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Abstract

We study the convergence of the graph Laplacian of a random geometric graph gen-
erated by an i.i.d. sample from a m-dimensional submanifold M in R? as the sample
size n increases and the neighborhood size / tends to zero. We show that eigenvalues

1
and eigenvectors of the graph Laplacian converge with a rate of O ((lo%) m) to the

eigenvalues and eigenfunctions of the weighted Laplace—Beltrami operator of M. No
information on the submanifold M is needed in the construction of the graph or the
“out-of-sample extension” of the eigenvectors. Of independent interest is a general-
ization of the rate of convergence of empirical measures on submanifolds in R? in
infinity transportation distance.

Keywords Graph Laplacian - Spectral clustering - Discrete to continuum limit -
Spectral convergence - Random geometric graph - Point cloud

Dedicated to the memory of Yaroslav Kurylev.

Communicated by Alan Edeiman.

B Dejan Slepcev
slepcev@math.cmu.edu

Nicolas Garcia Trillos
garciatrillo@wisc.edu

Moritz Gerlach
gerlach@cs.uni-saarland.de

Matthias Hein
matthias.hein @uni-tuebingen.de
Department of Statistics, University of Wisconsin-Madison, Madison, USA
Department of Mathematics and Computer Science, Saarland University, Saarbriicken, Germany
Department of Computer Science, University of Tiibingen, Tiibingen, Germany
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, USA
FolCT
H_h
Published online: 24 September 2019 @ Springer |70


http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-019-09436-w&domain=pdf

Foundations of Computational Mathematics

Mathematics Subject Classification 62G20 - 65N25 - 60DO05 - 58J50 - 68R10 - 05C50

List of Symbols
M

Vol(A)
d(x,y)
Ba(x,r)
B(r)

Hn

wi, j
Su

Oy

W
doo (i, v)
&
L
P
P*
1
Elol:;ﬂ
@ Springer Lﬁjog

Compact manifold without boundary embedded in R?. Riemann
metric on M is the one inherited from R?

The dimension of M

The volume of A C M according to Riemann volume form

The geodesic distance between points x, y € M

Ball in M with respect to geodesic distance on M

Ball in RY of radius r, centered at the origin

Probability measure supported on M that describes the data distri-
bution

Density of © with respect to volume form on M

Density of the weight measure (which allows us to consider the
normalized graph Laplacian) with respect to

Constant describing the bounds on the densities p and p, see (1.2)
and (1.9)

Point cloud X = {xi1,...,x,} C M drawn from distribution .
Also considered as the set of vertices of the associated graph
Empirical measure of the sample X

The vector giving the values of the discrete weights used in various
forms of graph Laplacian, see Sects. 1.2.1 and 1.2.2

Edge weight between vertices x; and x;

Differential of function # : X — R. It maps edges to R and is
defined by du; ;j = u(x;) — u(x;)

Injectivity radius of M. The injectivity radius at a point p € M
is the largest radius of a ball for which the exponential map at p
is a diffeomorphism. The injectivity radius iy is the infimum of the
injectivity radii at all points of M

Maximum of the absolute value of sectional curvature of M
Reach of M, defined in (1.37)

Nonnegative function setting the edge weights as a function of the
distance between the vertices, see (1.5)

Length scale such that weight between vertices is large if their dis-
tance is comparable to or less than A

Is the kernel-dependent scaling factor relating the graph Laplacian
and the continuum Laplacian; defined in (1.4)

The volume of unit ball in R™

Infinity transportation distance between measures [, v

Upper bounds on the transportation distance between u and u,,
Lipschitz constant of various functions: p, p and n

Discretization operator defined in (1.24)

Is the adjoint of P if p = 1 and an approximate adjoint otherwise
Interpolation operator defined in (1.24)
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1 Introduction

Given an i.i.d. sample X = {x,...,x,} from the data generating measure u in
Euclidean space R¢, the goal of most tasks in machine learning and statistics is to
infer properties of . A particularly interesting case is when p has support on a m-
dimensional compact submanifold M in R?, e.g., due to strong dependencies between
the individual features. In this case, one can construct a neighborhood graph on the
sample by connecting all vertices of Euclidean distance less than a certain length
scale A, and in this way produce a discrete approximation of the unknown manifold
M. Laplacian Eigenmaps [2] and Diffusion Maps [8] have been proposed as tools
to extract intrinsic structure of the manifold by considering the eigenvectors of the
resulting unnormalized resp. normalized graph Laplacian; in particular, Laplacian
eigenmaps are used in the first step of spectral clustering [29], one of the most popular
graph-based clustering methods. In general, it is well known that the spectrum of the
graph Laplacian resp. Laplace—Beltrami operator captures important structural resp.
geometric properties of the graph [17] resp. manifold [7].

In this paper, we examine this question: Under what conditions, and at what rate,
does the spectrum of the graph Laplacian built from i.i.d. samples on a submanifold
converge to the spectrum of the (weighted) Laplace—Beltrami operator of the subman-
ifold as the sample size n — oo and the neighborhood radius # — 07?

Graph-based approximations to the Laplace—Beltrami operator have been studied
by several authors and in a variety of settings. The pointwise convergence of the
graph Laplacian toward the Laplace—Beltrami operator has been proven in [4,13—
15,25,28]. The spectral convergence of the graph Laplacian for fixed neighborhood
size h for Euclidean domains has been established in [21,30], and error rates have been
given. The spectral convergence of the graph Laplacian toward the Laplace—Beltrami
operator for the uniform distribution has been discussed, for Gaussian weights, in [3],
and in [26] for the more general connection Laplacian (as well as the usual graph
Laplacian), without precise information on allowable scaling of neighborhood radius,
h and without convergence rates. In [12], the authors establish the conditions on graph
connectivity for the spectral convergence on domains in R™. In particular, they prove
convergence when 4 — 0 as n — oo and

log n)Pm
>>( gn)

h - ,
nm
where
3 .
b {% it m >3, b

Howeyver, no error estimates were established.
The preprint [23] establishes (in Theorem 1.1) the spectral convergence of graph
Laplacians constructed from data sampled from a submanifold in RY with a conver-

1

gence rate of O <(10%) 4’”“4), where m is the intrinsic dimension of the submanifold.
FolCT
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In this paper, we propose a general framework to analyze the rates of spectral con-
vergence for a large family of graph Laplacians. This framework in particular allows

1
us to improve the results in [23] and establish a convergence rate of O ((10’#) 2’")

which is a significant improvement, in particular for small dimensions m. These con-
vergence rates hold for different reweighing schemes of the graph Laplacian found
in the literature including the unnormalized Laplacian, normalized Laplacian, and the
random walk Laplacian. When the intrinsic dimension of the submanifold M is small,
our results show, to some extent, why Laplacian eigenmaps can effectively extract geo-
metric information from the data set, even though the number of features d may be
high. Moreover, similar to [12], we show that the conditions in (1.1) are sufficient for
spectral convergence. This is essentially the same condition required to ensure that the
constructed graph is almost surely connected [20] and thus is close to optimal. It is

interesting to note that for pointwise consistency of the graph Laplacian [13,15], the

required stronger condition is ”lh — OQ.

Our framework is rather dlfferent from those in [3,23] and builds on two main ideas.
First, it builds on an extension of the recent result of Burago, Ivanov und Kurylev [6],
see also [10], which shows in a non-probabilistic setting how one can approximate
eigenvalues and eigenfunctions of the Laplace—Beltrami operator using the eigenval-
ues/eigenvectors of the graph Laplacian associated with an e-net of the submanifold.
As in our setting the manifold M is unknown, we generalize the result of [6] by using
a graph construction which requires no knowledge about the submanifold M but
which achieves the same approximation guarantees for the eigenvalues. In addition,
we introduce a new out-of-sample extension of the eigenvectors for the approximation
of the eigenfunctions which requires no information about the submanifold without
significant loss in the convergence rate compared to the corresponding construction
used in [6]. Our second main result generalizes the recent work of Garcia Trillos
and Slep&ev [11] to the setting of empirical measures on submanifolds M c R4
and establishes their rate of convergence in co-optimal transportation (OT) distance;
the oo-OT distance between the empirical measure associated with a point cloud and
the volume form of the submanifold can be seen to be closely related to the notion
of e-net used in [6]. These estimates encompass all the probabilistic computations
that we need to obtain our main results, and in particular, when combined with our
deterministic computations, provide all the probabilistic estimates that quantify the
rate of convergence of the spectrum of graph Laplacians constructed from randomly
generated data toward the spectrum of a (weighted) Laplace—Beltrami operator on M.
We believe that both the generalization of [6] as well as the generalization of [11] are
of independent interest. The combination of these two ideas and a number of careful
estimates lead to our main results.

In what follows, we make the setting that we consider in the sequel precise, as well
as define precisely the different graph Laplacians and their continuous counterparts.

1.1 Graph Construction

Let M be a compact connected m-dimensional Riemannian manifold without bound-

ary, embedded in R4, with m > 2. We assume that the absolute value of sectional
Fol:'ﬂ
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curvature is bounded by K, the injectivity radius is iop and with reach R. We write
d(x, y) for the distance between x and y on the manifold and |x — y| for the Euclidean
distance in RY.

Let 1 be a probability measure on M that has a non-vanishing Lipschitz continuous
density p with respect to the Riemannian volume on M with Lipschitz constant L .
Compactness of M and continuity of p guarantee the existence of a constant « > 1
such that

1
— <pkx) <a forallx € M. (1.2)

o
Weletxy, x2, ..., X, ... beasequence of i.i.d. samples from p. In order to leverage
the geometry of M from the data, we build a graph with vertex set X := {x1, ..., x,}.

In the simplest setting, for each n € IN we choose a neighborhood parameter & = h,,
and we put an edge from x; to x; and from x; to x; (and write x; ~ x;) provided
that |x,- —xj| <hywelet E ={@,j)e{l,....n}*:x; ~ x;j} be the set of such
edges. More generally, we consider weighted graphs, with weights that depend on the
distance between the vertices connected by them. For that purpose, let us consider a
decreasing function n: [0, co) — [0, co) with support on the interval [0, 1] such that
the restriction of  to [0, 1] is Lipschitz continuous. Normalizing 7 if needed allows
us to assume from here on that

/ n(lx)dx = 1. (1.3)
Rm

For convenience, we assume that (1/2) > 0. We denote by

oy 1= /R Iyl n(lyhdy, (1.4)

the surface tension of 1, where y; represents the first coordinate of the vector y € R".
To every given edge (i, j) € E, we assign the weight w; ;, where

1 P .
Wi = e <—}x’ ; x") (1.5)

and we consider the weighted graph (X, w) with w; ; as in (1.5) for every (i, j). In
fact, note that if the points x;, x; are not connected by an edge in E then w; ; = 0.

Remark 1 The function 5 can be chosen as c1yg, 1] as well as a smooth function like

n() :=c{e"P(%) 0<r<l
0

t>1,

where ¢ is the appropriate constant ensuring normalization or simply a truncated
version of a Gaussian. Also, we note that for n = wL,,,]l[OJ] it follows from [6, (2.7)]
EOE';W
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that o, = mLH, where w,, is the volume of the unit ball in R™. While the definition of

the weights is up to the constant o, and a slightly different rescaling in terms of 4 is
similar to [6], the main difference is that we use the Euclidean metric of the ambient
space R4 in (1.5), whereas in [6] neighborhoods are throughout defined in terms of
the geodesic distance. Here, we are forced to use the metric from the ambient space
as the manifold M is in general assumed to be unknown.

Remark 2 We have assumed that n: [0, 1] — IR is decreasing and that n(1/2) > 0,
which would imply that 7(0) > 0. Nevertheless, we remark that none of the results
presented in this paper change if we modify the value of 1(0). In particular, we allow
for n(0) = 0 if desired and we can simply assume that 7 is decreasing and Lipschitz
in (0, 1) (then the condition n(0) > 0 changes to n(0+) > 0). This observation is
relevant in order to allow for graphs where vertices have no edges with themselves.

Remark 3 The requirement that 7 is compactly supported is purely a technical one. It
is in principle possible to carry out the arguments of this work for noncompact kernels,
like the Gaussian one. However, that would require obtaining error bounds on extra
terms and would make the already involved estimates even more complicated.

1.2 Dirichlet Forms and Laplacians

In this section, we introduce the Laplacians in both discrete and continuous settings.

We use the graph structure defined in the previous section to define a Dirichlet form
in the discrete setting. First, the weights w; ; serve as a measure on the set £ and thus
induce a scalar product of functions ', G: E — R given by

1 N
(F,G) = (F,G)papu) = — Z wi i FG, NG, j).
" (i,j)eE

Second, for functions u, v: X — IR on the vertices, we define the discrete differential
bu)(d, j) = %(u(xj) —u(x;)) for (i, j) € E. (1.6)

We can then define the discrete Dirichlet form between u, v: X — R as
b(u, v) == (0u, 8v) 12 (g - (1.7)
In the continuous setting, on the domain V := H'(M, i) (the Sobolev space

of functions in L2(M, w) with distributional derivative in L2(M, n)) we define the
Dirichlet form D: V x V — R as

D(f.g) = /MWf, Vg)x p?(x)dVol(x), (1.8)

where Vol stands for the Riemannian volume form of M, V f and Vg are the gradients

of f and g and (-, -) represents the Riemannian metric induced on M. Since p is
FoC'T
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bounded from above, this symmetric bilinear form is continuous, i.e., |D(f, g)| <
C'|Iflly liglly for a suitable constant C’ > 0 and all f, g € V. For the remainder, we
use b(u) and D(f) as shorthand for b(u, u) and D(f, f), respectively.

Next, we choose measures on X and on the manifold M and define corresponding
operators associated with the forms » and D on L*(X) and L2(M), respectively. The
idea is that by modifying the inner product in L?(X) and in L(M), we obtain different
realizations of Laplacian operators. The so-called unnormalized and random walk
graph Laplacian (see definitions below), as well as their continuous counterparts, are
instances of the general framework that we consider. Let 1, be the empirical measure
of the random sample, i.e.,

On X, we consider the measure u,, endowed with a density m = (my,...,my),
denoted by my,,. On the other hand, on M, we consider the measure pu, where p is a
Lipschitz continuous density with Lipschitz constant L, with respect to p satisfying

1
— < pkx) <a forallx € M. (1.9
o

On the graph I' = I'(X, mpu,, E, w), we define the associated weighted graph
Laplacian A as §*§, i.e., as the unique operator satisfying

(A[‘I/l, v)LZ(X’mMn) = <8M, 5U>L2(E,w)

forall u, v e L*(X).
At the continuum level, we define a weighted Laplacian associated with the form
D and the measure pu as follows. On the domain

Dom(A) := {f eV:3he L M, pu)s.t. D(f.g) = (h, &) 2Mm.pp Y8 € v}

we set Af := h. The operator A is formally defined as
Af = ——div(p"V f),
pp

where div stands for the divergence operator on M.

One of the main results of this paper is that the spectrum of A approximates well
that of A. Intuitively, one of the elements needed for this to be true is that the measure
m/, approximates pu as n — 0o. We use

Im = plloo == max [m; — p(xi)] (1.10)
to quantify this approximation.

EOE';W
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We now describe particular forms of the graph Laplacian frequently used in the
machine learning literature.

1.2.1 Unnormalized Graph Laplacian

To obtain the unnormalized graph Laplacian, we choose the density vector m as
(1,1,...). Then, Ar is explicitly given by

(Aru)(x;) = > wi ) — ulx;))

Jiir~j

h2

for all x; € X, which is, up to the factor known as the unnormalized graph

h2’
Laplacian. In this case, p = 1, since p is the 11m1t of m as n — oo. This results in a
realization of the Laplacian on L2(M, pu) that satisfies

| arepeoas = [ (w7 Ven = pir.)
M M
forall f, g € Dom(A).In case p € C!'(M), this operator A coincides with
L.,
Af =—p-Aof = > div(p~V f)

from Definition 8 of [15], where it was identified as the pointwise limit of the unnor-
malized graph Laplacian.

1.2.2 Random Walk Graph Laplacian

In order to obtain the random walk graph Laplacian, we choose the density vector m
as the vertex degrees, i.e.,

m,:—Zw,,— hmZ (’xl xﬂ) fori e {1,...,n} (1.11)

and p(x) = p(x) for all x € M. Then, A is given by
(Aru)(xi) = h2 > BT () — u(x))
Jiir~j
for all x; € X and A satisfies
[ ar-g-pave=ir.g)
M

Fo C 'ﬂ
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forall f, g € Dom(A). In case that p € C'(M), A is nothing but
L.,
Af =—-A2f = 2 div(p~V f)

from [15, Definition 8]. In the remainder, we use AY to denote the random walk graph
Laplacian and A™ for its continuous counterpart. Showing the closeness of m and p,
(1.10), reduces to showing a kernel-density estimate on a manifold. In “Appendix B,”
we show that provided # satisfies Assumption 3, we have

1
_ nllax |m; — p(x;)| < CLpyh + Can(O)mwmh + Cam (K + R_> h2 (1.12)
i=1,...,n

where C > 0 is a universal constant and ¢ is the oco-OT distance between u, and
u (see (1.13) and Sect. 2). These estimates are proved using a simple and general
approach using the transportation maps introduced in Sect. 2, in contrast to usual
kernel-density estimation approaches. The estimates are not optimal, but they are on
the same order of error as the approximation error of the Dirichlet form D by the
discrete Dirichlet form b that we present in Lemmas 13 and 14; the bottom line is
that the rates of convergence for the spectrum of the random walk graph Laplacian are
unaffected by the non-optimal estimate (1.12). On the other hand, our proof of (1.12)
has the advantage of reducing all probabilistic estimates in our problem to estimating
the co-OT distance between u, and u; which is done in Sect. 2.

1.2.3 Normalized Graph Laplacian

So far, we have described how one can obtain the unnormalized and random walk
Laplacians as examples of the general framework introduced in this section. Let us
recall another popular version of normalized Laplacian usually referred to as sym-
metric normalized graph Laplacian. For given u: X — R, the symmetric normalized
Laplacian of u is given by

wij (ulx;) ulxj)
o = s 30 (U204

/‘N/

with m; defined by (1.11). We remark that A? cannot be obtained by appropriately
choosing the measure myu as described in this section. (In order to recover it, we would
have to modify the definition of discrete differential in (1.6).) Nevertheless, we can
indirectly analyze the rate convergence of its spectrum toward that of a continuous
counterpart noting that AS and A™ are similar matrices. Indeed, we recall that A}iu =
Au if and only if ATYv = Av, where v(x;) := m; 1/2u(xl) Thus, A} and Ar share
the same spectrum.

FoE'ﬂ
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1.3 Main Results
1.3.1 Convergence of Eigenvalues and Transportation Estimates

Our first main result is the following.

Theorem 1 Let x1, ..., x, be i.i.d. samples from a distribution pu supported on M,
with density p satisfying (1.2). Consider m and p as in Sect. 1.2.1 or Sect. 1.2.2. For
k > 2, let i (I") be the kth eigenvalue of the graph Laplacian Ar defined in Sect. 1.2

with
__ [log(n)Pm
=\ =

where pp, = 3/4ifm =2 and p,, = 1/m if m > 3. Let .y (M) be the kth eigenvalue
of the Laplacian A defined in Sect. 1.2. Then,

A () — A (M)I 0< M) almost surel
wMy O\ ) g

The actual choice of & in the previous theorem is explained by the more general
and detailed result stated in Theorem 4, together with the estimates for the co-OT
distance between u and w,, in Theorem 2. Indeed, we have taken / to scale like /¢,
where ¢ is the co-OT distance between u and w,,. More precisely,

& =doo(lt, bp) := min esssup,crqd(x, T(x)). (1.13)
T:Typ=pin

where T;u = p, means that ,u(T_l(U)) = wu, (U) for every Borel subset U of M.
Such mappings T are called transport maps from w to w,. One of the key ingredi-
ents needed to establish Theorem 1 is the probabilistic estimate on co-OT distance
contained in our next theorem.

Theorem 2 Let M be a smooth, connected, compact manifold with dimension m.
Let p: M — R be a probability density satisfying (1.2) and consider the measure
dp = pdVol. Let x1, ..., x, be an i.i.d sample of ju. Then, for any B > 1 and every
n € IN there exists a transportation map T,,: M — X and a constant A such that

sup d(x, T,(x)) <L:=A

reM (logn)l/”’ (114)

Sy if m >3,

3/4 .
rﬁ@, if m =2,

holds with probability at least 1 — Cg ol M), m.ig - n=#8, where A depends only on K,
ig, m, Vol(M), a and B.

The exact dependency of A in (1.14) on the geometry of M is given in Lemma 1.
We remark that the scaling on n on the right-hand side is optimal, even in the Euclidean
case [11].

FoC'T
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With the estimates in Theorem 2 at hand, Theorem 1 follows from the more general
Theorem 4 below (more precisely from its corollaries). Indeed, convergence rates
for the spectrum of graph Laplacians can be written in terms of /& and ¢ as long as
0 < ¢ <€ h « 1. Throughout this paper, we assume that #, ¢, % and |m — p|o are
sufficiently small. In particular, we make the following assumptions.

Assumption 3 Assume that

. io 1 R }
h<minil, —, —, —— and (m+5)¢e < h,
{ 10 VmK /27m ( )

where i is the injectivity radius of the manifold M, K is a global upper bound on the
absolute value of sectional curvatures of M, m is the dimension of M, and R is the
reach of M (seen as a submanifold embedded in R4 ).

Theorem 4 For k € N, let A (I") be the kth eigenvalue of the graph Laplacian A
defined in Sect. 1.2 using the weights m, and let A (M) be the kth eigenvalue of the
Laplacian A defined in Sect. 1.2 using the weight function p. Finally let € be the 0o-OT
distance between |1, and | and assume that h > 0 satisfies Assumptions 3. Then,

1. (Upper bound) If € and |m — p||o are such that

VArM) e+ |m — plloo < c, (1.15)

for a positive constant c that depends only on m, a, L,,, L, and 1,
then,

A () = A (M)

. & 5, h?
Lyh4——++/2 Kh*+— -
M) §C< ph+y+ k(M)e+Kh toztim :0”00)

(1.16)

where C only depends on m,a, Ly, L, and n. We recall that L, and L, stand
for the Lipschitz constants of p and p, respectively.
2. (Lower bound) If h and |m — p||~ are such that

VAr(M)h + |m — plle < c, 1.17)

for a positive constant c that depends only on m, a, L, L, and n, then,

A (1) = A (M) = £ 2 _
b > ~C (Lph++VaMh+ K+ [m=pll) (118)

where C only depends onm, o, L, L, and .

Remark 4 Note that the lower bound does not depend on the reach R. This is due to
the one-sided inequality

lx —y| <d(x,y), Vx,ye M.
EOE';W
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In contrast, for the upper bound one must use a reverse inequality with an additional
higher-order correction term that depends on R. See Proposition 2.

It is also worth pointing out that the presence of the term /A;(M)e in the upper
bound ultimately comes from the estimate on how far is the map P in (1.22) from
being an isometry when restricted to the first k eigenspaces of A; the relevant length
scale for this estimate is the size of transport cells, i.e., €. On the other hand, the term
VAR (M)h in the lower bound comes from the estimate on how far is the map 7 in
(1.24) from being an isometry when restricted to the first k eigenspaces of Ar; the
relevant length scale for this estimate is /2, which is of the same order as the bandwidth
for the kernel used to define the map /. This can be seen from Lemmas 13 and 14,
respectively.

Remark 5 From the estimates (1.16) and (1.18), we see that curvature of M only intro-
duces a second-order correction to the rate of convergence of A;(I") toward A (M).

The estimates on & from Theorem 2 combined with Theorem 4 imply that A; (1)
converges toward A (M) with probability one whenever |[m — p|l.c — 0,2 — O,
7 — 0. We can specialize Theorem 4 to the examples from Sect. 1.2, where in

particular we provide estimates on ||m — p||o in terms of n.

Corollary 1 (Convergence of eigenvalues unnormalized graph Laplacian) In the con-
text of Theorem 4 suppose that the weights are taken tobem = 1 and p = 1. If h is
small enough for

VAx(M) + Dh < c,

to hold for a positive constant ¢ that depends only onm, o, L, and 1,
then

A (F) — (M) ~ (e LY,
LWl ¢ <E e o (K + ﬁ> h ) . (L19)

where C only depends on m, a, L, and n.

Proof The result follows directly from Theorem 4 after noticing that in this case
[m—plloo =0and L, =0. O

Corollary 2 (Convergence of eigenvalues random walk graph Laplacian) In the context
of Theorem 4 suppose that the weights m are as in (1.11) and p = p. If h and ¢ /h are
such that

(VakM) + Dh + % <c

for a positive constant c that depends only on m, a, L, and n, then,

M) =M M) _ = (& 1Y\
A §C<h+(1+\/)Lk(M))h+(K+R2>h > (1.20)

where C only depends onm, o, L, and .
Elol:;ﬂ
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Proof The result follows directly from Theorem 4 after using (1.12). Indeed, notice
that the term || m— p|| o can be absorbed in the 72, ;- and h? terms by enlarging constants
if necessary. o

Remark 6 Notice that the estimates in the previous results provide a lower bound on
the mode at which the spectrum of the graph Laplacian stops being informative about
the spectrum of the Laplace—Beltrami operator. Namely, notice that the right-hand
sides of (1.19) and (1.20) are small when Ah+/A; (M) is small. Using Weyl’s law for
the growth of eigenvalues of the Laplace—Beltrami operator, we know that

VM) ~ kM,

and thus, the relative error of approximating A; (M) with A (") is small when k < hlm
and & < h. In particular, if /1 is taken to scale like & = /¢ (as is the case in Theorem 1)

then Ax (M) is approximated by A (I") if k < /log% form > 3and k < /W
form = 2.

Remark 7 We would like to remark that one of the main advantages of writing all
our estimates in Theorem 4 in terms of the quantity & (which is the only one where
randomness is involved) is that we can transfer probabilistic estimates for ¢ into proba-
bilistic estimates for the error of approximation of A; (7). In particular, when combined
with Theorem 2, Corollary 1 and Corollary 2 can be read as follows: Suppose that
bi(l;_}znl’m < h « 1. Let k := k, be such that £, < hlm Let B > 1. Then, with

probability at least 1 — CK,VOI(M),m,ion_ﬂ’

Aj(M) = C’g( i T (LA MDA+ (K L

forall j =1,...,k,.

Remark 8 Moreover, writing all our estimates in Theorem 4 in terms of the quantity &
is also convenient because the conclusion of the theorem holds even when the points
X1, ..., X, are not i.i.d. samples from the measure . That is, one only needs to ensure
that the assumption (1.15) is satisfied. In other words, whenever one has an estimate on
the co-OT distance between the point cloud and the measure 1 and a kernel-density
estimate to ensure that (1.15) holds, the theorem provides an error estimate on the
eigenvalues. We note that the kernel-density estimate in terms of the co-OT distance
we provide in Lemma 18 implies that one in fact only needs an estimate on the co-OT
distance between the point cloud and the measure .

1.3.2 Convergence of Eigenfunctions

We prove that eigenvectors of A converge toward eigenfunctions of A and provide

quantitative error estimates. To make the statements precise, we need to make sense

of how to compare functions defined on the graph/sample X with functions defined
on the manifold M. In this paper, we consider two different ways of doing this.

EOE';W
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The first approach involves an interpolation step by composing with the optimal
transportation map 7 : M — X from (1.13) followed by a smoothening step. Both of

these steps require the knowledge of M. The map 7T induces a partition Uy, ..., U,
of M, where

Ui =T '({x; ). (1.21)
We note that u(U;) = % foralli =1, ..., n. We define the contractive discretization

map P: L?>(M, pu) — L*(X, mpu,) by
(Pf)(xi) :==n- /U f)dux),  f e L*(M, pp), (1.22)

and the extension map P*: L*(X,mu,) — L*(M, pp) by

n

(P*u)(x) :=Y uCx)ly,(x), u € L*(X,mu,). (1.23)

i=1

We note that P*u can be written as P*u = u o T. We then consider the interpolation
operator : L*>(X, mpu,) — Lip(M)

Tu = Ap_se P*u (1.24)

where Aj_o. is defined in (3.4) and is simply a convolution operator using some
particularly chosen kernel; see Sect. 1.4 for a discussion on why we need to consider
a specific kernel.

Theorem 5 Let A be the graph Laplacian defined in Sect. 1.2 using the weights m,
and let A be the Laplacian defined in Sect. 1.2 using the weight function p. Let € be
the 0o-OT distance between i, and . and assume that h > 0 satisfies Assumptions 3.
Finally, assume that h and |m — p|| are small enough so that

I+ V(M)A + Im — plleo < c,

for a constant c that depends only onm, a, L, L, 1.

Then, for every u € L*(X, mu,) normalized eigenfunction of Ar with eigenvalue
Ak ('), there exists a normalized eigenfunction f € L>(M, pu) of A with eigenvalue
A (M) such that

C € h?
11w — fll2om, pp) = )/k_ <E + (1 + VA (M)A + Kh* + R2 + [fm — p”oo) )
P

where C is a constant that only depends on m,n, a, Ly, L, and where yy p,, is the
spectral gap, that is

Vi,pp = min{[A; — Ag| : j € N and A; # Ag}
Elol:;ﬂ
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In particular, if we take

) log(n)ﬂm
h = ‘/ W,

where p,, = 3/4 form =2 and p,, = 1/m for m > 3, then,

log(n)Pm
[ Tu — f”L2(M,pp.) =0 — ) almost surely.

Remark 9 Asin Remark 7, we would like to emphasize that the probabilistic estimates
for ¢ translate directly into probabilistic estimates for the convergence of eigenfunc-
tions in Theorem 5. Likewise, we would like to point out that Theorem 5 can be made
concrete in the context of Sects. 1.2.1 and 1.2.2 using the corresponding estimates for
lm — pllso in terms of € and A.

The second approach to compare eigenvectors of A with eigenfunctions of A is to
extrapolate the values of discrete eigenvectors to the Euclidean Voronoi cells induced

by the points {xi, ..., x,}. That is, for an arbitrary function # : X — R we assign
to each point x € M the value u(x;) where x; is the nearest neighbor of x in X with
respect to the Euclidean distance. More formally, fori € {1, ..., n} we consider the

Voronoi cells

Vii={re M:lx —xi|= min |x—x;]}, (1.25)
Jj=1,...,n

and define the function i € L?(M, pu) by

n

i(x) =Y u(x)ly,(x) forxe M. (1.26)

i=1

We notice that the Voronoi cells Vi, ..., V, form a partition of M, up to a set of
ambiguity of pu-measure zero. Besides being a computationally simple interpolation,
the Voronoi extension can be constructed exclusively from the data and no informa-
tion on M is needed. We show that the interpolation u of a discrete eigenvector u
approximates the corresponding eigenfunction f on M with almost the same rate as
in Theorem 5. In order to obtain convergence of the Voronoi extensions iz, we require
h = hy, to satisfy

1 mpm . i —
Tim_log""” (n) (h n h) -0 (1.27)

This condition holds, for instance, when & is chosen as /¢, which minimizes the error
in the following result.

Theorem 6 Fix B > 1. Let A be the graph Laplacian defined in Sect. 1.2 using the
weights m, and let A be the Laplacian defined in Sect. 1.2 using the weight function
FoL g

@ Springer Lﬁjog



Foundations of Computational Mathematics

p. Let ¢ be the 0co-OT distance between |, and | and assume that h > 0 satisfies
Assumptions 3. Finally, assume that h and |m — p|~ are small enough so that in
particular

A+ VaM)h + m — plloc < ¢,

for a constant c that depends only onm, a, L, L, 1.
Then, with probability at least 1 —C,, ¢ Vol am).io -n~P, foreveryu € L>(X, mpu,)
normalized eigenfunction of A corresponding to the eigenvalue A (M), it holds

Cp/l Py
I = 2o < w(% + (L4 /A M)

Ve.on ) (1.28)

h m+1
+ KW+ 2 + m — p||oo> + Cmr (M) e,

where f and yy . are as in Theorem 5, u is as in (1.26), and C a4 is a constant that
depends on the manifold M.

Remark 10 'We remark that the first term in (1.28) is worse than the estimate in Theo-
rem 5 by a logarithmic factor of #. This is due to our uniform estimates on the size of
Voronoi cells based on transportation (see Lemma 17). On the other hand, the extra
factor in (1.28) is an estimate for the difference of the averages of f over transport cells
and Voronoi cells; here, we use the regularity of an eigenfunction f and in particular
we use a bound for ||V f ||« found in [22].

1.4 Outline of the Approach and Discussion

To prove our main results, we exploit well-known variational characterizations for the
spectra of Ar and A. Our results are then deduced from a careful comparison between
the objective functionals of the variational problems.

From the definition of A in Sect. 1.2, it clear that A - is positive-semidefinite with
respect to the inner product of L2(X, my,,). We denote by

O0=0T) =l =aI) =

the eigenvalues of A, repeated according to their multiplicities. By the minmax
principle, we have

b
A (') = min  max 2 2 -
Ly ueLi\{0} ”M”LZ(X myi,)

where the minimum is over all k-dimensional subspaces L of L2(X, myi,). At the

continuum level, and given that p and p are bounded from below, one can show that A

is a closed and densely defined symmetric operator with compact resolvent [ 1, Lemma
Elo [y
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2.7]. Therefore, its spectrum consists of positive eigenvalues only, which we denote
by

0=A2 (M) <2oM) <As(M) < -+,

where eigenvalues are repeated according to their multiplicities. Moreover, by
Courant’s minmax principle we have

D(f)

Ar(M) = min -
VA1 oy

max (1.30)
Ly feLi\{O

where the minimum is over all k-dimensional subspaces Ly of L*(M, puL), see [18,
Lemma 2.9].

The proof of our results may be split into two main parts. The first part contains all
the probabilistic estimates needed in the rest of the paper and is devoted to the proof of
Theorem 2. The study of the estimates for doo (14, 1) goes back to [16,24,27], where
the problem was considered in a simpler setting: © is the Lebesgue measure on the
unit cube (0, 1)™ and the points x1, ..., x, are i.i.d. uniformly distributed on (0, l)d.
In that context, with very high probability,

(log(n))Pm

dOO(/-’La MI‘I) ~ }’ll/m

’

where p,, is defined in (1.1). In [11], the estimates are extended to measures defined
on more general domains, that is to bounded open domains in R¢ with Lipschitz
boundary, and to general densities (with positive upper and lower bounds). In this
paper, we extend the results in [11] to the manifold case. In order to prove Theorem 2,
we use a similar proof scheme to the one used in [11]. Indeed, we first establish
Lemma 1 below which is analogous to [11, Theorem 1.2] and is of interest on its own.
The result includes explicit estimates on how the distance depends on the geometry

of M.

Lemma 1 Let p;, p2 be two probability densities defined on M with

<pix) <a forallx e Mandi € {1, 2}

Q| =

for some a > 1. Then, it holds for the corresponding measures vy, vy, defined as
dvi; = p1dx and dv, = ppdx,

doo(v1, v2) < Allp1 — p2llLo M) (1.31)

3 ~ . ~ m
where A = C’”'“g#max {Nc, dlamT(M)}, Ne. =1+ CmKrz)%lr(mM) andr =
1 i O
5 min{l1, io, ﬁ}'
EOE';W
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With Lemma 1 at hand, the next step is to construct a careful partition of the manifold
M into patches in which we can use directly the results from [11]. The construction
requires some geometric estimates which are obtained in Sect. 2.1. Using properties
of the constructed partition of M and Lemma 1, we can establish Theorem 2.

The second part of the proof of our main results consists of a set of precise deter-
ministic computations used to relate the discrete and continuum Dirichlet energies
appearing in the variational characterization of the spectra of the graph and contin-
uum Laplacians; these computations are based on ideas from [6]. Roughly speaking,
the proof of our main results relies on the following upper and lower bounds. We first
show the upper bound

b(Pf) < (1 +emonE,(f) < (1 +erronD(f), [ € L*(M, pp),

where E, is the non-local kernel approximation of the continuum Dirichlet energy
defined in (3.1) and r is a length scale which up to leading order is equal to &; the term
error canbe explicitly written in terms of /2, € and geometric quantities associated with
the manifold M. It is possible to interpret the first inequality as a “variance” estimate
asitrelates an energy constructed exclusively from the graph with an “average” energy.
The second inequality on the other hand can be thought as a “bias” estimate. We would
like to point out that the second inequality is a manifestation of the intuitive fact that
local energies bound non-local ones. Our lower bound takes the form

D(I(u)) < (1 + error)E,(P*u) < (1 +error)b(u), u € L*(X).

We remark that it is not too hard to obtain a relation of the form D(I (1)) < CE,(P*u)
for some constant C. Nevertheless, since our goal is to find error estimates, the constant
C must be sharp (up to some small error). We obtain this sharp constant using the
specific form of the convolution operator A in the definition of I (see (3.5)). Our
analysis of convergence of the spectra is completed by showing that the maps P, P*
and / are almost isometries when restricted to eigenspaces (discrete or continuum).

We want to highlight the fact that in contrast to the construction in [6], our graphs
and our “out-of-sample extensions” of eigenvectors are defined exclusively from the
ambient space Euclidean distance. Theorem 6 is obtained a posteriori from Theorem 2
and uses Theorem 2 to bound the measure of Voronoi cells. We also use uniform
estimates for the gradient of eigenfunctions of the Laplace—Beltrami operator from
[22].

1.5 Outline

The rest of the paper is organized as follows. In Sect. 1.6, we recall some notation
and state some results from differential geometry that we need for the sequel. Sec-
tion 2 is devoted to the estimation of the oo-transportation distance between p, and
w1 and in particular contains the proof of Theorem 2. Section 3 contains results on
the kernel-based approximation of the Laplacian operator; in more precise terms, we
relate the (weighted) Dirichlet energy D with the non-local Dirichlet energy (3.1).
Elol:;ﬂ
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Section 4 addresses the convergence of eigenvalues and in particular contains the
proof of Theorem 4. Finally, in Sect. 5 we establish the convergence of eigenvectors
of graph Laplacians, first in the sense of the interpolation map 7 from 1.24 (Theorem 5)
and then in the sense of Voronoi extensions (Theorem 6). “Appendix B” contains the
optimal transportation-based proof of kernel-density estimates on manifolds.

1.6 Some Estimates from Differential Geometry

We conclude this introduction by recalling some notation and stating a few results
from differential geometry.

For a point x € M, we denote by T, M the tangent space of M at x. Fix
0 < r < min{ip, 1/«/?} and let us denote by exp,: B(r) € TyM — M the
Riemannian exponential map. Since r < ig, the map is a diffeomorphism between
the ball B(r) and the geodesic ball Ba,(x, r). In particular, exp;l defines a local
chart at x. Let g be the pull back of the metric of M by the exponential map.
That is, for an orthonormal basis ey, ..., e, of T, M and for given v € B(r) let
gi,jlv == ((dexp,)uv(ei), (dexp,)y(e;)), where we have identified the tangent space
of T, M at v with T, M itself. Then,

8ij—CK v <gij<8. +CK|v>, (1.32)

where |v] is the Euclidean length of v, §; ; is 1 if i = j and O otherwise and where
C is a universal constant. Such estimates are bounds on the metric distortion by the
exponential map and follow from Rauch comparison theorem ([9, Chapter 10] and [6,
Section 2.2]). Similarly, since r < 1/«/?, one can show that for any v € B(r) and
any w € Ty M = Ty (Tx M),

1
§|w|x = |(dexpx)v(w)|expx(v) < 2Jwly. (1.33)

These estimates imply the following:

Proposition 1 Assume 0 < r < min{ig, 1/vK}. Let p € M and consider any smooth
curve y : [0,11 — B(r) C T, M. Then,

1
3 Length(y) < Length(exp, oy) < 2Length(y).

Furthermore, on B (p, %) the exponential mapping exp,: B (0, %) cToM—
By ( p, %) is a bi-Lipschitz bijection with bi-Lipschitz constant 2.

The proof of this proposition is presented in “Appendix A.”
The bounds on metric distortion (1.32) imply that the Jacobian of the exponential
map (i.e., the volume element) J, (v) := +/det(g) satisfies

1+ CmK > < J,(v) < (1 +CmK [v]?). (1.34)
EOE';W
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A direct consequence of (1.34) is that

wpr™ 2 m
which implies that
[Vol(Baq(x, 1) — wmr™| < CmKr™+? (1.36)

where w,, is the volume of the unit ball in R"™.

Now, we want to state a relation between the intrinsic distance on the manifold and
the Euclidean distance on the ambient space. For that purpose, we recall that R, the
reach of the manifold M, is defined as

R :=sup {t >0:Vxe ]Rd, dist(x, M) <t,

(1.37)
Ay e M s.t. dist(x, M) = |x — y| }

We note that R is an extrinsic quantity, meaning it depends on the specific embedding

of M into R¥. In addition, we note that the quantity % is related to extrinsic curvature,

as it uniformly controls the principal curvatures of M (see [19]). We now show that

the distances M are locally a second-order perturbation of the Euclidean distance in

R? and provide explicit error bounds in terms of the reach of M.

Proposition 2 Let R be the reach of the manifold M € RY. Let x, y € M and suppose
that |x — y| < % Then,

8
|x—y|sd(x,y>s|x—y|+ﬁ|x—y|3.

The proof of this proposition is presented in “Appendix A.”

2 The co-Transportation Distance

The main goal of this section is to prove Theorem 2. For that purpose, we use a
similar proof scheme to the one used in [11]. We first establish Lemma 1, and then we
construct a “nice” partition of the manifold M by using a Voronoi tessellation using
some (fixed) appropriately chosen points; what makes the partition nice is that each
of its cells is bi-Lipschitz homeomorphic (with universal bi-Lipschitz constant) to a
fixed ball in R™ where we can apply the results from [11]. In Sect. 2.1, we present the
construction of such partition and prove Theorem 2.

Throughout this section, we make use of the following construction and estimates.
Letr = %min{l, io, \/Lf}. Let Y = {y; : i € I} be a maximal subset of M such that

d(y;,y;) = rforalli # j.Note that the balls { B (yi, r/2)};¢; do not overlap. From
FolCT
U
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(1.35), we conclude that N, := card Y satisfies

Ne(1 + chrz)—l‘”zm—n: <> Vol (Bug(yi, r/2)) < Vol(M)

iel
and hence
2" Vol(M
N, < (1+ CmKrZ)A. 2.1
Wy ™
From now on, we list the elements of Y as yy, ..., yn,. It follows from the maximality

of Y that the collection of balls {Baq(yi, r)}i—;,  n, covers M. We also claim that if
dist(y;, y;j) < 2r, then the balls Baq(y;, 2r) and Boq(y}, 2r) have a “big” overlap in
the sense that

(14 CmKr?) L w,r™ < Vol(Baq(yi, 2r) N Baq(v;, 2r)). (2.2)

In fact, let y;; be the point that is halfway from y; to y; on the geodesic connecting y;
and y;.Lety € Baq(yij, 7). Then, dist(y, y;) < dist(y, y;;) +dist(y;;, yi) <r+r <
2r. This shows that Baq(yij, r) S Baq(yi, 2r). Similarly, we have Baq(yij,r) €
Baq(yj, 2r). Inequality (2.2) now follows from the fact that

(1 4+ CmKr*)  w,r™ < Vol(Baq(yij, 1))

We now claim that for arbitrary y;, y;, there is a way to start from y; and move from
ball to ball until reaching y; in such a way that any two consecutive balls visited have
big overlap, i.e., that (2.2) holds. To make this idea precise, let us consider a graph
(Y, <) where

yj < yi iff y; #y; and dist(y;, y;) < 2r. (2.3)

We claim that (Y, <>) is a connected graph; this is a consequence of the connected-
ness of M. In fact, suppose for the sake of contradiction that (¥, <>) is not connected.
Then, we can find a partition of Y into two nonempty sets S1, S such that for all
yi € Syandall y; € 83, y; +» y; (i.e.,d(y;i, y;) > 2r). Because of this, we can find
& > 0 such that

UBmo.r+on | BuG.r+e =0,

yeS) YES

but since

M= ) BuGinc|JBuo.r+eulJBmG.r+e),
i=1,....N, yes) yeSsy

this implies that M is disconnected, which is not true. Hence, we conclude that the
graph (Y, <) is connected. We are now ready to prove Lemma 1.

EOE';W

@ Springer Lﬁjog



Foundations of Computational Mathematics

Proof (Lemma 1) In order to estimate dso (01, p2), the idea is to construct intermediate
densities and estimate the distances between them using [11, Theorem 1.2]. But to use
[11, Theorem 1.2], we need to map the intermediate densities to the Euclidean space.

Motivated by this, we consider the balls Baq(y1, 2r), ..., BAM(yn,., 2r) constructed
before. By relabeling if necessary, the connectedness of the graph (Y, <) implies that
we can assume that foreveryk = 1, ..., N, the graph ({y1, ..., yx} , ~) is connected.
Fork =1, ..., N., we define the sets
k—1 k—1
I := Bag(u. 20\ | B (3. 2). - Ok i= Baqg(ie. 20) 0 | B (. 20).
j=1 j=1

Note that I1 = B(y;, 2r) and O1 = (. We define the functions yk+, Yy » Pk iteratively
as follows. Let us start with k = N,. If fIN- prdx > -/.IN» prdx we set y;,rc = p; and

YN, = P2 if not, we reverse the roles of p; and p>. We let py, be

y&l(x) ifx €Iy,
pN(¥) = (YN () + By, ifx € On,,
y;,: (x) otherwise,

where

i, VN, — vy, )dx
N Vol(Oy,)

Ne *

Having defined the functions y*, y~, 5 for the iterations N., No — 1, ..., k + 1,
we define the functions ;" ", fx as follows. If || 5 Vipdx > /, , Pr1dx, we set
y,:r = ¥, and Y = pg+1;if not, we reverse the roles of ;| and pk1. The function
Pr is defined as

Y, (X) ifx € I,
) =3yt + B ifx € O,
yk+ (x) otherwise,

where

By = f]k(Vk+ = ¥ )dx
' Vol(Oy)

We note that p; = y; and set 8 := 0. Also, observe that for every k, B > 0 and

/ )/k_d)C:/ Vk+dx:/ Prdx,
M M M

FoC'T
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where the second equality follows from the definition of B; and where the first equality
follows iteratively from the definitions above. Using the triangle inequality and the
above definitions, we obtain

doo (1, P2) = doo (V5 V)
< deo (¥ AN.) + doo (BN, Vi)
= doo(yy.» AN + doo (Vi _ 1> VN.—1)
< doo(¥n,» N.) + doo(Vy, s PN.~1) + doo(BN.~15 Vi _1)-

Continuing the chain of inequalities provides, by induction,

Ne

doo(p1. p2) < Y doo (Vi 1)
k=1

Our goal is to estimate each of the terms doo(yk+, pr). From the definitions above, it
is straightforward to see that y,:r and pg coincide in M \ Ba4(yk, 2r), and thus

N, N,
doo(p1.p2) <Y doo (Ve 1) <D doo (VT 1 Bps (o200 PrlBagi2r)- (24)
k=1 k=1

The last inequality is a consequence of the following observation: If two measures
v1, 1 give the same total mass and we can write v; = v + vy and v, = v + 1y, then
one possible way to transport mass from v; into v is to leave the mass distributed as
v where it is and simply focus on transporting the mass distributed as v; to have it
distributed as ¥,. This observation leads to the desired inequality.

In order to obtain an estimate on d (yk+ | B vt (vi,2r) s Pk| B g (yi,2r))> We first estimate
Iyt — Bkl Lo (B.oq oy, 2r)) - From the definitions above, we have

lye = Al < max {lly — v e, Brl - (2.5)

Hence, we focus on obtaining estimates for [|y;" — v, [l (s,) and Bx.
First, we claim that for every k, the function (Vk+ — yk_)]l 1, has the form

N¢
O =yl =01 — )l + Y £Bilyno;. (2.6)
j=k+1
EOE';W
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To see this, note that in case k = N, the result is trivial. In general, from the definitions
above it follows that

Ve = vy = £y — A1y,
=tV — Ve )i — B Linoe)
=+ — Ve )l + Bl nnog,
= +(Vp — A+ Ly + EBrr1lynop,,
=+ — V) L + 2Bis21 100 + B Linog, -

Continuing the chain of inequalities proves the claim in N, —k iterations. Animmediate
consequence of the previous fact is that fork =2, ..., N,

Bk =

)

jEf,k(m—pz)dx i L Yol N 0))

Vol(Ox) Pt ! Vol(0yp)

and in particular

B = o1 prli=own oo + Z(N ﬁj%, V=2 N.
2.7
For every k =2, ..., N, we claim that
B = llor = p2lloo (3 i) 28)
where the sum is taken over all s < N, — k and all s-tuples N. > j; > jo > -+ >

Js—1 > Jjs = k, and where

Vol(1;) Vol(I;, N 0j)  VYollj_ino; ,) Vol(I;, N O;,_,)

Gl T Nol(0;,) T Vol(0) T Vel(05,_)  Vol(0})
In fact, relation (2.8) is obtained inductively by using recursion (2.7) and the fact that
By, < llp1 — p2ll (M)\\/,oll( Ine) .Letus now fix s with 0 < s < N, — k and k" with

k+s <k <Nsetj =k and Js = k. Let us write aj, . ;, in the more convenient
way:

Vol(Z;,) Vol(I;, n0;)  Yollj_ino; ) Vol(I;; N O;, )

ji..js = Vol(0},) Vol(0j,) o Vol(0j,_,) Vol(0j_)
Note that
_ Yolty) Vol n0)  Vollj oy, )
Ajy...js = Vol(O ) Vol(0},) Vol(0j, _,) ’
FoE'ﬂ
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and therefore summing over j;_; we obtain
Vol(/;;) Vol(1j, N O})
> i < . .
: Vol(0j,)  Vol(0j))
s—1

Z Vol(l,_, N Oj,_,)
Vol(0j,_,)

Vol(I;,_, N 0;,_3)
Vol(0;, )

Js—1

Observe that the sum on the right-hand side of the above expression is less than one
because the sets I, are disjoint. Proceeding in this fashion adding over js_», ..., j2,
we conclude that

VOl(Ik/)
: : ajlmjs S .
= Vol(Ox)
J2-Js—1

Finally, first summing over all such s and then over all such &, it follows from (2.8)
that

N:Vol(I})
Be <ot = palloo Y aji < 01— p2lloe D~

Vol(0p)
k<k’<N, (29)
N:Vol(M)
=lp1— p2||OO—V01(0k)

where in the last inequality we have used the fact that the sets ;- are disjoint.
Going back to (2.5), we note that from (2.6) and (2.9) it follows that for every
k=1,...,N,

Ne
Ive = Aell L Brccn2rn < o1 = p2lloeomny + Y B
j=k
1 2.10
< 1p1 = p2llzecrn ( 1+ N2Vol(M)  ma 210
< llp1 — p2llLee(my < + Ne"Vol( )j:2,...),(Nc V01(0j))
CuN2Vol (M)
< o1 = p2llLeo (M) (1 + %) ’

where the last inequality follows from the lower bound on the size of the overlaps
(2.2).

Now, we notice that from the standing assumption p1(x), p2(x) > é for every
x € M, it follows that for every k = 1, ..., N, and every x € M

1

— forall x € M.
o

Vi (), v (), pr(x) >
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Likewise, from the standing assumption pj(x), p2(x) < « for all x € M, it follows

that for every k = 1, ..., N, and every x € M
Ne Con Ne2Vol(M)
Ve ).y (0, pe(x) Sa+ Y B <a+lp - pallLecry =5
j=1

Assume for a moment that ||o; — 02| L) is small enough so that in particular
CnNAVol(M)

lo1 = p2llLoe(py =27 < «. In that case, forevery k = 1,..., N, we would
have
1 L.
- =¥, pk=2a (2.11)
o

Consider the exponential map exp,, : B(2r) & Ty, M — Baq(yk,2r) & M and
the functions g1, g2: B(2r) — (0, co) defined as

g1(v) ==y (expy, (v)Jy, (v)
and
£2(v) := fr(exp,, (v))Jy, (v),

where Jy, denotes the Jacobian of the exponential map. From (2.11), (2.10) and (1.34),
we conclude that

- < o
aCmd LKD) ~ 8@
<aCm(l+ Kr?) fori=1,2andall v e B(2r) (2.12)

and that for all v € B(2r)

81(v) = g2(0)] < (1 + CmKr?) |yF (expy, (v) — Gr(expy, (v)
Cyn N2Vol(M) 2.13)
= r—m”/)l — p2llzee(my

We recall that our choice of r in particular guarantees that ¥2K < 1. Applying [11,
Theorem 1.2] to the densities g; and g, with the bounds given by (2.12), we conclude
that

Cpn.o Ne2VoOI(M)

do(81, 82) < Carllgl — 21l B@2r) < poE o1 — p2ll Lo Ay
EoC T
‘_I o
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! where the last inequality follows from (2.13). From the second part of Proposition 1,
it follows that

N Cpn.w N2 Vol (M)
doo (1", ) = 2o (1, 82) < =T ——ll1 = P2l (M-
Therefore, using (2.4) it follows that if

Cu N.2Vol(M) -

o1 — PZ”LOO(M)—rm o,
then
Cpn.a N> Vol(M)
doo(p1, p2) < %Ilm = p2ll Loy
2
In case ||p1 — ,02||LOO(M)%W,OI(M) > a > 1, we have

doo(p1, p2) < diam(M)
- Cpu Ne2Vol (M) diam (M)

rm

o1 = p2ll Lo (M)

where we note that the first inequality in the above expression is always true, as the
maximum distance any point can travel in M is diam(M). Therefore, in any case we
have

doo(p1. p2) < Cllp1 — 2l o)
where C can be written as
C= (2.14)

pm—1 r

Cpn.o Ne2Vol(M) { diam(M) }
————————max{N,, — ¢ .
2.1 Proof of Theorem 2

In the following, we consider the Voronoi tessellation induced by the set ¥ =
{y1,..., yn.} constructed in the beginning of Sect. 2, i.e., foreach i € {1,..., N.}

we define

Vm(yi) ={x e M:d(x,y) <d(x,y;)forall j € {1,..., Nc}}.

! Note that as stated, our theorems give Cyp o, , but in this case Cyy ¢, = Cp o7 because we can always
rescale to the unit ball.
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These measurable sets form a partition of M up to a negligible set of ambiguity of
measure zero. We make use of the following.

Proposition3 For each i € {1,...,N.}, there exists a bi-Lipschitz bijection
V. Vap(yi) > B (0, %) C R™ with bi-Lipschitz constant at most 18.

To prove Proposition 3, we use the sequence of lemmas that follow.

Lemma2 Foralli € {1,..., N}

Ba (i, r/2) C V(i) C Ba(in 7).

Let V(y;) = exp;l(VM(y,-)). Then, B (0, %) C V(y;) C B(r) and for almost every
20 € V(i)

1
0> -, (2.15)
20| 8

where ng is the outward unit normal vector to OV (y;) at zp.

Proof Lety; € Y.Sinceforeveryx € B (yi, 5)andevery y; € Y with j # i itholds
thatd(x, y;) = d(yj, yi) — d(yi,x) > 5, we conclude that Bag (vi, 5) € V(i)
On the other hand, since Y is a maximal set with the property that d(y;, yx) > r for
all j # k, we conclude that for all x € M there exists y; € X suchthatd(x, y;) <r.
Therefore, Vaq(yi) C Baq(yi, r). Since exp,, maps B(s) bijectively to Bag(yi, s)
fors = % and for s = r, it follows that B (0, %) C V(yi) C B(r). This establishes
the first part of the statement.

Now, let us consider the second part of the statement. For almost every zg € aV (y;),
there exists a unique y; # y; such that zo € 9 expy_.'_1 (Va(y})); this follows from the
fact that the set of triple junctions or higher-order junctions in a Voronoi tessellation
has Hausdorff dimension smaller than m — 2. Let us fix one such zg € V(y;) and let
y; be as before. Note that 2 > d(y;, y;) > r and that d(y;,z) = |zol,, < r. We
let z := expy, (z0). We consider the level set I" := {x € M d(x,y) =dx,yj)},
which is a C!-hypersurface around z by the implicit function theorem; moreover a
unit normal vector to I” at the point z is given by

b uj —uj Ui —uj
o o~ o~ - b
i —dij|,  fui
where u; = _ e G0 u; = —exp-'(y;) and u;, i1 ; are defined analogousl
LT T i T bz Ui jrUj gously.

Let us consider the set I := exp;] (I' N Baq(yi, 2r)); note that around the point
z0, Iy coincides with 9V (y;), and in particular given that I is a C!-hypersurface
around z, dV (y;) isa C l-hypersurface around zp. Let us denote by ng the outward

unit normal to dV (y;) at zg. We write \Z(Z)T as
Vi

20
ol

= wo + cny,

FoC'T
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where (wq, |z§(lj.. )y; = 0and (no, T)y = c. Clearly, ¢ > 0. Now, by definition of

the exponential map, it; = (d expy, )z (W) , and so
U =w +cn,
where w := (d expy, )zo (wo) and n := (d expy, )z (10)- Then,
(i, n); =(w+cn,n);, =cl{n,n), <clnl, <2c |”0|yi = 2c,

where the second equality follows from the fact that w is tangent to I" (which in turn
follows from the fact that wy is tangent to 1) and where the last inequality follows
from (1.33). It thus remains to show that (ii;, n), > 1/4. To see this, simply note that
the fact that (u; + i, u; — i), = 0 implies

Do— i Qe — i A — i wi —ujl, _ do. |
(ﬂian>z:<ul u]’ ftl 14] > _ | i J|z _ | i ]| (i yj) > =
2 u,-—uj‘z Z 2 2d(z, yi) ~ 4d(Z i) 4’
where the second to last inequality follows from Proposition 1. O

So far, we have been able to construct a partition of M into cells (the Voronoi cells
Va (yi)) with the property that when each of the cells Vo (y;) is mapped by the inverse
of the exponential map, the resulting set V; := exp;l(VM (yi)) (which is contained
in R™) is a star-shaped domain with center the origin. We notice that condition (2.15)
implies that V; is a star-shaped domain centered at the origin. Indeed, if the set was
not star-shaped with center the origin, we would be able to find a point zg € dV;
for which ny - ‘Z 8 < 0 (i.e., the outer normal at that point would be pointing toward
the origin). In the next lemma, we show that when in addition the unit outer normal
to the boundary of a star-shaped domain does not deviate too much from the radial
direction emanating from its center, the domain is bi-Lipschitz homeomorphic to a
ball and more importantly the bi-Lipschitz constant can be controlled. This establishes
Proposition 3.

Lemma 3 Let V be a star-shaped subset of R™ with center at 0 and such that B(R) C
V C B(2R). Assume V has Lipschitz boundary and let n be the unit outside normal
vector to dV. Assume there exists B € (0, 1) such that for a.e. x € 3V

|_ﬂ

|x

Letr: S" 1 — [R, 2R] be the function describing 0V in radial coordinates. That is,
letr(z) = sup{s € R : sz € V}. Consider the function ®: V — B(R) given by

D(x) = x forx #0

R
r(f7)
FoE'ﬂ
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and @ (0) = 0. Then, @ is a bi-Lipschitz bijection with bi-Lipschitz constant at most
1

z+ 1

B

Proof Extend r to R™\{0} by 7(x) := r(ﬁ)
Forx # 0

x(VieenT + R (2.16)

b =m0 )

Consider the function G: R™\{0} — 9V given by x — f(x)ﬁ. Note that at z €
Sm—l

DG () = (V@) +r(2) (1 - zzT) .

Since n is orthogonal to the image of G, we conclude that (DG (z))"n = 0, which
implies

(n-2)Vr(z) +r(z)(n — (n-z)z) =0.
Since n - z > B, we obtain
BIVFi(z)| <F(z) forallze s" !

Combining this with (2.16), we deduce that @ is (% + 1)-Lipschitz. Analogous

computations show that @ !, which is given by @1 (y) = r(ﬁ)y, is also (113 +1)-
Lipschitz. O

Proof (Proposition 3) By Proposition 1, the exponential map exp, : B(r) —
Baq(yi, 1) is a bi-Lipschitz bijection with bi-Lipschitz constant at most 2. By Lem-
mas 2 and 3, with R = 5 and g = %, there exists a mapping

1 r
v expy (Varon) = B (0.5)

which is a bi-Lipschitz bijection with bi-Lipschitz constant at most 9. The composition
¥; o exp;1 provides the desired mapping. O

Proof (Theorem 2) We consider the maps ¥;: Va(y;) — B(r/2) € R™ from
Proposition 3. Given the sample xi, ..., x, from the density p, we define a func-
tion p,: M — R by

— pn (Vaa (3i)) = w(Var (i) ‘
pn(x) == p(x) + Vol (Vo) forx € Vo). (2.17)

FoC'T
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Notice that

/ Pa(x¥)dVol(x) = Z / Pa(0)dVOl(x) =Y " (Vg (3i)) = 1,

V(i) i—1

and that as shown in (2.18), with very high probability p, is positive. In particular,
with very high probability p, is a bona fide density function.
Let us recall that Hoeffding’s inequality states that for every ¢ > 0,

P (Itn (VM) = n(Vag i)l > 1) < 2¢72
Using the previous concentration inequality, we conclude that foreveryi = 1, ..., N,

1

P — PrllLc (i) = B

)2
with probability at least 1 —2 exp (—n VOI(Z%) In particular, using a union bound,

we conclude that with probability at least 1 — 2N, exp (—n C";r;m )

1
— < pp(x) <20, x € M. (2.18)
20

Similarly, with probability at least 1 — 2N, exp (_nca_f”’)

1 3
EM(VM(yi)) < (VM (i) = EM(VM(M‘)) (2.19)

Hoeffding’s inequality together with a union bound also shows that with probability
atleast 1 — 2N.n—#8,

B 10g(n)
n

1P = PallLoomy = — (2.20)

We let A, be the event, where (2.18), (2.19) and (2.20) hold. From the above, we know
that A,, occurs with probability at least 1 — Cn~#, where the constant C depends on
r, o, B, m, Vol(M). We denote by fi, the measure dfi, = p,dx. Conditioned on the
event A,, we see from Lemma 1 and from (2.20) that

. B log(n)
doo(ftn. 1) < Cllp = pulleoomy < Cr—m .
where C is the constant in (2.14).

Now, we estimate doo (fLy, it,,) in the event A,,. Observe that

Pn(Vaa(yi)) = pn(Var(yi)) foralli =1,..., N,
FoE"ﬂ
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and hence

doo(tn, i) < ‘_rlnax doo (nt v (3)s BnVag (i)

yenns

where we denote by Ly, (y,) the restriction of a measure to V4 (y;). The goal is now
to estimate doo (LnL vy (y;)» HnlVay(y;)) TOT every i.

Letxj,...,x Jn; be the points in X that fall in V4 (y;). We consider the transformed
points ¥;(xj,), ..., ¥i(x j"i) and the measure ¥;;(finLv,,(y)), Which is supported
on B(r/2). The fact that ¥; is bi-Lipschitz with constant 18 implies that the mea-
sure ¥ (flnL v, (y)) has a density with respect to the Lebesgue measure, and this
density is lower and upper bounded by constant multiples of the lower and upper
bounds of the density p. Hence, the transformed points are almost surely samples
from Wi 4 (flnLy,y,(y;)) restricted to the open ball B(r/2). Therefore, it follows from
[11, Theorem 1.1] that conditioned on the event A,,,

. log(n;)Pm
doo (Wis (Bntv i) Yig(Univig3i)) < Comap T sz
n.

1

holds? for all i € {1,..., N.} with probability at least 1 — CN.n"#, where C is a
constant that depends on 8, r, «, m. Note that we have used the fact that in the event
A,, the second inequality in (2.19) is satisfied and so we can give the probability
bounds in terms of n and not in terms of n;. Moreover, from the first inequality in
(2.19) it follows that

log(n)P_ /™ (log(m)™
1/m = mo, nl/m

n;

Finally, from the fact that Wi_l is Lipschitz with Lipschitz constant no larger than
18, it follows that

oo (Fnl v (v)s Mnl Vo) < 18doo (Wiz (Antvagi)s Wit (nlvaion)) -

From the previous discussion, we deduce that with probability at least 1 — CN.n~F =
1 - Cm,ﬁ,a,r,VOl(M) ’ niﬂ’

doo(, ) < doo (b, fin) + doo(fln, tn)
- C’( log(n) n (log(n))”’”> < (log(n))Pm

n nl/m nl/m
. C = = . .
for a constant C’ that can be written as C’ = %C , where C is asin (2.14). O
2 Note that as stated, Theorem 1.1 in [11] gives Cpy o, p,r» butin this case Cpy, o, g,y = Cn,qr,p I @S ONE can
simply rescale to the unit ball.
Elol:;ﬂ
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3 Kernel-Based Approximation of the Laplacian

Here, we focus on a kernel-based approximation of the continuous Dirichlet form
defined in (1.8). This part does not depend on the graph obtained from the sample set
X and can be seen as the bias part of the desired error estimates.

The results in this section correspond to those of Section 3 and 5 in [6] but cannot
be directly inferred from them. Instead, we need to adjust most of the proofs to our
setting.

For f € L>(M),0 < r < 2h and a Borel set V C M let

dGx,
E(f.V) = /V /Mn( (x y)>If(y)—f(X)Isz(y)du(X)- 3.1

r

We write E,(f) shorthand for E,(f, M). The main results of this section, Lemma 5
and 9, demonstrate how this functional approximates the form A.

Remark 11 Let E,( f, V) denote the functional in (3.1) when 7 is taken to be the kernel
1j0,13- Then, E,.(f, V) is nothing but E,.(f, V) as defined in [6, Def. 3.1]. Note that,
for general 7 satisfying the assumptions from Sect. 1.1

E.(f, V) <

1
Ex(f, V). 3.2
n(1/2) 2 (f, V) (32)

for every f € L?(M) and any Borel set V C M.

Lemma 4 Suppose h satisfies Assumptions 3. Then, there exists a universal constant
C > 0 such that for every 0 < r < 2h and every f € L*(M, )

E.(f) < c2"(1+ O(Lp)Er/Z(f)v

where we recall that L, stands for the Lipschitz constant of p.

Proof Let 0 < r < 2h. Then, r < minf{ig, 1 /\/E } by Assumptions 3. Note that it
suffices to consider f to be smooth because smooth functions are dense in L?(M, )
and both sides of the inequality are continuous with respect to L?-convergence; notice
that for smooth functions we can talk about pointwise values. For x, y € M with
d(x,y) < r,let z, be the point in M which lies halfway along the geodesic con-
necting x and y, i.e., Zxy = expx(% exp;l (). In particular d(x, zxy) = d(y, 2x,y) =
Ld(x. y). Since |f(x) = FOIP < 2|f@) = )+ 2[£0) = fey)|’. by
EOE';W
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symmetry we obtain
d
Er(f)§4/ / n( G ”)lf( )= F e dn()dnto)

_4/ /;(r) <|v|> ‘f(x) (expx( ))) Jx (v) p(exp, (v))dvdu(x)

2
< C2"(1+aL,) / / n(ﬂ>|f(x)—f(expx<w>)|21x(w>
M B r

plexp, (w))dwdp(x)
= C2"(1+aLp)Ep(f).

where C is a universal constant. In the above, we used the change in variables w = %
(which explains the term 2”*) and we also used the inequalities:

Je) < (1 + CmKr2)?J, (%) <cJ, (g) :

(combined with Assumptions 3) and
p(exp,(v)) = (I +aLp)plexp,(v/2)).
O

Lemma5 (cf. [6, Lemma 3.3]) Suppose h satisfies Assumptions 3. Then, there exists
a universal constant C > 0 such that

E(f) = E(f,M) =1+ Lyar) - (I+ CmKrz)Gnrm—'—zD(f)y

forevery f € H'(M) and 0 < r < 2h.

Proof Let us first consider the case in which 7 takes the form n = 1¢ 1; as we will
see, the general case follows easily from this special case. As in [6, Lemma 3.3], we
may assume that f is smooth and we write

/ 1) = FOPdu(y) = / | F(exp, () = )| plexp, () Jx (v)dv
Bp(x.r) B(r)

where J; denotes the determinant of the Jacobian of the exponential map. We recall
from (1.34) that there exists a constant C > 0 such that J, (v) is bounded from above
by l+CmK r2 forall v € B(r). From the fundamental theorem of calculus, it follows
that

d 2 1
< Flesp, o) di = fo df (@1 (x, )P dr,

1
| fexp, () — () 5/0

Fo C 'ﬂ
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In the above, @; denotes the time ¢ geodesic flow, @;(x, v) = (yx v (t), y;yv(t)), where
Yx.v(t) 1= exp, (tv). The expression df(P;(x, v) has to be interpreted as: the form
df at yy () acting on the tangent vector y)g)v(t). Therefore,

A= / f | f(exp, (v)) — f()C)|2 p(exp, (v))dv p(x)dVol(x)
M JB(r)

1
< / / / 1df (@1 (x, )2 p(@1(x, v)1)p(Pox, v)1)dvdVol (x)d
0 M B(r)

where £ +— & denotes the projection of € € T M on M. From the Lipschitz continuity
of p, it follows that p(x) < (1 + Lyar)p(y) forall x,y € M where d(x,y) < r.
Using the fact that @; preserves the canonical volume Vol o4 on T M and that

={E=x,v)eTM:|v] <r)

is invariant under @y, see [5, 1.125], we obtain after a change in variables

1
A<+ Lyar) fo /B A (@,(E))] P21 (E)1)dVoly 4y (§)d
— (1 +Lyar)? f Idf ) p?(E)dVolray )

= (1 + Lyar)? f _Om_m+2 17 £12 p? (x)dVol (x).
Using the previous computations, (1.34) and Remark 1, we deduce that

E(f) <(1+CmKr?)-A<(1+CmKr?) -1+ Lpar)%rm”D(f)
m

= (1 +CmKr?) - (1 + Lyar)o,r" 2 D(f)
(3.3)

for a universal constant C, which proves the claim for n = 1o, ;. Now, notice that
one easily obtains from the previous computations that (3.3) is still valid for n of the
form n = 1o, for some 0 < ¢ < 1. Finally, since E,(f) and oy are linear in 7,
the statement holds if n: [0, 1] — [0, co) is a decreasing step function (and hence
can be written as linear combination of functions of the form 1y ). By monotone
convergence applied on both sides of the inequality, the assertion follows for any
decreasing (and thus measurable) function 7. ]

Remark 12 Note that in comparison with the case of constant p treated in [6, Lemma
3.3], the above estimates have the additional term (1 + aL 7).

FoE'ﬂ
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Lemma 6 (cf. [6, Lemma 3.4]) Suppose h satisfies Assumptions 3. Let ¢ < r < 2h,
f € L> (M) and V. € M a Borel set such that (V) > 0 and diam(V) < 2¢. Then,

2 2(1 + CmKr?)
du(x) = o B ().

1
—— | rd
/v‘f(X) o )T

Proof The proof is almost identical to the proof of [6, Lemma 3.4], replacing the
volume with the measure p and taking Remark 11 into account. O

Next, we define a smoothening operator A: L*(M, pu) — Lip(M) similar to the

one introduced in [6, Section 5] but adapted to the kernel 7. To this end, we first define
a mapping ¥ : [0, oo) — [0, co) by

1 o0
Y (t) = —/ n(s)sds.
Op Jt

1
Note that, as 7 is supported on [0, 1], ¥ () = 0 for all t > 1.

Remark 13 We remark that for n(¢) = Lo, 17(¢), the above ¥ coincides with the kernel
function used in [6, Section 5].

For every r > 0, we define the operator A?: L?(M, Vol) — Lip(M) by

(A0 F)(x) = /M FOke (x, y)dVoI(y) (3.4)

where

1 d(x,
ke (x, y) 1= W‘/’( (x y)).

r

As in [6, Definition 5.2], we define the smoothing operator A, : Lz(M, on) —
Lip(M) by

Arf(x) = (0) A F(x), (3.5)

where 6 := A%1. Note that the term  is introduced so that A, preserves constant
functions.

Letus deduce some useful properties of the functions just introduced. Since ¥/ (s) =
— gi)] n(s)s for all s > 0, we obtain from the mean value theorem that forany 0 <z <r

there exists - < s < 1 such that

1 t 1 t
—ml// <—> = p n(‘v)s(l - —).
r r opr r
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Hence, by the monotonicity of n, we have

kr(x,y) < : n(d(x’y)> (3.6)

opr™ r

for every x, y € M.If d(x, y) < r, then the gradient of the kernel k, can be written
as

1 d(x,y)\ —exp;!
Vkr(-,y)(X)=rm+1‘p/( (xr y)) Zixygy)

1 d(x, _
n ( (xr y)> expy ' (y)

m—+2
O’,ﬂ"

3.7

where we refer to [6, (2.6)] for the gradient of the distance function. Moreover, we
have

/ Y(lxdx = 1. (3.8)
Rm

To see this, first note that using polar coordinates we obtain

G o0
moy =3 [ nxbaddy = [ n(x) xPdy =mon [ p@yrmHar,
! i=1 R™ ! Rm 0

where wy, is the volume of the Euclidean unit ball in R™. Thus, using integration by
parts and polar coordinates, it follows that

/ Y(|x)dx = mowy, /oo W(”)I’m_ldr
R 0

= —wp /00 v (ryr™dr
0

) o0
=2 n(r)rm+1dr =1.
on Jo

For0(x) := A(r)(]l), we now obtain the following bounds.
Lemma7 (cf. [6, Lemma 5.1]) There exists an absolute constant C > 0 such that
1+ CmKrH)™' <0(x) <1+ CmKr?
and |[VO(x)| < CmKr /o, forall x € M.

Proof We have

0(x) = im/ " (d(x’ ”) dvol(y) = im/ " <M> Jo(v)dv.
r Ba(x,r) r r B(r) r
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H_ A
@Springer L0




Foundations of Computational Mathematics

Thus, the first assertion now follows from (1.34) and (3.8). Since (1.34) implies
|Jy(v) — 1] < CmK |v|2 and since

/ v <M) vdv =0
B(r) r

for symmetry reasons, the bound on the gradient of 6 can be obtained from (3.7) as

1 d(x, _
Vo = s | [ (“—”) exp: l(y)dVol(y)‘
onr Ba(x,r) r

1 vl vl
=—0 Y| — ) vJe(v)dv — Y — ) vdv
oyl B(r) B(r) r
- / 1Y o 1d
= W b vl — Jv(Jx(v) — D)dv

CmKrj/ w(' |)dv:CmKr.
o™= I

Oy
In order to establish the following properties of A,, we make use of the fact that
the densities p and p are Lipschitz continuous and are bounded from below. Thus,

<

~

~

A
<

~ |

m}

p(x) = (L +Lpar)p(y) and p(x) < (14 Lyar)p(y)

whenever d(x,y) <r.

Lemma 8 (cf. [6, Lemma 5.4]) Suppose that h satisfies Assumptions 3. Then, there
exists a universal constant C > 0 such that

1A 113 20, ppy < L+ @Lpr) (L4 aLpr) (L 4+ CmE 132 0

and
Ca?
2
”Arf - f”Lz(M,p/A) = 0‘777Er(f)

forall f € L*(M) and all r < 2h.

Proof The first assertion follows from Jensen’s inequality,

2 K, (x, )’) 2
(Ar fO)7p(x)dp(x) < ———p@X)(f(y))"dVol(y)du(x)
M MIm 0(x)

S +aLlpr)(1+alyr)(1+ CmKrz)”f“iz(M,pu)’

where the last inequality follows from the Lipschitz continuity of p and p together
with the estimates from Lemma 7.

Elol:;ﬂ
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For the second assertion notice that as in the proof of [6, Lemma 5.4], we can
conclude that for a.e. x

1
A f(x) — fFO)? < ke (x, ) 1 f () — f0)1* dVol(y).
6(x) Bag(x,r)

Integrating this inequality with respect to pu and using (3.6), we obtain that
2
”A f - f”LZ(M )
1 + CmKr? d(x,y)
f / ( £ = F0)P dVol(1)p () du(x)

o m
onr

C
= m(szr(f).
ont

n

O

Lemma9 ([cf. [6, Lemma 5.5]) Suppose that h satisfies Assumptions 3. Then, there
exists a universal constant C > 0 such that

DA f)<(A+aLpr)-1+CA+ 1/0,7)mKr ) 1»1+2E f)

for every f € L>(M) and every 0 < r < 2h.

Proof We can write

1
V(A f) = —A1(x) + A2(x)

0(x)
where
M= [ k) - f)dvel)
Baq(x,r)
and
Ar(x) = V(O Hx) krCe, )(f () — f(x))dVol(y).
Baq(x,r)
Regarding A, we have |A|(x)| = (A1(x), w) for some unit vector w € T, M.

Therefore, using (3.7),

A1 ()] = (A1(x), w)

1 d
=— f n( (x.y ))(f(y) FE){exp! (), w)dVol(y)
Baq(x,r)

m+2
O'nr

! [v]
= W/an< ; )qo(v)(v w)Jx (v)dv.

FoE'ﬂ
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where ¢(v) := f(exp,(v)) — f(x). By the Cauchy—Schwartz inequality,

[A1(x)] Sa,%rz(m”) - lp()|* Jy(v)°n . dv B(r)(v,w) U dv
1 2 [v]
J,,r—"H‘Z/( lp)|* Jx (v) 77( )

where, in the last step, we used radial symmetry to conclude that

v
/ (v, w)n <u> dv = rm+2/ u%n(|u|)du = r””'zan.
B(r) r B(1)

Now, we obtain from (1.34) that

1+ CmKr?
1A ()2 < ﬂfmwwnzn(' ') T, (v)dv

+2
opr'™

1+ CmKr? d
- +—mzrf n( o y)) (f (y) — f(x))*dVol(y)
oyt M

Integrating this inequality with respect to the density p? and using the Lipschitz
continuity of p, we obtain

2
”AIHLZ(M,[?ZVOI)
1+ CmKr? d(x,
< Lremfr / [ ( ey )) £ = £) P dVol (3) p(1)dVol (x)
U r BM(X r) r

14+ aL,r)(1 + CmKr? d(x,
< dAabpnt Cmky )/ / n( (x y))If(y)—f(X)Izdu(y)dM(x)
Baq(x,r) r

on Fm+2

(1 +aLpr)(1+CmKr?)
gnrm+2

Er(f).

Regarding A», first note that ‘V(0_1)| < CmKr/oyand 6 < C by Lemma 7. There-
fore, by the Cauchy—Schwartz inequality and (3.6), we obtain

2
A0 = [V fM ke, )dy /M £ ) = )Pk (x, y)dVol ()
2
= |[ve™)| 9<x)/ () = f @) ke (x, y)dVol(y)

Cm?K?r? d
< uan( &, ”) £ (y) — £(x)2 dVol(y)

3,m
Unr

Fo C 'ﬂ
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Integrating this inequality with respect to the density p? while using the Lipschitz
continuity of p shows that

C(l +aL,r)mKr? 1
||A2||L2(./\/l,p2V01) = O_p o 2 Er(f)
n n

for some universal constant C. By combining these estimates and the lower bound for
6 from Lemma 7, we obtain that

DUALF)E = (4 alyr) - (4 CA+ 1 opmKr) | B ()
n

Hence, the claim follows. O

4 Convergence of Eigenvalues

In order to prove Theorem 4, we estimate the discrete Dirichlet form (1.7) in terms of
the continuous one (1.8) while we interpolate and discretize between the graph and
the manifold in an almost isometric manner using the mappings P, P* from (1.22),
(1.23) and A, from (3.5). We start this section with some preliminary lemmas.

Lemma 10 Let us assume that the support of n is contained in [0, 1] and that n is
Lipschitz in [0, 1]. Then, for allr,s > 0 and t > 0 we have

i 1 (75) =n(52) =0 (75) + Lot Losre

(i) n () =n (rtj) — Ly 1<) provided that s < r.

where Ly > 0 denotes the Lipschitz constant of i restricted to [0, 1].

Proof Regarding assertion (i), first note that every term vanishes for t > r + s.

In order to prove the first inequality in the remaining case, we need to verify that
(t —s)/r <t/(r + s) provided that ¢ < r + s. This follows from

r+s ro r(r+s) T r r+s r

t t—s rt—+s)t—s) sr+s—t s t
= = - =-(1- > 0.
r+s

Combining this estimate with the Lipschitz continuity of n shows that

(t—s)+ ! t (t—s)+

0< - ) - < L L
_77( r o5 =\ s r
- t t—=s . K | t <LS
= r+s r Ty r+s) Ty

which implies the second inequality of assertion (i). The proof of assertion (ii) is
completely analogous. O

EOE';W
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The next results relate the operators P and P* defined in (1.22) and (1.23). In
particular, we show that P and P* are almost adjoint to each other and that P* is
almost an isometry. In case mu,, = u, and pu = p (i.e.,incasem = (1,..., 1) and
p = 1), then P and P* are truly adjoint to each other and P* is truly an isometry.

Lemma 11 Forallu € L*(X) and f € L*(M)

‘(P*M, f>L2(M,pM)—<u, Pf>L2(X,m;L,,) = Ol(||m—,0||oo+5Lp)(P* |ul, |f|)L2(M,pM)

and
| P*ul — lu)? < a(lm = pllos + ¢L,) | P*ul}
L2(M.pw) L2(X.mpty) | = Pllco 850 LA(M.pp)
Moreover, if we assume that o||m — plleo < % then Vu € L*(X),

1P G2 g pyy < 2C1+@Lpe) Nl T2y ey

for some universal constant C > 0.

Proof We infer from (1.12) that

[, PE)Y 20 mpy — P F) 2o

—u(x;) - du — Ny, fpd
Zn”(x)”/mf“ /Ml;u(x)y,fpu

i=1

< fM D lu) Ly 1G] - Imi = p(xi) + p(xi) — p(x)] dpe
i=1
< a(lm = plloo + L) P* ul, | F1) 200, -

and

(ks

L2(M,pp) L2(X . mpu,)
n

Z (/ u*(x;) pdp —[ miuz(xi)dﬂ)
. Ui

i=1 Ui

n
= [ 0 o) = o)+ px) —mil d
i=1 YU
)
Sa(”m_p||00+8L,0) ”P uHLZ(M’pM)
Elol:;ﬂ
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To prove the last part of the lemma, we notice that

n

1P 0l sty = 2o u? [ p2ny) <

i=1

=2(1+aLpe)|ull}

2
u(x;) m;

2(1 +aL,e) Z”:
n i=1

(X.myp,)”

The next lemma is a straightforward generalization of [6, Lemma 4.2].

Lemma 12 (cf. [6, Lemma 4.2]) For every f € L*(M), we have
|P*Pr; < (14 2aL,8) | fI2
L2(M,pp) = Ep€ L2(M,pp)
In addition, there exists a universal constant C > 0 such that

c(+ mozL‘,,e?)mZ’"/za,}/2

|f =P Pfl 2 < S 2 om

forall f € HY(M).

eD(f)?

Proof The first assertion follows from Jensen’s inequality and the Lipschitz continuity
of p:

[ rprerpmen =30 [ [ nrorpedun;inc
M i=1 Y Ui JU;
< (1 +2aLye) Y fU /U nf () p(Ndu()dp(x)
i=1 i i

= (1 +2aL,e) fM FOP oAy,

For the second assertion, we can use Lemma 5, Lemma 6 and Assumptions 3 on £,
to obtain

2(1 4+ CmKr?)
— prpf|? < Eo,
7 Mot = 50 B —ep )

- C(1+2aLyr)2"o, 1" 2
n(1/2)wm (r—eym

D(f)

m

for any r € (e, 2h). When choosing r = (m + 1)eg, the quotient (ri—g),,, is bounded by
3 and the assertion follows. O

The next lemma is a generalization of [6, Lemma 4.3].
FolCTM
u o
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Lemma 13 (cf. [6, Lemma 4.3]) The following assertions hold:
() Forevery f € H\(M),

1P AT 2 gy = 1 N2t pyy | < @M = plloo + €L ) 1 F 172 0 o
=~ 1
+ C'ell £l .2 py P(F) 2,

where C' has the form

& Ca(l+aLy)(1 —i—m()ch)mZ”‘/2c7,7l/2 @1
vn(1/2)wm ’

for some universal constant C > 0.
(ii) Forevery f € H'\(M),

b(Pf) < (1+Clh+ cg% + C5RA)D(F).

where the constants C, C5, C} can be written in terms of geometric quantities as

2mH L (1 +aL ) 1
Ci = Cal,, c§=c<m+ n”(l/z) ”), c§=Cm<K+ﬁ>,

where C is a universal constant.

Proof Since P* is almost an isometry by Lemma 11, we have

‘||Pf”i2(x,mun) - ”f”iz(/\/l,pu))
= 1P By = 1P P 2t |
1P it pio = 12 p
< a(lm = plloo +£Lp) | P*PF | F2pq o
+ (I P*PF 2ty + 1 N2t TP*PE = £l 20t
< a(lm = plios + L) (1 +20Lp&) | F I 2 0.y
m/2,1/2
N Ca(zwLpg)(,l?(T/Z;;[;npg)mz i el 20 i DU)®

where the last inequality follows from Lemma 12 and from the boundedness of p.
This proves the first assertion.

Regarding the second assertion, we follow the proof of [6, Lemma 4.3(ii)] and
obtain that

\PfG) — PrOo)| < n? /U | fU 1) = FOOP dr(duc).
Elol:;ﬂ l ’
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Let h == (1 + hz)h Then, by Proposition 2, Lemma 10 and by the monotonicity
of n we have

b(Pf) = hmHZZ f f (‘x’_ )If(y) £ dr(ndp )
(.
hm+zZZ / fU ((x x’))If(y)—f(X)|2du(y)dM(x)

d 2
hm+2 f / (( s y) 8)+>If(y)—f(x)lzdu(y)du(X)

< d(x,y) oL 8]1
_Unhm+2 M IM g h+2¢ + ’7; BM(x,ﬁ+2s)(Y)

If () — £FEO1?dp(y)dp(x)
1 2L,7 &
= 77 (Braae D+ o B D).

where we refer to Remark 11 to justify the last step. Due to Assumptions 3, we obtain
from Lemma 5 that

1 2 7h2 & mt2
Py Ej 5 (f) < (1+CaL,h)(1 + CmKh?) ( + 0 +2h) D(f)
n

h2
< (1 + CaLyh)(1 4+ CmKh?) (1 +Cm—s

5 +Cm— )D(f)

where the last inequality is obtained from the fact that

A4+H"<1+Cs, VO<s<

3w

for some universal constant C > 0. Likewise, we obtain

1 2L, ¢ 2+, . L o
hm+2 n(1/2) h 2(h+2€)(f) n(1/2) 1+ Ca YA+ Cm )
2
(1 + Cm 5 +Cm— ) —D(f).
The result follows directly from the previous estimates. O

We can now establish an upper bound for A;(I") in terms of Ax(M).

Proof (of upper bound of Theorem 4) Fix k € IN. By the minmax principle (1.29), we
have
b(u)
M) < sup ———
ueL\{0} ”M”LZ(X mu,)
FoE'ﬂ
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for every k-dimensional subspace L C L2(X,my,). Following the proof of [6,
Prop 4.4], we denote by W C H'!(M) the span of orthonormal (with respect to the
L%(M, pu) inner product) eigenfunctions of A corresponding to A1 (M), ..., Ax (M)
and we set L := P(W). For every f € W, we have D(f) < Ax (M) IIfIIiZ(M o) It
thus follows from part (i) of Lemma 13 that ’

IPFI 2 ey = (1= elm = plloo + €L ) — E'VAkQME) 1122 10q -
4.2)

Hence, provided that

- 1
a(lm+ plloo + &L,) + C'V/Ax(M)e < >

we can conclude that P is injective on W, and therefore, dim L = k. Moreover, in that
case by applying part (ii) of Lemma 13 to u = Pf € L we obtain that

b(u) - (1+ Cih+Cy5 + Cih?)
Il T2 gy = @M = plloo +€Lp) — v/l (MDe
& ~
=(1+cin+ Cho + C5 + aCllm — plloo +¢Lp) + VMg 2 (M),

(M)

Since the previous inequality holds forevery u = Pf with f € W, the desired estimate
now follows. O

Lemma 14 (cf. [6, Lemma 6.2]) Suppose that h satisfies Assumptions 3. Then,
(i) Foreveryu € L*(X),

~ 1
71320t py = N0 2 gy | = P01 12 gy - D)

+2a(l+aLp) - (Im = pllog + Lpe) 11l 72y )

where the constant C" can be written as

~ L,4"w> (1 +al,)?
C"=Ca(l+aL,)-(14+aLy)-(1+c"), '="1"—™m )
! 2 ) n(1/2)(m +2)

(ii) For everyu € L*(X),
D(Iu) < (1+ Clh + cg% + CURDb(u),

where the constants C{, C, C§ have the form

i/ =alL,, Cé/ =C(m+ Cé), Cé/ =C+1/o))mK.
FoC'T
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Proof First, by Lemma 11,

2 2
‘ ||Il/l ”Lz(/\/l,pu) - ”u”LZ(X,mun)‘

IA

2 2
‘”I””iz(M,pm - ”P*u”LZ(M,pM)‘ + ‘HP*MHLz(M,pu) = 02 e

IA

el 2, ppny + [P0 2 g pyuy) 170 = PP2t]| 2 g ey

T aim = pllso +Ly) [ P¥u]220nq 0
“4.3)

Since (m + 2)e < h (by Assumption 3), we conclude from Lemma 8 that

2
Ep—2:(P*u).

||Iu —
= oyh™

Pull sty = | An2e Pru = Pru® <

for some universal constant C > 0.
Let us now estimate Ej_», in terms of b(u). First, consider the kernel = 1o, 1;.
We use b and E to denote the discrete Dirichlet form and the energy E when using

the kernel 7j and we write by, and by,, respectively, to specify that the forms b and b are
being constructed using the value 2. We claim that

2 -
Ep_2:(P*u). 4.4)

~ m
bp(u) > W

Indeed, let T denote the transportation map introduced in Sect. 1.3 satisfying U; =
T (x;), then

l;h(u) ~hm+2 222 <‘XI >|u(xl) M(xj)|
T T
o hm+z Z / [ /U (' W-To ”) |(P*u) ()= (P*u) () | die (y)dpa ()

d(T T
- hm+2 f f ( T, (y))>I(P*u)(X)—(P*u)(y)|2du(y)du(X)

d
- hm+2 f f ( G )) (P*u)(x) — (P*u)(»)|* dpe(n)dpa(x)

| \/

I \/

ZWE}' —2¢(P*u),
n

where we note that the last inequality follows from the fact that d(T'(x), T (y)) > h
implies thatd(x, y) > h—2¢; we have used Remark 1 to rewrite o; . We now consider
general 1. Since n(t) > n(1/2) > 0 for all r € [0, 1/2], it follows that

OO om +2

w1 “

FoE'ﬂ
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On the other hand, by the monotonicity of n and Lemma 10 we obtain

d(T T
hm+2 e [ [ () et @t autanc
d 2
> [ (TS [erww - oo dsmeu
n
d
20W*/‘/ <“yvhﬁ>m (P () )

hm+2/ / L, yy<h—2¢} | (P*u)(x) = (P u)(y)| dp(y)dp(x)

by (u)

1 " Lye 1 "
= hm+2Eh 26(P7u) — hhm+2Eh 26(P7u)
CL,,4’"(1+aLp)28 Q-
z hm+2 —— w2 En- 2£(P*u) oy Ehm+2 E%_%(P*u)’

where the last inequality follows after applying Lemma 4 twice. We conclude from
(4.4) that

CLy2"wp (1 L) s
———Ep_2.(P*u) — om(+alp)”

1
b
n 2 n + 2)0,

—b (u)

Combining this inequality with (4.5), we deduce that

1
—HEh 26 (P*u)

CL 4" (1 +aLy)? £>
(” a(m+2? k)=

which can be rewritten as

CL 4" 0% (1 +aLy)? ¢
Ejp_2:(P*u) < (1 + (2 © 2)2p h) oyh"2b(u). (4.6)
Hence,
||Iu — P"‘u”2 < Co? Ep_2:(P*u) < Ca®(1 + Ly (1 + aLp)? £ h2b(u)
= g = n(1/Dm+22 h '

4.7

Finally, from Lemma 11 it follows that

| P*ulle
FoE'ﬂ
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and from Lemma 8

IHullp2 o0 = HAh—ZSP*””LZ(M,pu)
< C(L+aLp)"? - (1 +aL, ) I P*ull 2 p oy
< C+aLyh)- (1 +aLyh)|ullz2x mpu,)

Assertion (i) follows by inserting all these estimates back in (4.3).
Regarding assertion (ii), we conclude from Lemma 9 that

1 ) 1
D(IM)S(I-‘:—O(LP/Z)‘<1+C<1+a)mKh )W h—2¢ (P*u)
1 2 1
= +aLph) - (14+C(14+— ) mKn (1+C’"E>W h—2e (P*u)
n
1 2 & 1
= (1+alph+C(1+— )mKh™+Cm. ) Ep—2¢(P*u).
n

Combining with (4.6), we obtain the desired estimate. |
We can now establish a lower bound for A (") in terms of Ax(M).

Proof (of lower bound of Theorem 4) Let k € IN. It follows from (1.30) that for very
k-dimensional subspace L C H 1(M), we have

D
fEL\{O} ||f||L2(M pM)

As in the proof of [6, Prop 6.3] we denote by W C L2(X) the span of orthonormal
eigenvectors of Ap correspondingto A1 (1), ..., A (") and we set L := I(W). Then,

b(u) < A (M) ||u||L2(X my for all u € W. Using this, we conclude from Lemma 14

1772 0q ey = (1= 201+ @Lp)(Im = plioc + Lpe) = C"/h () “s)

2
”M “LZ(X,mun)

for all u € W. It follows that if

~ 1
2a(1 +aLy)(lm — pllec + Lpe) + C"y/ax(INh < 3

then the operator 7 is injective on W, and thus, dim L = k; notice that this inequality
is satisfied under condition (1.17) thanks to the upper bound for A;(I") in terms of
Ak (M). Tt follows from part (ii) of Lemma 14 that for any f = Iu withu € W,

D(f) 1+C//h_|_c//s +C§/h2
< = A (I7)
IIfIILz(M o) —2a(l+aLlp)(lm — pllec + Lpe) — C"/Ax(Ih
FoE'ﬂ
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The result now follows from the fact that the above inequality holds for arbitrary
u € W and the fact that 14 (I") can be bounded from above by a constant multiple of
A (M). O

5 Approximation of Eigenfunctions

In this section, we are concerned with the convergence of eigenvectors of Ar. We
start by showing that the discretization and interpolation operators P and / are almost
inverse of one another.

Lemma 15 (cf. [6, Lemma 6.4]) Under Assumptions 3, there exists a constant C"
only depending onm, o, 1, L, L, such that

@) PF = fll 2 pp < C"RD(f)? forall f € H (M.

Moreover, if

1
aflm— plloc +eL, < > then,

Gi) 1P — ull 2 x.mps,) < C"hb()? for all u € LA(X).

Proof By definition of I, we have

ITPf — fIl < | Ap—2e(P*Pf — )| + 1 Ap—2e f — f1I.

From Lemmas 8 and 12, and from Assumptions 3, we know that for a constant C” > 0,
depending on n, m, L, L, and «,

| 4h=2(P*PF = D) pppt oy = € IP*PF = Fll 2 < C"eD(f)?.

Likewise, from Lemmas 8 and 5,

"

C
| An-2f = FIi20t 0 = Gr—gaym Er-2e(f) = C"H2D(P).

and from this we deduce assertion (i).
Regarding assertion (ii), if we assume thata||m — p|oc +€L, < % we obtain from
Lemma 11 that

IPTu—ull 2 A, ppy < 4 || P*(PTu—u) }|L2(M’pm
<4|P*PIu— 1u||L2(M’W) +4 | 1u— P*u”LZ(M’pm .

From Lemmas 12 and 14, and from Assumptions 3, we obtain that
| P*PIu - < C'sD(Iu)? < C'sb(u)?

Elol:;ﬂ
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for a constant C” depending on 7, m, L »» Lp and . Moreover, by (4.7) we know there
exists C”” > 0 (depending on n, m, L, L, and o) such that

" 1
| 1w = P*ul 55 ) = C"hD@)2.
This implies assertion (ii). O
Now, we adopt some additional notation from [6, Section 7]. For a value A € R, we
denote by Hj, (M) the linear span in H' (M) of all eigenfunctions of A corresponding
to eigenvalues in the interval (—oo, A). Similarly, we define H) (X) as the linear span
of eigenvectors of A corresponding to eigenvalues in (—oo, A). We write P for

both, the orthogonal projection onto H) (M) and H, (X).

Lemma 16 (cf. [6, Lemma 7.1]) Suppose that h satisfies Assumptions 3 and that
1
am—plloc +€L, < 3

Then, for every A > 0 we have

G) b(Pf)? > (1 — (VAC" + C])h — €& — cghz) D(f)3.
i) DUw? = (1= (VAC" + Ch = C4 = Ci2) b’}

forall f € Hy(M) and u € Hy(X). The constants C{, CY, C¥ are as in Lemma 14,
C}, C5, C} are as in Lemma 13, and the constant C"" is as in Lemma 15.

Proof Fix some A > 0. First note that the projection IP; does not increase the Dirichlet
energy (neither the graph one nor the continuum one), and hence we conclude that

DUPF)? = D®LIPHY? = D(HV? = D@, 1P — )/,
From Lemma 15 (i) it follows that,
D®,IPf — f)} = D®LUPS — ) < VAIPf = fll2pmpm < C"VARD(f)?
for all f € Hy(M). Hence,
DUPf)? = (1= C"hVR)D(f)?.

Moreover, we know from Lemma 14 (ii) that

DUPf)? < (1 +Clh+ Cg% + Cg/h2) b(Pf)?
EOE';W
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and thus
| 1—C"hv/k |
b(Pf)? D(f)2
(P1)E = 1+ Clh+Cy 4 Cyh? )
> (1= /i +chh = ¢} % — C{n?) D(f)?

for all f € H, (M) as claimed in (i). Regarding assertion (ii), we proceed similarly.
First, we obtain that

b(PIu)? > bu)'/? — b(P, Plu — u)'/?
foru € H, (X). Since
b(P,(PTu—))? < VAIPIu—ull 2 (xmp,y < VAC"hb(u)?
by part (ii) of Lemma 15, we have
b(PIu)Z > (1 — C"~/%h)b(u)? .
Moreover, we know from part (ii) of Lemma 13 that

b(PIu)? < (1 +Clh+ cg% n Cgh2) D(Iu)*.

Therefore,
| 1 —C"/rh |
D(lu)2 > b(u)2
TOr = et o + o™
> (1- "+ Chh - cg% — i) bw)?,
which proves assertion (ii). O

Proof (Theorem 5) This theorem can now be proven word-for-word as [6, Theorem
4] together with the required Lemmas [6, Lemma 7.2, 7.3, 7.4] by replacing every
application of Lemmas 4.3, 6.2, 7.1 and Theorem 1 therein with the previously proven
Lemmas 13, 14, 16 and Theorem 4, respectively. O

We now focus on establishing Theorem 6. To simplify our computations, we set
) 1
0 = (Z + A+ VA M)h + (K + F) h? + |lm — ,o||oo> .

FoC'T
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In the setting of Theorem 5, we have

1P*u = £ < |P*u— 1u| + l11u - f1l < Chb@)> + —S—6
8k,pn

0

= C'hy/a (") +
k,pp

where the second inequality follows from (4.7). From Theorem 4, for 4 small enough
we have

|P*u — f|| < C"hy/A(M) +

0, 5.1
8k,pu

Therefore, every extension of u that approximates P*u in L>(M, py) (or equivalently
in L?(M, w)) is also an approximation of the eigenfunction f.

We recall the definition of sets U; C M in (1.21), Euclidean Voronoi cells V; in
(1.25), and of the extended vector & from (1.26). Concerning the measure of such a
Voronoi cell, we obtain the following bound.

Lemma 17 For every B > 1, there exists a constant C > 0 depending on m and on £
from (1.14) such that

% < C -log"Pmn =: C(n)

foralli =1,...,nandalln € N with probability at least 1 — CK,VOI(M),m,ion_ﬂ

Proof We first show that V; C {x € M : [x — x;| < &}. To this end, suppose x € M
such that [x — x;| > ¢. Then also d(x, x;) > &. Since the balls Bx¢(x;, &) cover M
by the choice of ¢, there exists x; such that d(x, x;) < &. Therefore, |x — xj| <e<
|x — x;| and thus x ¢ V;. This proves the claim.

Now, we assume that the assertion of Theorem 2 holds. For ¢ < %, it follows from
Proposition 2 that V; is contained in the ball B4 (x;, 3¢). Thus, we obtain from the
bounds on the distortion of metric by the exponential map (1.35) that

nvV) _ m(Ba(xi, 3e)) _ aw, (3e)"C
wU;) — w(Ui) - 1/n

= Cawp,3" ™ logh ™ (n)

where ¢ defined in (1.14), and C > 0 is a universal constant. O

Proof (Theorem 6) Let u € L?(X) be a normalized eigenvector of A corresponding
to Ax(I") and let f a normalized eigenfunction of A corresponding to Agx (M) as in
Theorem 5 (or as in (5.1)). Let

Vo= la = fl72u,0 = Z/V lu(xi) — fFIP du(y)
i=1 i

FolCT
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and

Z(—)/ lu(xi) — fOIP dp(x).
=1

Then, by Lemma 17 and (5.1),

C
VT <T@ - 1P =l < C (C’W“(M) e 9) |

k,pp

On the other hand,

| et = FOP S ) /U ) — fo)2 P

V-U \%
| ISZM( ) A A

du(y) du(x)

. 2 —
|u<x,> FOIP = lux) — fx >|)M(Vl),,L(U,>

” ) = FONSE) = FON) + (f@) = fF(3)?)

du(y) du(x)
w(Vi) n(U;)

. du(y) du(x) 2 2
<8||Vf||ooe(2u<v>// ) — fx >|M(V)M(Ul))+16||Vf||ooe

du(x) 2 2
= 81V flloo V; ; SOV 161V £
IVl 8<l§=1u( )/U,- i) — )l (U))+ IV £ 1%

< 8V fllootVU + 16]|V £ 12,62
where in the second equality we have used the fact that for all y € V; and all x € U;,
d(x,y) < d(x,x;) +d(x;,y) < 3¢+ ¢; the last inequality follows from Jensen’s
inequality.
Thus,
VZI|V—Ul+U <16V fleo + VU,
and from this it follows that

lit = fll 2o = YV < 4ellV fllso +4VU.

Using [22], we know that

m+1 m+l
IV flloo = CAae M) T 1L fll L2t ) = CAe (M) 3,
FoE'ﬂ
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for a constant C o4 > 0 that depends on the manifold M. Putting everything together,
we deduce that

m ~ 0
li = fll2mp < CaveM) T e + Cy/Cn) (x/kk(/\/l)h + ) :

8k,pn

which is the desired estimate. O
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A Proofs of Propositions in Sect. 1.6

Proof (of Proposition 1) The first claim follows immediately from (1.33). To deduce
the second part, let g1, g2 € Baq(p, 5). Consider a smooth curve y: [0, 1] — M
connecting g1 and ¢y, i.e., ¥(0) = ¢; and y(i) = g2. We observe that if y is not
contained in Baq(p, r), then

d(q1,q2) <d(q1, p) +d(q2, p) <r =< Length(y).

In fact, to deduce that r < Length(y) lets € (0, 1) be such that y (s) ¢ Baq(p, ).
It is straightforward to see that the length of the restriction of ¥ to the interval [0, 5]
is larger than the distance between y (s) and d B¢ (p, 5), which in turn is larger than
5. Similarly, the length of the restriction of y to the interval [s, 1] is larger than 7.
Hence, r < Length(y) as desired.

Now, let y be a smooth curve realizing the distance between ¢ and ¢> (which after
appropriate normalization has to be a geodesic). From the previous observation, we
see that y is contained in B (p, r). Consider y := exp;1 oy, where we note that
exp;l is well defined along y given that r < ip. From the first part of the proposition,
we deduce that

1 N _ 1 N
d(exp, 'gn). exp, ' (q2) < 5 Length(y) =< Length(y) = d(q1. 92).

Finally, for an arbitrary smooth curve y: [0,1] — B(r) € T, M with y(0) =
exp;l(ql) and y (i) = exp;l(qz) we have

d(q1, g2) < Length(exp, oy) < 2Length(y).

Taking the infimum on the right-hand side over all such curves y, we deduce that
d(q1, q2) < 2d(exp,'(q1), exp, ' (¢2)). This completes the proof. O
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Proof (Proof of Proposition 2) The inequality |x — y| < d(x, y) is trivial. To show
the other inequality, we note that since |x — y| < g, it follows from [19, Prop 6.3]

that
2x =yl
d(x.y) < R=Ry[1-=——.

Using the fact that for every ¢t € [0, 1], /1 — ¢ > 1 — %t — %tz

lx—yl 2 2
d(X,)’)SR—R(l— R —F|X—)’|

2
=|x—y|+ﬁ|x—y|zsz|x—y|. (A.1)

To improve the error estimate, let L = d(x, y) and let y : [0, L] — M be an arc-
length-parameterized length-minimizing geodesic between x and y. Heuristically, y
is a “straight” line in M, and thus, its curvature in R4 is bounded by the maximal
principal curvature of M in R?, which is bounded by %. More precisely, we claim
that

1
7)) < -  foralls €0, L]. (A.2)

This statement follows from [19, Prop 6.1] (and is used in the proof of Proposition
6.3 of [19]). Using translation, we can assume that x = 0. Furthermore, note that that
y(t) - y(¢t) = 0 for all ¢. Thus,

L
lx =yl =IlyL)| =z y@) yL) =/0 y(s) - y(L)ds

L L
- / (y'(L)— / J'/'(r)dr)-)?(L)ds (A3)
0

N
L L L L3
—i— [ [ o) peearas = - 5
0 s r R

Combining with (A.1) implies L < |x — y| + %|x -y O

B Kernel-Density Estimates via Transportation

Here, we use the estimates on infinity transportation distance established in Sect. 2
to show the kernel density estimates we need. While the estimates we prove are not
optimal, they do not affect the rate of convergence of eigenvalues and eigenfunctions
in our main theorems. We chose to present the proof as follows as it highlights how
the optimal transportation estimates can be used to provide general kernel-density
estimates in a simple and direct way.

Elol:;ﬂ
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Lemma 18 Considern : R — R, nonincreasing, supported on [0, 1], and normalized:
f]Rm n(|x|)dx = 1. Consider h > 0 satisfying Assumption 3. Then, (1.12) holds. That
is, there exists a universal constant C > 0 such that

i=1,...,

1
nllax |m; — p(x;)| < CL,h + Can(O)mwmz + Cam (K + F) h%, (B.1)
= n

where € is the co-OT distance between i, and | (see Sect. 2).

The weights m are defined by

1o (i —xl\ .
m,-:nhmZn<T>, i=1,...,n,

j=1

p is the density of p with respect to M’s volume form. We remark that we do not
require 7 to be Lipschitz on [0, 1].

Proof First, notice that for every i, j with |x; — x;| < h we have |x; — x| < %, and
hence, Proposition 2 implies that

8 3 8h?
d(xi»xj)f|xi_xj|+ﬁ|xi_xj| < 1+F [xi — xjl.
Therefore, for every i, j and every y € U},

|xi—xj|) <d(xi,xj)> <(d(xi7y)—€)+)
n(—h =n —IAl =n —fl ,

where we recall that ¢ is the co-OT distance between 1, and i and where h = h+
From this, it follows that

1 n i — X 1 d i _
mi = ]ZI n (%) < /M 1 (W) p(y)dVol(y)
(p(xi) + 10L,,h)him
(B.2)

/ . ((d(xiv yA) - 8)+> dVol().

M h
FoC T
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where the last inequality follows using the Lipschitz continuity of p, the fact that
& < h and the fact that 7 < g (so that in particular & 4+ ¢ < 10h). Now,

1 (d(xi,Y)—8)+> 1 / ((|Z|—8)+>
h™ /M ! < h oY= B(h+e) ! h (@

1 / <(|z|—8)+)
< — n{———) Ju(@dz
hm B(h+e) h !

1
< +Cm1<h2)h—m

(Iz] — &)+
o/ )z,
B(h+¢) h

where C is a universal constant. The last integral above can be estimated as follows

(B.3)

1 (Jz] —8)+) g™ 1 |z| — &
— n|————)dz=n)on— + — n ~ dz
h™ Jgm < h " e Bee) h

&M ilm 1 s m—1
='7(0)wm—+h—m 0 mawpy <r+z> n(r)dr

3

h

g 16mh?
=nOom 4 {1+ —3

/01 mawy, (r + %)m_l n(r)dr

(B.4)

Using the binomial theorem, we obtain

1 e\m—1 1 1
ma)m/ (r + —) n(r)dr < mwy, / ™ n(r)dr + mw,,n(0)
0 h 0

m—1

> ("G

m—1

_ m (£
=1+ wun(0) k; (k) (h)

= 1+ 1 (0) ((1 + %)m - ;—Z>

£
1+ 2mn(0)wp, o (0w, —

IA
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where in the first equality we have used the fact that  was assumed to be normalized,
and in the last inequality, we have used

(1+5)™ <1+2ms whenever0 <s < —.
m

Combining (B.2), (B.3) and (B.4), we conclude that
1
m; — p(x;) < p(x;) + CLpyh + Can(o)mwm% + Cam (K + F) h?,

for a universal constant C > 0.
In a similar fashion, we can find an upper bound for p(x;) — m;. Indeed, observe
that for every i, j and y € U; we have

i —Xj d(xi, xj d(xi,y) +
n(|x hXJ|>277( (xhx])>2n< (x Z) 8)

and so

mi = — / 0 <w> p(y)dVol(y)
M

1 d(x;,
> L /Mn (%) (p() — Lpd(xi, y)AVOl(y)  (B.S)

1 d(x;,
> (p() = Lyph) /M n (W) dVol(y).

The above integral can be estimated from below by

1 d(xi,y)+e 1 |z] + ¢
— ———— ] dVol = — Jy. (2)d
o Adn( ; ) ol(y) o Bm—mn W v (2)dz

1 |z| + ¢
¢! —CmKh2)—/ n(—) dz
h™ JBh—e) h

1
=(1- CmKhz)/ mawyn(r)(r — i)m*]dr
e/h h
(B.6)
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where the second equality follows using polar coordinates and a change in variables;
the last inequality follows from the fact that 5 is assumed to be normalized. In turn,

1

1 e\m—1 I
/ may,n(r) (r — —) dr > / mawn(r)r'"™ = dr
e/h h e/h

1
- mme/ (m — l)n(r)r'"_2dr
h Jen

>1— 2n<0>mwm§,

where we have used the fact that n was assumed to be normalized. Combining the
above inequalities, we deduce that

p(xj) —m; < Lyh+ C(xmmeh2 + Camwmr}(O)%.
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