2

for all f ∈ Hλ(M) as claimed in (i). Regarding assertion (ii), we proceed similarly.
First, we obtain that

b(P Iu)
1
2 ≥ b(u)1/2 − b(PλP Iu − u)1/2

for u ∈ Hλ(X). Since

b(Pλ(P Iu − u))
1
2 ≤ √

λ ‖P Iu − u‖L2(X ,mμn)
≤ √

λC ′′′hb(u)
1
2

by part (ii) of Lemma 15, we have

b(P Iu)
1
2 ≥ (1− C ′′′√λh)b(u)

1
2 .

Moreover, we know from part (ii) of Lemma 13 that

b(P Iu)
1
2 ≤

(
1+ C ′

1h + C ′
2
ε

h
+ C ′

3h
2
)
D(I u)

1
2 .

Therefore,

D(I u)
1
2 ≥ 1− C ′′′√λh

1+ C ′
1h + C ′

2
ε
h + C ′

3h
2 b(u)

1
2

≥
(
1− (C ′′′√λ + C ′

1)h − C ′
2
ε

h
− C ′

3h
2
)
b(u)

1
2 ,

which proves assertion (ii). ��

Proof (Theorem 5) This theorem can now be proven word-for-word as [6, Theorem
4] together with the required Lemmas [6, Lemma 7.2, 7.3, 7.4] by replacing every
application of Lemmas 4.3, 6.2, 7.1 and Theorem 1 therein with the previously proven
Lemmas 13, 14, 16 and Theorem 4, respectively. ��

We now focus on establishing Theorem 6. To simplify our computations, we set

θ :=
(

ε

h
+ (1+√

λk(M))h +
(
K + 1

R2

)
h2 + ‖m− ρ‖∞

)
.
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In the setting of Theorem 5, we have

∥∥P∗u − f
∥∥ ≤ ∥∥P∗u − I u

∥∥+ ‖I u − f ‖ ≤ C ′hb(u)1/2 + C̃

gk,ρμ

θ

= C ′h
√

λk(Γ ) + C̃

gk,ρμ

θ

where the second inequality follows from (4.7). From Theorem 4, for h small enough
we have

∥∥P∗u − f
∥∥ ≤ C ′h

√
λk(M) + C̃

gk,ρμ

θ, (5.1)

Therefore, every extension of u that approximates P∗u in L2(M, ρμ) (or equivalently
in L2(M, μ)) is also an approximation of the eigenfunction f .

We recall the definition of sets Ui ⊂ M in (1.21), Euclidean Voronoi cells Vi in
(1.25), and of the extended vector ū from (1.26). Concerning the measure of such a
Voronoi cell, we obtain the following bound.

Lemma 17 For every β > 1, there exists a constant C > 0 depending on m and on �

from (1.14) such that

μ(Vi )

μ(Ui )
≤ C · logmpm n =: C(n)

for all i = 1, . . . , n and all n ∈ N with probability at least 1− CK ,Vol(M),m,i0
n−β .

Proof We first show that Vi ⊆ {x ∈ M : |x − xi | ≤ ε}. To this end, suppose x ∈ M
such that |x − xi | > ε. Then also d(x, xi ) > ε. Since the balls BM(x j , ε) cover M
by the choice of ε, there exists x j such that d(x, x j ) < ε. Therefore,

∣∣x − x j
∣∣ < ε <

|x − xi | and thus x /∈ Vi . This proves the claim.
Now, we assume that the assertion of Theorem 2 holds. For ε ≤ R

2 , it follows from
Proposition 2 that Vi is contained in the ball BM(xi , 3ε). Thus, we obtain from the
bounds on the distortion of metric by the exponential map (1.35) that

μ(Vi )

μ(Ui )
≤ μ(BM(xi , 3ε))

μ(Ui )
≤ αωm(3ε)mC

1/n
= Cαωm3

m�m logpm ·m(n)

where � defined in (1.14), and C > 0 is a universal constant. ��
Proof (Theorem 6) Let u ∈ L2(X) be a normalized eigenvector of ΔΓ corresponding
to λk(Γ ) and let f a normalized eigenfunction of Δ corresponding to λk(M) as in
Theorem 5 (or as in (5.1)). Let

V := ‖ū − f ‖2L2(M,μ)
=

n∑
i=1

∫

Vi
|u(xi ) − f (y)|2 dμ(y)
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and

U :=
n∑

i=1

μ(Vi )

μ(Ui )

∫

Ui

|u(xi ) − f (x)|2 dμ(x).

Then, by Lemma 17 and (5.1),

√
U ≤ √

C(n) · ‖P∗u − f ‖L2(M,μ) ≤
√
C(n)

(
C ′h

√
λk(M) + C̃

gk,ρμ

θ

)
.

On the other hand,

|V −U | ≤
n∑

i=1

μ(Vi )

∣∣∣∣
∫

Vi
|u(xi ) − f (y)|2 dμ(y)

μ(Vi )
−
∫

Ui

|u(xi ) − f (x)|2 dμ(x)

μ(Ui )

∣∣∣∣

=
n∑

i=1

μ(Vi )

∣∣∣∣
∫

Vi

∫

Ui

(|u(xi ) − f (y)|2 − |u(xi ) − f (x)|2)dμ(y)

μ(Vi )

dμ(x)

μ(Ui )

∣∣∣∣

=
n∑

i=1

μ(Vi )

∣∣∣∣
∫

Vi

∫

Ui

(
2(u(xi ) − f (x))( f (x) − f (y)) + ( f (x) − f (y))2

)

dμ(y)

μ(Vi )

dμ(x)

μ(Ui )

∣∣∣∣

≤ 8‖∇ f ‖∞ε

(
n∑

i=1

μ(Vi )
∫

Vi

∫

Ui

|u(xi ) − f (x)| dμ(y)

μ(Vi )

dμ(x)

μ(Ui )

)
+ 16‖∇ f ‖2∞ε2

= 8‖∇ f ‖∞ε

(
n∑

i=1

μ(Vi )
∫

Ui

|u(xi ) − f (x)| dμ(x)

μ(Ui )

)
+ 16‖∇ f ‖2∞ε2

≤ 8‖∇ f ‖∞ε
√
U + 16‖∇ f ‖2∞ε2

where in the second equality we have used the fact that for all y ∈ Vi and all x ∈ Ui ,
d(x, y) ≤ d(x, xi ) + d(xi , y) ≤ 3ε + ε; the last inequality follows from Jensen’s
inequality.

Thus,

V ≤ |V −U | +U ≤ 16(ε‖∇ f ‖∞ +√
U )2,

and from this it follows that

‖ū − f ‖L2(M,μ) =
√
V ≤ 4ε‖∇ f ‖∞ + 4

√
U .

Using [22], we know that

‖∇ f ‖∞ ≤ CMλk(M)
m+1
4 ‖ f ‖L2(M,μ) = CMλk(M)

m+1
4 ,
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for a constant CM > 0 that depends on the manifoldM. Putting everything together,
we deduce that

‖ū − f ‖L2(M,μ) ≤ CMλk(M)
m+1
4 ε + C̃

√
C(n)

(√
λk(M)h + θ

gk,ρμ

)
,

which is the desired estimate. ��
Acknowledgements We are grateful to Yaroslav Kurylev who generously shared his knowledge of the
techniques that were crucial for this work and who also encouraged our collaboration. DS is grateful for
support of the National Science Foundation under the Grants DMS 1516677 and DMS 1814991. MH is
grateful for the support by the ERC Grant NOLEPRO. The authors are also grateful to the Center for
Nonlinear Analysis (CNA) for support.

A Proofs of Propositions in Sect. 1.6

Proof (of Proposition 1) The first claim follows immediately from (1.33). To deduce
the second part, let q1, q2 ∈ BM(p, r

2 ). Consider a smooth curve γ̃ : [0, 1] → M
connecting q1 and q2, i.e., γ̃ (0) = q1 and γ̃ (i) = q2. We observe that if γ̃ is not
contained in BM(p, r), then

d(q1, q2) ≤ d(q1, p) + d(q2, p) < r ≤ Length(γ̃ ).

In fact, to deduce that r ≤ Length(γ̃ ) let s ∈ (0, 1) be such that γ̃ (s) /∈ BM(p, r).
It is straightforward to see that the length of the restriction of γ̃ to the interval [0, s]
is larger than the distance between γ̃ (s) and ∂BM(p, r

2 ), which in turn is larger than
r
2 . Similarly, the length of the restriction of γ̃ to the interval [s, 1] is larger than r

2 .
Hence, r ≤ Length(γ̃ ) as desired.

Now, let γ̃ be a smooth curve realizing the distance between q1 and q2 (which after
appropriate normalization has to be a geodesic). From the previous observation, we
see that γ̃ is contained in BM(p, r). Consider γ := exp−1

p ◦γ̃ , where we note that
exp−1

p is well defined along γ̃ given that r ≤ i0. From the first part of the proposition,
we deduce that

1

2
d(exp−1

p (q1), exp
−1
p (q2)) ≤ 1

2
Length(γ ) ≤ Length(γ̃ ) = d(q1, q2).

Finally, for an arbitrary smooth curve γ : [0, 1] → B(r) ⊆ TpM with γ (0) =
exp−1

p (q1) and γ (i) = exp−1
p (q2) we have

d(q1, q2) ≤ Length(expp ◦γ ) ≤ 2 Length(γ ).

Taking the infimum on the right-hand side over all such curves γ , we deduce that
d(q1, q2) ≤ 2d(exp−1

p (q1), exp−1
p (q2)). This completes the proof. ��
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Proof (Proof of Proposition 2) The inequality |x − y| ≤ d(x, y) is trivial. To show
the other inequality, we note that since |x − y| ≤ R

2 , it follows from [19, Prop 6.3]
that

d(x, y) ≤ R − R

√
1− 2 |x − y|

R
.

Using the fact that for every t ∈ [0, 1], √1− t ≥ 1− 1
2 t − 1

2 t
2

d(x, y) ≤ R − R

(
1− |x − y|

R
− 2

R2
|x − y|2

)

= |x − y| + 2

R
|x − y|2 ≤ 2|x − y|. (A.1)

To improve the error estimate, let L = d(x, y) and let γ : [0, L] → M be an arc-
length-parameterized length-minimizing geodesic between x and y. Heuristically, γ
is a “straight” line in M, and thus, its curvature in Rd is bounded by the maximal
principal curvature of M in Rd , which is bounded by 1

R . More precisely, we claim
that

|γ̈ (t)| ≤ 1

R
for all t ∈ [0, L]. (A.2)

This statement follows from [19, Prop 6.1] (and is used in the proof of Proposition
6.3 of [19]). Using translation, we can assume that x = 0. Furthermore, note that that
γ̇ (t) · γ̈ (t) = 0 for all t . Thus,

|x − y| = |γ (L)| ≥ γ (L) · γ̇ (L) =
∫ L

0
γ̇ (s) · γ̇ (L)ds

=
∫ L

0

(
γ̇ (L) −

∫ L

s
γ̈ (r)dr

)
· γ̇ (L) ds

= L −
∫ L

0

∫ L

s

∫ L

r
γ̈ (r) · γ̈ (z)dzdrds ≥ L − L3

R2

(A.3)

Combining with (A.1) implies L ≤ |x − y| + 8
R2 |x − y|3. ��

B Kernel-Density Estimates via Transportation

Here, we use the estimates on infinity transportation distance established in Sect. 2
to show the kernel density estimates we need. While the estimates we prove are not
optimal, they do not affect the rate of convergence of eigenvalues and eigenfunctions
in our main theorems. We chose to present the proof as follows as it highlights how
the optimal transportation estimates can be used to provide general kernel-density
estimates in a simple and direct way.
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Lemma 18 Considerη : R → R, nonincreasing, supportedon [0, 1], andnormalized:∫
Rm η(|x |)dx = 1. Consider h > 0 satisfying Assumption 3. Then, (1.12) holds. That
is, there exists a universal constant C > 0 such that

max
i=1,...,n

|mi − p(xi )| ≤ CL ph + Cαη(0)mωm
ε

h
+ Cαm

(
K + 1

R2

)
h2, (B.1)

where ε is the ∞-OT distance between μn and μ (see Sect. 2).

The weights m are defined by

mi = 1

nhm

n∑
j=1

η

( |xi − x j |
h

)
, i = 1, . . . , n,

p is the density of μ with respect to M’s volume form. We remark that we do not
require η to be Lipschitz on [0, 1].

Proof First, notice that for every i, j with |xi − x j | ≤ h we have |xi − x j | ≤ R
2 , and

hence, Proposition 2 implies that

d(xi , x j ) ≤ |xi − x j | + 8

R2 |xi − x j |3 ≤
(
1+ 8h2

R2

)
|xi − x j |.

Therefore, for every i, j and every y ∈ Uj ,

η

( |xi − x j |
h

)
≤ η

(
d(xi , x j )

ĥ

)
≤ η

(
(d(xi , y) − ε)+

ĥ

)
,

wherewe recall that ε is the∞-OTdistance betweenμn andμ andwhere ĥ := h+ 27h3

R2 .
From this, it follows that

mi = 1

nhm

n∑
j=1

η

( |xi − x j |
h

)
≤ 1

hm

∫

M
η

(
(d(xi , y) − ε)+

ĥ

)
p(y)dVol(y)

≤ (p(xi ) + 10L ph)
1

hm∫

M
η

(
(d(xi , y) − ε)+

ĥ

)
dVol(y),

(B.2)
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where the last inequality follows using the Lipschitz continuity of p, the fact that
ε < h and the fact that h < R

2 (so that in particular ĥ + ε < 10h). Now,

1

hm

∫

M
η

(
(d(xi , y) − ε)+

ĥ

)
dVol(y) = 1

hm

∫

B(ĥ+ε)

η

(
(|z| − ε)+

ĥ

)
Jxi (z)dz

≤ 1

hm

∫

B(ĥ+ε)

η

(
(|z| − ε)+

ĥ

)
Jxi (z)dz

≤ (1+ CmKh2)
1

hm∫

B(ĥ+ε)

η

(
(|z| − ε)+

ĥ

)
dz,

(B.3)

where C is a universal constant. The last integral above can be estimated as follows

1

hm

∫

Rm
η

(
(|z| − ε)+

ĥ

)
dz = η(0)ωm

εm

hm
+ 1

hm

∫

B(ĥ+ε)\B(ε)

η

( |z| − ε

ĥ

)
dz

= η(0)ωm
εm

hm
+ ĥm

hm

∫ 1

0
mωm

(
r + ε

ĥ

)m−1

η (r) dr

≤ η(0)ωm
εm

hm
+
(
1+ 16mh2

R2

)

∫ 1

0
mωm

(
r + ε

h

)m−1
η (r) dr

(B.4)

Using the binomial theorem, we obtain

mωm

∫ 1

0

(
r + ε

h

)m−1
η(r)dr ≤ mωm

∫ 1

0
rm−1η(r)dr + mωmη(0)

m−1∑
k=1

(
m − 1

k

)( ε

h

)k 1

m − k

= 1+ ωmη(0)
m−1∑
k=1

(
m

k

)( ε

h

)k

= 1+ ωmη(0)

((
1+ ε

h

)m − 1− εm

hm

)

≤ 1+ 2mη(0)ωm
ε

h
− η(0)ωm

εm

hm
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where in the first equality we have used the fact that η was assumed to be normalized,
and in the last inequality, we have used

(1+ s)m ≤ 1+ 2ms whenever 0 ≤ s <
1

m
.

Combining (B.2), (B.3) and (B.4), we conclude that

mi − p(xi ) ≤ p(xi ) + CL ph + Cαη(0)mωm
ε

h
+ Cαm

(
K + 1

R2

)
h2,

for a universal constant C > 0.
In a similar fashion, we can find an upper bound for p(xi ) − mi . Indeed, observe

that for every i, j and y ∈ Ui we have

η

( |xi − x j |
h

)
≥ η

(
d(xi , x j )

h

)
≥ η

(
d(xi , y) + ε

h

)

and so

mi ≥ 1

hm

∫

M
η

(
d(xi , y) + ε

h

)
p(y)dVol(y)

≥ 1

hm

∫

M
η

(
d(xi , y) + ε

h

)
(p(xi ) − L pd(xi , y))dVol(y)

≥ (p(xi ) − L ph)
1

hm

∫

M
η

(
d(xi , y) + ε

h

)
dVol(y).

(B.5)

The above integral can be estimated from below by

1

hm

∫

M
η

(
d(xi , y) + ε

h

)
dVol(y) = 1

hm

∫

B(h−ε)

η

( |z| + ε

h

)
Jxi (z)dz

≥ (1− CmKh2)
1

hm

∫

B(h−ε)

η

( |z| + ε

h

)
dz

= (1− CmKh2)
∫ 1

ε/h
mωmη(r)(r − ε

h
)m−1dr

(B.6)
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where the second equality follows using polar coordinates and a change in variables;
the last inequality follows from the fact that η is assumed to be normalized. In turn,

∫ 1

ε/h
mωmη(r)

(
r − ε

h

)m−1
dr ≥

∫ 1

ε/h
mωmη(r)rm−1dr

− mωm
ε

h

∫ 1

ε/h
(m − 1)η(r)rm−2dr

≥ 1− 2η(0)mωm
ε

h
,

where we have used the fact that η was assumed to be normalized. Combining the
above inequalities, we deduce that

p(xi ) − mi ≤ L ph + CαmωmKh2 + Cαmωmη(0)
ε

h
.

��
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