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Abstract

The performance of traditional graph Laplacian methods for semi-supervised learning
degrades substantially as the ratio of labeled to unlabeled data decreases, due to a
degeneracy in the graph Laplacian. Several approaches have been proposed recently
to address this, however we show that some of them remain ill-posed in the large-
data limit. In this paper, we show a way to correctly set the weights in Laplacian
regularization so that the estimator remains well posed and stable in the large-sample
limit. We prove that our semi-supervised learning algorithm converges, in the infinite
sample size limit, to the smooth solution of a continuum variational problem that
attains the labeled values continuously. Our method is fast and easy to implement.

Keywords Semi-supervised learning - Label propagation - Asymptotic consistency -
PDEs on graphs - Gamma-convergence
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1 Introduction

For many applications of machine learning, such as medical image classification
and speech recognition, labeling data requires human input and is expensive [13],
while unlabeled data is relatively cheap. Semi-supervised learning aims to exploit this
dichotomy by utilizing the geometric or topological properties of the unlabeled data,
in conjunction with the labeled data, to obtain better learning algorithms. A significant
portion of the semi-supervised literature is on transductive learning, whereby a func-
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Fig.1 Example of the degeneracy of graph Laplacian learning with few labels. The graph is a sequence of
n = 10° i.i.d. random variables drawn from the unit box [0, l]2 in Rz, and two labels are given g(0, 0.5) = 0
and g(1,0.5) =1

tion is learned only at the unlabeled points, and not as a parameterized function on
an ambient space. In the transductive setting, graph based algorithms, such the graph
Laplacian-based learning pioneered by [55], are widely used and have achieved great
success [3,26,27,46-48,51-54].

Using graph Laplacians to propagate information from labeled to unlabeled points
is one of the earliest and most popular approaches [55]. The constrained version of
the graph Laplacian learning problem is to minimize over all u : X — R

GLw) = Y wyy(u(x) —u(y))?
xyeX e))

subject to constraint u(x) = g(x) forallx e I'

where the data points X’ form the vertices of a graph with edge weights wyy andI" C X
are the labeled nodes with label function g : ' — R. The minimizer u of (1) is the
learned function, which extends the given labels g on I' to the remainder of the graph.
In classification contexts, the values of u are often rounded to the nearest label. The
method amounts to minimizing a Dirichlet energy on the graph, subject to a Dirichlet
condition # = g on I'. Minimizers u are harmonic functions on the graph, and thus
the problem can be view as harmonic extension.

It has been observed [18,34] that when the size of I (the labeled points) is small,
the performance of graph Laplacian learning algorithms degrades substantially. In
practice, the learned function u fails to attain the conditions # = g on I" continuously,
and degenerates into a constant label function that provides little information about the
machine learning problem. Figure 1 gives an example of this issue. There are several
ways to explain this degeneracy. First, in the limit of infinite data, the variational
problem (1) is consistent with the continuum Dirichlet problem

min/ [Vul*dx, )
u Q
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subject to a boundary condition u = g on I' € @ c R?. If T is finite this problem
is ill-posed since the trace of an H'(2) function at a point is not well-defined. In
particular, there are minimizing sequences for the constrained problem converging to
a constant function outside of I for which the Dirichlet energy converges to zero. In
particular the minimum is not attained. From another perspective, minimizers of the
continuum Dirichlet problem (2) satisfy Laplace’s equation Au = 0 with Dirichlet
conditionu = g onT",and Laplace’s equation is not well-posed without some boundary
regularity (an exterior sphere condition), which does not hold for isolated points. In
both cases, we are simply observing that the capacity of a point is zero in dimensions
d>2.

Several methods have been proposed recently to address the degeneracy of Lapla-
cian learning with few labels. In [18], a class of p-Laplacian learning algorithms was
proposed, which replace the exponent 2 in (1) with p > 2. The p-Laplacian models
were considered previously for other applications [2,9,18,50], and the p — oo case,
which is called Lipschitz learning, was considered in [29,33]. The idea behind the
p-Laplacian models is that the continuum variational problem is now the p-Dirichlet
problem

min/ |Vul|? dx, 3)
o Jo

and for p > d the Sobolev embedding W7 (Q) — C%*(Q) allows the assignment
of boundary values at isolated points. The p-Laplacian models, including the p = oo
version, were proven to be well-posed in the limit of infinite unlabeled data and finite
labeled data precisely when p > d in [10,11,41]. The disadvantage of p-Laplacian
models is that the nonlinearity renders them more computationally challenging to
solve, compared with standard Laplacian regularization. Other approaches include
higher order Laplacian regularization [6,17,49] and using a spectral cut-off [5].

The approach most closely related to our work is the weighted nonlocal Laplacian
of Shi et al. [38], which replaces the learning problem (1) with

min YD we @) —u()+p YD wa@) —um? @
R xeX\TI' yeX xel' yeX

where ;1 > 0is selected as the ratio of unlabeled to labeled data. The method increases
the weights of edges adjacent to labels, which encourages the label function to be
flat near labels. The authors show in [38] that the method produces superior results,
compared to the standard graph Laplacian, for classification with very few labels.
Furthermore, since the method is a standard graph Laplacian with a modified weight
matrix, it has similar computational complexity to Laplacian learning, and is fast
compared to the non-linear p-Laplace methods, for example. However, as we prove in
this paper, the weighted nonlocal Laplacian of [38] becomes ill-posed (degenerate) in
the limit of infinite unlabeled and finite labeled data. This is a direct consequence of
Corollary 3.8. Numerical simulations in Sect. 5 illustrate the way in which the method
becomes degenerate. The issue is the same as for Laplacian learning, since the weights
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are modified only locally near label points and the size of this neighborhood shrinks
to zero in the large sample size limit.

1.1 Properly Weighted Laplacian

In this paper, we show how to properly weight the graph Laplacian so that it remains
well-posed in the limit of infinite unlabeled and finite labeled data. Our method,
roughly speaking, modifies the problem to one of the form:

Minimize Z Y () wyy(u(x) — u(y))2 overu : X - R,
x,yeX (5)
subject to constraint  u(x) = g(x) forallx € '

where y (x) = dist(x, ') " and ¢ > d —2 (see Sect. 1.2 for precise definitions). Here,
we are modifying the weights not just of edges connecting to points of I', but also
in a neighborhood of I'. We show that this model is stable as the number unlabeled
data points increases to infinity, under appropriate scaling of the graph construction.
In particular we show that the minimizers of the graph problem above converge as the
number of unlabeled data points increases to the minimizer of a “continuum learning
problem”. We give the precise assumptions on the discrete model below and describe
the continuum problem in Sect. 2. Here we give a brief explanation astowhy o > d —2
is the natural scaling for the weight.

To illustrate what is happening near a labeled point, consider I' = {0} and take the
domain from which the points are sampled to be the unit ball 2 = B(0, 1) in R. The
continuum variational problem corresponding to (5) involves minimizing

I[u] =/ x|~ Vu|? dx. (6)
B(0,1)

The Euler—Lagrange equation satisfied by minimizers of [ is
div (]x|~“Vu) = 0. (7

This equation has a radial solution u(x) = |x|*+2=4  which is continuous at x = 0
when o > d — 2. This suggests the solutions will assume this radial profile near
labels, and the model will be well-posed for « > d — 2. Furthermore wheno > d — 1
one can expect the solution to be Lipschitz near labels, and for « > d it is should
be differentiable at the labels. It is important to point out that the proper weighting
changes the degenerate limiting continuum problem to one that is well-posed with
“boundary” data at isolated points.
We now provide a precise description of the properly-weighted graph Laplacian.
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1.2 Model and Definitions

Let @ C R be open and bounded with a Lipschitz boundary. Let I' C Q be a
finite collection of points along with a given label function g : I' — R. Let u be a
probability measure on 2 with continuous density p which is bounded from above
and below by positive constants. Let x1, x2, ..., x, be independent and identically
distributed random variables with distribution w, and let

Xpi=1{x1,x2, ..., %},

and &), := X,, UT. To define the edge weights we use a radial kernel n with profile
n : [0, o0) — [0, co) which is nonincreasing, continuous at 0 and satisfies

H=1, ifo<r<1
{n() ®

n() =0, ifr > 2.

All of the results we state can be extended to kernels which decay sufficiently fast, in
particular the Gaussian. For ¢ > 0 we define the rescaled kernel

1 —
ns(x—y)=8—dﬂ<|x y'>. )

&

We now introduce the penalization of the gradient, which is heavier near labeled
points. Let R > 0 be the minimum distance between pairs of points in I":

R =min{|lx —y| : x,yeTl, x # y} (10)
Forrg > 0anda > 0let y € C®(Q\I') be any function satisfying ¥ > 1 on  and

ro

R
dist(x, I') 4’

o
y(x) =1+ ( ) whenever dist(x, I') < (a1

where dist(x, I') denotes the Euclidean distance from x to the closest point in I". For
¢ > 1 we set

¥e (x) = min{y (x), £}. (12)

For u € L*(X,) we define the energy

1
GEnec ) = —— Y V(e = lu) —u@)P. (13)
x,yeX,

The Laplacian learning problem is to
minimize G&, ¢ (u) over {u € Lz(Xn) and u = g on F} . (14)
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We note that the unique minimizer u € L*(&X,,) of (14) satisfies the optimality condi-
tion

GLyecu(x) =0, ifx € X, (= A,\I")

. (15)
u(x) =gx), ifxel,

where GL,, ;¢ : L?(X,) — L?(AX,) is the graph Laplacian, given by

1
GLnegu() =3 D (%) +re(0e(x = NwG) —u().  (16)
e,

Some remarks about the model are in order.

Remark 1.1 When considering the discrete functional, { depends on n and diverges to
infinity (sufficiently fast) as n — oo. The constant r( represents the length scale of the
crossover from the strong local penalization near I' to uniform far-field penalization.
The introduction of ¢ is needed since y (x) = oo on I' and so using y directly would
impose a hard constraint on neighbors of labeled points. While we can allow { = oo
in our model by interpreting products oo - 0 as 0, we wanted to allow for a model with
far less stringent constraints on agreement with the labeled points in the immediate
vicinity of I'. We note that the critical distance to I', when y; crosses over from y to
¢ equals

R
re =ro(¢ — )7V provided that ro(¢ — )71 < T (17)

Remark 1.2 In practice, one can take (11) to be the definition of the weights on the
whole domain 2. We only need y to be smooth for a part of our analysis in Sect. 2.2.
The issue is that since the distance function d(x, I') is not differentiable (it is only
Lipschitz on Q\T" if I" has more than one point), y cannot be both smooth and globally
given by (11). To elaborate, y appears as part of the diffusion coefficient in the limiting
elliptic problem (see Eq. (22)). The solutions have nicer regularity properties when
we take y to be smooth, away from the labels. For the other results we only need that
y is bounded from below by a positive number and has singularities, with a particular
growth rate, near the points of I".

Remark 1.3 Instead of truncating y at the radius r; to construct the weights y;, we
can take a possibly discontinuous model of the form

_Jy ), if dist(x, ") > r
Vor() = {g, if dist(x, T) < r. (18)

This model is more general, since we can set r = r, to recover (12). Choosing
¢ > 14 (ro/r)¥ places a larger penalty on the gradient in the inner region where
dist(x, I') < r, compared to Eq. (12). This model is useful in the analysis of the graph
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based problem, and gives a sharper result for continuity at the labels (see Remark 4.3).
In the limit as n — oo we would take { — oo and r — 0 withr > r;.

Remark 1.4 We remark that the discrete functional (13) can be rewritten as

1
GEnec(u) = EPIs) Z (e () + ve (e (x = M) —u(MP.  (19)
x,yEX,

and so the problem has a symmetric weight matrix.

1.3 Outline

The continuum properly-weighted Dirichlet energy, which describes the asymptotic
behavior of the properly-weighted graph Laplacian (14) is presented in Sect. 2 (Egs.
(20) and (21)). To show that the continuum problem is well posed and to establish its
basic properties, in Sect. 2 we also study properties of singularly weighted Sobolev
spaces. In particular the Trace Theorem 2.2 plays a key role in showing that the data can
be imposed on a set of isolated points, which enables us to show the well-posedness in
Theorem 2.7. The Euler-Lagrange equation of the variational problem is the elliptic
problem we study in Sect. 2.2. In particular we show that solutions are C> away from
the labels and Holder continuous globaly.

In Sect. 3 we turn to asymptotics of the graph-based problems. We prove in
Theorem 3.1 that the solutions of the graph-based learning problem (14), for the
properly-weighted Laplacian, converge in the large sample size limit to the solu-
tion of a continuum variational problem (20)—(21). We achieve this by showing the
I'-convergence of the discrete variational problems to the corresponding continuum
problem. We also prove a negative result, showing that the nonlocal weighted Lapla-
cian [38] is degenerate (ill-posed) in the large data limit (with fixed number of labeled
points). In Sect. 4.1 we prove that solutions of the graph-based learning problem for
the properly-weighted Laplacian attain their labeled values continuously with high
probability (Theorem 4.1). In Sect. 5 we present the results of numerical simulations
illustrating the estimators obtained by our method, and its performance in classifi-
cation tasks on synthetic data and in classifying handwritten digits from the MNIST
dataset [30]. The classification problems on synthetic data contrast the stability of the
properly-weighted Laplacian with the instability of the standard graph Laplacian and
related methods. The MNIST experiments show superior performance of our method
compared to the standard graph Laplacian, and similar performance to the weighted
Laplacian of [38]. In the Appendix A we recall some background results used and
show and auxiliary technical result.

2 Analysis of the Continuum Problem

The continuum variational problem corresponding to the graph-based problem (14) is
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minimize & (u) over {u € H)} (2) and u = g on F} , (20)

where £ is given by

1
£(u) = —/ Y [Vul?p? dx, @1
2 Ja

p is continuous and bounded from above and below by positive constants, and the
weighted Sobolev Space HJ} (€2) is defined by (25). It follows from Lemma 2.1 that
for y which grow near points of I" as fast as or faster than dist(x, I') ™%, the functions
in H)} (€2) have a trace at I" (defined by (33)), which enables one to assign the condition
u = g on I in (20).

The Euler—Lagrange equation satisfied by minimizers of (21) is the elliptic equation

—div(yp®Vu) =0 in Q\I'

u=g onT 22)
ou

— =0 on 012.

av

In this section we study the variational problem (20) and the elliptic problem (22)
rigorously. The theory is nonstandard due to the boundary condition u = g on I', since
I' is a collection of isolated points and does not satisfy an exterior sphere condition. As
a consequence of this analysis, we prove in Sect. 4.1 that solutions of the graph-based
problem are continuous at the labels.

Before studying this problem, we need to perform a careful analysis of a particular
weighted Sobolev space.

2.1 Weighted Sobolev Spaces

In this section we study the Sobolev space with norm weighted by y. While there
exists a rich literature on Weighted Sobolev Spaces, we did not find the precise results
we need. Below we develop a self-contained, but brief, description of the spaces with
particular weights of interest.

For u € H'(Q) we define

[uﬁlyl(m :/levu|2dx, (23)
and
Il @y = 14172 + [Ty (24)
We define
1) = fu e H'@ : lullgye) < oo}, (25)
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and endow H}} (2) with the norm ||u|| HY(@) We also denote by H}}’O(Q) the closure

of C° (Q\IN) in H)} (£2). The space H)} (2) is the natural function space on which to
pose the variational problem (20).

Throughout this section we let B, denote the open ball of radius r > 0 centered at
the origin in RY. Whenever we consider the space HJ} (By), we will implicitly assume

the choice of y (x) = |x|~“. Hence
[u]?_lyl(Br) = fB |Vul?|x] ™ dx. (26)

In all other occurrences, y is defined as in Sect. 1.2, and in particular we always assume
(11) holds. We also use the notation (1), , = fB(x’r) u dx for the average of u over the
ball B(x, r),and (u), := (u)o, . We also assume in this section that €2 has a Lipschitz
boundary.

First, we study the trace of H]} (€2) functions on I'. Before proving a general trace
theorem, we require a preliminary lemma.

Lemma2.1 Leta >d—2andu € H}} (By). Then x = 0 is a Lebesgue point [35] for
u, i.e., u(0) :=limy_,o(u), exists, and

u(0) = @] < Ce“ 2D [ulyy 27)

forall0 <e <r

Proof We compute

Vul? dx </ VP x|~ dx < [u]?
B B, HI(B)
By the Poincaré inequality we have
(u— (w))*dx < |Vu|? dx < C[u]H1 (&, )e"‘+2_d. (28)

B B

For 0 < s <t < r we apply (28) with s and ¢ in place of ¢ to obtain
s = P < [ (.-
By

(s —waxtc / (W) — u)? dx
B.Y

C[u] a+2 + tl)l+2). (29)

HI(B)(S
For 0 < g <& < r withe < 4g we can set s = g and r = ¢ above to obtain

[)g — (w)e|* C[u]Hl(B) geted, (30)
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For 0 < g < ¢ < r with ¢ > 4q, let k € N be the greatest integer smaller than
log,(¢/q). Since ¢ > 2q, we have k > 1. Choose b > 0 so that b* = ¢/q. Then

_ log(e/q) _ log(e/q)
log(b) = T = log,(¢/q ) 0g(2)

and

log(e/q)  _ log(2)log,(e/q)
log,(e/q) — 1 log,(e/q) — 1

log(b) < < 2log(2),

since log,(¢/q) > 2. Therefore 2 < b < 4. Letus set ¢; = eb~/ and aj = (u)gj.
Then g = ¢ and & = eb™ ¥ = q. Setting r = gjand s = g1 in (29) yields

laj = aj1 | < Clulpyy gy (557 + 52651 < Clulgyy b7/ De 274,
Therefore
k—1
|Wg = @)l <Y lajer —ajl < Clulgyp,e @07 31)
j=0

holds for all £ > 1, where C is independent of u, ¢ and k.
In either case, we have established that

[()g — W)e]* < []mw)ﬁ*d 32)

holds for all 0 < g < ¢ < r. Thus, the sequence ¢ — (u), is Cauchy and converges
to a real number as ¢ — 0. Sending ¢ — 0 in (32) completes the proof. O

By Lemma 2.1, we can define the trace operator Tr : H}(22) — R by

Trlu](x) = slin%) ( )udx (x el). 33)
—YJB(x,e

We endow R with the Euclidean norm. We now prove our main trace theorem.

Theorem 2.2 (Trace Theorem) Let o« > d — 2 and assume y satisfies (11) and Q has
a Lipschitz boundary. Then the trace operator Tr : H)}(Q) — RU is bounded, and
satisfies Tr[u](x) = u(x) whenever u is continuous at x € I'. Furthermore, for every

w,v € HN () with |lu — v||i/2‘(“9+)2> < R/2 we have
1—d 2
| Tr[u] = Tr{v]] < C(1 + [l + W@ lu — vl 2o . (34)
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Proof By Lemma 2.1 each x € I' is a Lebesgue point of u, and we have for r < R/2

| Telul(o)] < ][

B(x,r)
< Cr Pl ) + €O ul gy g,

udx + Cr(a+27d)/2[u]H}} (Q)

where R > 0 is defined in (10). Fixing r = R/2 we have | Tr[u](x)| < C||u||H;(Q),
hence Tr : H)} (2) — R is bounded.

To prove (34), letu, v € H]} (2) and x € I'. For simplicity, we write u(x) and v(x)
for Tr[u](x) and Tr[v](x), respectively. By Lemma 2.1 we have for 0 < ¢ < R/2

() = v < [u) = @i e| + [vE) = )re] + [@re — W)xe
< Ce“P DUl gy ey + 0]y Brey) + CS_d/ lu — v|dx

< CE(aJrzid)/z([”][—]}}(Q) + [U]H;(Q)) + CEid/2||u - U||L2(Q)-

2/(a+2)

2@ we obtain

Choosing ¢ = |lu — v||

1-d/(a+2)
lu(x) —v(x)| < C(1 + [M]HVI(Q) + [v]H)}(Q))”u - U”Lz(g) )

provided ¢ < R/2. O

We now examine the decay of the L norm of trace zero functions.

Lemma23 Leta >d —2andu € H)} (By) with Tr[u](0) = 0. Then

2 2 a+2—dry, 12
u dS—i—][ u-dx < Ce [u] (35)
][335 B, H(Be)

forall0 < e <r.

Proof Since Tr[u](0) = 0, Lemma 2.1 yields
1@ell 1205,y < Ce?2 @)l < Ce“ T2 U]y ).
Recalling (28) from the proof of Lemma 2.1 we deduce
lu = (el 25, < Ce PP Ul s,

Therefore
2 - —d 2 a+2—dy, 12
fl;g u“dx =Ceg ||u||L2(BS) < Ce [M]H%(Bs)’

which establishes one part of (35).
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For the other part, we use a standard trace estimate that we include for completeness.

We have
g/ u2d5=/ div(xu?) dx
aBs €

= / du® +2uVu - x dx
Be

<C/ urdx +Ce* | |Vul*dx
Be B

2 a+2 2
<C/38u dx + Ce [u]Hy.(BS).

Dividing both sides by ¢ we obtain

2 2 a+2—dy, 12
u ngC][ u“dx +Ceg [u] ,
]ng B, Hy (Be)

which completes the proof. O

We now show that trace zero functions can be approximated in H)} (2) by smooth
functions compactly supported away from I.

Theorem 2.4 (Trace zero functions) Let & > d — 2 and assume y satisfies (11) and
has a Lipschitz boundary. Then u € H;’O(Q) ifand only ifu € HJ} (2) and Tr[u] = 0.

Proof If u € Hyl 0(Q), then there exists u; € C2°(Q\TI') so that ux — u in Hyl(sz).
In particular, u is uniformly bounded in H}} (£2). Thus, by Theorem 2.2, we have
Tr[u](x) = limg_ oo ux(x) = 0 foreach x € I'.

Conversely, let u € H)} (£2) such that Tr[u] = 0. Without loss of generality, we
may assume Q2 = B,, ' = {0}, and Tr[u](0) = 0. Choose a smooth nonincreasing
function & : [0, 0c0) — [0, 1]suchthat&(¢) = 1for0O <t < land&(t) =O0fort > 2.
For a positive integer k > 1 define & (x) = &(k|x|) and wx = u(1 — &). We compute

, X
§Vu + kué (kIXI)?

f |Vwk—W|2|x|—“dx=/
B, B, x|

< c/ |Vul?|x| "% dx +Ck2/ u?|x| "% dx
Bayk Bo i\ Bk

2
|x|~% dx

< c/ |Vu|2|x|*“dx+c1<a+2/ u® dx
Bk B

2/k

< C/ VPl dx, (36)
Bok

the last line following from Lemma 2.3. Therefore wy — u in H; (By) as k — oc.
To produce a smooth approximating sequence uj, we simply mollify the sequence
Wy O
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As a corollary, we can prove density of smooth functions that are locally constant
near I'.

Corollary 2.5 For any o > O the set
S={ueC®) : 3s>0)(Vx e N (Vz € B0, 1)) u(x +sz) = u(x)}

is a dense subset of H; ().

Proof We split the proof into two cases.
Case l:a >d —2.Letu € H)} (R2). There exists ¥ € S such that Tr[vy] = Tr[u].

Sincew :=u—y € H)},o (€2), there exists by Theorem 2.4 a sequence ¢ € C2° (Q\IN)
such that ¢y — w as k — oco. We simply note that ¥y := ¢ + ¥ € Sand ¥ — u
in H}}(Q) as k — oo.

Case2: o < d—2.Inthiscase, C®° () is densein H)} (£2) by a standard mollification
argument, since the weighting kernel |x|~* is integrable. Hence, for u € H)} (£2) with

o < d — 2 there exists g € C*®(Q) such that g — u in H)} (R2). Since ¢y is smooth,
we automatically have

/ dist(x, 1) =4| Vi |? dx < oo.
Q

Thus, by case 1, there exists a sequence ¥ ; € S such that for each k, ¥ ; — ¢ in
H)} as j — oo, since @ < d —2 < d — 1. The proof is completed with a diagonal
argument. O

Finally, we prove a Hardy-type inequality for trace zero functions in H)} (BR).

Theorem 2.6 (Hardy’s inequality) Let « > d — 2 and assume y satisfies (11) and Q
has a Lipschitz boundary. If u € H)(B,) with Tr[u](0) = 0 then S € L?*(B,)
and

2
u 2
-/;rlxlT_i_de <C[u]HJ}(Br) (37)

Proof By a change of variables we can reduce to the case of r = 1. We first note that

di X _ a+2—d
v |x|°‘+2 - |x|°‘+2

for x # 0. Thus, for ¢ > 0 we have

2
/ M—dx = —;/ u? div _r dx
Bi\B. |X[%F2 a+2—d Jp)\s, |x|e+2

1 X
=—|2 Vu - ——d
a+2—d[ /BI\BE” e
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—/ u>ds + ! / uzdS]
9B et Jop,

< c/ IVl x| dx + Clu?
B1\B. H)}(Bl)

+c/ x|Vl dx,
B

where the last line follows from Lemma 2.3 and the assumption o > d — 2. Applying
Cauchy’s inequality to the first term and rearranging yields

2
u
—_dx < Clu]? + c/ x| Vul|? dx.
/BI\BE |x|e+2 Hy (B1) B,

Sending ¢ — 0 completes the proof. O

We now establish the well posedness of the continuum properly-weighted Laplacian
learning problem.

Theorem 2.7 Let o > d — 2, and assume p is continuous and bounded above and
below by positive constants, y satisfies (11), and 2 has a Lipschitz boundary. Then
the problem (20) has a unique solution.

Proof The existence follows by the direct method of the calculus of variations. Namely
let ug, k = 1,2, ... be a minimizing sequence. By the Sobolev Embedding Theo-
rem, uy has a subsequence which converges weakly in H)} () and in L?(Q2) towards
u € H)} (2). Since £ is convex, it is weakly lower-semicontinuous and thus £(u) <
lim inf_, o, £ (uy). Furthermore note that (34) implies that Tr(uy)(z) — Tr(u)(z) for
every z € I'. Thus u = g on I'. We conclude that u is the desired minimizer. The
uniqueness follows from convexity of £, by a standard argument, which is recalled in
the proof of Lemma 2.11. O

2.2 Elliptic Problem
We now study the elliptic Euler—Lagrange equation (22). We additionally assume in

this section that 2 has a C%¢ boundary and p € CL9(Q) for some o > 0. As before,
we assume p is bounded above and below by positive constants.

Definition 2.8 We say that u € HJ}(Q) is a weak solution of (22) if

/ y,oZVu -Vedx =0 (38)
Q

forall ¢ € H}}’O(Q) and Tr[u](x) = g(x) forallx € T.

We first need a preliminary proposition on barrier functions.
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Proposition 2.9 (Barrier) Let o > d — 2 and fixany 0 < 8 < o + 2 — d. Then there
exists ¢ > 0 depending on «, B, p and d such that w(x) = |x|P satisfies

div(o>(1 + x| ") Vw) < —g(a F2- B—dpP [ (39

forall0 < |x| < c.

Proof. Since Vw(x) = Blx|#~2x we have

div(p?(1 + |x| %) Vw)
= Bdiv(p?|x|P2x) + B div(p*|x|P~*2x)
=2B1x P72 (1 + [x|*)pVp - x + p* div(|x|P2x) + Bp* div(|x|P~*2x)
= o IxP7* 72 [2(1 + x|*)VIogp - x + (d + B —2)|x|* +d + B —a — 2]
< B xPO P [CA+ X)X + (@ + B =2)x|* +d + B —a 2]

The proof is completed by choosing ¢ > 0 small enough so that when 0 < [x| < ¢
CL+xx|+@+B-x[* < da+2—-p—d). O
Theorem 2.10 Let a > d — 2. Assume y satisfies (11), 2 has a C>“ boundary, and
p € CL9(Q) is bounded above and below by positive constants . Then the elliptic Eq.
(22) has a unique weak solution u € H)} (2). Furthermore, u € C(2) N CIZO’Z(Q\F)
and satisfies for every) < B <a +2 —d
u(x) —u(NI < CPBlx -y’ (xeQ yel). (40)

Proof For ¢ > 0 set

Q. =\ JBO. )

yell
and let u, € C*>° () be the unique solution of the approximating problem

—div(yp®Vug) = 0 in

us = g(y) ondB(y,e) forally e I' (41)
Jug

— =0 on 9€2.

av

It is a classical result that u, is the unique solution of the variational problem
min {/ vo?|Vul?dx : ue H'(Q,) and VyeT, u=g(y) on dB(y, s)} . (42
Qe
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In particular, it follows that

sup/ y,o2|Vug|2dx < 00. 43)
Qe

e>0

By the maximum principle

ming < ue < maxg. (44)
Let y € I". By Proposition 2.9, w(x) := |x — y|? satisfies
—divtyp?Vu) > B2 g -y s g

for 0 < |x — y| < ¢, where ¢ depends on «, 8, p, and d. Thus, another application of
the maximum principle yields

ue(x) < g(y) + Clx — y|?

for all x € Q,, where C is independent of ¢ > (. The other direction is similar,
yielding

lue(x) — g(M)| < Clx — yf forall x € 2. (45)

By the Schauder estimates [24], for each § > 0 there exists a constant C > O,
independent of ¢, such that

||Ms||c2,a(§78) <C

for all 0 < ¢ < §. Therefore, there exists a subsequence u,, and u € Clzo’f (Q\IN
such that u;, — uin C 120 . (Q\I). In particular, u solves (22) classically and satisfies
(40), due to (45). Thus u € C(L2) and u = g on I'. Finally, it follows from (43) that
u e H)} (£2), and so u is a weak solution of (22), as per Definition 2.8. Uniqueness of

weak solutions follows by a standard energy method argument. O

Lemma 2.11 Let o > d — 2. Assume y satisfies (11), Q has a co boundary, and
p € CY9(Q) is bounded above and below by positive constants . Then solution u
of the variational problem (20) is the unique weak solution of the Euler—Lagrange
equation (22).

Proof Letu € Hyl(sz) be the unique weak solution of (22), and let w € Hyl () with
Tr[w] = Tr[u]. Then by the definition of weak solution

/ yp2Vu -V —w)dx =0.
Q
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Therefore
/ y,o2|Vu|2dx =/ y,oZVu -Vwdx
Q Q
1 1
= -/ y,o2|Vu|2dx+—/ yo*IVw|? dx
2 Ja 2 Ja
1
— —/ 7/,02|Vu — Vw|2dx,
2 Ja
and so

/yp2|Vu|2dx:f yp2|Vw|2dx—/ yp2|Vu—Vw|2dx.
Q Q Q

It follows that u is the unique solution of the variational problem (20). O

3 Discrete to Continuum Convergence

Throughout this section we consider €2, X}, and n which satisfy the assumptions of
Sect. 1.2. Let u, = % Z?:l 3y, be the empirical measure of the sample. Let doo (1, n)
be the oo-transportation distance between w and p,, discussed in Appendix A.2.

We now state our main result. In order to compare discrete and continuum mini-
mizers we use the T L? topology introduced in [20]. We review the topology and its
basic properties in Appendix A.3.

Theorem 3.1 Let g, be a sequence of positive numbers converging to zero as n — 00
and such that &, > doo (4, 4n). Let &, € (1, 00] be such that &, > nsg. Consider
o > d —2. Let u, be a sequence of minimizers of the problem (14) for GE, ¢, ¢,,. Then
almost surely ([tn, u,) converges in TL? to (., u) where u is the minimizer of (20).

Our approach to proving the theorem is via establishing the I'-convergence of
the discrete constrained functionals to the continuum ones. The overall approach to
consistency of learning algorithms follows the one developed in [20,22]. Ensuring
that the discrete problem induces enough regularity for one to be able to show that
the label values are preserved in the limit at points of I" follows the general strategy
of [41]. However the problems and proofs are rather different. We remark that one
can also use the PDE-based approach of [10], but this would require a slightly more
restrictive range on &,,. Nevertheless the PDE-based approach gives superior regularity
of solutions which we exploit in Sect. 4.

Proof Since, almost surely &, > doo (i, n) = n~'/4 it follows that £, — 0o as
n — oo. We note that by discrete comparison principle [|u, 7% y,) < maxr ||g]l.
By Lemma 3.5, the discrete energy GE, ¢,.;, I'-converges to 6,€ and the sequence
{(tn, Un)}n=1,2,.. is precompact in T L?. Therefore (tn, u,) converges along a subse-
quence in 7' L? metric to (fZ, u). Since u,, converges to i in Wasserstein metric, i = u.
The fact that u is the minimizer of (20) now follows directly from I'-convergence of
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Proposition 3.4 below. Consequently, the fact that the whole sequence u,, converges
to u follows from the uniqueness of the minimizer of (20). O

Remark 3.2 While above we address only algebraically growing weights y (see (11)) it
is straightforward to modify the proofs to show that if y grows faster than algebraically
at labeled points (say y (x) = exp(1/dist(x, I')) the conclusion of the theorem hold
(in any dimension d > 2).

Remark 3.3 In this paper we assume that the data measure is supported on the set
of full dimension. There are no substantial obstacles in extending the results to the
manifold setting where the data are sampled from a measure which is supported on a
smooth submanifold of R¢. One would only need to adjust the statements using man-
ifold analogues of the weighted Dirichlet energy and the Laplacian. The convergence
of graph Laplacian in the manifold setting has already been established in the standard
setting [23]. In the manifold setting the dimension d in the results above should be
replaced by the dimension of the data manifold.

Proposition 3.4 Let ¢, be a sequence of positive numbers converging to zero as n —
o0 and such that €, > doo(lL, Un). Let &y € (1, 00] be such that ¢, > na,zl and
Cn > 8,217‘] ifd >2and ¢, > —Ineg, ifd = 2. Let o« > d — 2. Then the constrained
properly-weighted graph Dirichlet energy, defined on T L*(Q) by

i - GEney.cyn) if iy = pnandu, = gonT
gg;?gn&'n (Mn’ un) = {OO henb " f " " " g

else

[-converges almost surely in T L?* to the constrained continuum properly-weighted
Dirichlet energy

6, £ (R 1) = O,E) ifjt =p, u € H)(Q) andu =g onT
7 ’ 00 else,

where the value of u on T is considered in the sense of the trace and

9n=1 / n(2)lzl dz.
d Rd

The proof of the I convergence of the unconstrained functionals follows from
known results in a straightforward way. We state and prove it in a separate lemma
below. The real difficulty is in proving that the constraints are preserved in the limit.
Since the T'L? topology alone is not sufficient to ensure this, we need to establish
some control of oscillations near the labeled points. This relies on on several technical
lemmas which are of some independent interest. We state them in the Sect. 3.2. The
proof of Proposition 3.4 is presented in Sect. 3.3.

Lemma 3.5 Assume o > 0 and ¢, > 1. Under assumptions on X,, and &,, of Proposi-
tion 3.4, the discrete energy GE,, ¢, ¢, T'-converges almost surely with respect to TL?
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topology to the energy 6,&, defined in (21) as n — oo if {, — oo. Furthermore let
{tn}n=1,2,... be a sequence such that sup,, GE, ¢,.c, < 00 and sup,, |lu, | Lo, < oo.
Then {(un, u,) : n € N} is precompact in TL>

Proof From results in the literature [20,21] it follows that for any fixed ¢ > 0 the
discrete energies G&, ¢, I'-converge to 6,E(-;y;) as n — oo, under standard
assumptions on &,. To show the liminf inequality for general ¢, consider a sequence
(n, up) TL? converging to (u, u). For any fixed &,

liminf G&, ¢, ¢, (un) = 0,E u; &1),
n—oo

where E(u; gi) is given by (21) with y replaced by y,, which implies the desired
inequality by taking supremum over k. The limsup inequality follows by a simple
diagonalization argument.

We recall from the literature (e.g [20] or Proposition 4.4 of [41]) that the precom-
pactness of bounded sequences with bounded energies already holds for the weight
y = 1. Thus the precompactness for GE,, ¢, ¢, follows by comparison. O

3.1 The Negative Result

Proposition 3.6 Let &, be a sequence of positive numbers converging to zero as n —
oo and such that &, > doo (I, ). Let & > 1 be a sequence converging to infinity.
Consider a < d — 2. Then the constrained energy GE, ¢, ¢,, defined in Proposition
3.4, T'-converges almost surely in T L* metric to the unconstrained continuum energy
0,E.

Proof The liminf part of the I'-convergence claim follows from the liminf claim of
Lemma 3.5.

To show the limsup inequality, we first observe that by localizing near the points of
I', and given that limsup inequality holds for the unconstrained functional, the problem
can be reduced to considering I' = {0}, u = 0, and the construction a sequence of
functions u, € L%(w,) such that u,(0) = 1, G&n ey 0,(up) — 0 asn — oo and
u, — 0in TL? as n — oo.

We now make some observation about the continuum functional. Namely when

o < d — 2 then the function ¢(x) = In <ln (ﬁ)) belongs to H)}(B(O, 1)). Let

wy = max{min{%w(x), 1}, 0}. Let rr > O be such that wy = 1 on B(0, r;). By
mollifying we can obtain a smooth approximation vk, vy = 1 on B(0, r¢/2) and
||Uk||Hy1(B(0,1)) < 2””k”HV'(B(0,1))- Arguing as in Sect. 5 of [20], if one defines for

each k € N, a sequence ul,‘l € Lz(y,n) by u’,‘l(x,-) = vr(x;) for all x; € X, one

has uﬁ — vy in TL? and lim SUP, 00 GEn 60,00 (uﬁ) > 6,E(vg). Since vy — 0in
H)} (B(0, 1)) as k — o0, the conclusion follows by a diagonalization argument. O

Corollary 3.7 Let ¢, be a sequence of positive numbers converging to zero as n — o0
and such that €, > doo(lt, ). Let &, > 1 be a sequence converging to oo as
n — oo. Let o« < d — 2. Let u, be a sequence of minimizers of the problem (14)
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for GEp ¢, ¢, Let ¢, be the average of u, (with respect to measure ji,). Then almost
surely ([, u, — c,) converges in TL?t0 (i, 0); in other words the information about
the labels is forgotten in the limit.

Proof Assume the claim is false. Then there exists § > 0 and a subsequence u,; such
that foe all j, dypp2((in;, un; —cn;), (1, 0)) > & forall j. By the maximum principle
functions u, are bounded by extremal values of g. Consequently, by Lemma 3.5,
un; — cn; has a further convergent subsequence. Without a loss of generality we can
assume that Up; — Cp; converges to some v € Lz(u). Then f vdp = limj_ o f Un; —
Cn jdun = 0.

By the limsup part of I"-convergence of Proposition 3.6 there exists a sequence
v, € L%(uy,) such that Qé’c"” & (vn) — 0 asn — oo. Since u,, are minimizers
GEn.ey.g,(Un;—Cn;) — Oasn — oo. Weconclude by the liminf part of I"-convergence
that £(v) = 0. Slnce f vdu = 0 this implies that v = 0, which contradicts the
assumption about the sequence. O

We note that the analogue of the negative result in Corollary 3.7 for the standard
graph Laplacian (corresponding to y = 1) was proved in [41][Theorem 2.1]. The
following corollary then follows by the squeeze theorem for I"-convergence.

Corollary 3.8 Under the assumptions of Proposition 3.6 consider any sequence of
graph based functionals F,, such that for GEp ¢, 1 < Fn < GEp g, ¢, (Where we note
that GE, ¢, .1 is just a convenient way to write the standard graph Laplacian). Let
u, be the minimizers of (14) for F, and let ¢, be the average of u, (with respect to
measure [iy). Then ([n, Uy — c,) converges almost surely in TL? to (u, 0).

A particular consequence of this corollary is that the minimizers of the algorithm
in [38] converge to a constant as n — o0.

3.2 Estimates for the Discrete to Continuum Convergence

Here we establish several results needed in the proofs of the main results above. We
follow a similar strategy as [41]. Let us define the nonlocal continuum energy as

1
Eec(u) = o) /f Ve (One(x — ux) — u(Pdpx)dp(y). (46)

It serves as an intermediary between the discrete graph based functionals and the
continuum derivative-based functionals.

Lemma 3.9 (discrete to nonlocal control) Consider 2, u, n, ¢, and x; as in Theorem
3.1. Let 1(|x|) = 1 for |x| < 1 and 7(|x|) = 0 otherwise, and so 1 < n. Let Ty,
be a sequence of transport maps satisfying the conclusions of Theorem A.3 and let
&n = &n = 20Ty — ldllLo(@)- Define GEn e, ¢, (-3 m) by (13) and &, 7 (- 1)) be (46),
where we expliciily denote the dependence of 1. Let g“n > 0 be such that &, > g“n

and (2C) [ ;‘n where C is the constant from Theorem A.3 and €, is the

@ Springer



Applied Mathematics & Optimization

transportation length scale from the same theorem. Then there exists ng € N and a
constant C > 0 (independent of n and u,,) such that for all n > ny

83,1,2" (uy o Ty; ﬁ) < 6g5n,8”,{n (un; )

Proof If < 1 then

X—Z
En
1 Tw(x) = Tw(2)| < 20T — IdlLo(@) + 1x — 2l < 20T, — IdllLoo(@) +n = en.

So,

X —2Z

&n

Ty (x) — Ta(2)
&n

< 1 implies <1

and therefore

X —

En

;}a<|x:z|><ﬁ<|Tn(x)_Tn(Z)|><n<|Tn(x)_Tn(Z)|).
&n &n &n

From the assumptions on En and T,, follows that

- ~(IX—ZI) ~<|Tn(x)_Tn(Z)|>
<1 implies 7 e~ =l=np|——m").

&n En

Hence,

~ 1
20T — Wiz < rolGn — D7 =17,

o ~
where z, is the length scale such that 1 + <dlst€—?cr)> > g, if dist(x, ") < Iz We
claim that for a.e. x € Q

. ro ¥ o o ro ¥~
mm{H(dist(x,r)) ’g"}gz mm{H(dist(Tn(x),F)) ’C”} @7

Namely if d(x,T") < rz, then d(T,,T") < |T,(x) — x| + rz, < 2an for a.e. such x.
Thus

n 70 « S 14 1 ro “ < 1~
dist(T,(x), ) ) = 2 \rz ) 7 Thd
o
Ifd(x, ) > 17, thend(x, T) > $d(T, (x), T) fora.e. such x. Thus ( gty ) >
# (it
29 \ dist(x,I") ) -
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Using (47) we conclude

85,“'5” (uy o Tp; ﬁ)

_ 1 inl1 o ¢~ ~_
_gﬁ//mm +<m> o M3, (x — )

|un<T (x)) — un (T, <y>>|2du<x>du<y>

min s Cn
dlSt(Tn (x), )

New (T (X) = Ty [t (T (%)) — 4 (T ()1 dpe(x)d p(y)

d+2
oén

'é«d.l,_z ggnxens{n (ui’l’ 7))

S ~d+2

O

In the next lemma we show that boundedness of non-local energies implies reg-
ularity at scales greater than e with weight yz. This allows us to relate non-local

bounds to local bounds after mollification using a mollifier J € CZ° (R4, [0, 00)),
with fpa J(x) dx =1, and J(x) = -7 (x/e).

Lemma 3.10 (nonlocal to weak local control) There exists a constant C > 1 and
a radially symmetric mollifier J with supp(J) < B(0, 1) such that for all ¢ > 0,
u € L*(Q), and any Q' CC Q (i.e. for every Q' that is compactly contained in )
with dist(Q', Q) > ¢ it holds that

5(u>ng,y~,SZ) CE 7 (u; ) (48)

where for both functionals we explicitly denote the dependence of the domain.

Proof Let J be a radially symmetric mollifier whose support is contained in B(0, 1).
There exists § > O such that J < Bn(|-]) and |[VJ| < Bn(] - |). Letu, = Jo *x u. For
arbitrary x € Q with dist(x, 92) > ¢ we have

[Vue (x)| = ‘/ Ve (x —2)u(z)dz
Q

Ve (x —2) (u(z) — u(x)) dz — / Ve (x —2)ulx)dz
Q RA\Q

< &fu 9’7 <|x;Z|) lu(z) —ulx)| dz
vJ (u)
&

where the second line follows from fRd VJ(w)dw = 0. For the second term we have

1 / v/ X —2z
41 Jravq s

lu(x)| dz.

lu(x)|dz =0
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since for all z € R4\ Q and x € Q with dist(x, 3Q) > ¢ it follows that |x — z| > ¢
and thus VJ (*3£) = 0. Therefore, for 6, = [pa n(|w|) dw,

1 2
|Vue (x)|* < B2 (/Q ;ns(lx —z) [u(z) —u(x)| dz)

92 2 _ 2
s (/ et 2D, (z)—u(x)|dz)
3 Oy

2
<68 /ns(l )@ 2u<x>| i

by Jensen’s inequality (since % fRd ne(lx — z|])dz = 1). Hence,

// Ve () vz (x) p* (x) dx

u(z) — u( )
< 0,87 f / ne(lx — ‘ ‘ y‘(x),o (x)dzdx
9')!? SUp,cq P (X) 58‘”(1/{; Q)
infyeq p(x) <
which completes the proof. O

We now show that controlling the local energy with cut-off near the singularity is
sufficient to be able to find a nearby (in H]}) function which has a similarly bounded
energy without a cut-off.

Lemma 3.11 (weak local to strong local control) ConsiderE > 1 such that ry defined
in (17) satisfies 17 < %min{|x —y| :x,yel,x #y} Letv = Iz Then there exists
a constant C > 0 such that for every u € H(Q) there exists v € H; () such that

1
= d liz e, 4
vlB@E7/2) [B(0,7/2) JB(z7/2) uGdr jorailz € “9)
v=u onQ\I'y (50)
E; y) < CEu, 7). (51

Proof Using the finiteness of I', from Lemma A.4 via translations and a rescaling
follows that there exists ¢ > 1, and v € H'(Q) satisfying (49) and (50) such that

IVo(x)2dx < c/ |Vu(x)|>dx.
I'r Ir
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Using that Vv = 0 on l"% and 1 + (rrf())a = E we obtain

E;y) = f Y@IVeEPp()dx + / Y @)IVu)Pp(dx

Iy Q\I'7

<[ (1 (2)) weorswar+ [ vumitowa
FAl; r o\T>
2

<2 / CIVu@)Pp(oda + /Q \Fi)fgIVu(X)lzp(X)dx

AT 7
2
<2% / ¢ IVu@)Ppx)dx + / VeI Vu ) px)dx
s O\I'y
< 2%/ VeI V() p (x)dx
Q

O

Lemma 3.12 There exists C > 0 such that for all0 < ¢ < r < 1, forallu €
HY'(B(0, r)) such that u < 0 on B(0, &)

2—d
224 s
][ u(x)dx < C f WVupax |67 V423 (52)
B(0,r) B(0,r)\B(0,) v—1Ine ifd =2.

Proof We only prove the claim for » = 1. The claim for general r follows by a simple
change of variables y = x /r. Furthermore we note that we can assume that u = 0 on
B(0, &), since for general u one can consider # = max{u, 0} and note that

/ udx < / nidx and / |Vit|2dx
B(0,1) B(0,1) B(0,1)\B(0,¢)
< f |Vu|?dx.
B(0,1)\B(0,¢)

Let v(x) = 5;|x|? and

—loglx|, ifd=2

O(x) = { 1 .
Td R ifd > 3.

Then A(v+®) = 1 forx # Oand 3* 4+ 22 = 00n 9 B(0, 1). Since u = 0 on B(0, )
we have

/ udx:/ uA(v+ ®)dx
B(0,1) B(0,1)\B(0,¢)

=—/ Vu-(Vv+ Vd)dx
B(0,1)\B(0,¢)
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1
/ Vu-x (—d — 1) dx
B(0,1)\B(0,¢) |x]

/ |Vullx|'= dx
B(0,1)\B(0,¢)

/ |Vu|?dx / |x]2=2d dx.
B(0,)\B(0,¢) B(0,1)\B(0,¢)

The proof is completed by integrating the last term on the line above. O

VA
S S N S N

N

3.3 Proof of Proposition 3.4

Proof To show the lim sup inequality recall that S, the set of smooth functions which
are constant in some neighborhood of T, is dense in H)} (2), by Corollary 2.5. The
fact that for every f € S, G€y 4,0, (f) — 0,E(f) follows by a standard argument,
which was for example presented for total variation in Sect. 5 of [20]. The existence
of a recovery sequence for arbitrary f € H}} (£2) follows by a density argument.

To show the lim inf inequality consider a sequence (i, u,) converging in 7 L?>
to (u,u). We can assume without a loss of generality that u,|r = g and that
liminf, o0 G€n ¢, (n) is finite. Since &, >> doo (i, n) 2 n~1/4 it follows that
{n — 00 as n — oo. By Lemma 3.5, discrete energy G, ¢, ¢, I'-converges to £.
Thus u € H) () and

liminf G&, ¢, ¢, (Un) = 0,E(u).
n—oo

What remains to be shown is that u|r = g. The fact that u|r is a well defined
object follows from Lemma 2.1. Let us assume that liminf, oo Gy ¢, ¢, (un) =
limy, 00 G€n s, (n). For the general case one needs to consider a subsequence,
which we omit for notational simplicity. We have that E,,.x = sup, GE, ¢,.¢, (Un) <
Q.

We first show that near points z € I, the values of u, remain, on average, close to
g(z). More precisely

1
Emar > GEn.eney () > 55— 3 Galle, (¥ = Dlutn () = g().

nxeX,

and thus

2
n

é__n.

1 ne
’_l Z né‘n(x = 2lun(x) — g(Z)|2 < 2Epax

xeX,
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Sincen > 1 on B(0, 1)

1 5 ned+2
D DR G EHO] < 2Enax =

n

XG-X};,|X—Z‘<8,,

Let T,, be a sequence of transport maps satisfying the conclusions of Theorem A.3 and
lets, = e, — 2|7, — 1d|| Lo ().
Then for a.e. x € B(z,%,), T,(x) € B(z, &,) and thus

5 nsff*z
/ [tn (T, (x)) — g(Z)l p(xX)dx < 2E;4x
B(z,5) n
Therefore
2
2 ney
][ lun (T, (x)) — g@)|"p(x)dx S <1 (53)
B(z,%y) Cn
by the assumption on ¢,. Consequently for all y € B (z, %”)
2 ”83,
][ ln (Ta() — g @Pdx < 222 1. (54)
B(Y.%,/2) n

By Lemma 3.9 we know that, for £, = min {g“n, ({—Oc)a (L)a/d} where C is the

Inn
constant from Theorem A.3

&, 7, n o Ty ) S GEn ey, (Un M) (55)

1/d
)

We note that since « > d — 2, and &, > (ln—" , En > 83_d if d > 2 and

n

i > —Ing, Letd, = 2. By definition of & 7
€6,7,(un 0 Tui W) &, 7, (un 0 T ) 0

Let J be a mollifier used in the proof of Lemma 3.10 and let i, = (u, o Tp,) * Jz,.
From (54) follows that for all y € B (z,&,)

2
ne;

En

i (y) — 8] S (57

for all z € I'. Combining the estimate of the lemma with (55) yields

E(Jn; Vg-'na Q;,) ,S ggn,an,{n (un; m)

where Q) = {y € Q : d(y,9R) > ¢,}. Finally by Lemma 3.11 there exist v, €
H)} (€2) such that forall z € T, v,(z) = 7[3(1 #/2) Uy (y)dy where 7 = rz, and
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“:(Uns Q;,) ,S ggn,a,,,g'n (un; m). (58)

From (57) follows that for some C independent of n, forallz € I',and all y € B(z, &),

ne

2
using that [ 7o) [Viia*dx < &€ vz, @), u(y) = g(2) — €+ < 0. Thus by
Lemma 3.12

2—d
2

£ ifd >3
V—Ing ifd =2.

- ne? ~_1)2
up(x)dx < g(z) + C— + Cig,
B(0,7/2) g

n

for some C1 independent of n. By the assumptions on ¢, and definition of E,, the right
hand side converges to zero an n — 00. Analogous lower bound is obtained following
the same argument. Therefore v, (z) — g(z) = f B07/2) iy (x)dx — g(z) converges to
ZEro as n —> 0.

We note that by construction dpj2((tn, un), (1, Uy)) — 0 and thus &, — u in
L2(g(2)). By construction ||v, — Uy, 22 < ||'zZn||Lz(1~7n), where 7, = 17 and for any
s >

Iy ={xeQ: dstx,I') <s}. 59)
. TL? .
Since (i, uy) —> (u, u) it follows that
f lun (T (x) — u()|?dp(x) — 0 asn — oo.
T, (T7,)
Since u € L*(w), lims—gsup { [, u>(x)dx : n(A) < 8} = 0. Therefore

Wn”LZ(F;,,) < 2/ 1 lun (T, (X)) — u())? + u?>(x)dpu(x) > 0 asn — oo.
-

n F,L)

Thus ||v, — ﬁ'n||Lz(Q;1) — 0 and n — oo and consequently v, — u in L?(w). From
(58) follows that v, is abounded sequence in H)} (K) for any compact subset K CC .

Combining this with the fact that v, — u in L2(,u) implies, via estimate (34) of the
Trace Theorem (Theorem 2.2), that v, (z) — Tru(z) asn — oo for all z € I'. Since
vyt — g asn — oo we conclude that Tru(z) = g(z) forallz € . O

4 Regularity of Minimizers of the Graph Properly-Weighted Laplacian
4.1 Holder Estimate Near Labeled Points

Our main result in this section is a type of Holder estimate near the labeled points, which
shows that solutions of the graph-based learning problem (15) attain their boundary

values on I' continuously, with high probability. The proof is a graph-based version
of the barrier argument from Theorem 2.10 that established continuity at labels in the
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continuum PDE, given in Eq. (40). Barrier arguments for proving Holder regularity of
solutions of PDEs are standard techniques for first order equations, such as Hamilton—
Jacobi equations [4]. Normally, barrier arguments do not work for second order elliptic
equations (since fundamental solutions are unbounded), though there are a handful
of exceptions, such as the p-Laplace equation for p > d [10], level set equations for
affine curvature motion [12], and our continuum equation (22).

Our proof uses the barrier v(x) = C|x — y|#, which is a supersolution of the
continuum PDE (22) for 0 < 8 < « 4+ 2 — d, due to Proposition 2.9. For 8 < 2, the
barrier has a singularity at x = y, which has to be treated carefully in the translation
to the graph setting. We show in Lemma 4.6 that v is a supersolution on the graph with
high probability away from a small ball B(y, Ce). Due to the singularity in the barrier,
we cannot prove the supersolution property within the ball B(y, Ce). To fill in the gap
within this ball, we require a local regularity result, given in Lemma 4.8, that relies
on the variational structure of the problem. At a high level, the proof is similar to the
proof of Holder regularity of solutions to the graph-based game theoretic p-Laplace
equation, given in [10], though many of the ingredients are different. In particular,
in [10] there is no variational interpretation of the problem, and the local argument
utilizes another barrier construction.

We now proceed to present the main results in this section. Throughout we always
assume ne? > 1. Our main result is the following Holder-type estimate.

Theorem 4.1 (Holder estimate) Let « > d — 2, and assume y satisfies (11) and
p € CY2(Q) is bounded above and below by positive constants. Let 0 < & < 1,
214+ % 0<B<a+2—d andletu € L?(X,) be the solution of (15). Then
for each z € T the event that

lu(x;) —u(z)] < Clx; — z|P + Ccn'/2e!*e/? (60)

holds for all x; € X, occurs with probability at least 1 — C exp (—cn8d+4 + log(n)).

The proof of Theorem 4.1, given at the end of the section, relies on some preliminary
results that we establish after a few remarks.

Remark 4.2 For the result in Theorem 4.1 to be useful, we must choose g, — 0 so
that ned** > log(n) and ne®+? « 1. Therefore, we must have @ > d + 2 and

(log(n)>1/(d+4) e « (1>1/<a+2) o
— n :
n

n

Remark 4.3 If wereplace y; with y¢ c, as defined in Remark 1.3, then we can improve
Theorem 4.1 to read

lu(x;)) —u(@)] < Clx; — z|f + C¢7 2!/, (62)

under the same assumptions and with the same probability, except we also require
¢ > 14 Ce™*. In this model, the restrictive upper bound in (61) is not required.
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We now turn to the proof of Theorem 4.1. We first recall a useful lemma from [10].

Lemma 4.4 (Remark 7 from[10]) Let Y1, Y, Y3, ..., Y, be asequence of i.i.d random
variables on R¢ with Lebesgue density p : R — R, let  : R? — R be bounded
and Borel measurable with compact support in a ball B(x, h) for some h > 0, and

define

n
Y=y
i=1
Then forany 0 < A < 1
d dy2
P(IY = EO)| > ClYlepamnh?h) < 2exp(—enhS,  (63)

forall 0 < A < 1, where C, ¢ > 0 are constants depending only on || ol Lo (B(x,h))
and d.

We can use Lemma 4.4 to prove pointwise consistency for our properly-weighted
graph Laplacian. It extends, in a refined form, the results of [10][Theorem 5]. It is
related to well known results on the pointwise consistency of the graph Laplacian
[40].

For simplicity we set

Apg = p~ div (v0?Vg). (64)
Theorem 4.5 For § > 0, let D, . s be the event that

L0000 (x0) = 30, 8,00(x0)| < C (681 + 2B M~

+epoM @) 58 M ) (65)

holds for all x; with 2e < dist(x;,T") < R/4 and all ¢ € C*(B(x;,2¢)), where
Bk = 9l ck By, 26)) and M = dist(x;, T') — 2¢. Then for e < § < 1 we have

P(Dyes) > 1 — Cexp (—082n8d+2 n 10g(n)> (66)

Proof Let us write GL in place of GL, . o for simplicity. We also define

1

w(x,y) = W(V(X) +y()ne(x —y).

Then

GLu(x) = Y wix, P u(y) — u).

yex,
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By conditioning on the location of x € X, we can assume without loss of generality
that x € Q is a fixed (non-random) point, B(x, 2¢) C Q and dist(x, ') > 2¢. Let
¢ € C3(B(x,2¢)), p= Dg(x) and A = D?>¢(x). Note that

d d
1
GLp(x) = Zpi > wlx Y —x)+3 Z aij Y w(x, y) (i —x)(yj—x;)
i=1 yeX, i,j=1 YEXn
+0 (53,33deg(x)> , (67)

where deg(x) is the degree given by

deg(x) = ) wix, ).

yeX,

Since dist(y, I') > dist(x, I') — 2¢ we have

c ! !
< : -
w(x, y) 2ngd+2 (dlst(x, )« " dist(y, F)a>

< - < )
ned+2(dist(x, I') — 2¢)¢

By Lemma 4.4

deg(x) — n / wx, Y)p(y) dy‘ < Ce72(dist(x, T) — 26) 7%,
B(x,2¢)

holds with probability at least 1 — 2 exp (—cne?). This implies
deg(x) < Ce2(dist(x, ") — 2¢) ™.

By another application of Lemma 4.4, both

> w0 —x = [ w0 x0p) dy

yeX, B(x,2¢)

> C8(dist(x, ') — 2¢) 7%,

and

> w y) i —xi)(yj — x)) —n/ wx, )i —x)(yj —xj)p(y)dy

yeX, B(x,2¢)

> Cée(dist(x, ) — 2¢)77,
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occur with probability at most 2 exp (—c82n£d+2) provided 0 < de < 1. Thus, if
e <8 < e ! wehave

1 1 1
GLp(x) = = / (y(x) +yx +ze)px + ze)n(lz]) <—p 2+ 5z AZ) dz
2 B(0.,2) & 2
+ O (8B3(dist(x, ") —2¢)™%) (68)
holds for all ¢ € C3(R?) with probability at least 1 — C exp (—c8%ne?+2) . Note that
1 1
E(V(XH-V(X +ze))p(x+tze) = y(x)p(x)+y(x)Vo(x) ~ze+§p(X)Vy(X) - z€
+ 0E Y lc2(px 26y + € 1V Lot Bx 261))-

We now have
1 1
y@p@n(zD | -p-z+zz-Az) dz
B(0,2) £ 2

d
1
=-y(x)pXx) a'-/ n(|z])zizj dz
ZV Z ij 502 iZj

ij=1
! d
— 3 2
- 2y<x>p<x>;au /B IRCET
Oy
= TV(X),O(X)Trace(A),
1 1
/ y(@) (Vo) - ze)n(lz]) (—p 24+ =z- Az) dz
B(0,2) £ 2

=y@)Vo(x) - f n(1zD(p - 2)zdz + O(efp dist(x, I)™%)
B(0,2)
d
=y@) Vo) - ZP:’ / n(lzDzizdz + O(efa dist(x, T)™%)
P B(0,2)
=0,y (X)Vp(x) - p+ O(efadist(x, )™%),

and

1 1 1
—/ p)(Vy(x) - ze)n(|zl) (—p 2+ zz- Az) dz
2 JB0.,2) € 2

[oF
= FPEOVY ) - p+ OEhAY et ser2en)-
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Assembling these together with (68) we have that
9y

2p(x)

+ &2 Bally lc2pis 26y + B3t (x, T) — 26) ™)

GLy(x) =

div (702V9) + O (BillY lc2(pis 269 + 8217 (51,20

holds for all ¢ € C3(B(x, 2¢)) with probability at least I — C exp (—c8*ne?*?) . The
proof is completed by computing

17 llck(Ber.aey < C(dist(x, ) —28)7* 7%,

and applying a union bound over xi, ..., X,. O

We now establish that the function |x|? for 0 < 8 < « + 2 — d serves as a barrier
(e.g., is a supersolution) on the graph with high probability.

Lemma 4.6 (Barrierlemma) Leto > d —2 and fixany0) < f <a+2—d. Fory e T
define ¢(x) = |x — y|P. Then the event that

GLne.cop(xi) < —clx; — y| 7@ TP (69)

for all x; with Ce < |x; — y| < ¢ occurs with probability at least 1 —
C exp (—cne?** + log(n)).

Proof Let us write GL in place of GL, ¢~ for simplicity. We use Theorem 4.5 and
Proposition 2.9. Note in Theorem 4.5 that if we restrict 3 < ¢|x; — y| < R/4 then

M =dist(x;, ') — 2 = |x; —y| —2& > %Ixi -yl
Also, for B = [@llck(p(x, 2¢)) We compute
B < CBlxi — yIP .
Hence, setting § = ¢ in Theorem 4.5 we obtain that
GLp(xi) — Joy 80 (x)| < Celxi — yP* P +elxi —yI™h  (70)
holds for all x; with 3¢ < |x; — y| < r with probability at least
1 —Cexp (—cn8d+4 + log(n)) .

For the rest of the proof we restrict to the event that (70) holds.
Note that since § —«a — 3 < 0 and |x; — y| > 3e, it follows from (70) that

GL(xi) < 307 A,0(x;) + Celx; — y|f 7. (71)
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Combining this with Proposition 2.9 we have

GLp(x;) < —clxi — P72 + Celx; — y|f™ 73
= —clx; — P21 = Celx; — yI7h,

provided 3¢ < |x; — y| < c. The proof is completed by restricting |x; — y| = 2Cs.
|

The barrier lemma (Lemma 4.6) establishes the barrier property away from the local
neighborhood B (x, C¢). The singularity in the barrier (for « < d) and the singularity
in y prevent us from pushing the barrier lemma inside this local neighborhood. Hence,
the barrier can only be used to establish the following macroscopic continuity result.

Proposition 4.7 (Macroscopic Holder estimate) Ler u € L2(X,) be the solution of
(15), letax >d — 2, and fixany0 < B <a + 2 —d. For each y € T the event that

ux) —u() <Clxi—yP+  sup (@) —u(y) (72)
xeXyNB(y,86,¢)

holds for all x; € X, occurs with probability at least 1 — C exp (—cn8d+4 + log(n)),
where 8¢ = max{Ce, r; + 2¢}.

Proof We note the graph is connected with probability at least 1 — C exp(—cne? +
log(n)). The proof uses the barrier function

¢(x)= sup u+Kx—ylf (73)
B(y~5s,{)

constructed in Lemma 4.6 for a sufficiently large K, and the maximum principle on a
connected graph. By Lemma 4.6 we have

GLuecp(xi) < —cK|xi — y| =27 (74)
for all x; with 8, ; < |x; — y| < c. By the maximum principle we have

mFing <u gmlgxg.

Therefore, we can choose K large enough so that ¢(x;) > u(x;) for |x; — y| > c.
We trivially have u(x;) < ¢(x;) for [x; — y| < 8¢ ¢. Since GL, ¢ (u — ¢) < 0 for
de.¢ < |x; — y| < ¢, the maximum principle on a graph yields u < ¢ on &, which
completes the proof. O

We now establish a local regularity result that allows us to fill in the gap within
the ball B(x, Ce). The local result depends only on the variational structure of the
problem, and does not use a barrier argument.
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Proposition 4.8 (Local Holder estimate) Let u € L*(X,). For each z € T the event
that

Cne?

_ 2<
lu(x) —u(y)l = min{ye (x), e ()}

GEne,c (u), (75)

holds for all x,y € X, N B(z,r) with |x — y| < & occurs with probability at least
1 — Cexp (—cne? + log(n)).

Proof Let z € T, and fix r > 0. Partition the cube K := ]—[;1:1 [zi —r,zi +r]into
hypercubes K1, ..., K, of side length & > 0, where m = (2r/h)d. Let Z; denote the
number of random variables falling in cube K;. By Lemma 4.4 we have

P(Z; < E[Zi] — Cnh®i) < exp (—cnhd,\z) (76)
forany 0 < A < 1. Since E[Z;] = nh? we have

]P( min Z; < %nhd> <mexp (—enh?). (77)
1<i<m

Letx,y € X, N B(z,r)suchthat [x —y| < e, andletx = (x + y)/2 € B(z,r). Let

K; denote the cube to which X belongs. Then for all w € K; we have |[x —w| < Jdh.
Therefore, if /dh < & /2 then

£
Ix—wl<|x—fl+|f—w|<§+ﬂh<e,
and |y — w| < ¢ for all w € K;. It follows that
K; C B(x,e) N B(y,¢).

For the remainder of the proof, we seth = ¢/ (2«/3 ) and restrict ourselves to the event
that

min Z; > cne? (78)
1<i<m

Let
K=X,NB(x,e)NB(y,e).

Note that for any z € K we have

1
minflu(x) — u(2)], u(y) —u()|} = EIM(X) —u(y)l.
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Now we have

ggn,s,;(u)
1
= 262 Z (Ve () + ve (Mne(x — Wulx) — u(y)|?
x,yeX,
1
> 57 | 2o Ve @ne =@ —u@ P4y (e =9l —u @)1’
zeX,
i . K
. cmm{)/;n(;;di/zg M ||u(x) uP.

Since K; N &, C K, we have |K| > cnsd, and hence

Cne?

—u(y)F <
Jue(x) MWl\memuxnom

GEn e, (u), (79)

which completes the proof. O

We are now equipped to give the proof of Theorem 4.1.

Proof of Theorem 4.1 The proof combines the macroscopic Holder estimate (Proposi-
tion 4.7), and the local Holder estimate (Proposition 4.8), and is split into two steps.

1. We note that

ro

T S

Ce, (80)

as ¢ > 1+ e7*. By (80) and Theorem 4.7, the event that

lu(x) —u@@)| < Clx —z|P + sup lu(x) —u(y)l, (81)
xeX,NB(z,Cs)

holds for all x € A}, occurs with probability at least 1 — C exp(—cns‘“r4 +log(n)).
2. We note that with probability at least 1 — Cexp (—cned + log(n)) we have
GEpe,r (u) < C for a constant C. Therefore, by Proposition 4.8 we have that

C 2
() — u(y) < ——o (82)
miNgz,Ce) V¢

holds for all x,y € X, N B(z, Ce) with |x — y| < & with probability at least
1 — Cexp (—cnsd + log(n)). As in the proof of Proposition 4.8, we partition
the cube K := ]_[;1:1[1,' — Ce¢, z; + Ce] into hypercubes of side length & <
e, and find that all cubes have at least one point from &, with probability at
least 1 — C exp(—cne? 4 log(n)). Thus, by traversing neighboring cubes, we can
construct a path from z € I' to any x € B(z, C¢) consisting of at most a constant

@ Springer



Applied Mathematics & Optimization

number of points from &, N B(z, Ce¢), with each step in the path smaller than ¢.
Applying (82) along the path yields

Cne?
u(x) —u@P € ————
min{(Ce)~*, ¢}

for all x € X, N B(z, Ce) with probability at least 1 — C exp (—cne? + log(n)).
Since ¢ > ¢ we deduce

sup  Ju(x) — u(z)]* < Cne®™,
xeX,NB(z,Ce)

which completes the proof.

5 Numerical Experiments

We present the results of several numerical experiments illustrating the properly-
weighted Laplacian and comparing it with the nonlocal [38] and standard graph
Laplacian on real and synthetic data. All experiments were performed in Matlab
and use Matlab backslash to solve the graph Laplacian system. We mention there
are indirect solvers that may be faster in certain applications, such as preconditioned
conjugate gradient [25], algebraic multigrid [8,25,36], or more recent fast Laplacian
solvers [29,42]. Thus, the CPU times reported below have the potential to be improved
substantially.

5.1 Comparison of the Profiles Obtained

First, we perform an experiment with two labels on the box [0, l]d to illustrate our
method and the differences with the nonlocal graph Laplacian [38]. The graph is a
sequence of n i.i.d. random variables uniformly distributed on the unit box [0, 1]¢
in R, and two labels are given g(0,0.5,...,0.5) = 0 and g(1,0.5,...,0.5) = 1.
We set ¢ = 2/n'/? and ry = 1. The weights follow a Gaussian distribution with
o = ¢/2. In Fig. 2 we show plots of the triangulated surface representing the learned
function u on the graph for various values of « and ¢. Here, n = 10° and d = 2,
and each simulation took approximately 1.5 s of CPU time. We notice that as « is
increased, the learned functions are smoother in a vicinity of each label. The case of
a = 0 corresponds to the standard graph Laplacian, and returns an approximately
constant label # = 0.5, which illustrates the degeneracy of the standard Laplacian
with few labels. We note that as « is increased, we must increase ¢ as well (recall
(12)), otherwise the ball B(x, r;) on which y is truncated to value ¢ becomes very
large, and the method reduces to the standard graph Laplacian. This simply illustrates
that the implicit rate in the condition ¢ > ne? in Theorem 3.1 depends on a.
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In Fig. 3, we use the same model, but with n = 2 x 10° points in dimension
d=3,and set{ = 50ne2. For visualization, we show the learned function restricted
to a neighborhood of the slice x3 = 0.5. Figure 3b illustrates the degeneracy of
the nonlocal graph Laplacian [38], which returns a nearly constant label function. In
contrast, our method, show in Fig. 3c, smoothly interpolates between the two labels.
Each simulation in Fig. 3 took approximately 25 s to compute.

5.2 Comparison of Decision Boundaries in 2D

We now give a synthetic classification example. The graph consists of n = 10° i.i.d
uniform random variables on [0, 1]2, and the weights are chosen to be Gaussian with
o = ¢/2. We chose ¢« = 5, ¢ = 10012, ro = 1, and ¢ = 3/4/n. Two labels,
g(0,0) = 0 and g(1,1) = 1 are provided. Figure 4 shows the decision boundaries
(i.e., the level-set {u = 0.5}) over 25 trials for the standard graph Laplacian, the
nonlocal Laplacian, and our method. Each trial took roughly 1.5 s to compute. We
see that the nonlocal and standard Laplacian are highly sensitive to small variations in
the graph, giving a wide variety of results over the 25 trials. This is a reflection of the
degeneracy, or ill-posedness, in the small label regime, and suggests the methods are
very sensitive to perturbations in the data. In contrast, our method very consistently
divides the square along the diagonal.

5.3 Comparison of Classes Obtained in 3D

We consider samples of the measure supported on domain is [0, 1]°> and with den-
sity 1 except for the strip [0.45, 0.55] x [0, 1] x [0, 1] where the density is 0.6. We
considered 20 runs with n = 50, 000 points in the domain. The given labeled points
are g(0,0.2,0.2) = 0 and g(1,0.2,0.2) = 1. Due to the symmetry, the correct deci-
sion boundary is the plane x; = 0.5. We used a connectivity distance for the graph

constructionof ¢ = 3/n 3 , which yielded a typical vertex degree of about 116. We con-
sider Gaussian weights with o = ¢/2. We chose ¢ = 5, ¢ = 10%n¢2, ro = 1 for our
method. A typical result for one run is illustrated in Fig. 5. The standard graph Lapla-
cian produced very unstable results with the average of 49.8% misclassified points.
The nonlocal Laplacian of [38] was also rather unstable with sometimes almost perfect
decision boundary and sometimes large sections of misclassified points. On average it
misclassified 11% of points. Our method was stable and in all experiments identified
the correct boundary, with average classification error of 0.25%. We observed similar
outcomes for a variety of sets of parameters.

5.4 Comparison on the MNIST Dataset

Our last experiment considers classification of handwritten digits from the MNIST
dataset, which consists of 70,000 grayscale 28 x 28 pixel images of handwritten dig-
its 0-9 [30]. Figure 6 shows examples of some of the images in the MNIST dataset.
MNIST is estimated to have intrinsic dimension between d = 12 and d = 14 [14,28],
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Fig.6 Example of some of the handwritten digits from the MNIST dataset [30]

Table 1 Accuracy for classification of MNIST handwritten digits with 10, 30, 50, 70 and 100 labels via the
standard graph Laplacian, the nonlocal weighted Laplacian [38], and our properly-weighted Laplacian

# Labels 10 30 50 70 100

Method Mean (%) Std Mean (%) Std Mean (%) Std Mean (%) Std Mean (%) Std
Graph laplacian 14.2 63 243 119 53 109 68 6.4 76.1 7.6
Weighted lap. [38] 67.9 8.7 84.8 277 88.8 1.1 89.6 1.3 909 1.1
PW-laplacian 68 8.6 849 27 88.8 1.1  89.6 1.3 909 1.1

The results are averaged over 10 trials, and the mean and standard deviation of accuracy are reported

which suggests a larger value for « is appropriate. We used all 70, 000 MNIST images
to construct the graph. Our construction is the same as in [38]; we connect each data
point to its nearest 50 neighbors (in Euclidean distance), and assign Gaussian weights
taking o to be the distance to the 20th nearest neighbor. We symmetrize the graph by
replacing the weight matrix W with %(WT + W), which is done automatically by the
variational formulation (recall (19)). We then take L randomly chosen images from
each class (digit) as labels, where L = 1, 3, 5,7, 10, and provide the true labels for
these digits. The semi-supervised learning algorithm performs 10 binary classifica-
tions, for each digit versus the rest, which generates functions u® ul,u?, ., u® on
the graph. The label for each image x in the dataset is chosen as the index i for which
u' (x) is maximal. The algorithm is standard in semi-supervised learning, and identical
to the one used in [38].

For each value of L € {1, 3,5,7, 10}, we ran the experiment described above
10 times, choosing the labels randomly (in the same way for each algorithm) every
time. Each of the 500 trials took approximately 15 min to compute in Matlab. The
mean and standard deviation of accuracy are shown in Table 1. Our method performs
very similarly to the nonlocal Laplacian [38], and both significantly outperform the
standard graph Laplacian. We ran our method for « = 2,5, 10, producing nearly
identical results in all cases. We used ¢ = 107 and ro = 0.1. We found the results
for our method were largely insensitive to many of the parameters in our algorithm;
the accuracy begins to decrease when o < 1 and when rop > 1. We note that the
accuracy scores reported in Table 1 are much higher than those reported in [38]; we
believe this is because the authors in [38] subsampled MNIST to 16,000 images. This
observation speaks favorably to the semi-supervised paradigm that learning can be
improved by access to additional unlabeled data. We note that the accuracy scores
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for our method and the nonlocal weighted Laplacian [38] are identical (to one signif-
icant digit) for 30, 50, 70, and 100 labels. Most data points in MNIST are relatively
far from their nearest neighbors, and so our nonlocal weights have less effect, com-
pared to the low dimensional examples presented above. For this reason, the weight
matrix for our method is very similar to the nonlocal Laplacian [38]. We expect to
see more of a difference in applications to larger datasets. For example, it would be
interesting (and challenging) to apply these techniques to a dataset like ImageNet
[16], which consists of over 14 million natural images belonging to over 20,000
categories.
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Appendix A: Background Material

Here we recall some of the notions our work depends on and establish an auxiliary
technical result.

A.1 '-Convergence

I'-convergence was introduced by De Giorgi in 1970s to study limits of variational
problems. We refer to [7,15] for comprehensive introduction to I'-convergence. We
now recall the notion of I"-convergence is in a random setting.

Definition A.1 (I"-convergence) Let (Z, d) be a metric space, LY%Z; R U {£o0}) be
the set of measurable functions from Z to R U {*oc}, and (X, IP) be a probability
space. The function X’ > w — S,Ew) e L%(Z; RU{=+o0}) is a random variable. We say
5,5‘”) I"-converge almost surely on the domain Z to £, : Z — RU {£o00} with respect
to d, and write s = 0- limy_ 00 £\, if there exists a set X' C X with P(X") = 1,
such that for all w € X’ and all f € Z:

(i) (liminf inequality) for every sequence {u,},=1,... in Z converging to f

Eoo(f) < liminf £“)(u,), and
n—oo

(i1) (recovery sequence) there exists a sequence {un}n=12, . in Z converging to f
such that

Eoo(f) = limsup £ (uy).

n—o0

For simplicity we suppress the dependence of w in writing our functionals. The
almost sure nature of the convergence in our claims in ensured by considering the set
of realizations of {x;};=1,... such that the conclusions of Theorem A.3 hold (which
they do almost surely).
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An important result concerning I"-convergence is that any subsequential limit of
the sequence of minimizers of &, is a minimizer of the limiting functional €. So to
show that the minimizers of &£, converge at least along a subsequence to a minimizer
of Eit suffices to establish the precompactness of the set of minimizers. We make
this precise in the theorem below. Its proof can be found in [7, Theorem 1.21] or [15,
Theorem 7.23].

Theorem A.2 (Convergence of Minimizers) Let (Z,d) be a metric space and &, :
Z — [0, 0o] be a sequence of functionals. Let u,, be a minimizing sequence for &,. If
the set {up}n=1.2,... is precompact and Eo, = 0-lim, &, where Eo, : Z — [0, 00] is
not identically oo then

min £5 = lim inf &,.
VA n—o0o 7
Furthermore any cluster point of {un}n=1,2,... is a minimizer of E .

The theorem is also true if we replace minimizers with approximate minimizers.

We note that I"-convergence is defined for functionals on a common metric space.
Section A.3 overviews the metric space we use to analyze the asymptotics of our
semi-supervised learning models, in particular it allows us to go from discrete to
continuum.

A.2 Optimal Transportation and Approximation of Measures

Here we recall the notion of optimal transportation between measures and the metric
it introduces. Comprehensive treatment of the topic can be found in books of Villani
[45] and Santambrogio [37].

Given a bounded, open set @ C R, and probability measures  and v in P(2) we
define the set IT(u, v) of transportation plans, or couplings, between p and v to be the
set of probability measures on the product space 7 € P(Q x ) whose first marginal
is u and second marginal is v. We then define the p-optimal transportation distance
(a.k.a. p-Wasserstein distance) by

>
inf X — Pdn-x7 1f1< - 0
dp(ﬂa V) = { well(u,v) (~/5le | vl ( y)) p

inf  7-esssu X — if p = o0.
7 () p(x,y) | y| P

If 1 is absolutely continuous with respect to the Lebesgue measure on €2, then the
distance can be rewritten using transportation maps, 7 : Q2 — €2, instead of trans-
portation plans,

1
P
inf x =TI du(x ifl<p<oo
dp(/'L» V): Typu=v (/;2' ()| M( )) p

inf p-esssup, [x — T (x)| if p = oo.
Ty pu=v
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where Ty = v means that the push forward of the measure ¢ by T is the measure v,
namely that 7 is Borel measurable and such that for all U C Q, open, /,L(T’1 ) =
v(U).

When p < oo the metric d;, metrizes the weak™ convergence of measures.

Optimal transportation plays an important role in comparing the discrete and con-
tinuum objects we study. In particular, we use sharp estimates on the oco-optimal
transportation distance between a measure and the empirical measure of its sample. In
the form below, for d > 2, they were established in [19], which extended the related
results in [1,31,39,43].

Theorem A.3 Ford > 2, let @ C RY be open, connected and bounded with Lipschitz
boundary. Let |1 be a probability measure on Q2 with density (with respect to Lebesgue)
p whichis bounded above and below by positive constants. Let x1, X2, . . . be a sequence
of independent random variables with distribution w and let , be the empirical
measure. Then, there exists constants C > ¢ > 0 such that almost surely there exists
a sequence of transportation maps {T,}°2 | from [ to w, with the property

T, — Id||z T, — Id|| 1
¢ < liminf T, | Lo () < lim sup | T | Lo () <cC

n—00 o n— 00 Ly

where

(83)

=
=
=

=
ay—

ifd > 3.

N
A

A.3 The TLP Space

The discrete functionals we consider (e.8. &, ¢, ¢, ) are defined for functions u,, : A, —
R, while the limit functional £ acts on functions f : 2 — R, where 2 is an open
set. We can view u,, as elements of L”(u,) where u,, is the empirical measure of the
sample u, = % Yo' 8. Likewise f € LP(u) where w is the measure with density
p from which the data points are sampled. In order to compare f and u,, in a way that
is consistent with the L? topology we use the T'L? space that was introduced in [20],
where it was used to study the continuum limit of the graph total variation. Subsequent
development of the 7'L” space has been carried out in [21,44].

To compare the functions u,, and f above we need to take into account their domains,
or more precisely to account for i and . For that purpose the space of configurations
is defined to be

TLP(Q) = {(u. f) - n € P@). f € LP(w)}.

The metric on the space is

dry . ((u, ). (v, 8)
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= inf{/;z o x = yI7 +1f(x) —gWIPdr(x,y) : m e I, v)}

where IT(u, v) the set of transportation plans defined in Sect. A.2. We note that the
minimizing 7 exists and that T L? space is a metric space, [20].

As shown in [20], when p is absolutely continuous with respect to the Lebesgue
measure on 2, then the distance can be rewritten using transportation maps 7', instead
of transportation plans,

dly((u, ), (v, 8))

= inf {/Q x = TP+ 1f(x) = g(T NP dpu(x) : Ty = V}

where the push forward of the measure Ty is defined in Sect. A.2. This formula
provides an interpretation of the distance in our setting. Namely, to compare functions
u, : X, — R we define a mapping 7, : 2 — A&, and compare the functions
fn = u, o T, and f in L?(u), while also accounting for the transport, namely the
[x — T, (x)|? term.

We remark that the 7 L? () space is not complete, and that its completion was
discussed in [20]. In the setting of this paper, since the corresponding measure is clear
from context, we often say that u,, converges in TL? to f as a short way to say that
(tn, uy) converges in TLP to (u, f).

A.4 Local Estimates for Weighted Laplacian

Lemma A.4 There exists C > 0 such that for each u € HY(B(0, 1)) there exists
v e H'(B(0, 1)) such that

u(x)dx

Vg =

B Ol bl /B =
Ll()B(O,l) ”|8B((),l)

IVullp20,1)) < ClIVull 20,1y

where the value on the boundary is considered in sense of the L>*(3 B(0, 1)) trace.
Proof Let

o
u=—— u(x)dx.
|B(0, DI JB©.1)

Let ¢ € C*°([0, 1], [0, 1]) be such that ¢ (r) = 1 for all r € [0, %] and ¢ (1) = 0. Let
M = max,¢0,1] |¢'(r)]. Let

v(x) = @ (IxDu + (1 — o (Ixux).
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By Poincaré inequality stated in Theorem 13.27 of [32] there exists C1 > 0, indepen-
dent of u,

/ lu(x) — @>dx < le [Vu(x)|*dx.
B(O.1) B(,1)

Using the Poincaré inequality we obtain, for C =2 + 2MC(Cy,

/ |Vv|?dx gz/ IVul® + M|u — u|*dx gc/ |Vu|dx.
B(0,1) B(0,1) B(0,1)
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