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ABSTRACT

Conventional schemes for service provision-
ing in next-generation elastic optical networks
(EOMs) rely on rule-based policies that suffer from
scalability issues and can lead to poor resource
utilization efficiency due to the lack of knowl-
edge about the essential characteristics of EONs
le.g., traffic profiles, physical-layer impairments).
This article discusses the application of emerging
deep reinforcement learning (DEL) techniques
in EONSs for enabling an autonomic (self-driving)
and cognitive networking framework. This new
framework achieves self-learning-based service
provisioning capabilities by employing DREL agents
to learn policies from dynamic network opera-
tions. Such capabilities can remarkably reduce the
amount of human effort invested in developing
effective service provisioning policies for emerg-
ing applications, and thus, can facilitate fast net-
work evolutions. Based on the framework, we
first present DeepRMSA, a DRL-based routing,
modulation, and spectrum assignment (KRM3A)
agent for EONs. Then, as today’s networks are
often composed of multiple autonomous systems,
we extend the autonomic networking framework
to multi-domain EQONs by applying multi-agent
DRL (where multiple autonomous DRL agents
learn through jointly interacting with their environ-
ments). Comparisons of the results from numeri-
cal simulations show significant advantages of the
proposed framework over the existing rule-based
heuristic designs.

INTRODUCTION

Elastic optical networking (EON) has emerged as
one of the most appealing solutions for meeting
the challenges of the next-generation networks
[1]. By virtue of its flexible spectrum allocation
mechanisms, EON is able to support not only the
everincreasing volume of Internet traffic but also
user-customized dynamic service provisioning at
the optical layer [2]. To fully exploit the benefit of
EOM, effective network control and management
(NC&M) is necessary. While snfhvar&afefined
networking (50N} has enabled a centralized and
programmable NC&M paradigm for elastic opti-
cal networks (EONs) [3], existing works mosthy
make use of hard-coded rule-based policy designs
for service provisioning in EONs. These designs
are usually built on domain-specific knowledge,
such as the data plane operation principle and
mathematical optimization theories, which entails

significant efforts of networking experts and oper-
ators. More importantly, as network conditions
leg, topalﬂﬁ'y, traffic profile) may change, these
designs might need to be revisited periodically,
causing scalability issues and thus hindering the
fast evolution of the networks,

The past few years have witnessed dramat-
ic advances in machine learning (ML) since the
breakthroughs in deep learning algorithms. ML
allows learning complex system functions from big
data while obviating the need for domain-specific
knowledge. The application of ML in optical net-
working has attracted intensive research interest
[4-6]. In [4], the authors proposed an ML-aided
fault management system for detecting soft failure
patterns in optical networks. We introduced ML
to the NC&M of multtdomain optical networks in
[5] and therein demonstrated a cognitive (tenden-
cy-aware)} inter-domain traffic engineering design
enabled by a deep neural network (DNN)-based
traffic estimator. An ML approach for modeling
the quality of transmission of optical connections
was also developed. The authors of [6] studied
the problem of ML as a service in inter-data-cen-
ter optical networks, where tenants manage their
virtual network slices with the assistance of com-
mercial ML models trained by third-party entities,
and discussed the related vulnerability issues in
such scenarios. All of the above existing works
adopt supervised ML techniques, which require
large volumes of data for training. In addition to
the fact that such data are difficult to obtain, these
works still rely on artificially defined policies that
utilize the ML models.

Deep reinforcement leaming (DEL) has recent-
by shown compelling potential of learning success-
ful policies for large-scale online control problems
[7]. In contrast to supervised or unsupervised ML
approaches demanding large amounts of data,
DRL parameterizes policies with DMNMs (analo-
gous to human brains, which can sense complex
system states directly from high-dimensional data,
e.g., images and traffic matrices) and progressively
approximates the optimal policies by training the
DMMs with experiences from online operations.
Thus, DRL enables selflearning capabilities that
allow learning agents to learn and to adapt to sys-
tems autonomically without human intervention.
Such selflearning is especially crucial for intelli-
gent network and service management. Previous
works have reported a few applications of DRL in
the areas of communication and nelwcrrking [&,
9]. The authors of [B] proposed a DRL algorithm
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that enables experience-driven traffic engineering
by jointly learning a network environment and its
dynamics. In [9], the authors presented a DRL-
based data center network management frame-
work and demonstrated a DRL agent that can
learn the optimal topology configurations regard-
ing different applications. Mevertheless, the appli-
cation of DREL in EONs remains underexploited.

In this article, we leverage DEL to propose
an autonomic networking framework for EONs.
We first elaborate on the network architecture,
maodular NC&M system design, and the operation
principle of the proposed framework. Based on
the framework, we present DeepRMSA, a DRL-
based routing, modulation, and spectrum assign-
ment (RM5A) agent for EONs. We demonstrate
the effectiveness of DeepRMS5A through numer-
ical simulations. Mext, we extend the autonomic
networking framework to a multi-domain EON
scenario by applying multiagent DEL (MADRL).
Finally, we summarize the article.

DRL-BASED

AUTONOMIC NETWORKING FRAMEWORK

Figure 1 shows the block diagram of the proposed
DRL-based autonomic networking framework. The
framewaork is built on the basis of the SDN archi-
tecture, with decoupled data and NC&M planes.
The data plane adopts EON technologies to pro-
vision dynamic and flex-grid (e.g., at a granularity
of 6.25 GHz) optical connections for dlients from
metro networks, data centers, and research facil-
ities. Optical performance monitoring function-
alities (e.g., monitoring of optical signakto-noise
ratio) are also employed for sensing the states of
data plane operations. The NC&M plane employs
a remote and centralized SDN controller for ser-
vice provisioning management. The 50N controk
ler utilizes advanced network modeling languages
and 5DN protocols to communicate with SDMN
agents (locally attached to data plane equipment)
for collecting service requests, distributing ser-
vice schemes, and inquiring device conditions and
monitoring data on demand.

We design the service provisioning mecha-
nism based on the principle of DRL. Specifical-
ly, upon an event (e.g., reception of a service
request) that triggers a specific DRL application
(e.g., DRL-based RMS3A or failure restoration), the
S5DN controller makes the feature engineering
module generate an EON state representation for
the corresponding DEL agent. The feature engi-
neering module retrieves various network state
data (e.g., pending requests, inservice connec-
tions, and resource utilization) from the traffic
engineering database and tailors the data to meet
the demand of the DEL agent. The DMNs of the
DRL agent take as input the state data and output
a service provisioning policy to the 5DN control-
ler. Here, a service provisioning policy can be a
probability distribution over a set of available ser-
vice schemes. The SDN controller in turn deter-
mines a service scheme with the policy. Based on
the service provisioning outcome, corresponding
feedback is sent to the reward system. The reward
system translates the feedback into an immediate
reward for the DEL agent. The reward enables the
DRL agent to quantitatively measure the quality of
the action taken (i.e., the service scheme select-
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Figure 1. DRL-based autonomic networking framework. SDM: software-defined
networking; DMNN: deep neural network; DRL: deep reinforcement learning,

ed). For example, an agent gets a reward of 1 if
a request is successfully serviced and 0 otherwise.
The service provisioning sample (i.e., the state,
action, and reward tuple} is stored in the experi-
ence buffer, which afterward produces training
signals to update the DNMNs. In particular, the DEL
agent tunes the DNNs to reinforce actions (i.e,,
increase the corresponding probabilities) leading
to higher long-term cumulative rewards. This way,
through repeated service provisioning practice,
the DREL ;%ent can progressively learn effective
policies. Meanwhile, as the DEL agent performs
training constantly upon new observations, it is
able to adapt to gradual network evolutions. Dif-
ferent DRL agents can also work in collaboration
through knowledge transfers for faster conver-
gence and improved network-wide performance.
Eventually, the DRL-based service provisioning
design enables a fully autonomic EON system
with s:EIf—IearninF, and self-adapting capabilities.
MNote that, with slight modifications, the proposed
framework is also applicable for networks using
different data plane technologies (e.g., packet net-
works).

DEePRMSA

While EON introduces unprecedented flexibility
to opticaHayer spectrum management, the design
of EM5A algorithms is not trivial. Figure 2 shows
an example of RM5A in a five-node topology,
where two lightpath requests Ry (from node 1 to
node 4) and &, (from node 2 to node 5) arrive
sequentially, each demanding bandwidth of 2 or
4 frequency slots (F5s). For the sake of clarity, we
reduce the optimization dimension of the RM5A
problem by fixing the routing paths as 1-2-4 and
2-4-5, respectively, omitting the modulation for-
mat assignment procedure. Based on the spec-
trum utilization state on each link, two F>-blocks
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Figure 2. An illustrative example of RMSA in a five-node EOM.

(i.e, [1,5] and [2,10]) are available on path 1-2-
4. However, the only correct policy is allocating
F5block [9,10] to Rq (where both of the requests
are successfully serviced), since otherwise, R, will
be blocked due to the lack of spare spectra on
link 2-4. Mote that more practical RM5A prob-
lems involving realisticscale topologies and larger
link capacities while allowing flexible routing and
modulation format choices would be much more
complicated than that given by the above exam-
ple. In this context, previous works have proposed
a number of optimization models and heuristic
designs for RM5A problems [10, 11]. While the
optimization models suffer from high complexity
and can hardly be applied to problems with realis-
tic scales, the heuristic designs all apply fived poli-
cies based on artificially defined rules, resulting in
suboptimal performance. In this section, based on
the proposed autonomic networking framewaork,
we present a DRL-based g&niti\re REMS5A agent,
namely, DeepRMSA, for EONs.

DEesiGN

Given an EON, the target of DeepRMSA is to
learn the optimal RM5A policy for each lightpath
request so that the long-term network throughput
is maximized. Mext, we describe the key com-
ponents of DeepRMS5A, including the designs
of State {(what network state DeepRMS5A sees),
Action (how DeepRMSA decides the RMS3A
schemes), Reward (numerical incentives charac-
terizing the action performance of DeepRMSA),
and Training (how DeepRMSA learns).

State: Effective state representations enable
DeepRMS5A to sense critical information required
for RM5A. For each lightpath request, we make
DeepRMS5A read a state representation contain-
ing the information of the request’s source and
destination nodes and the current spectrum utili-

zation state of the EOM. To convey the spectrum

utilization state, we calculate K candidate routing

paths for the request and obtain for each of the
paths:

*+ The size and the starting position of the first
available F5-block (i.e, the available F5block
with the lowest starting index)

+ The number of required F5s based on the
applicable modulation format

*+ The average size of available F5-blocks

+ The total number of available F5s

MNote that instead of extracting key features on

different paths, one can directly feed DeepRMS5A

with the original link-by-link spectrum utilization
matrix to avoid any information loss. However,
this would cause scalability issues and add signif-
icant difficulty to the successful training of Deep-

RMSA. As a future research task, we will study

more effective state representation methods for

DeepRMSA.

Action: DeepRMS5A selects one from the K
candidate paths for each lightpath request. Then
a modulation format can be determined based on
the routing path selected and the distance-adap-
tive resource allocation model discussed in [12].
After evaluating the performance of DeepRM3A
with different degrees of flexibility in spectrum
assignment (by including in the action space dif-
ferent numbers of candidate F5-blocks on each
path), we make DeepRMSA use a fixed first-fit
spectrum assignment scheme (always allocating
the first available FSblocks).

Reward: DeepRMS5A gets a reward of 1 if a
request is successfully accommodated and -1
otherwise.

Training: We design the training of DeepRM-
5A by applying and modifying the Asynchronous
Advantage Actor-Critic (A3C) algorithm [7].
DeepRMSA employs multiple parallel actorlearn-
ers (can be seen as incamations of a DEL agent],
each interacting with its own copy of the sys-
tem emnvironment, to obtain more abundant and
diversified training samples. Every actor-learner
employs a policy DNN to generate action policies
{i.e., probability distributions of taking actions) and
avalue DNM for estimating the long-term cumula-
tive reward of each system state. The actor-learn-
ers maintain and update global policy and value
DMMs asynchronously. In DeepRMSA, we adopt
DMMs with fully connected architectures [5] that
have the same design of input and hidden layers.
The output layer of each policy DMNMN consists of
K neurons, outputting the probabilities of select-
ing the corresponding paths, while each value
DMM has only one output neuron.

The procedures of an actordearner’s thread in
DeepRMS5A are as follows. First, the actorlearn-
er synchronizes the local DNNs with the global
parameters and initializes an EON state (step 1).
Then, upon receiving each lightpath request, the
actor-learner invokes the local DNMNs to generate
an EMSA policy and an estimation of the cumu-
lative reward taking as input the current EON
state (step 2). An RM5A scheme is determined
according to the generated policy (step 3). After-
ward, the actor-learner receives an immediate
{and real) reward, which, together with the EON
state, the action taken, and the reward estimation,
are stored in an experience buffer (step 4). The
actor-learner performs training (i.e., tuning the
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parameters of the DNNs) every time the expe-
rience buffer contains 2L - 1 samples (step 5).
In particular, for each of the first L samples, the
actor-learner calculates the cumulative reward
within a window of length L (i.e,, the cumulative
reward of servicing the current plus the next [ - 1
requests). With these L samples, the actor-leamer
then updates the parameters of the global DNNs
by a small step toward the direction of minimiz-
ing the policy and value losses. The policy loss
comprises a term that enables to reinforce actions
with larger advantages and an entropy term to
encourage exploration (avoid being trapped in
local optima). Here, advantages are defined as
the differences between the real and the esti-
mated cumulative rewards, indicating how much
actions tum out to be better than expected. The
value loss is straightforward as the average error
of reward estimation. Finally, the actor-learn-
er removes the | samples from the buffer. The
rationale of applying such a window-based train-
ing mechanism is that by making the cumulative
reward for every sample involve | requests, we
smooth out the oscillations of the optimization
targets (i.e,, the cumulative rewards) due to ran-
dom request arrivals and thus stabilize the train-
ing of DeepRM5A. Note that although a large
value of | facilitates more stabilized training, on
the other hand, it hinders the training signals from
new observations being quickly applied (thus hin-
dering the quick response of DeepRMSA to the
changing network conditions). Therefore, we envi-
sion a moderate value (e.g, 50) to be a proper
setup for L. 5teps 2 to 5 are repeated until the
EON stops operating.

Evaruamions

We assessed the performance of DeepRMSA with
numerical simulations using the 14-node NSFNET
topology. We assumed each link could accom-
maodate 100 F5s. The dynamic lightpath requests
were generated according to the Poisson process,
with the average arrival rate and service duration
being 12 and 184, respectively, and the bandwidth
requirements evenly distributed within [25,7100]
Chby/'s. We calculated K = 5 candidate paths for
each request. We implemented DeepRMSA with
16 actor-learners, each employing DNNs of five
hidden layers (128 neurons per layer). For the
training of DeepRMSA, we set L and the learning
rate as 50 and 107, respectively. The running of
the simulations consumed 2.33 CPUs of 2.6 GHz
and 0.64 GB memaory on a standard Linux server,
with a duration of ~120 hours. We compared the
performance of DeepRMSA with those of two
baselines, namely, shortest path routing and first-fit
spectrum assignment (SP-FF}, and k-shortest path
routing and first-fit spectrum assignment (K5P-FF)
which has been shown to achieve state-ofthe-
art performance [11]. Figure 3 plots the results
of request blocking probability. It can be seen
that DeepRM5A successfully beats both of the
baselines after training of around 30,000 epochs
and eventually can achieve a blocking reduction
of 45.9 percent compared to KSFFF. The aver-
age spectrum utilization ratios from DeepRM3A
(after training of 200,000 epochs), K5P-FF, and
SP-FF are 32.6, 30.4, and 27.2 percent, respec-
tively. Since DeepRMSA enables accommodating
more requests, it utilizes the largest amount of
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Figure 3. Comparison of request blocking probability between DeepRMSA

and the baselines.

spectrum resources. To verify the robustness of
DeepRMS5A, we also conducted simulations using
the 11-node COS5T239 topology. The simulation
setup remained unchanged, except that the aver-
age request ammival rate and service duration were
set as 16 and 25, respectively. Results show that
DeepRMSA still outperforms KSP-FF with a block-
ing reduction of 40.7 percent (8.3 = 1073 vs. 1.4
# 1072). The average spectrum utilization ratios
from DeepRMSA and K5P-FF are 41.0 and 40.0
percent, respectively.

AuTonOMIC MULTI-DOMAIN
NETWORKING WITH MADRL

Today's Internet is essentially a mult-domain net-
work, where multiple autonomous systems work
cooperatively to provide global interconnectivity.
With the explosion of emerging applications (e.g.,
distributed science computing) and the rapid
evolution of data center networks, there is an
increasing demand for dynamic and high-capac-
ity end-to-end services across multiple domains.
In this context, multi-domain EON becomes one
of the most promising solutions for the next-gen-
eration Internet backbone [3]. The challenges
of realizing efficient multi-domain networking lie
in designing powerful inter-domain service pro-
visioning paradigms to enable well-coordinated
resource allocations across multiple autonomous
EOMs with very limited intra-domain information.
Recent studies have investigated both distributed
and semi-centralized architectures for multi-do-
main EOMNs [3, 5]. While the distributed solutions
lead to poor resource efficiency, the semi-central
ized solutions suffer from scalability and survivabil-
ity issues and may violate the domain autonomy
by having a multi-domain orchestrator to dictate
the operations of domains. Therefore, we envi-
sion a multi-broker-based multi-domain NC&M
architecture, where multiple incentive-driven bro-
ker agents work with domain manfﬁers (DMs)
through service level agreements (5LAs) and can
cooperate or compete freely, to facilitate more
scalable, diversified, and efficient inter-domain
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Figure 4. MADRL-based autonomic multi-domain networking framewaork.

service provisioning [13]. In particular, multi-bro-
kerbased NC&M enables each DM to participate
in inter-domain service provisioning by subscrib-
ing to the services from one or multiple brokers.
DMs submit inter-domain service requests and
report different levels of domain abstractions
(according to mutual confidence and 5LAs) to
brokers, while brokers return service schemes and
biddings. These activities can be seen as forming
an inter-domain service provisioning market con-

strained by SLAs.

Service provisioning in multi-broker-based
multi-domain EONs can be modeled as incom-
plete-information repeated games in nature,
where multiple players (i.e., brokers and DMs)
compete or cooperate for profit (e.g., throughput
and revenue gain) maximization. In addition to
the fact that the number of brokers and DMs can
be large, multi-domain EON systems are typically
very complex {(heterogeneous and private topok
ogies, traffic patterns, and policies) and dynamic.
Therefore, conventional game-theoretic approach-
es (e.g, analyzing the Nash equilibria) can hardly
be used for optimizing the service provisioning
strategies in such a scenario. On the other hand,
MADRL has shown appealing prospects in solving
multi-agent cooperation and competition tasks
[14]. By equipping each agent with the DRL
functionality and implementing proper reward-
ing mechanisms, MADRL enables multiple agents
to learn how to adapt to each other and even-
tually converge to the equilibria. In this section,
we introduce MADRL to the service provisioning
design of multi-broker-based multi-domain EQONSs,
and extend the autonomic networking framework
in Fig. 1 to present an autonomic mult-domain

networking framework.

Figure 4 shows the schematic of MADEL-
based multi-domain networking. Each EON
domain operates autonomically according to the
principle depicted in Fig. 1 and receives inter-do-
main services from the brokers. The brokers
learn service provisioning policies with MADEL.
Specifically, each broker employs a number of
DRL agents to model the behaviors of DMs
and its peer brokers and learn the policies for
different services. The modular function design
and the operation principle of the DRL agents
resemble those presented in Fig. 1, except that
a service provisioning manager, instead of an
SDM controller, handles the communication and
service scheduling tasks. The DRL agents take
as input state representations including both
trafficengineering-related data (e.g, in-service
requests and multidomain abstractions) and fea-
tures from the peer brokers (e.g., observations
of historical actions and cooperative information
exchanges). The brokers train the DREL agents
asynchronously through dynamic inter-domain
service provisioning experiences, thus enabling
an autonomic multi-domain networking system
with multiple intelligent agents learning to reach
joint optimization situations.

MADRL-BaseD INTER-DomMan RMSA

We present an MADEL-based inter-domain
RM5A design [15] as a proof-of-concept demon-
stration for the proposed autonomic multi-do-
main networking framework. We assume that
brokers abstract each domain as consisting of
a few domain border nodes interconnected by
a virtual node (see the example in Fig. 5} and
have full visibility of the inter-domain connec-
tivity. With the multi-domain abstraction, each
broker performs inter-domain RMSA operations
following procedures similar to those of Deep-
RMSA. Specifically, upon receiving an inter-do-
main lightpath request, a broker invokes its DRL
agent to recommend a routing path within the
abstraction. The routing path essentially suggests
a domain sequence for the request by specify-
ing the border nodes to be traversed. Then the
involved DMs set up the corresponding light-
path domain by domain, calculating intra-domain
segments between border nodes and allocating
spectrum resources on them (by applying either
DRL-based or heuristic policies [3]). The model
ing and traininﬁ of the DEL agents also resemble
those of DeepRMSA but with two modifications.
First, the features for each candidate path are
derived from only the spectrum utilization of
inter-domain links and do not include the num-
ber of required F5s (the physical length of each
path and therefore the modulation format can-
not be determined). For the sake of simplicity,
we do not consider communications among
brokers so that the DEL agents perform inde-
pendent learning (i.e., treating the behaviors of
peer brokers as part of the holistic system envi-
ronment). Second, the DRL agents are trained
with the Advantage Actor-Critic (A2C) algorithm
reduced from A3C (with only one actorlearner).

We evaluated the performance of the
MADRL-based inter-domain RMS3A design
with the 4-domain topology in Fig. 5 and two
brokers. We assumed the link capacity to be
100 FSs and that each domain border node
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was equipped with 10 optical-electrical-opti-
cal converters. The dynamic lightpath requests
were generated following an arrival rate of 15
and an average service duration of 15. We
assumed a fixed market partitioning scheme
where inter-domain requests originating from
nodes [3, 4, 5,7, 8 11, 12, 15, 17, 18, 23,
24] are handled by Broker 1, while the others
are forwarded to Broker 2. The implementa-
tion and training of the DRL agents used similar
parameter setups to those of the evaluations for
DeepRMSA. We also implemented the Least-
Hop and Balanced-Load routing algorithms
as the baselines. For all the algorithms, the
DMs applied the K5P-FF algorithm for provi-
sioning intra-domain requests. Figure 6 shows
the evolution of request blocking probability
from Brokers 1 and 2 during the training. We
can see that MADRL enables the brokers to
improve their policies steadily from dynamic
service provisioning. MADRL surpasses both of
the baselines after training of 160,000 epochs,
and eventually facilitates 23.9 and 23.7 percent
blocking reductions for Brokers 1 and 2, respec-
tively, compared to the best performance of
the baselines. Meanwhile, it is apparent that the
MADRL-based design facilitates higher overall
multi-domain throughput, indicating a situation
where interests of DMs and brokers are jointly
optimized.

CONCLUSION

This article presents a DRL-based autonomic
networking framework for EONs. The proposed
framework enables self-learning-based service
provisioning by employing DRL agents to learn
policies through dynamic EOMN operations. Based
on the framework, we elaborate on the design
of DeepRM5A, a DEL agent for RMS5A in EONs.
Further, we extend the autonomic networking
framework to a multtdomain EON scenario by
introducing a multi-broker-based NC&M archi-
tecture and applying MADRL. Numerical results
show notable advantages of the proposed frame-
work compared to the existing heuristic-based
designs.

Open issues for building autonomic EONs
include:

1. How to effectively train DEL agents for large-
scale topologies with more complex system
state representations

2. How to improve the robustness of the DRL
agents against fast network evolutions and
sudden changes (e.g., topology changes due
to network failures/anomalies)

In addition to developing more advanced
learning algorithms, a potential solution for
improving the scalability of the proposed frame-
work could be applying a distributed learning
mechanism that employs multiple cooperative
DRL agents exploring different subsets of the net-
work in parallel. Meanwhile, although it is feasi-
ble for DREL agents to learn policies only through
online operations, a more practical and time-ef-
ficient approach is to build accurate service pro-
visioning simulators that can faithfully simulate
realworld network operations and to train DRL
agents offline with the simulators before activating
them for online use. Building such accurate simu-
lators requires full knowledge about the network

Figure 5. Mult-domain abstraction of a 4-domain physical topology by brokers.
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Figure 6. Comparison of interdomain request blocking probability between

the MADRL-based approach and the baselines.

operation principles and traffic profiles, and effec-
tive modeling techniques, which demands further
research efforts. Lastly, the recent advances in ML
have enabled the capabilities of learning tempaoral
and spatial information from time-series and topo-
logical inputs, which can potentially be leveraged
to improve the adaptability (to traffic evolutions
or topology changes) of the DEL agents.
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