
Applied Mathematics & Optimization
https://doi.org/10.1007/s00245-019-09637-3

Properly-Weighted Graph Laplacian for Semi-supervised
Learning

Jeff Calder1 · Dejan Slepčev2
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Abstract
The performance of traditional graph Laplacian methods for semi-supervised learning
degrades substantially as the ratio of labeled to unlabeled data decreases, due to a
degeneracy in the graph Laplacian. Several approaches have been proposed recently
to address this, however we show that some of them remain ill-posed in the large-
data limit. In this paper, we show a way to correctly set the weights in Laplacian
regularization so that the estimator remains well posed and stable in the large-sample
limit. We prove that our semi-supervised learning algorithm converges, in the infinite
sample size limit, to the smooth solution of a continuum variational problem that
attains the labeled values continuously. Our method is fast and easy to implement.

Keywords Semi-supervised learning · Label propagation · Asymptotic consistency ·
PDEs on graphs · Gamma-convergence

Mathematics Subject Classification 49J55 · 35J20 · 35B65 · 62G20 · 65N12

1 Introduction

For many applications of machine learning, such as medical image classification
and speech recognition, labeling data requires human input and is expensive [13],
while unlabeled data is relatively cheap. Semi-supervised learning aims to exploit this
dichotomy by utilizing the geometric or topological properties of the unlabeled data,
in conjunction with the labeled data, to obtain better learning algorithms. A significant
portion of the semi-supervised literature is on transductive learning, whereby a func-
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slepcev@math.cmu.edu

1 Department of Mathematics, University of Minnesota, Minneapolis, USA

2 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-019-09637-3&domain=pdf


Applied Mathematics & Optimization

Fig. 1 Example of the degeneracy of graph Laplacian learning with few labels. The graph is a sequence of
n = 105 i.i.d. randomvariables drawn from the unit box [0, 1]2 inR2, and two labels are given g(0, 0.5) = 0
and g(1, 0.5) = 1

tion is learned only at the unlabeled points, and not as a parameterized function on
an ambient space. In the transductive setting, graph based algorithms, such the graph
Laplacian-based learning pioneered by [55], are widely used and have achieved great
success [3,26,27,46–48,51–54].

Using graph Laplacians to propagate information from labeled to unlabeled points
is one of the earliest and most popular approaches [55]. The constrained version of
the graph Laplacian learning problem is to minimize over all u : X → R

GL(u) =
∑

x,y∈X
wxy(u(x) − u(y))2

subject to constraint u(x) = g(x) for all x ∈ �

(1)

where the data pointsX form the vertices of a graphwith edgeweightswxy and� ⊂ X
are the labeled nodes with label function g : � → R. The minimizer u of (1) is the
learned function, which extends the given labels g on � to the remainder of the graph.
In classification contexts, the values of u are often rounded to the nearest label. The
method amounts to minimizing a Dirichlet energy on the graph, subject to a Dirichlet
condition u = g on �. Minimizers u are harmonic functions on the graph, and thus
the problem can be view as harmonic extension.

It has been observed [18,34] that when the size of � (the labeled points) is small,
the performance of graph Laplacian learning algorithms degrades substantially. In
practice, the learned function u fails to attain the conditions u = g on � continuously,
and degenerates into a constant label function that provides little information about the
machine learning problem. Figure 1 gives an example of this issue. There are several
ways to explain this degeneracy. First, in the limit of infinite data, the variational
problem (1) is consistent with the continuum Dirichlet problem

min
u

∫

�

|∇u|2 dx, (2)
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subject to a boundary condition u = g on � ⊂ � ⊂ R
d . If � is finite this problem

is ill-posed since the trace of an H1(�) function at a point is not well-defined. In
particular, there are minimizing sequences for the constrained problem converging to
a constant function outside of � for which the Dirichlet energy converges to zero. In
particular the minimum is not attained. From another perspective, minimizers of the
continuum Dirichlet problem (2) satisfy Laplace’s equation �u = 0 with Dirichlet
conditionu = g on�, andLaplace’s equation is notwell-posedwithout someboundary
regularity (an exterior sphere condition), which does not hold for isolated points. In
both cases, we are simply observing that the capacity of a point is zero in dimensions
d � 2.

Several methods have been proposed recently to address the degeneracy of Lapla-
cian learning with few labels. In [18], a class of p-Laplacian learning algorithms was
proposed, which replace the exponent 2 in (1) with p > 2. The p-Laplacian models
were considered previously for other applications [2,9,18,50], and the p → ∞ case,
which is called Lipschitz learning, was considered in [29,33]. The idea behind the
p-Laplacian models is that the continuum variational problem is now the p-Dirichlet
problem

min
u

∫

�

|∇u|p dx, (3)

and for p > d the Sobolev embedding W 1,p(�) ↪→ C0,α(�) allows the assignment
of boundary values at isolated points. The p-Laplacian models, including the p = ∞
version, were proven to be well-posed in the limit of infinite unlabeled data and finite
labeled data precisely when p > d in [10,11,41]. The disadvantage of p-Laplacian
models is that the nonlinearity renders them more computationally challenging to
solve, compared with standard Laplacian regularization. Other approaches include
higher order Laplacian regularization [6,17,49] and using a spectral cut-off [5].

The approach most closely related to our work is the weighted nonlocal Laplacian
of Shi et al. [38], which replaces the learning problem (1) with

min
u:X→R

∑

x∈X \�

∑

y∈X
wxy(u(x) − u(y))2 + μ

∑

x∈�

∑

y∈X
wxy(g(x) − u(y))2, (4)

whereμ > 0 is selected as the ratio of unlabeled to labeled data. Themethod increases
the weights of edges adjacent to labels, which encourages the label function to be
flat near labels. The authors show in [38] that the method produces superior results,
compared to the standard graph Laplacian, for classification with very few labels.
Furthermore, since the method is a standard graph Laplacian with a modified weight
matrix, it has similar computational complexity to Laplacian learning, and is fast
compared to the non-linear p-Laplace methods, for example. However, as we prove in
this paper, the weighted nonlocal Laplacian of [38] becomes ill-posed (degenerate) in
the limit of infinite unlabeled and finite labeled data. This is a direct consequence of
Corollary 3.8. Numerical simulations in Sect. 5 illustrate the way in which the method
becomes degenerate. The issue is the same as for Laplacian learning, since the weights
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are modified only locally near label points and the size of this neighborhood shrinks
to zero in the large sample size limit.

1.1 ProperlyWeighted Laplacian

In this paper, we show how to properly weight the graph Laplacian so that it remains
well-posed in the limit of infinite unlabeled and finite labeled data. Our method,
roughly speaking, modifies the problem to one of the form:

Minimize
∑

x,y∈X
γ (x)wxy(u(x) − u(y))2 over u : X → R,

subject to constraint u(x) = g(x) for all x ∈ �

(5)

where γ (x) = dist(x, �)−α and α > d−2 (see Sect. 1.2 for precise definitions). Here,
we are modifying the weights not just of edges connecting to points of �, but also
in a neighborhood of �. We show that this model is stable as the number unlabeled
data points increases to infinity, under appropriate scaling of the graph construction.
In particular we show that the minimizers of the graph problem above converge as the
number of unlabeled data points increases to the minimizer of a “continuum learning
problem”. We give the precise assumptions on the discrete model below and describe
the continuumproblem in Sect. 2. Herewe give a brief explanation as towhyα > d−2
is the natural scaling for the weight.

To illustrate what is happening near a labeled point, consider � = {0} and take the
domain from which the points are sampled to be the unit ball � = B(0, 1) in Rd . The
continuum variational problem corresponding to (5) involves minimizing

I [u] =
∫

B(0,1)
|x |−α|∇u|2 dx . (6)

The Euler–Lagrange equation satisfied by minimizers of I is

div
(|x |−α∇u

) = 0. (7)

This equation has a radial solution u(x) = |x |α+2−d , which is continuous at x = 0
when α > d − 2. This suggests the solutions will assume this radial profile near
labels, and the model will be well-posed for α > d − 2. Furthermore when α � d − 1
one can expect the solution to be Lipschitz near labels, and for α � d it is should
be differentiable at the labels. It is important to point out that the proper weighting
changes the degenerate limiting continuum problem to one that is well-posed with
“boundary” data at isolated points.

We now provide a precise description of the properly-weighted graph Laplacian.
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1.2 Model and Definitions

Let � ⊂ R
d be open and bounded with a Lipschitz boundary. Let � ⊂ � be a

finite collection of points along with a given label function g : � → R. Let μ be a
probability measure on � with continuous density ρ which is bounded from above
and below by positive constants. Let x1, x2, . . . , xn be independent and identically
distributed random variables with distribution μ, and let

Xn := {x1, x2, . . . , xn} ,

and Xn := Xn ∪ �. To define the edge weights we use a radial kernel η with profile
η : [0,∞) → [0,∞) which is nonincreasing, continuous at 0 and satisfies

{
η(t) � 1, if 0 � t � 1

η(t) = 0, if t > 2.
(8)

All of the results we state can be extended to kernels which decay sufficiently fast, in
particular the Gaussian. For ε > 0 we define the rescaled kernel

ηε(x − y) = 1

εd
η

( |x − y|
ε

)
. (9)

We now introduce the penalization of the gradient, which is heavier near labeled
points. Let R > 0 be the minimum distance between pairs of points in �:

R = min{|x − y| : x, y ∈ �, x �= y}. (10)

For r0 > 0 and α � 0 let γ ∈ C∞(�\�) be any function satisfying γ � 1 on � and

γ (x) = 1 +
(

r0
dist(x, �)

)α

whenever dist(x, �) � R

4
, (11)

where dist(x, �) denotes the Euclidean distance from x to the closest point in �. For
ζ > 1 we set

γζ (x) = min{γ (x), ζ }. (12)

For u ∈ L2(Xn) we define the energy

GEn,ε,ζ (u) = 1

n2ε2
∑

x,y∈Xn

γζ (x)ηε(x − y)|u(x) − u(y)|2. (13)

The Laplacian learning problem is to

minimize GEn,ε,ζ (u) over
{
u ∈ L2(Xn) and u = g on �

}
. (14)
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We note that the unique minimizer u ∈ L2(Xn) of (14) satisfies the optimality condi-
tion

{
GLn,ε,ζu(x) = 0, if x ∈ Xn (= Xn\�)

u(x) = g(x), if x ∈ �,
(15)

where GLn,ε,ζ : L2(Xn) → L2(Xn) is the graph Laplacian, given by

GLn,ε,ζu(x) = 1

2nε2

∑

y∈Xn

(γζ (x) + γζ (y))ηε(x − y)(u(y) − u(x)). (16)

Some remarks about the model are in order.

Remark 1.1 When considering the discrete functional, ζ depends on n and diverges to
infinity (sufficiently fast) as n → ∞. The constant r0 represents the length scale of the
crossover from the strong local penalization near � to uniform far-field penalization.
The introduction of ζ is needed since γ (x) = ∞ on � and so using γ directly would
impose a hard constraint on neighbors of labeled points. While we can allow ζ = ∞
in our model by interpreting products ∞· 0 as 0, we wanted to allow for a model with
far less stringent constraints on agreement with the labeled points in the immediate
vicinity of �. We note that the critical distance to �, when γζ crosses over from γ to
ζ equals

rζ = r0(ζ − 1)−1/α provided that r0(ζ − 1)−1/α <
R

4
. (17)

Remark 1.2 In practice, one can take (11) to be the definition of the weights on the
whole domain �. We only need γ to be smooth for a part of our analysis in Sect. 2.2.
The issue is that since the distance function d(x, �) is not differentiable (it is only
Lipschitz on�\� if� has more than one point), γ cannot be both smooth and globally
given by (11). To elaborate, γ appears as part of the diffusion coefficient in the limiting
elliptic problem (see Eq. (22)). The solutions have nicer regularity properties when
we take γ to be smooth, away from the labels. For the other results we only need that
γ is bounded from below by a positive number and has singularities, with a particular
growth rate, near the points of �.

Remark 1.3 Instead of truncating γ at the radius rζ to construct the weights γζ , we
can take a possibly discontinuous model of the form

γζ,r (x) =
{

γ (x), if dist(x, �) > r

ζ, if dist(x, �) � r .
(18)

This model is more general, since we can set r = rζ to recover (12). Choosing
ζ 	 1 + (r0/r)α places a larger penalty on the gradient in the inner region where
dist(x, �) � r , compared to Eq. (12). This model is useful in the analysis of the graph

123



Applied Mathematics & Optimization

based problem, and gives a sharper result for continuity at the labels (see Remark 4.3).
In the limit as n → ∞ we would take ζ → ∞ and r → 0 with r � rζ .

Remark 1.4 We remark that the discrete functional (13) can be rewritten as

GEn,ε,ζ (u) = 1

2n2ε2
∑

x,y∈Xn

(γζ (x) + γζ (y))ηε(x − y)|u(x) − u(y)|2, (19)

and so the problem has a symmetric weight matrix.

1.3 Outline

The continuum properly-weighted Dirichlet energy, which describes the asymptotic
behavior of the properly-weighted graph Laplacian (14) is presented in Sect. 2 (Eqs.
(20) and (21)). To show that the continuum problem is well posed and to establish its
basic properties, in Sect. 2 we also study properties of singularly weighted Sobolev
spaces. In particular the Trace Theorem2.2 plays a key role in showing that the data can
be imposed on a set of isolated points, which enables us to show the well-posedness in
Theorem 2.7. The Euler–Lagrange equation of the variational problem is the elliptic
problem we study in Sect. 2.2. In particular we show that solutions are C2 away from
the labels and Hölder continuous globaly.

In Sect. 3 we turn to asymptotics of the graph-based problems. We prove in
Theorem 3.1 that the solutions of the graph-based learning problem (14), for the
properly-weighted Laplacian, converge in the large sample size limit to the solu-
tion of a continuum variational problem (20)–(21). We achieve this by showing the
�-convergence of the discrete variational problems to the corresponding continuum
problem. We also prove a negative result, showing that the nonlocal weighted Lapla-
cian [38] is degenerate (ill-posed) in the large data limit (with fixed number of labeled
points). In Sect. 4.1 we prove that solutions of the graph-based learning problem for
the properly-weighted Laplacian attain their labeled values continuously with high
probability (Theorem 4.1). In Sect. 5 we present the results of numerical simulations
illustrating the estimators obtained by our method, and its performance in classifi-
cation tasks on synthetic data and in classifying handwritten digits from the MNIST
dataset [30]. The classification problems on synthetic data contrast the stability of the
properly-weighted Laplacian with the instability of the standard graph Laplacian and
related methods. The MNIST experiments show superior performance of our method
compared to the standard graph Laplacian, and similar performance to the weighted
Laplacian of [38]. In the Appendix A we recall some background results used and
show and auxiliary technical result.

2 Analysis of the Continuum Problem

The continuum variational problem corresponding to the graph-based problem (14) is
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minimize E(u) over
{
u ∈ H1

γ (�) and u = g on �
}

, (20)

where E is given by

E(u) = 1

2

∫

�

γ |∇u|2ρ2 dx, (21)

ρ is continuous and bounded from above and below by positive constants, and the
weighted Sobolev Space H1

γ (�) is defined by (25). It follows from Lemma 2.1 that
for γ which grow near points of � as fast as or faster than dist(x, �)−α , the functions
in H1

γ (�) have a trace at� (defined by (33)), which enables one to assign the condition
u = g on � in (20).

TheEuler–Lagrange equation satisfied byminimizers of (21) is the elliptic equation

⎧
⎪⎪⎨

⎪⎪⎩

− div(γρ2∇u) = 0 in �\�
u = g on �

∂u

∂ν
= 0 on ∂�.

(22)

In this section we study the variational problem (20) and the elliptic problem (22)
rigorously. The theory is nonstandard due to the boundary condition u = g on�, since
� is a collection of isolated points and does not satisfy an exterior sphere condition. As
a consequence of this analysis, we prove in Sect. 4.1 that solutions of the graph-based
problem are continuous at the labels.

Before studying this problem, we need to perform a careful analysis of a particular
weighted Sobolev space.

2.1 Weighted Sobolev Spaces

In this section we study the Sobolev space with norm weighted by γ . While there
exists a rich literature onWeighted Sobolev Spaces, we did not find the precise results
we need. Below we develop a self-contained, but brief, description of the spaces with
particular weights of interest.

For u ∈ H1(�) we define

[u]2H1
γ (�)

=
∫

�

γ |∇u|2 dx, (23)

and

‖u‖2H1
γ (�)

= ‖u‖2L2(�)
+ [u]2H1

γ (�)
. (24)

We define

H1
γ (�) =

{
u ∈ H1(�) : ‖u‖H1

γ (�) < ∞
}

, (25)
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and endow H1
γ (�) with the norm ‖u‖H1

γ (�). We also denote by H1
γ,0(�) the closure

of C∞
c (�\�) in H1

γ (�). The space H1
γ (�) is the natural function space on which to

pose the variational problem (20).
Throughout this section we let Br denote the open ball of radius r > 0 centered at

the origin in Rd . Whenever we consider the space H1
γ (Br ), we will implicitly assume

the choice of γ (x) = |x |−α . Hence

[u]2H1
γ (Br )

=
∫

Br
|∇u|2|x |−α dx . (26)

In all other occurrences, γ is defined as in Sect. 1.2, and in particular we always assume
(11) holds. We also use the notation (u)x,r = -

∫
B(x,r) u dx for the average of u over the

ball B(x, r), and (u)r := (u)0,r . We also assume in this section that � has a Lipschitz
boundary.

First, we study the trace of H1
γ (�) functions on �. Before proving a general trace

theorem, we require a preliminary lemma.

Lemma 2.1 Let α > d − 2 and u ∈ H1
γ (Br ). Then x = 0 is a Lebesgue point [35] for

u, i.e., u(0) := limε→0(u)ε exists, and

|u(0) − (u)ε| � Cε(α+2−d)/2[u]H1
γ (Bε)

(27)

for all 0 < ε � r .

Proof We compute

∫

Bε

|∇u|2 dx �
∫

Bε

|∇u|2|x |−αεα dx � [u]2H1
γ (Bε)

εα.

By the Poincaré inequality we have

−
∫

Bε

(u − (u)ε)
2 dx � Cr2−

∫

Bε

|∇u|2 dx � C[u]2H1
γ (Bε)

εα+2−d . (28)

For 0 < s < t � r we apply (28) with s and t in place of ε to obtain

sd((u)s − (u)t )
2 � C

∫

Bs
((u)s − (u)t )

2 dx

� C
∫

Bs
((u)s − u)2 dx + C

∫

Bs
((u)t − u)2 dx

� C[u]2H1
γ (Bt )

(sα+2 + tα+2). (29)

For 0 < q < ε � r with ε � 4q we can set s = q and t = ε above to obtain

|(u)q − (u)ε|2 � C[u]2H1
γ (Bε)

εα+2−d . (30)
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For 0 < q < ε � r with ε > 4q, let k ∈ N be the greatest integer smaller than
log2(ε/q). Since ε > 2q, we have k � 1. Choose b > 0 so that bk = ε/q. Then

log(b) = log(ε/q)

k
� log(ε/q)

log2(ε/q)
� log(2)

and

log(b) � log(ε/q)

log2(ε/q) − 1
= log(2) log2(ε/q)

log2(ε/q) − 1
� 2 log(2),

since log2(ε/q) > 2. Therefore 2 � b � 4. Let us set ε j = εb− j and a j = (u)ε j .
Then ε0 = ε and εk = εb−k = q. Setting t = ε j and s = ε j+1 in (29) yields

|a j − a j+1|2 � C[u]2H1
γ (Bε)

(εα+2−d
j+1 + εα+2

j ε−d
j+1) � C[u]2H1

γ (Bε)
b− j(α+2−d)εα+2−d .

Therefore

|(u)q − (u)ε| �
k−1∑

j=0

|a j+1 − a j | � C[u]H1
γ (Bε)

ε(α+2−d)/2 (31)

holds for all k � 1, where C is independent of u, ε and k.
In either case, we have established that

|(u)q − (u)ε|2 � C[u]2H1
γ (Bε)

εα+2−d (32)

holds for all 0 < q < ε � r . Thus, the sequence ε �→ (u)ε is Cauchy and converges
to a real number as ε → 0. Sending q → 0 in (32) completes the proof.

By Lemma 2.1, we can define the trace operator Tr : H1
γ (�) → R

� by

Tr[u](x) = lim
ε→0

−
∫

B(x,ε)
u dx (x ∈ �). (33)

We endow R
� with the Euclidean norm. We now prove our main trace theorem.

Theorem 2.2 (Trace Theorem) Let α > d − 2 and assume γ satisfies (11) and � has
a Lipschitz boundary. Then the trace operator Tr : H1

γ (�) → R
� is bounded, and

satisfies Tr[u](x) = u(x) whenever u is continuous at x ∈ �. Furthermore, for every
u, v ∈ H1

γ (�) with ‖u − v‖2/(α+2)
L2(�)

� R/2 we have

|Tr[u] − Tr[v]| � C(1 + [u]H1
γ (�) + [v]H1

γ (�))‖u − v‖1−d/(α+2)
L2(�)

. (34)
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Proof By Lemma 2.1 each x ∈ � is a Lebesgue point of u, and we have for r � R/2

|Tr[u](x)| � −
∫

B(x,r)
u dx + Cr (α+2−d)/2[u]H1

γ (�)

� Cr−d/2‖u‖L2(�) + Cr (α+2−d)/2‖u‖H1
γ (�),

where R > 0 is defined in (10). Fixing r = R/2 we have |Tr[u](x)| � C‖u‖H1
γ (�),

hence Tr : H1
γ (�) → R is bounded.

To prove (34), let u, v ∈ H1
γ (�) and x ∈ �. For simplicity, we write u(x) and v(x)

for Tr[u](x) and Tr[v](x), respectively. By Lemma 2.1 we have for 0 < ε � R/2

|u(x) − v(x)| �
∣∣u(x) − (u)x,ε

∣∣ + ∣∣v(x) − (v)x,ε
∣∣ + ∣∣(u)x,ε − (v)x,ε

∣∣

� Cε(α+2−d)/2([u]H1
γ (B(x,ε)) + [v]H1

γ (B(x,ε))) + Cε−d
∫

Bε

|u − v| dx

� Cε(α+2−d)/2([u]H1
γ (�) + [v]H1

γ (�)) + Cε−d/2‖u − v‖L2(�).

Choosing ε = ‖u − v‖2/(α+2)
L2(�)

, we obtain

|u(x) − v(x)| � C(1 + [u]H1
γ (�) + [v]H1

γ (�))‖u − v‖1−d/(α+2)
L2(�)

,

provided ε � R/2.

We now examine the decay of the L2 norm of trace zero functions.

Lemma 2.3 Let α > d − 2 and u ∈ H1
γ (Br ) with Tr[u](0) = 0. Then

−
∫

∂Bε

u2 dS + −
∫

Bε

u2 dx � Cεα+2−d [u]2H1
γ (Bε)

(35)

for all 0 < ε � r .

Proof Since Tr[u](0) = 0, Lemma 2.1 yields

‖(u)ε‖L2(Bε)
� Cεd/2|(u)ε| � Cε(α+2)/2[u]H1

γ (Bε)
.

Recalling (28) from the proof of Lemma 2.1 we deduce

‖u − (u)ε‖L2(Bε)
� Cε(α+2)/2[u]H1

γ (Bε)
.

Therefore

−
∫

Bε

u2 dx = Cε−d‖u‖2L2(Bε)
� Cεα+2−d [u]2H1

γ (Bε)
,

which establishes one part of (35).
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For the other part, we use a standard trace estimate thatwe include for completeness.
We have

ε

∫

∂Bε

u2 dS =
∫

Bε

div(xu2) dx

=
∫

Bε

du2 + 2u∇u · x dx

� C
∫

Bε

u2 dx + Cε2
∫

Bε

|∇u|2 dx

� C
∫

Bε

u2 dx + Cεα+2[u]2H1
γ (Bε)

.

Dividing both sides by εd we obtain

−
∫

∂Bε

u2 dS � C−
∫

Bε

u2 dx + Cεα+2−d [u]2H1
γ (Bε)

,

which completes the proof.

We now show that trace zero functions can be approximated in H1
γ (�) by smooth

functions compactly supported away from �.

Theorem 2.4 (Trace zero functions) Let α > d − 2 and assume γ satisfies (11) and �

has a Lipschitz boundary. Then u ∈ H1
γ,0(�) if and only if u ∈ H1

γ (�) and Tr[u] = 0.

Proof If u ∈ H1
γ,0(�), then there exists uk ∈ C∞

c (�\�) so that uk → u in H1
γ (�).

In particular, uk is uniformly bounded in H1
γ (�). Thus, by Theorem 2.2, we have

Tr[u](x) = limk→∞ uk(x) = 0 for each x ∈ �.
Conversely, let u ∈ H1

γ (�) such that Tr[u] = 0. Without loss of generality, we
may assume � = Br , � = {0}, and Tr[u](0) = 0. Choose a smooth nonincreasing
function ξ : [0,∞) → [0, 1] such that ξ(t) = 1 for 0 � t � 1 and ξ(t) = 0 for t � 2.
For a positive integer k � 1 define ξk(x) = ξ(k|x |) and wk = u(1− ξk). We compute

∫

Br
|∇wk − ∇u|2|x |−α dx =

∫

Br

∣∣∣∣ξk∇u + kuξ ′(k|x |) x

|x |
∣∣∣∣
2

|x |−α dx

� C
∫

B2/k
|∇u|2|x |−α dx + Ck2

∫

B2/k\B1/k
u2|x |−α dx

� C
∫

B2/k
|∇u|2|x |−α dx + Ckα+2

∫

B2/k
u2 dx

� C
∫

B2/k
|∇u|2|x |−α dx, (36)

the last line following from Lemma 2.3. Therefore wk → u in H1
γ (Br ) as k → ∞.

To produce a smooth approximating sequence uk , we simply mollify the sequence
wk .
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As a corollary, we can prove density of smooth functions that are locally constant
near �.

Corollary 2.5 For any α > 0 the set

S = {u ∈ C∞(�) : (∃s > 0)(∀x ∈ �)(∀z ∈ B(0, 1)) u(x + sz) = u(x)}

is a dense subset of H1
γ (�).

Proof We split the proof into two cases.
Case 1: α > d − 2. Let u ∈ H1

γ (�). There exists ψ ∈ S such that Tr[ψ] = Tr[u].
Sincew := u−ψ ∈ H1

γ,0(�), there exists by Theorem2.4 a sequenceϕk ∈ C∞
c (�\�)

such that ϕk → w as k → ∞. We simply note that ψk := ϕk + ψ ∈ S and ψk → u
in H1

γ (�) as k → ∞.

Case 2:α � d−2. In this case,C∞(�) is dense in H1
γ (�)by a standardmollification

argument, since the weighting kernel |x |−α is integrable. Hence, for u ∈ H1
γ (�) with

α � d − 2 there exists ϕk ∈ C∞(�) such that ϕk → u in H1
γ (�). Since ϕk is smooth,

we automatically have

∫

�

dist(x, �)1−d |∇ϕk |2 dx < ∞.

Thus, by case 1, there exists a sequence ψk, j ∈ S such that for each k, ψk, j → ϕk in
H1

γ as j → ∞, since α � d − 2 � d − 1. The proof is completed with a diagonal
argument.

Finally, we prove a Hardy-type inequality for trace zero functions in H1
γ (BR).

Theorem 2.6 (Hardy’s inequality) Let α > d − 2 and assume γ satisfies (11) and �

has a Lipschitz boundary. If u ∈ H1
γ (Br ) with Tr[u](0) = 0 then u

|x |(α+2)/2 ∈ L2(Br )

and

∫

Br

u2

|x |α+2 dx � C[u]2H1
γ (Br )

. (37)

Proof By a change of variables we can reduce to the case of r = 1. We first note that

div

(
x

|x |α+2

)
= −α + 2 − d

|x |α+2

for x �= 0. Thus, for ε > 0 we have

∫

B1\Bε

u2

|x |α+2 dx = − 1

α + 2 − d

∫

B1\Bε

u2 div

(
x

|x |α+2

)
dx

= 1

α + 2 − d

[
2
∫

B1\Bε

u∇u · x

|x |α+2 dx
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−
∫

∂B1
u2 dS + 1

εα+1

∫

∂Bε

u2 dS

]

� C
∫

B1\Bε

|u||∇u||x |−α−1 dx + C[u]2H1
γ (B1)

+ C
∫

Bε

|x |−α|∇u|2 dx,

where the last line follows from Lemma 2.3 and the assumption α > d − 2. Applying
Cauchy’s inequality to the first term and rearranging yields

∫

B1\Bε

u2

|x |α+2 dx � C[u]2H1
γ (B1)

+ C
∫

Bε

|x |−α|∇u|2 dx .

Sending ε → 0 completes the proof.

Wenowestablish thewell posedness of the continuumproperly-weightedLaplacian
learning problem.

Theorem 2.7 Let α > d − 2, and assume ρ is continuous and bounded above and
below by positive constants, γ satisfies (11), and � has a Lipschitz boundary. Then
the problem (20) has a unique solution.

Proof The existence follows by the direct method of the calculus of variations. Namely
let uk , k = 1, 2, . . . be a minimizing sequence. By the Sobolev Embedding Theo-
rem, uk has a subsequence which converges weakly in H1

γ (�) and in L2(�) towards
u ∈ H1

γ (�). Since E is convex, it is weakly lower-semicontinuous and thus E(u) �
lim infk→∞ E(uk). Furthermore note that (34) implies that Tr(uk)(z) → Tr(u)(z) for
every z ∈ �. Thus u = g on �. We conclude that u is the desired minimizer. The
uniqueness follows from convexity of E , by a standard argument, which is recalled in
the proof of Lemma 2.11.

2.2 Elliptic Problem

We now study the elliptic Euler–Lagrange equation (22). We additionally assume in
this section that � has a C2,α boundary and ρ ∈ C1,σ (�) for some σ > 0. As before,
we assume ρ is bounded above and below by positive constants.

Definition 2.8 We say that u ∈ H1
γ (�) is a weak solution of (22) if

∫

�

γρ2∇u · ∇ϕ dx = 0 (38)

for all ϕ ∈ H1
γ,0(�) and Tr[u](x) = g(x) for all x ∈ �.

We first need a preliminary proposition on barrier functions.
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Proposition 2.9 (Barrier) Let α > d − 2 and fix any 0 < β < α + 2 − d. Then there
exists c > 0 depending on α, β, ρ and d such that w(x) = |x |β satisfies

div(ρ2(1 + |x |−α)∇w) � −β

2
(α + 2 − β − d)ρ2|x |−(α+2−β) (39)

for all 0 < |x | � c.

Proof. Since ∇w(x) = β|x |β−2x we have

div(ρ2(1 + |x |−α)∇w)

= β div(ρ2|x |β−2x) + β div(ρ2|x |β−α−2x)

= 2β|x |β−α−2(1 + |x |α)ρ∇ρ · x + βρ2 div(|x |β−2x) + βρ2 div(|x |β−α−2x)

= βρ2|x |β−α−2 [2(1 + |x |α)∇ log ρ · x + (d + β − 2)|x |α + d + β − α − 2
]

� βρ2|x |β−α−2 [C(1 + |x |α)|x | + (d + β − 2)|x |α + d + β − α − 2
]

The proof is completed by choosing c > 0 small enough so that when 0 < |x | � c

C(1 + |x |α)|x | + (d + β − 2)|x |α � 1
2 (α + 2 − β − d).

Theorem 2.10 Let α > d − 2. Assume γ satisfies (11), � has a C2,α boundary, and
ρ ∈ C1,σ (�) is bounded above and below by positive constants . Then the elliptic Eq.
(22) has a unique weak solution u ∈ H1

γ (�). Furthermore, u ∈ C(�) ∩ C2,σ
loc (�\�)

and satisfies for every 0 < β < α + 2 − d

|u(x) − u(y)| � C(β)|x − y|β (x ∈ �, y ∈ �). (40)

Proof For ε > 0 set

�ε := �\
⋃

y∈�

B(y, ε)

and let uε ∈ C2,σ (�ε) be the unique solution of the approximating problem

⎧
⎪⎪⎨

⎪⎪⎩

− div(γρ2∇uε) = 0 in �ε

uε = g(y) on ∂B(y, ε) for all y ∈ �

∂uε

∂ν
= 0 on ∂�.

(41)

It is a classical result that uε is the unique solution of the variational problem

min

{∫

�ε

γρ2|∇u|2 dx : u∈H1(�ε) and ∀y∈�, u=g(y) on ∂B(y, ε)

}
. (42)
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In particular, it follows that

sup
ε>0

∫

�ε

γρ2|∇uε|2 dx < ∞. (43)

By the maximum principle

min
�

g � uε � max
�

g. (44)

Let y ∈ �. By Proposition 2.9, w(x) := |x − y|β satisfies

− div(γρ2∇w) � β

2
(α + 2 − β − d)|x − y|−(α+2−β) > 0

for 0 < |x − y| � c, where c depends on α, β, ρ, and d. Thus, another application of
the maximum principle yields

uε(x) � g(y) + C |x − y|β

for all x ∈ �ε, where C is independent of ε > 0. The other direction is similar,
yielding

|uε(x) − g(y)| � C |x − y|β for all x ∈ �ε. (45)

By the Schauder estimates [24], for each δ > 0 there exists a constant C > 0,
independent of ε, such that

‖uε‖C2,σ (�δ)
� C

for all 0 < ε < δ. Therefore, there exists a subsequence uεk and u ∈ C2,σ
loc (�\�)

such that uεk → u in C2
loc(�\�). In particular, u solves (22) classically and satisfies

(40), due to (45). Thus u ∈ C(�) and u = g on �. Finally, it follows from (43) that
u ∈ H1

γ (�), and so u is a weak solution of (22), as per Definition 2.8. Uniqueness of
weak solutions follows by a standard energy method argument.

Lemma 2.11 Let α > d − 2. Assume γ satisfies (11), � has a C2,α boundary, and
ρ ∈ C1,σ (�) is bounded above and below by positive constants . Then solution u
of the variational problem (20) is the unique weak solution of the Euler–Lagrange
equation (22).

Proof Let u ∈ H1
γ (�) be the unique weak solution of (22), and let w ∈ H1

γ (�) with
Tr[w] = Tr[u]. Then by the definition of weak solution

∫

�

γρ2∇u · ∇(u − w) dx = 0.
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Therefore
∫

�

γρ2|∇u|2 dx =
∫

�

γρ2∇u · ∇w dx

= 1

2

∫

�

γρ2|∇u|2 dx + 1

2

∫

�

γρ2|∇w|2 dx

− 1

2

∫

�

γρ2|∇u − ∇w|2 dx,

and so
∫

�

γρ2|∇u|2 dx =
∫

�

γρ2|∇w|2 dx −
∫

�

γρ2|∇u − ∇w|2 dx .

It follows that u is the unique solution of the variational problem (20).

3 Discrete to Continuum Convergence

Throughout this section we consider �, Xn , and η which satisfy the assumptions of
Sect. 1.2. Letμn = 1

n

∑n
i=1 δxi be the empiricalmeasure of the sample. Let d∞(μ,μn)

be the ∞-transportation distance between μ and μn , discussed in Appendix A.2.
We now state our main result. In order to compare discrete and continuum mini-

mizers we use the T L p topology introduced in [20]. We review the topology and its
basic properties in Appendix A.3.

Theorem 3.1 Let εn be a sequence of positive numbers converging to zero as n → ∞
and such that εn 	 d∞(μ,μn). Let ζn ∈ (1,∞] be such that ζn 	 nε2n. Consider
α > d −2. Let un be a sequence of minimizers of the problem (14) for GEn,εn ,ζn . Then
almost surely (μn, un) converges in T L2 to (μ, u) where u is the minimizer of (20).

Our approach to proving the theorem is via establishing the �-convergence of
the discrete constrained functionals to the continuum ones. The overall approach to
consistency of learning algorithms follows the one developed in [20,22]. Ensuring
that the discrete problem induces enough regularity for one to be able to show that
the label values are preserved in the limit at points of � follows the general strategy
of [41]. However the problems and proofs are rather different. We remark that one
can also use the PDE-based approach of [10], but this would require a slightly more
restrictive range on εn . Nevertheless the PDE-based approach gives superior regularity
of solutions which we exploit in Sect. 4.

Proof Since, almost surely εn 	 d∞(μ,μn) � n−1/d it follows that ζn → ∞ as
n → ∞. We note that by discrete comparison principle ‖un‖L∞(μn) � max� ‖g‖.
By Lemma 3.5, the discrete energy GEn,εn ,ζn �-converges to θηE and the sequence
{(μn, un)}n=1,2,... is precompact in T L2. Therefore (μn, un) converges along a subse-
quence in T L2 metric to (μ̃, u). Sinceμn converges toμ inWassersteinmetric, μ̃ = μ.
The fact that u is the minimizer of (20) now follows directly from �-convergence of
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Proposition 3.4 below. Consequently, the fact that the whole sequence un converges
to u follows from the uniqueness of the minimizer of (20).

Remark 3.2 While abovewe address only algebraically growingweights γ (see (11)) it
is straightforward tomodify the proofs to show that if γ grows faster than algebraically
at labeled points (say γ (x) = exp(1/ dist(x, �)) the conclusion of the theorem hold
(in any dimension d � 2).

Remark 3.3 In this paper we assume that the data measure is supported on the set �

of full dimension. There are no substantial obstacles in extending the results to the
manifold setting where the data are sampled from a measure which is supported on a
smooth submanifold of Rd . One would only need to adjust the statements using man-
ifold analogues of the weighted Dirichlet energy and the Laplacian. The convergence
of graph Laplacian in the manifold setting has already been established in the standard
setting [23]. In the manifold setting the dimension d in the results above should be
replaced by the dimension of the data manifold.

Proposition 3.4 Let εn be a sequence of positive numbers converging to zero as n →
∞ and such that εn 	 d∞(μ,μn). Let ζn ∈ (1,∞] be such that ζn 	 nε2n and
ζn 	 ε2−d

n if d > 2 and ζn 	 − ln εn if d = 2. Let α > d − 2. Then the constrained
properly-weighted graph Dirichlet energy, defined on T L2(�) by

GEcon
n,εn ,ζn

(μ̃n, un) =
{
GEn,εn ,ζn (un) if μ̃n = μn and un = g on �

∞ else

�-converges almost surely in T L2 to the constrained continuum properly-weighted
Dirichlet energy

θηEcon(μ̃, u) =
{

θηE(u) if μ̃ = μ, u ∈ H1
γ (�) and u = g on �

∞ else,

where the value of u on � is considered in the sense of the trace and

θη = 1

d

∫

Rd
η(z)|z|2dz.

The proof of the � convergence of the unconstrained functionals follows from
known results in a straightforward way. We state and prove it in a separate lemma
below. The real difficulty is in proving that the constraints are preserved in the limit.
Since the T L2 topology alone is not sufficient to ensure this, we need to establish
some control of oscillations near the labeled points. This relies on on several technical
lemmas which are of some independent interest. We state them in the Sect. 3.2. The
proof of Proposition 3.4 is presented in Sect. 3.3.

Lemma 3.5 Assume α > 0 and ζn � 1. Under assumptions on Xn and εn of Proposi-
tion 3.4, the discrete energy GEn,εn ,ζn �-converges almost surely with respect to T L2
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topology to the energy θηE , defined in (21) as n → ∞ if ζn → ∞. Furthermore let
{un}n=1,2,... be a sequence such that supn GEn,εn ,ζn < ∞ and supn ‖un‖L∞(μn) < ∞.
Then {(μn, un) : n ∈ N} is precompact in T L2.

Proof From results in the literature [20,21] it follows that for any fixed ζ > 0 the
discrete energies GEn,εn ,ζ �-converge to θηE( · ; γζ ) as n → ∞, under standard
assumptions on εn . To show the liminf inequality for general ζn consider a sequence
(μn, un) T L2 converging to (μ, u). For any fixed k,

lim inf
n→∞ GEn,εn ,ζn (un) � θηE(u; ζk),

where E(u; ζk) is given by (21) with γ replaced by γζk , which implies the desired
inequality by taking supremum over k. The limsup inequality follows by a simple
diagonalization argument.

We recall from the literature (e.g [20] or Proposition 4.4 of [41]) that the precom-
pactness of bounded sequences with bounded energies already holds for the weight
γ ≡ 1. Thus the precompactness for GEn,εn ,ζn follows by comparison.

3.1 The Negative Result

Proposition 3.6 Let εn be a sequence of positive numbers converging to zero as n →
∞ and such that εn 	 d∞(μ,μn). Let ζn � 1 be a sequence converging to infinity.
Consider α � d − 2. Then the constrained energy GEn,εn ,ζn , defined in Proposition
3.4, �-converges almost surely in T L2 metric to the unconstrained continuum energy
θηE .
Proof The liminf part of the �-convergence claim follows from the liminf claim of
Lemma 3.5.

To show the limsup inequality, we first observe that by localizing near the points of
�, and given that limsup inequality holds for the unconstrained functional, the problem
can be reduced to considering � = {0}, u ≡ 0, and the construction a sequence of
functions un ∈ L2(μn) such that un(0) = 1, GEn,εn ,ζn (un) → 0 as n → ∞ and
un → 0 in T L2 as n → ∞.

We now make some observation about the continuum functional. Namely when

α � d − 2 then the function ϕ(x) = ln
(
ln

(
1
|x |

))
belongs to H1

γ (B(0, 1)). Let

wk = max{min{ 1kϕ(x), 1}, 0}. Let rk > 0 be such that wk = 1 on B(0, rk). By
mollifying we can obtain a smooth approximation vk , vk = 1 on B(0, rk/2) and
‖vk‖H1

γ (B(0,1)) � 2‖uk‖H1
γ (B(0,1)). Arguing as in Sect. 5 of [20], if one defines for

each k ∈ N, a sequence ukn ∈ L2(μn) by ukn(xi ) = vk(xi ) for all xi ∈ Xn one
has ukn → vk in T L2 and lim supn→∞ GEn,εn ,ζn (u

k
n) � θηE(vk). Since vk → 0 in

H1
γ (B(0, 1)) as k → ∞, the conclusion follows by a diagonalization argument.

Corollary 3.7 Let εn be a sequence of positive numbers converging to zero as n → ∞
and such that εn 	 d∞(μ,μn). Let ζn � 1 be a sequence converging to ∞ as
n → ∞. Let α � d − 2. Let un be a sequence of minimizers of the problem (14)
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for GEn,εn ,ζn . Let cn be the average of un (with respect to measure μn). Then almost
surely (μn, un −cn) converges in T L2 to (μ, 0); in other words the information about
the labels is forgotten in the limit.

Proof Assume the claim is false. Then there exists δ > 0 and a subsequence un j such
that foe all j , dT L2((μn j , un j − cn j ), (μ, 0)) > δ for all j . By the maximum principle
functions un are bounded by extremal values of g. Consequently, by Lemma 3.5,
un j − cn j has a further convergent subsequence. Without a loss of generality we can
assume that un j −cn j converges to some v ∈ L2(μ). Then

∫
vdμ = lim j→∞

∫
un j −

cn j dμn j = 0.
By the limsup part of �-convergence of Proposition 3.6 there exists a sequence

vn ∈ L2(μn) such that GEcon
n,εn ,ζn

(vn) → 0 as n → ∞. Since un j are minimizers
GEn,εn ,ζn (un j −cn j ) → 0 as n → ∞.We conclude by the liminf part of�-convergence
that E(v) = 0. Since

∫
vdμ = 0 this implies that v ≡ 0, which contradicts the

assumption about the sequence.

We note that the analogue of the negative result in Corollary 3.7 for the standard
graph Laplacian (corresponding to γ ≡ 1) was proved in [41][Theorem 2.1]. The
following corollary then follows by the squeeze theorem for �-convergence.

Corollary 3.8 Under the assumptions of Proposition 3.6 consider any sequence of
graph based functionals Fn such that for GEn,εn ,1 � Fn � GEn,εn ,ζn (where we note
that GEn,εn ,1 is just a convenient way to write the standard graph Laplacian). Let
un be the minimizers of (14) for Fn and let cn be the average of un (with respect to
measure μn). Then (μn, un − cn) converges almost surely in T L2 to (μ, 0).

A particular consequence of this corollary is that the minimizers of the algorithm
in [38] converge to a constant as n → ∞.

3.2 Estimates for the Discrete to Continuum Convergence

Here we establish several results needed in the proofs of the main results above. We
follow a similar strategy as [41]. Let us define the nonlocal continuum energy as

Eε,ζ (u) = 1

ε2

∫∫
γζ (x)ηε(x − y)|u(x) − u(y)|2dμ(x)dμ(y). (46)

It serves as an intermediary between the discrete graph based functionals and the
continuum derivative-based functionals.

Lemma 3.9 (discrete to nonlocal control) Consider �, μ, η, ζ , and xi as in Theorem
3.1. Let η̃(|x |) = 1 for |x | � 1 and η̃(|x |) = 0 otherwise, and so η̃ � η. Let Tn
be a sequence of transport maps satisfying the conclusions of Theorem A.3 and let
ε̃n = εn − 2‖Tn − Id‖L∞(�). Define GEn,εn ,ζn ( · ; η) by (13) and Ẽεn ,̃ζn

( · ; η̃) be (46),
where we explicitly denote the dependence of η. Let ζ̃n > 0 be such that ζn � ζ̃n
and

( r0
2C

)α
�−α
n � ζ̃n where C is the constant from Theorem A.3 and �n is the
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transportation length scale from the same theorem. Then there exists n0 ∈ N and a
constant C > 0 (independent of n and un) such that for all n � n0

Ẽεn ,̃ζn
(un ◦ Tn; η̃) � C GEn,εn ,ζn (un; η)

Proof If
∣∣∣ x−z

ε̃n

∣∣∣ < 1 then

|Tn(x) − Tn(z)| � 2‖Tn − Id‖L∞(�) + |x − z| � 2‖Tn − Id‖L∞(�) + ε̃n = εn .

So,

∣∣∣∣
x − z

ε̃n

∣∣∣∣ < 1 implies

∣∣∣∣
Tn(x) − Tn(z)

εn

∣∣∣∣ � 1

and therefore

∣∣∣∣
x − z

ε̃n

∣∣∣∣ < 1 implies η̃

( |x − z|
ε̃n

)
= 1 = η̃

( |Tn(x) − Tn(z)|
εn

)
.

Hence,

η̃

( |x − z|
ε̃n

)
� η̃

( |Tn(x) − Tn(z)|
εn

)
� η

( |Tn(x) − Tn(z)|
εn

)
.

From the assumptions on ζ̃n and Tn follows that

2‖Tn − Id‖L∞(�) � r0(̃ζn − 1)−
1
α = rζ̃n

where rζ̃n is the length scale such that 1 +
(

r0
dist(x,�)

)α

> ζ̃n if dist(x, �) < rζ̃n . We

claim that for a.e. x ∈ �

min

{
1 +

(
r0

dist(x, �)

)α

, ζ̃n

}
� 2α min

{
1 +

(
r0

dist(Tn(x), �)

)α

, ζ̃n

}
(47)

Namely if d(x, �) � rζ̃n then d(Tn, �) � |Tn(x) − x | + rζ̃n � 2rζ̃n for a.e. such x .
Thus

1 +
(

r0
dist(Tn(x), �)

)α

� 1 + 1

2α

(
r0
rζ̃n

)α

� 1

2α
ζ̃n

If d(x, �) > rζ̃n then d(x, �) � 1
2d(Tn(x), �) for a.e. such x . Thus

(
r0

dist(Tn(x),�)

)α

�
1
2α

(
r0

dist(x,�)

)α

.
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Using (47) we conclude

Ẽεn ,̃ζn
(un ◦ Tn; η̃)

= 1

ε̃2n

∫∫
min

{
1 +

(
r0

dist(x, �)

)α

, ζ̃n

}
η̃̃εn (x − y)

|un(Tn(x)) − un(Tn(y))|2dμ(x)dμ(y)

� 2α εdn

ε̃d+2
n

∫∫
min

{
1 +

(
r0

dist(Tn(x), �)

)α

, ζn

}

ηεn (|Tn(x) − Tn(y)|) |un(Tn(x)) − un(Tn(z))|2 dμ(x)dμ(y)

= 2α εd+2
n

ε̃d+2
n

GEn,εn ,ζn (un; η).

In the next lemma we show that boundedness of non-local energies implies reg-
ularity at scales greater than ε with weight γζ̃ . This allows us to relate non-local

bounds to local bounds after mollification using a mollifier J ∈ C∞
c (Rd , [0,∞)),

with
∫
Rd J (x) dx = 1, and Jε(x) = 1

εd
J (x/ε).

Lemma 3.10 (nonlocal to weak local control) There exists a constant C � 1 and
a radially symmetric mollifier J with supp(J ) ⊆ B(0, 1) such that for all ε > 0,
u ∈ L2(�), and any �′ ⊂⊂ � (i.e. for every �′ that is compactly contained in �)
with dist(�′, ∂�) > ε it holds that

E(u ∗ Jε; γζ̃ ,�
′) � CEε,̃ζ (u;�) (48)

where for both functionals we explicitly denote the dependence of the domain.

Proof Let J be a radially symmetric mollifier whose support is contained in B(0, 1).
There exists β > 0 such that J � βη(| · |) and |∇ J | � βη(| · |). Let uε = Jε ∗ u. For
arbitrary x ∈ � with dist(x, ∂�) > ε we have

|∇uε(x)| =
∣∣∣∣
∫

�

∇ Jε (x − z) u(z) dz

∣∣∣∣

=
∣∣∣∣
∫

�

∇ Jε (x − z) (u(z) − u(x)) dz −
∫

Rd\�
∇ Jε (x − z) u(x) dz

∣∣∣∣

� β

εd+1

∫

�

η

( |x − z|
ε

)
|u(z) − u(x)| dz

+ 1

εd+1

∫

Rd\�

∣∣∣∣∇ J

(
x − z

ε

)∣∣∣∣ |u(x)| dz.

where the second line follows from
∫
Rd ∇ J (w) dw = 0. For the second term we have

1

εd+1

∫

Rd\�

∣∣∣∣∇ J

(
x − z

ε

)∣∣∣∣ |u(x)| dz = 0
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since for all z ∈ R
d\� and x ∈ � with dist(x, ∂�) > ε it follows that |x − z| > ε

and thus ∇ J
( x−z

ε

) = 0. Therefore, for θη = ∫
Rd η(|w|) dw,

|∇uε(x)|2 � β2
(∫

�

1

ε
ηε(|x − z|) |u(z) − u(x)| dz

)2

= θ2ηβ2

ε2

(∫

�

ηε(|x − z|)
θη

|u(z) − u(x)| dz
)2

� θηβ
2
∫

�

ηε(|x − z|) |u(z) − u(x)|2
ε2

dz

by Jensen’s inequality (since 1
θη

∫
Rd ηε(|x − z|) dz = 1). Hence,

∫

�′
|∇uε(x)|2 γζ̃ (x)ρ

2(x) dx

� θηβ
2
∫

�

∫

�

ηε(|x − z|)
∣∣∣∣
u(z) − u(x)

ε

∣∣∣∣
2

γζ̃ (x)ρ
2(x) dz dx

� θηβ
2 supx∈� ρ(x)

infx∈� ρ(x)
Eε,̃ζ (u;�)

which completes the proof.

We now show that controlling the local energy with cut-off near the singularity is
sufficient to be able to find a nearby (in H1

γ ) function which has a similarly bounded
energy without a cut-off.

Lemma 3.11 (weak local to strong local control) Consider ζ̃ > 1 such that rζ̃ defined

in (17) satisfies rζ̃ � 1
2 min{|x − y| : x, y ∈ �, x �= y}. Let r = rζ̃ . Then there exists

a constant C > 0 such that for every u ∈ H1(�) there exists v ∈ H1
γ (�) such that

v|B(z,r/2) ≡ 1

|B(0, r/2)|
∫

B(z,r/2)
u(x)dx for all z ∈ �, (49)

v = u on �\�r (50)

E(v; γ ) � CE(u, γζ̃ ). (51)

Proof Using the finiteness of �, from Lemma A.4 via translations and a rescaling
follows that there exists c � 1, and v ∈ H1(�) satisfying (49) and (50) such that

∫

�r

|∇v(x)|2dx � c
∫

�r

|∇u(x)|2dx .
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Using that ∇v = 0 on � r
2
and 1 + ( r0

r

)α = ζ̃ we obtain

E(v; γ ) =
∫

�r

γ (x)|∇v(x)|2ρ(x)dx +
∫

�\�r

γ (x)|∇u(x)|2ρ(x)dx

�
∫

�r \� r
2

(
1 +

(
2r0
r

)α)
|∇v(x)|2ρ(x)dx +

∫

�\�r

γζ̃ |∇u(x)|2ρ(x)dx

� 2α

∫

�r \� r
2

ζ̃ |∇v(x)|2ρ(x)dx +
∫

�\�r

γζ̃ |∇u(x)|2ρ(x)dx

� 2αc
∫

�r

ζ̃ |∇u(x)|2ρ(x)dx +
∫

�\�r

γζ̃ |∇u(x)|2ρ(x)dx

� 2αc
∫

�

γζ̃ |∇u(x)|2ρ(x)dx

Lemma 3.12 There exists C > 0 such that for all 0 < ε < r � 1, for all u ∈
H1(B(0, r)) such that u � 0 on B(0, ε)

−
∫

B(0,r)
u(x)dx � C

√∫

B(0,r)\B(0,ε)
|∇u|2dx

{
ε

2−d
2 if d � 3√− ln ε if d = 2.

(52)

Proof We only prove the claim for r = 1. The claim for general r follows by a simple
change of variables y = x/r . Furthermore we note that we can assume that u = 0 on
B(0, ε), since for general u one can consider ũ = max{u, 0} and note that

∫

B(0,1)
udx �

∫

B(0,1)
ũdx and

√∫

B(0,1)\B(0,ε)
|∇ũ|2dx

�
√∫

B(0,1)\B(0,ε)
|∇u|2dx .

Let v(x) = 1
2d |x |2 and

�(x) =
{

− 1
2 log |x |, if d = 2

1
d(d−2)|x |d−2 , if d � 3.

Then �(v +�) = 1 for x �= 0 and ∂v
∂ν

+ ∂�
∂ν

= 0 on ∂B(0, 1). Since u = 0 on B(0, ε)
we have

∫

B(0,1)
u dx =

∫

B(0,1)\B(0,ε)
u�(v + �) dx

= −
∫

B(0,1)\B(0,ε)
∇u · (∇v + ∇�) dx
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= 1

d

∫

B(0,1)\B(0,ε)
∇u · x

(
1

|x |d − 1

)
dx

� 2

d

∫

B(0,1)\B(0,ε)
|∇u||x |1−d dx

� 2

d

√∫

B(0,1)\B(0,ε)
|∇u|2 dx

√∫

B(0,1)\B(0,ε)
|x |2−2d dx .

The proof is completed by integrating the last term on the line above.

3.3 Proof of Proposition 3.4

Proof To show the lim sup inequality recall that S, the set of smooth functions which
are constant in some neighborhood of �, is dense in H1

γ (�), by Corollary 2.5. The
fact that for every f ∈ S, GEn,εn ,ζn ( f ) → θηE( f ) follows by a standard argument,
which was for example presented for total variation in Sect. 5 of [20]. The existence
of a recovery sequence for arbitrary f ∈ H1

γ (�) follows by a density argument.
To show the lim inf inequality consider a sequence (μn, un) converging in T L2

to (μ, u). We can assume without a loss of generality that un|� = g and that
lim infn→∞ GEn,εn ,ζn (un) is finite. Since εn 	 d∞(μ,μn) � n−1/d it follows that
ζn → ∞ as n → ∞. By Lemma 3.5, discrete energy GEn,εn ,ζn �-converges to E .
Thus u ∈ H1

γ (�) and

lim inf
n→∞ GEn,εn ,ζn (un) � θηE(u).

What remains to be shown is that u|� = g. The fact that u|� is a well defined
object follows from Lemma 2.1. Let us assume that lim infn→∞ GEn,εn ,ζn (un) =
limn→∞ GEn,εn ,ζn (un). For the general case one needs to consider a subsequence,
which we omit for notational simplicity. We have that Emax = supn GEn,εn ,ζn (un) <

∞.

We first show that near points z ∈ �, the values of un remain, on average, close to
g(z). More precisely

Emax � GEn,εn ,ζn (un) � 1

2n2ε2n

∑

x∈Xn

ζnηεn (x − z)|un(x) − g(z)|2.

and thus

1

n

∑

x∈Xn

ηεn (x − z)|un(x) − g(z)|2 � 2Emax
nε2n

ζn
.
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Since η � 1 on B(0, 1)

1

n

∑

x∈Xn ,|x−z|<εn

|un(x) − g(z)|2 � 2Emax
nεd+2

n

ζn
.

Let Tn be a sequence of transport maps satisfying the conclusions of Theorem A.3 and
let ε̃n = εn − 2‖Tn − Id‖L∞(�).

Then for a.e. x ∈ B(z, ε̃n), Tn(x) ∈ B(z, εn) and thus

∫

B(z,̃εn)
|un(Tn(x)) − g(z)|2ρ(x)dx � 2Emax

nεd+2
n

ζn
.

Therefore

−
∫

B(z,̃εn)
|un(Tn(x)) − g(z)|2ρ(x)dx � nε2n

ζn
� 1 (53)

by the assumption on ζn . Consequently for all y ∈ B
(
z, ε̃n

2

)

−
∫

B(y, ε̃n/2)
|un(Tn(x)) − g(z)|2dx � nε2n

ζn
� 1. (54)

By Lemma 3.9 we know that, for ζ̃n = min
{
ζn,

( r0
2C

)α ( n
ln n

)α/d
}
where C is the

constant from Theorem A.3

Ẽεn ,̃ζn
(un ◦ Tn; η̃) � GEn,εn ,ζn (un; η) (55)

We note that since α > d − 2, and εn 	 ( ln n
n

)1/d
, ζ̃n 	 ε2−d

n if d > 2 and

ζ̃n 	 − ln εn Let ε̂n = ε̃n
2 . By definition of Êεn ,̃ζn

Êεn ,̃ζn
(un ◦ Tn; η̃) � Ẽεn ,̃ζn

(un ◦ Tn; η̃) (56)

Let J be a mollifier used in the proof of Lemma 3.10 and let ũn = (un ◦ Tn) ∗ Ĵεn .
From (54) follows that for all y ∈ B (z, ε̂n)

|̃un(y) − g(z)| � nε2n

ζn
(57)

for all z ∈ �. Combining the estimate of the lemma with (55) yields

E (̃un; γζ̃n
,�′

n) � GEn,εn ,ζn (un; η)

where �′
n = {y ∈ � : d(y, ∂�) > εn}. Finally by Lemma 3.11 there exist vn ∈

H1
γ (�′

n) such that for all z ∈ �, vn(z) = −
∫
B(z,r/2) ũn(y)dy where r = rζ̃n and
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E(vn,�
′
n) � GEn,εn ,ζn (un; η). (58)

From (57) follows that for someC independent of n, for all z ∈ �, and all y ∈ B(z, ε̂n),

using that
∫
B(0,r/2) |∇ũn|2dx � 1

ζ̃n
E (̃un; γζ̃n

,�′
n), u(y) − g(z) −C nε2n

ζn
� 0. Thus by

Lemma 3.12

−
∫

B(0,r/2)
ũn(x)dx � g(z) + C

nε2n

ζn
+ C1ζ̃

−1/2
n

{
ε

2−d
2 if d � 3√− ln ε if d = 2.

for some C1 independent of n. By the assumptions on ζn and definition of ζ̃n the right
hand side converges to zero an n → ∞. Analogous lower bound is obtained following
the same argument. Therefore vn(z) − g(z) = -

∫
B(0,r/2) ũn(x)dx − g(z) converges to

zero as n → ∞.
We note that by construction dT L2((μn, un), (μ, ũn)) → 0 and thus ũn → u in

L2(�). By construction ‖vn − ũn‖L2(�′
n)

� ‖ũn‖L2(�rn ), where rn = rζ̃n and for any
s > 0

�s = {x ∈ � : dist(x, �) < s}. (59)

Since (μn, un)
T L2−→ (μ, u) it follows that

∫

T−1
n (�rn )

|un(Tn(x)) − u(x)|2dμ(x) → 0 as n → ∞.

Since u ∈ L2(μ), limδ→0 sup
{∫

A u
2(x)dx : μ(A) < δ

} = 0. Therefore

‖ũn‖L2(�rn ) � 2
∫

T−1
n (�rn )

|un(Tn(x)) − u(x)|2 + u2(x)dμ(x) → 0 as n → ∞.

Thus ‖vn − ũn‖L2(�′
n)

→ 0 and n → ∞ and consequently vn → u in L2(μ). From

(58) follows that vn is a bounded sequence in H1
γ (K ) for any compact subset K ⊂⊂ �.

Combining this with the fact that vn → u in L2(μ) implies, via estimate (34) of the
Trace Theorem (Theorem 2.2), that vn(z) → Tr u(z) as n → ∞ for all z ∈ �. Since
vn|� → g as n → ∞ we conclude that Tr u(z) = g(z) for all z ∈ �.

4 Regularity of Minimizers of the Graph Properly-Weighted Laplacian

4.1 Hölder Estimate Near Labeled Points

Ourmain result in this section is a typeofHölder estimate near the labeledpoints,which
shows that solutions of the graph-based learning problem (15) attain their boundary
values on � continuously, with high probability. The proof is a graph-based version
of the barrier argument from Theorem 2.10 that established continuity at labels in the
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continuum PDE, given in Eq. (40). Barrier arguments for proving Hölder regularity of
solutions of PDEs are standard techniques for first order equations, such as Hamilton–
Jacobi equations [4]. Normally, barrier arguments do not work for second order elliptic
equations (since fundamental solutions are unbounded), though there are a handful
of exceptions, such as the p-Laplace equation for p > d [10], level set equations for
affine curvature motion [12], and our continuum equation (22).

Our proof uses the barrier v(x) = C |x − y|β , which is a supersolution of the
continuum PDE (22) for 0 < β < α + 2 − d, due to Proposition 2.9. For β < 2, the
barrier has a singularity at x = y, which has to be treated carefully in the translation
to the graph setting. We show in Lemma 4.6 that v is a supersolution on the graph with
high probability away from a small ball B(y,Cε). Due to the singularity in the barrier,
we cannot prove the supersolution property within the ball B(y,Cε). To fill in the gap
within this ball, we require a local regularity result, given in Lemma 4.8, that relies
on the variational structure of the problem. At a high level, the proof is similar to the
proof of Hölder regularity of solutions to the graph-based game theoretic p-Laplace
equation, given in [10], though many of the ingredients are different. In particular,
in [10] there is no variational interpretation of the problem, and the local argument
utilizes another barrier construction.

We now proceed to present the main results in this section. Throughout we always
assume nεd � 1. Our main result is the following Hölder-type estimate.

Theorem 4.1 (Hölder estimate) Let α > d − 2, and assume γ satisfies (11) and
ρ ∈ C1,σ (�) is bounded above and below by positive constants. Let 0 < ε � 1,
ζ � 1 + ε−α , 0 < β < α + 2 − d, and let u ∈ L2(Xn) be the solution of (15). Then
for each z ∈ � the event that

|u(xi ) − u(z)| � C |xi − z|β + Cn1/2ε1+α/2 (60)

holds for all xi ∈ Xn occurs with probability at least 1−C exp
(−cnεd+4 + log(n)

)
.

The proof of Theorem4.1, given at the end of the section, relies on some preliminary
results that we establish after a few remarks.

Remark 4.2 For the result in Theorem 4.1 to be useful, we must choose εn → 0 so
that nεd+4

n 	 log(n) and nεα+2
n � 1. Therefore, we must have α > d + 2 and

(
log(n)

n

)1/(d+4)

� εn �
(
1

n

)1/(α+2)

. (61)

Remark 4.3 If we replace γζ with γζ,Cε, as defined inRemark 1.3, thenwe can improve
Theorem 4.1 to read

|u(xi ) − u(z)| � C |xi − z|β + Cζ−1/2n1/2ε, (62)

under the same assumptions and with the same probability, except we also require
ζ � 1 + Cε−α . In this model, the restrictive upper bound in (61) is not required.
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We now turn to the proof of Theorem 4.1. We first recall a useful lemma from [10].

Lemma 4.4 (Remark 7 from [10])Let Y1,Y2,Y3, . . . ,Yn be a sequence of i.i.d random
variables on R

d with Lebesgue density ρ : Rd → R, let ψ : Rd → R be bounded
and Borel measurable with compact support in a ball B(x, h) for some h > 0, and
define

Y =
n∑

i=1

ψ(Yi ).

Then for any 0 � λ � 1

P

(
|Y − E(Y )| � C‖ψ‖L∞(B(x,h))nh

dλ
)

� 2 exp(−cnhdλ2), (63)

for all 0 < λ � 1, where C, c > 0 are constants depending only on ‖ρ‖L∞(B(x,h))

and d.

We can use Lemma 4.4 to prove pointwise consistency for our properly-weighted
graph Laplacian. It extends, in a refined form, the results of [10][Theorem 5]. It is
related to well known results on the pointwise consistency of the graph Laplacian
[40].

For simplicity we set

�ρϕ = ρ−1 div
(
γρ2∇ϕ

)
. (64)

Theorem 4.5 For δ > 0, let Dn,ε,δ be the event that

∣∣GLn,ε,∞ϕ(xi ) − 1
2ση�ρϕ(xi )

∣∣ � C((εβ1 + ε2β2)M
−(α+2)

+ εβ2M
−(α+1) + δβ3M

−α) (65)

holds for all xi with 2ε < dist(xi , �) � R/4 and all ϕ ∈ C3(B(xi , 2ε)), where
βk = ‖ϕ‖Ck (B(xi ,2ε)) and M = dist(xi , �) − 2ε. Then for ε � δ � 1 we have

P(Dn,ε,δ) � 1 − C exp
(
−cδ2nεd+2 + log(n)

)
(66)

Proof Let us write GL in place of GLn,ε,∞ for simplicity. We also define

w(x, y) = 1

2nε2
(γ (x) + γ (y))ηε(x − y).

Then

GLu(x) =
∑

y∈Xn

w(x, y)(u(y) − u(x)).
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By conditioning on the location of x ∈ Xn , we can assume without loss of generality
that x ∈ � is a fixed (non-random) point, B(x, 2ε) ⊂ � and dist(x, �) > 2ε. Let
ϕ ∈ C3(B(x, 2ε)), p = Dϕ(x) and A = D2ϕ(x). Note that

GLϕ(x) =
d∑

i=1

pi
∑

y∈Xn

w(x, y)(yi − xi )+ 1

2

d∑

i, j=1

ai j
∑

y∈Xn

w(x, y)(yi − xi )(y j −x j )

+ O
(
ε3β3deg(x)

)
, (67)

where deg(x) is the degree given by

deg(x) =
∑

y∈Xn

w(x, y).

Since dist(y, �) � dist(x, �) − 2ε we have

w(x, y) � C

2nεd+2

(
1

dist(x, �)α
+ 1

dist(y, �)α

)

� C

nεd+2(dist(x, �) − 2ε)α
.

By Lemma 4.4

∣∣∣∣deg(x) − n
∫

B(x,2ε)
w(x, y)ρ(y) dy

∣∣∣∣ � Cε−2(dist(x, �) − 2ε)−α,

holds with probability at least 1 − 2 exp
(−cnεd

)
. This implies

deg(x) � Cε−2(dist(x, �) − 2ε)−α.

By another application of Lemma 4.4, both

∣∣∣∣∣∣

∑

y∈Xn

w(x, y)(yi − xi ) − n
∫

B(x,2ε)
w(x, y)(yi − xi )ρ(y) dy

∣∣∣∣∣∣

� Cδ(dist(x, �) − 2ε)−α,

and

∣∣∣∣∣∣

∑

y∈Xn

w(x, y)(yi − xi )(y j − x j ) − n
∫

B(x,2ε)
w(x, y)(yi − xi )(y j − x j )ρ(y) dy

∣∣∣∣∣∣

� Cδε(dist(x, �) − 2ε)−α,
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occur with probability at most 2 exp
(−cδ2nεd+2

)
provided 0 < δε � 1. Thus, if

ε � δ � ε−1 we have

GLϕ(x) = 1

2

∫

B(0,2)
(γ (x) + γ (x + zε))ρ(x + zε)η(|z|)

(
1

ε
p · z + 1

2
z · Az

)
dz

+ O
(
δβ3(dist(x, �) − 2ε)−α

)
(68)

holds for all ϕ ∈ C3(Rd) with probability at least 1−C exp
(−cδ2nεd+2

)
. Note that

1

2
(γ (x)+γ (x + zε))ρ(x+zε) = γ (x)ρ(x)+γ (x)∇ρ(x) · zε+ 1

2
ρ(x)∇γ (x) · zε

+ O(ε2‖γ ‖C2(B(x,2ε)) + ε3‖γ ‖C1(B(x,2ε))).

We now have

∫

B(0,2)
γ (x)ρ(x)η(|z|)

(
1

ε
p · z + 1

2
z · Az

)
dz

= 1

2
γ (x)ρ(x)

d∑

i, j=1

ai j

∫

B(0,2)
η(|z|)zi z j dz

= 1

2
γ (x)ρ(x)

d∑

i=1

aii

∫

B(0,2)
η(|z|)z2i dz

= ση

2
γ (x)ρ(x)Trace(A),

∫

B(0,2)
γ (x)(∇ρ(x) · zε)η(|z|)

(
1

ε
p · z + 1

2
z · Az

)
dz

= γ (x)∇ρ(x) ·
∫

B(0,2)
η(|z|)(p · z)z dz + O(εβ2 dist(x, �)−α)

= γ (x)∇ρ(x) ·
d∑

i=1

pi

∫

B(0,2)
η(|z|)zi z dz + O(εβ2 dist(x, �)−α)

= σηγ (x)∇ρ(x) · p + O(εβ2 dist(x, �)−α),

and

1

2

∫

B(0,2)
ρ(x)(∇γ (x) · zε)η(|z|)

(
1

ε
p · z + 1

2
z · Az

)
dz

= ση

2
ρ(x)∇γ (x) · p + O(εβ2‖γ ‖C1(B(x,2ε))).
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Assembling these together with (68) we have that

GLϕ(x) = ση

2ρ(x)
div

(
γρ2∇ϕ

)
+ O

(
εβ1‖γ ‖C2(B(x,2ε)) + εβ2‖γ ‖C1(B(x,2ε))

+ ε2β2‖γ ‖C2(B(x,2ε)) + δβ3(dist(x, �) − 2ε)−α
)

holds for all ϕ ∈ C3(B(x, 2ε)) with probability at least 1−C exp
(−cδ2nεd+2

)
. The

proof is completed by computing

‖γ ‖Ck (B(x,2ε)) � C(dist(x, �) − 2ε)−α−k,

and applying a union bound over x1, . . . , xn .

We now establish that the function |x |β for 0 < β < α + 2 − d serves as a barrier
(e.g., is a supersolution) on the graph with high probability.

Lemma 4.6 (Barrier lemma) Let α > d−2 and fix any 0 < β < α +2−d. For y ∈ �

define ϕ(x) = |x − y|β . Then the event that

GLn,ε,∞ϕ(xi ) � −c|xi − y|−(α+2−β) (69)

for all xi with Cε < |xi − y| � c occurs with probability at least 1 −
C exp

(−cnεd+4 + log(n)
)
.

Proof Let us write GL in place of GLn,ε,∞ for simplicity. We use Theorem 4.5 and
Proposition 2.9. Note in Theorem 4.5 that if we restrict 3 � ε|xi − y| � R/4 then

M = dist(xi , �) − 2ε = |xi − y| − 2ε � 1

3
|xi − y|.

Also, for βk = ‖ϕ‖Ck (B(xi ,2ε)) we compute

βk � Cβ|xi − y|β−k .

Hence, setting δ = ε in Theorem 4.5 we obtain that

∣∣GLϕ(xi ) − 1
2ση�ρϕ(xi )

∣∣ � Cε|xi − y|β−α−3(1 + ε|xi − y|−1) (70)

holds for all xi with 3ε � |xi − y| � r with probability at least

1 − C exp
(
−cnεd+4 + log(n)

)
.

For the rest of the proof we restrict to the event that (70) holds.
Note that since β − α − 3 < 0 and |xi − y| � 3ε, it follows from (70) that

GLϕ(xi ) � 1
2ση�ρϕ(xi ) + Cε|xi − y|β−α−3. (71)
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Combining this with Proposition 2.9 we have

GLϕ(xi ) � −c|xi − y|β−α−2 + Cε|xi − y|β−α−3

= −c|xi − y|β−α−2(1 − Cε|xi − y|−1),

provided 3ε � |xi − y| � c. The proof is completed by restricting |xi − y| � 2Cε.

The barrier lemma (Lemma 4.6) establishes the barrier property away from the local
neighborhood B(x,Cε). The singularity in the barrier (for α < d) and the singularity
in γ prevent us from pushing the barrier lemma inside this local neighborhood. Hence,
the barrier can only be used to establish the following macroscopic continuity result.

Proposition 4.7 (Macroscopic Hölder estimate) Let u ∈ L2(Xn) be the solution of
(15), let α > d − 2, and fix any 0 < β < α + 2 − d. For each y ∈ � the event that

u(xi ) − u(y) � C |xi − y|β + sup
x∈Xn∩B(y,δε,ζ )

(u(x) − u(y)) (72)

holds for all xi ∈ Xn occurs with probability at least 1−C exp
(−cnεd+4 + log(n)

)
,

where δε,ζ = max{Cε, rζ + 2ε}.
Proof We note the graph is connected with probability at least 1 − C exp(−cnεd +
log(n)). The proof uses the barrier function

ϕ(x) = sup
B(y,δε,ζ )

u + K |x − y|β (73)

constructed in Lemma 4.6 for a sufficiently large K , and the maximum principle on a
connected graph. By Lemma 4.6 we have

GLn,ε,ζ ϕ(xi ) � −cK |xi − y|−(α+2−β) (74)

for all xi with δε,ζ � |xi − y| � c. By the maximum principle we have

min
�

g � u � max
�

g.

Therefore, we can choose K large enough so that ϕ(xi ) > u(xi ) for |xi − y| � c.
We trivially have u(xi ) < ϕ(xi ) for |xi − y| � δε,ζ . Since GLn,ε,ζ (u − ϕ) � 0 for
δε,ζ � |xi − y| � c, the maximum principle on a graph yields u � ϕ on Xn , which
completes the proof.

We now establish a local regularity result that allows us to fill in the gap within
the ball B(x,Cε). The local result depends only on the variational structure of the
problem, and does not use a barrier argument.
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Proposition 4.8 (Local Hölder estimate) Let u ∈ L2(Xn). For each z ∈ � the event
that

|u(x) − u(y)|2 � Cnε2

min{γζ (x), γζ (y)}GEn,ε,ζ (u), (75)

holds for all x, y ∈ Xn ∩ B(z, r) with |x − y| � ε occurs with probability at least
1 − C exp

(−cnεd + log(n)
)
.

Proof Let z ∈ �, and fix r > 0. Partition the cube K := ∏d
i=1[zi − r , zi + r ] into

hypercubes K1, . . . , Km of side length h > 0, where m = (2r/h)d . Let Zi denote the
number of random variables falling in cube Ki . By Lemma 4.4 we have

P(Zi � E[Zi ] − Cnhdλ) � exp
(
−cnhdλ2

)
(76)

for any 0 < λ � 1. Since E[Zi ] = nhd we have

P

(
min

1�i�m
Zi � 1

2nh
d
)

� m exp
(
−cnhd

)
. (77)

Let x, y ∈ Xn ∩ B(z, r) such that |x − y| � ε, and let x = (x + y)/2 ∈ B(z, r). Let
Ki denote the cube to which x belongs. Then for all w ∈ Ki we have |x −w| �

√
dh.

Therefore, if
√
dh � ε/2 then

|x − w| � |x − x | + |x − w| � ε

2
+ √

dh � ε,

and |y − w| � ε for all w ∈ Ki . It follows that

Ki ⊂ B(x, ε) ∩ B(y, ε).

For the remainder of the proof, we set h = ε/(2
√
d) and restrict ourselves to the event

that

min
1�i�m

Zi � cnεd (78)

Let

K = Xn ∩ B(x, ε) ∩ B(y, ε).

Note that for any z ∈ K we have

min{|u(x) − u(z)|, |u(y) − u(z)|} � 1

2
|u(x) − u(y)|.
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Now we have

GEn,ε,ζ (u)

= 1

2n2ε2
∑

x,y∈Xn

(γζ (x) + γζ (y))ηε(x − y)|u(x) − u(y)|2

� 1

2n2ε2

⎡

⎣
∑

z∈Xn

γζ (x)ηε(x−z)|u(x)−u(z)|2+γζ (y)ηε(y−z)|u(y)−u(z)|2
⎤

⎦

� cmin{γζ (x), γζ (y)}|K |
n2εd+2 |u(x) − u(y)|2.

Since Ki ∩ Xn ⊂ K , we have |K | � cnεd , and hence

|u(x) − u(y)|2 � Cnε2

min{γζ (x), γζ (y)}GEn,ε,ζ (u), (79)

which completes the proof.

We are now equipped to give the proof of Theorem 4.1.

Proof of Theorem 4.1 The proof combines the macroscopic Hölder estimate (Proposi-
tion 4.7), and the local Hölder estimate (Proposition 4.8), and is split into two steps.

1. We note that

rζ = r0
(ζ − 1)1/α

� Cε, (80)

as ζ � 1 + ε−α . By (80) and Theorem 4.7, the event that

|u(x) − u(z)| � C |x − z|β + sup
x∈Xn∩B(z,Cε)

|u(x) − u(y)|, (81)

holds for all x ∈ Xn occurs with probability at least 1−C exp(−cnεd+4+ log(n)).
2. We note that with probability at least 1 − C exp

(−cnεd + log(n)
)
we have

GEnε,ζ (u) � C for a constant C . Therefore, by Proposition 4.8 we have that

|u(x) − u(y)|2 � Cnε2

minB(z,Cε) γζ

(82)

holds for all x, y ∈ Xn ∩ B(z,Cε) with |x − y| � ε with probability at least
1 − C exp

(−cnεd + log(n)
)
. As in the proof of Proposition 4.8, we partition

the cube K := ∏d
i=1[zi − Cε, zi + Cε] into hypercubes of side length h <

ε, and find that all cubes have at least one point from Xn with probability at
least 1−C exp(−cnεd + log(n)). Thus, by traversing neighboring cubes, we can
construct a path from z ∈ � to any x ∈ B(z,Cε) consisting of at most a constant
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number of points from Xn ∩ B(z,Cε), with each step in the path smaller than ε.
Applying (82) along the path yields

|u(x) − u(z)|2 � Cnε2

min{(Cε)−α, ζ }

for all x ∈ Xn ∩ B(z,Cε) with probability at least 1 − C exp
(−cnεd + log(n)

)
.

Since ζ � ε−α we deduce

sup
x∈Xn∩B(z,Cε)

|u(x) − u(z)|2 � Cnε2+α,

which completes the proof.

5 Numerical Experiments

We present the results of several numerical experiments illustrating the properly-
weighted Laplacian and comparing it with the nonlocal [38] and standard graph
Laplacian on real and synthetic data. All experiments were performed in Matlab
and use Matlab backslash to solve the graph Laplacian system. We mention there
are indirect solvers that may be faster in certain applications, such as preconditioned
conjugate gradient [25], algebraic multigrid [8,25,36], or more recent fast Laplacian
solvers [29,42]. Thus, the CPU times reported below have the potential to be improved
substantially.

5.1 Comparison of the Profiles Obtained

First, we perform an experiment with two labels on the box [0, 1]d to illustrate our
method and the differences with the nonlocal graph Laplacian [38]. The graph is a
sequence of n i.i.d. random variables uniformly distributed on the unit box [0, 1]d
in R

d , and two labels are given g(0, 0.5, . . . , 0.5) = 0 and g(1, 0.5, . . . , 0.5) = 1.
We set ε = 2/n1/d and r0 = 1. The weights follow a Gaussian distribution with
σ = ε/2. In Fig. 2 we show plots of the triangulated surface representing the learned
function u on the graph for various values of α and ζ . Here, n = 105 and d = 2,
and each simulation took approximately 1.5 s of CPU time. We notice that as α is
increased, the learned functions are smoother in a vicinity of each label. The case of
α = 0 corresponds to the standard graph Laplacian, and returns an approximately
constant label u = 0.5, which illustrates the degeneracy of the standard Laplacian
with few labels. We note that as α is increased, we must increase ζ as well (recall
(12)), otherwise the ball B(x, rζ ) on which γ is truncated to value ζ becomes very
large, and the method reduces to the standard graph Laplacian. This simply illustrates
that the implicit rate in the condition ζ 	 nε2 in Theorem 3.1 depends on α.
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In Fig. 3, we use the same model, but with n = 2 × 105 points in dimension
d = 3, and set ζ = 50nε2. For visualization, we show the learned function restricted
to a neighborhood of the slice x3 = 0.5. Figure 3b illustrates the degeneracy of
the nonlocal graph Laplacian [38], which returns a nearly constant label function. In
contrast, our method, show in Fig. 3c, smoothly interpolates between the two labels.
Each simulation in Fig. 3 took approximately 25 s to compute.

5.2 Comparison of Decision Boundaries in 2D

We now give a synthetic classification example. The graph consists of n = 105 i.i.d
uniform random variables on [0, 1]2, and the weights are chosen to be Gaussian with
σ = ε/2. We chose α = 5, ζ = 106nε2, r0 = 1, and ε = 3/

√
n. Two labels,

g(0, 0) = 0 and g(1, 1) = 1 are provided. Figure 4 shows the decision boundaries
(i.e., the level-set {u = 0.5}) over 25 trials for the standard graph Laplacian, the
nonlocal Laplacian, and our method. Each trial took roughly 1.5 s to compute. We
see that the nonlocal and standard Laplacian are highly sensitive to small variations in
the graph, giving a wide variety of results over the 25 trials. This is a reflection of the
degeneracy, or ill-posedness, in the small label regime, and suggests the methods are
very sensitive to perturbations in the data. In contrast, our method very consistently
divides the square along the diagonal.

5.3 Comparison of Classes Obtained in 3D

We consider samples of the measure supported on domain is [0, 1]3 and with den-
sity 1 except for the strip [0.45, 0.55] × [0, 1] × [0, 1] where the density is 0.6. We
considered 20 runs with n = 50, 000 points in the domain. The given labeled points
are g(0, 0.2, 0.2) = 0 and g(1, 0.2, 0.2) = 1. Due to the symmetry, the correct deci-
sion boundary is the plane x1 = 0.5. We used a connectivity distance for the graph

construction of ε = 3/n
1
3 , which yielded a typical vertex degree of about 116.We con-

sider Gaussian weights with σ = ε/2. We chose α = 5, ζ = 106nε2, r0 = 1 for our
method. A typical result for one run is illustrated in Fig. 5. The standard graph Lapla-
cian produced very unstable results with the average of 49.8% misclassified points.
The nonlocal Laplacian of [38] was also rather unstable with sometimes almost perfect
decision boundary and sometimes large sections of misclassified points. On average it
misclassified 11% of points. Our method was stable and in all experiments identified
the correct boundary, with average classification error of 0.25%. We observed similar
outcomes for a variety of sets of parameters.

5.4 Comparison on theMNIST Dataset

Our last experiment considers classification of handwritten digits from the MNIST
dataset, which consists of 70,000 grayscale 28 × 28 pixel images of handwritten dig-
its 0–9 [30]. Figure 6 shows examples of some of the images in the MNIST dataset.
MNIST is estimated to have intrinsic dimension between d = 12 and d = 14 [14,28],
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Fig. 6 Example of some of the handwritten digits from the MNIST dataset [30]

Table 1 Accuracy for classification of MNIST handwritten digits with 10, 30, 50, 70 and 100 labels via the
standard graph Laplacian, the nonlocal weighted Laplacian [38], and our properly-weighted Laplacian

# Labels 10 30 50 70 100

Method Mean (%) Std Mean (%) Std Mean (%) Std Mean (%) Std Mean (%) Std

Graph laplacian 14.2 6.3 24.3 11.9 53 10.9 68 6.4 76.1 7.6

Weighted lap. [38] 67.9 8.7 84.8 2.7 88.8 1.1 89.6 1.3 90.9 1.1

PW-laplacian 68 8.6 84.9 2.7 88.8 1.1 89.6 1.3 90.9 1.1

The results are averaged over 10 trials, and the mean and standard deviation of accuracy are reported

which suggests a larger value for α is appropriate. We used all 70, 000MNIST images
to construct the graph. Our construction is the same as in [38]; we connect each data
point to its nearest 50 neighbors (in Euclidean distance), and assign Gaussian weights
taking σ to be the distance to the 20th nearest neighbor. We symmetrize the graph by
replacing the weight matrix W with 1

2 (W
T +W ), which is done automatically by the

variational formulation (recall (19)). We then take L randomly chosen images from
each class (digit) as labels, where L = 1, 3, 5, 7, 10, and provide the true labels for
these digits. The semi-supervised learning algorithm performs 10 binary classifica-
tions, for each digit versus the rest, which generates functions u0, u1, u2, . . . , u9 on
the graph. The label for each image x in the dataset is chosen as the index i for which
ui (x) is maximal. The algorithm is standard in semi-supervised learning, and identical
to the one used in [38].

For each value of L ∈ {1, 3, 5, 7, 10}, we ran the experiment described above
10 times, choosing the labels randomly (in the same way for each algorithm) every
time. Each of the 500 trials took approximately 15 min to compute in Matlab. The
mean and standard deviation of accuracy are shown in Table 1. Our method performs
very similarly to the nonlocal Laplacian [38], and both significantly outperform the
standard graph Laplacian. We ran our method for α = 2, 5, 10, producing nearly
identical results in all cases. We used ζ = 107 and r0 = 0.1. We found the results
for our method were largely insensitive to many of the parameters in our algorithm;
the accuracy begins to decrease when α < 1 and when r0 > 1. We note that the
accuracy scores reported in Table 1 are much higher than those reported in [38]; we
believe this is because the authors in [38] subsampled MNIST to 16,000 images. This
observation speaks favorably to the semi-supervised paradigm that learning can be
improved by access to additional unlabeled data. We note that the accuracy scores
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for our method and the nonlocal weighted Laplacian [38] are identical (to one signif-
icant digit) for 30, 50, 70, and 100 labels. Most data points in MNIST are relatively
far from their nearest neighbors, and so our nonlocal weights have less effect, com-
pared to the low dimensional examples presented above. For this reason, the weight
matrix for our method is very similar to the nonlocal Laplacian [38]. We expect to
see more of a difference in applications to larger datasets. For example, it would be
interesting (and challenging) to apply these techniques to a dataset like ImageNet
[16], which consists of over 14 million natural images belonging to over 20,000
categories.
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Appendix A: BackgroundMaterial

Here we recall some of the notions our work depends on and establish an auxiliary
technical result.

A.1 0–Convergence

�-convergence was introduced by De Giorgi in 1970s to study limits of variational
problems. We refer to [7,15] for comprehensive introduction to �-convergence. We
now recall the notion of �-convergence is in a random setting.

Definition A.1 (Γ -convergence) Let (Z , d) be a metric space, L0(Z;R ∪ {±∞}) be
the set of measurable functions from Z to R ∪ {±∞}, and (X ,P) be a probability
space. The functionX � ω �→ E (ω)

n ∈ L0(Z;R∪{±∞}) is a random variable.We say
E (ω)
n �-converge almost surely on the domain Z to E∞ : Z → R∪{±∞} with respect

to d, and write E∞ = 0- limn→∞ E (ω)
n , if there exists a set X ′ ⊂ X with P(X ′) = 1,

such that for all ω ∈ X ′ and all f ∈ Z :

(i) (liminf inequality) for every sequence {un}n=1,... in Z converging to f

E∞( f ) � lim inf
n→∞ E (ω)

n (un), and

(ii) (recovery sequence) there exists a sequence {un}n=1,2,... in Z converging to f
such that

E∞( f ) � lim sup
n→∞

E (ω)
n (un).

For simplicity we suppress the dependence of ω in writing our functionals. The
almost sure nature of the convergence in our claims in ensured by considering the set
of realizations of {xi }i=1,... such that the conclusions of Theorem A.3 hold (which
they do almost surely).
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An important result concerning �-convergence is that any subsequential limit of
the sequence of minimizers of En is a minimizer of the limiting functional E∞. So to
show that the minimizers of En converge at least along a subsequence to a minimizer
of E∞it suffices to establish the precompactness of the set of minimizers. We make
this precise in the theorem below. Its proof can be found in [7, Theorem 1.21] or [15,
Theorem 7.23].

Theorem A.2 (Convergence of Minimizers) Let (Z , d) be a metric space and En :
Z → [0,∞] be a sequence of functionals. Let un be a minimizing sequence for En. If
the set {un}n=1,2,... is precompact and E∞ = 0- limn En where E∞ : Z → [0,∞] is
not identically ∞ then

min
Z

E∞ = lim
n→∞ inf

Z
En .

Furthermore any cluster point of {un}n=1,2,... is a minimizer of E∞.

The theorem is also true if we replace minimizers with approximate minimizers.
We note that �-convergence is defined for functionals on a common metric space.

Section A.3 overviews the metric space we use to analyze the asymptotics of our
semi-supervised learning models, in particular it allows us to go from discrete to
continuum.

A.2 Optimal Transportation and Approximation of Measures

Here we recall the notion of optimal transportation between measures and the metric
it introduces. Comprehensive treatment of the topic can be found in books of Villani
[45] and Santambrogio [37].

Given a bounded, open set � ⊂ R
d , and probability measures μ and ν in P(�) we

define the set�(μ, ν) of transportation plans, or couplings, between μ and ν to be the
set of probability measures on the product space π ∈ P(� × �) whose first marginal
is μ and second marginal is ν. We then define the p-optimal transportation distance
(a.k.a. p-Wasserstein distance) by

dp(μ, ν) =

⎧
⎪⎪⎨

⎪⎪⎩

inf
π∈�(μ,ν)

(∫

�×�

|x − y|p dπ(x, y)

) 1
p

if 1 � p < ∞
inf

π∈�(μ,ν)
π - esssup(x,y) |x − y| if p = ∞.

If μ is absolutely continuous with respect to the Lebesgue measure on �, then the
distance can be rewritten using transportation maps, T : � → �, instead of trans-
portation plans,

dp(μ, ν) =

⎧
⎪⎪⎨

⎪⎪⎩

inf
T#μ=ν

(∫

�

|x − T (x)|p dμ(x)

) 1
p

if 1 � p < ∞
inf

T#μ=ν
μ- esssupx |x − T (x)| if p = ∞.
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where T#μ = ν means that the push forward of the measure μ by T is the measure ν,
namely that T is Borel measurable and such that for all U ⊂ �, open, μ(T−1(U )) =
ν(U ).

When p < ∞ the metric dp metrizes the weak∗ convergence of measures.
Optimal transportation plays an important role in comparing the discrete and con-

tinuum objects we study. In particular, we use sharp estimates on the ∞-optimal
transportation distance between a measure and the empirical measure of its sample. In
the form below, for d � 2, they were established in [19], which extended the related
results in [1,31,39,43].

Theorem A.3 For d � 2, let � ⊂ R
d be open, connected and bounded with Lipschitz

boundary. Letμ be a probability measure on�with density (with respect to Lebesgue)
ρ which is boundedaboveandbelowbypositive constants. Let x1, x2, . . .bea sequence
of independent random variables with distribution μ and let μn be the empirical
measure. Then, there exists constants C � c > 0 such that almost surely there exists
a sequence of transportation maps {Tn}∞n=1 from μ to μn with the property

c � lim inf
n→∞

‖Tn − Id‖L∞(�)

�n
� lim sup

n→∞
‖Tn − Id‖L∞(�)

�n
� C

where

�n =

⎧
⎪⎨

⎪⎩

(ln n)
3
4√

n
if d = 2

(ln n)
1
d

n
1
d

if d � 3.
(83)

A.3 The TLp Space

The discrete functionalswe consider (e.g.En,εn ,ζn ) are defined for functions un : Xn →
R, while the limit functional E acts on functions f : � → R, where � is an open
set. We can view un as elements of L p(μn) where μn is the empirical measure of the
sample μn = 1

n

∑n
i=1 δxi . Likewise f ∈ L p(μ) where μ is the measure with density

ρ from which the data points are sampled. In order to compare f and un in a way that
is consistent with the L p topology we use the T L p space that was introduced in [20],
where it was used to study the continuum limit of the graph total variation. Subsequent
development of the T L p space has been carried out in [21,44].

To compare the functionsun and f aboveweneed to take into account their domains,
or more precisely to account forμ andμn . For that purpose the space of configurations
is defined to be

T L p(�) = {
(μ, f ) : μ ∈ P(�), f ∈ L p(μ)

}
.

The metric on the space is

d p
T L p ((μ, f ), (ν, g))
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= inf

{∫

�×�

|x − y|p + | f (x) − g(y)|p dπ(x, y) : π ∈ �(μ, ν)

}

where �(μ, ν) the set of transportation plans defined in Sect. A.2. We note that the
minimizing π exists and that T L p space is a metric space, [20].

As shown in [20], when μ is absolutely continuous with respect to the Lebesgue
measure on �, then the distance can be rewritten using transportation maps T , instead
of transportation plans,

d p
T L p ((μ, f ), (ν, g))

= inf

{∫

�

|x − T (x)|p + | f (x) − g(T (x))|p dμ(x) : T#μ = ν

}

where the push forward of the measure T#μ is defined in Sect. A.2. This formula
provides an interpretation of the distance in our setting. Namely, to compare functions
un : Xn → R we define a mapping Tn : � → Xn and compare the functions
f̃n = un ◦ Tn and f in L p(μ), while also accounting for the transport, namely the
|x − Tn(x)|p term.

We remark that the T L p(�) space is not complete, and that its completion was
discussed in [20]. In the setting of this paper, since the corresponding measure is clear
from context, we often say that un converges in T L p to f as a short way to say that
(μn, un) converges in T L p to (μ, f ).

A.4 Local Estimates forWeighted Laplacian

Lemma A.4 There exists C > 0 such that for each u ∈ H1(B(0, 1)) there exists
v ∈ H1(B(0, 1)) such that

v|B(0, 12 ) ≡ 1

|B(0, 1
2 )|

∫

B(0, 12 )

u(x)dx

v|∂B(0,1) = u|∂B(0,1)

‖∇v‖L2(B(0,1)) � C‖∇u‖L2(B(0,1))

where the value on the boundary is considered in sense of the L2(∂B(0, 1)) trace.

Proof Let

u = 1

|B(0, 1
2 )|

∫

B(0, 12 )

u(x)dx .

Let φ ∈ C∞([0, 1], [0, 1]) be such that φ(r) = 1 for all r ∈ [0, 1
2 ] and φ(1) = 0. Let

M = maxr∈[0,1] |φ′(r)|. Let

v(x) = φ(|x |)u + (1 − φ(|x |))u(x).
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By Poincaré inequality stated in Theorem 13.27 of [32] there exists C1 > 0, indepen-
dent of u,

∫

B(0,1)
|u(x) − u|2dx � C1

∫

B(0,1)
|∇u(x)|2dx .

Using the Poincaré inequality we obtain, for C = 2 + 2MC1,

∫

B(0,1)
|∇v|2dx � 2

∫

B(0,1)
|∇u|2 + M |u − u|2dx � C

∫

B(0,1)
|∇u|2dx .
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