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AbstrAct

Conventional schemes for service provision-
ing in next-generation elastic optical networks 
(EONs) rely on rule-based policies that sufer from 
scalability issues and can lead to poor resource 
utilization efficiency due to the lack of knowl-
edge about the essential characteristics of EONs 
(e.g., traic proiles, physical-layer impairments). 
This article discusses the application of emerging 
deep reinforcement learning (DRL) techniques 
in EONs for enabling an autonomic (self-driving) 
and cognitive networking framework. This new 
framework achieves self-learning-based service 
provisioning capabilities by employing DRL agents 
to learn policies from dynamic network opera-
tions. Such capabilities can remarkably reduce the 
amount of human effort invested in developing 
efective service provisioning policies for emerg-
ing applications, and thus, can facilitate fast net-
work evolutions. Based on the framework, we 
first present DeepRMSA, a DRL-based routing, 
modulation, and spectrum assignment (RMSA) 
agent for EONs. Then, as today’s networks are 
often composed of multiple autonomous systems, 
we extend the autonomic networking framework 
to multi-domain EONs by applying multi-agent 
DRL (where multiple autonomous DRL agents 
learn through jointly interacting with their environ-
ments). Comparisons of the results from numeri-
cal simulations show signiicant advantages of the 
proposed framework over the existing rule-based 
heuristic designs.

IntroductIon
Elastic optical networking (EON) has emerged as 
one of the most appealing solutions for meeting 
the challenges of the next-generation networks 
[1]. By virtue of its flexible spectrum allocation 
mechanisms, EON is able to support not only the 
ever-increasing volume of Internet traic but also 
user-customized dynamic service provisioning at 
the optical layer [2]. To fully exploit the beneit of 
EON, efective network control and management 
(NC&M) is necessary. While software-defined 
networking (SDN) has enabled a centralized and 
programmable NC&M paradigm for elastic opti-
cal networks (EONs) [3], existing works mostly 
make use of hard-coded rule-based policy designs 
for service provisioning in EONs. These designs 
are usually built on domain-specific knowledge, 
such as the data plane operation principle and 
mathematical optimization theories, which entails 

signiicant eforts of networking experts and oper-
ators. More importantly, as network conditions 
(e.g., topology, traic proile) may change, these 
designs might need to be revisited periodically, 
causing scalability issues and thus hindering the 
fast evolution of the networks.
The past few years have witnessed dramat-

ic advances in machine learning (ML) since the 
breakthroughs in deep learning algorithms. ML 
allows learning complex system functions from big 
data while obviating the need for domain-speciic 
knowledge. The application of ML in optical net-
working has attracted intensive research interest 
[4–6]. In [4], the authors proposed an ML-aided 
fault management system for detecting soft failure 
patterns in optical networks. We introduced ML 
to the NC&M of multi-domain optical networks in 
[5] and therein demonstrated a cognitive (tenden-
cy-aware) inter-domain traic engineering design
enabled by a deep neural network (DNN)-based
traffic estimator. An ML approach for modeling
the quality of transmission of optical connections
was also developed. The authors of [6] studied
the problem of ML as a service in inter-data-cen-
ter optical networks, where tenants manage their
virtual network slices with the assistance of com-
mercial ML models trained by third-party entities,
and discussed the related vulnerability issues in
such scenarios. All of the above existing works
adopt supervised ML techniques, which require
large volumes of data for training. In addition to
the fact that such data are diicult to obtain, these
works still rely on artiicially deined policies that
utilize the ML models.
Deep reinforcement learning (DRL) has recent-

ly shown compelling potential of learning success-
ful policies for large-scale online control problems 
[7]. In contrast to supervised or unsupervised ML 
approaches demanding large amounts of data, 
DRL parameterizes policies with DNNs (analo-
gous to human brains, which can sense complex 
system states directly from high-dimensional data, 
e.g., images and traic matrices) and progressively
approximates the optimal policies by training the
DNNs with experiences from online operations.
Thus, DRL enables self-learning capabilities that
allow learning agents to learn and to adapt to sys-
tems autonomically without human intervention.
Such self-learning is especially crucial for intelli-
gent network and service management. Previous
works have reported a few applications of DRL in
the areas of communication and networking [8,
9]. The authors of [8] proposed a DRL algorithm

Xiaoliang Chen, Roberto Proietti, and S. J. Ben Yoo

OPTICAL COMMUNICATIONS AND SYSTEMS

Conventional schemes 

for service provisioning 

in next-generation elastic 

optical networks (EONs) 

rely on rule-based policies 

that suffer from scalability 

issues and can lead to 

poor resource utilization 

eficiency due to the lack 

of knowledge about the 

essential characteristics 

of EONs. The authors 

discuss the application 

of emerging deep 

reinforcement learning 

(DRL) techniques in 

EONs for enabling an 

autonomic (self-driving) 

and cognitive networking 

framework.

The authors are with the University of California.
Digital Object Identiier:
10.1109/MCOM.001.1900151

Building Autonomic Elastic Optical Networks 
with Deep Reinforcement Learning

CHEN_LAYOUT.indd   20 10/9/19   11:43 AM

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 30,2020 at 00:24:12 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • October 2019 21

that enables experience-driven trai  c engineering 
by jointly learning a network environment and its 
dynamics. In [9], the authors presented a DRL-
based data center network management frame-
work and demonstrated a DRL agent that can 
learn the optimal topology coni gurations regard-
ing dif erent applications. Nevertheless, the appli-
cation of DRL in EONs remains underexploited.
In this article, we leverage DRL to propose 

an autonomic networking framework for EONs. 
We first elaborate on the network architecture, 
modular NC&M system design, and the operation 
principle of the proposed framework. Based on 
the framework, we present DeepRMSA, a DRL-
based routing, modulation, and spectrum assign-
ment (RMSA) agent for EONs. We demonstrate 
the ef ectiveness of DeepRMSA through numer-
ical simulations. Next, we extend the autonomic 
networking framework to a multi-domain EON 
scenario by applying multi-agent DRL (MADRL). 
Finally, we summarize the article.

drl-bAsEd 
AutonomIc nEtworkIng frAmEwork

Figure 1 shows the block diagram of the proposed 
DRL-based autonomic networking framework. The 
framework is built on the basis of the SDN archi-
tecture, with decoupled data and NC&M planes. 
The data plane adopts EON technologies to pro-
vision dynamic and fl ex-grid (e.g., at a granularity 
of 6.25 GHz) optical connections for clients from 
metro networks, data centers, and research facil-
ities. Optical performance monitoring function-
alities (e.g., monitoring of optical signal-to-noise 
ratio) are also employed for sensing the states of 
data plane operations. The NC&M plane employs 
a remote and centralized SDN controller for ser-
vice provisioning management. The SDN control-
ler utilizes advanced network modeling languages 
and SDN protocols to communicate with SDN 
agents (locally attached to data plane equipment) 
for collecting service requests, distributing ser-
vice schemes, and inquiring device conditions and 
monitoring data on demand.
We design the service provisioning mecha-

nism based on the principle of DRL. Specifical-
ly, upon an event (e.g., reception of a service 
request) that triggers a specific DRL application 
(e.g., DRL-based RMSA or failure restoration), the 
SDN controller makes the feature engineering 
module generate an EON state representation for 
the corresponding DRL agent. The feature engi-
neering module retrieves various network state 
data (e.g., pending requests, in-service connec-
tions, and resource utilization) from the traffic 
engineering database and tailors the data to meet 
the demand of the DRL agent. The DNNs of the 
DRL agent take as input the state data and output 
a service provisioning policy to the SDN control-
ler. Here, a service provisioning policy can be a 
probability distribution over a set of available ser-
vice schemes. The SDN controller in turn deter-
mines a service scheme with the policy. Based on 
the service provisioning outcome, corresponding 
feedback is sent to the reward system. The reward 
system translates the feedback into an immediate 
reward for the DRL agent. The reward enables the 
DRL agent to quantitatively measure the quality of 
the action taken (i.e., the service scheme select-

ed). For example, an agent gets a reward of 1 if 
a request is successfully serviced and 0 otherwise. 
The service provisioning sample (i.e., the state, 
action, and reward tuple) is stored in the experi-
ence buffer, which afterward produces training 
signals to update the DNNs. In particular, the DRL 
agent tunes the DNNs to reinforce actions (i.e., 
increase the corresponding probabilities) leading 
to higher long-term cumulative rewards. This way, 
through repeated service provisioning practice, 
the DRL agent can progressively learn effective 
policies. Meanwhile, as the DRL agent performs 
training constantly upon new observations, it is 
able to adapt to gradual network evolutions. Dif-
ferent DRL agents can also work in collaboration 
through knowledge transfers for faster conver-
gence and improved network-wide performance. 
Eventually, the DRL-based service provisioning 
design enables a fully autonomic EON system 
with self-learning and self-adapting capabilities. 
Note that, with slight modii cations, the proposed 
framework is also applicable for networks using 
dif erent data plane technologies (e.g., packet net-
works).

dEEprmsA
While EON introduces unprecedented flexibility 
to optical-layer spectrum management, the design 
of RMSA algorithms is not trivial. Figure 2 shows 
an example of RMSA in a five-node topology, 
where two lightpath requests 1 (from node 1 to 
node 4) and 2 (from node 2 to node 5) arrive 
sequentially, each demanding bandwidth of 2 or 
4 frequency slots (FSs). For the sake of clarity, we 
reduce the optimization dimension of the RMSA 
problem by i xing the routing paths as 1-2-4 and 
2-4-5, respectively, omitting the modulation for-
mat assignment procedure. Based on the spec-
trum utilization state on each link, two FS-blocks

Figure 1.DRL-based autonomic networking framework. SDN: software-dei ned 
networking; DNN: deep neural network; DRL: deep reinforcement learning.
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(i.e., [1,5] and [9,10]) are available on path 1-2-
4. However, the only correct policy is allocating 
FS-block [9,10] to 1 (where both of the requests 
are successfully serviced), since otherwise, 2 will 
be blocked due to the lack of spare spectra on 
link 2-4. Note that more practical RMSA prob-
lems involving realistic-scale topologies and larger 
link capacities while allowing fl exible routing and 
modulation format choices would be much more 
complicated than that given by the above exam-
ple. In this context, previous works have proposed 
a number of optimization models and heuristic 
designs for RMSA problems [10, 11]. While the 
optimization models suf er from high complexity 
and can hardly be applied to problems with realis-
tic scales, the heuristic designs all apply i xed poli-
cies based on artii cially dei ned rules, resulting in 
suboptimal performance. In this section, based on 
the proposed autonomic networking framework, 
we present a DRL-based cognitive RMSA agent, 
namely, DeepRMSA, for EONs.

dEsIgn
Given an EON, the target of DeepRMSA is to 
learn the optimal RMSA policy for each lightpath 
request so that the long-term network throughput 
is maximized. Next, we describe the key com-
ponents of DeepRMSA, including the designs 
of State (what network state DeepRMSA sees), 
Action (how DeepRMSA decides the RMSA 
schemes), Reward (numerical incentives charac-
terizing the action performance of DeepRMSA), 
and Training (how DeepRMSA learns).
State: Effective state representations enable 

DeepRMSA to sense critical information required 
for RMSA. For each lightpath request, we make 
DeepRMSA read a state representation contain-
ing the information of the request’s source and 
destination nodes and the current spectrum utili-

zation state of the EON. To convey the spectrum 
utilization state, we calculate K candidate routing 
paths for the request and obtain for each of the 
paths:
•  The size and the starting position of the i rst 
available FS-block (i.e., the available FS-block 
with the lowest starting index)

•  The number of required FSs based on the 
applicable modulation format

•  The average size of available FS-blocks
•  The total number of available FSs
Note that instead of extracting key features on 
dif erent paths, one can directly feed DeepRMSA 
with the original link-by-link spectrum utilization 
matrix to avoid any information loss. However, 
this would cause scalability issues and add signif-
icant dii  culty to the successful training of Deep-
RMSA. As a future research task, we will study 
more effective state representation methods for 
DeepRMSA.
Action: DeepRMSA selects one from the K

candidate paths for each lightpath request. Then 
a modulation format can be determined based on 
the routing path selected and the distance-adap-
tive resource allocation model discussed in [12]. 
After evaluating the performance of DeepRMSA 
with different degrees of flexibility in spectrum 
assignment (by including in the action space dif-
ferent numbers of candidate FS-blocks on each 
path), we make DeepRMSA use a fixed first-fit 
spectrum assignment scheme (always allocating 
the i rst available FS-blocks).
Reward: DeepRMSA gets a reward of 1 if a 

request is successfully accommodated and –1 
otherwise.
Training: We design the training of DeepRM-

SA by applying and modifying the Asynchronous 
Advantage Actor-Critic (A3C) algorithm [7]. 
DeepRMSA employs multiple parallel actor-learn-
ers (can be seen as incarnations of a DRL agent), 
each interacting with its own copy of the sys-
tem environment, to obtain more abundant and 
diversified training samples. Every actor-learner 
employs a policy DNN to generate action policies 
(i.e., probability distributions of taking actions) and 
a value DNN for estimating the long-term cumula-
tive reward of each system state. The actor-learn-
ers maintain and update global policy and value 
DNNs asynchronously. In DeepRMSA, we adopt 
DNNs with fully connected architectures [5] that 
have the same design of input and hidden layers. 
The output layer of each policy DNN consists of 
K neurons, outputting the probabilities of select-
ing the corresponding paths, while each value 
DNN has only one output neuron.
The procedures of an actor-learner’s thread in 

DeepRMSA are as follows. First, the actor-learn-
er synchronizes the local DNNs with the global 
parameters and initializes an EON state (step 1). 
Then, upon receiving each lightpath request, the 
actor-learner invokes the local DNNs to generate 
an RMSA policy and an estimation of the cumu-
lative reward taking as input the current EON 
state (step 2). An RMSA scheme is determined 
according to the generated policy (step 3). After-
ward, the actor-learner receives an immediate 
(and real) reward, which, together with the EON 
state, the action taken, and the reward estimation, 
are stored in an experience buffer (step 4). The 
actor-learner performs training (i.e., tuning the 

Figure 2.An illustrative example of RMSA in a i ve-node EON.
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parameters of the DNNs) every time the expe-
rience buffer contains 2L – 1 samples (step 5). 
In particular, for each of the first L samples, the 
actor-learner calculates the cumulative reward 
within a window of length L (i.e., the cumulative 
reward of servicing the current plus the next L – 1 
requests). With these L samples, the actor-learner 
then updates the parameters of the global DNNs 
by a small step toward the direction of minimiz-
ing the policy and value losses. The policy loss 
comprises a term that enables to reinforce actions 
with larger advantages and an entropy term to 
encourage exploration (avoid being trapped in 
local optima). Here, advantages are defined as 
the differences between the real and the esti-
mated cumulative rewards, indicating how much 
actions turn out to be better than expected. The 
value loss is straightforward as the average error 
of reward estimation. Finally, the actor-learn-
er removes the L samples from the buffer. The 
rationale of applying such a window-based train-
ing mechanism is that by making the cumulative 
reward for every sample involve L requests, we 
smooth out the oscillations of the optimization 
targets (i.e., the cumulative rewards) due to ran-
dom request arrivals and thus stabilize the train-
ing of DeepRMSA. Note that although a large 
value of L facilitates more stabilized training, on 
the other hand, it hinders the training signals from 
new observations being quickly applied (thus hin-
dering the quick response of DeepRMSA to the 
changing network conditions). Therefore, we envi-
sion a moderate value (e.g., 50) to be a proper 
setup for L. Steps 2 to 5 are repeated until the 
EON stops operating.

EvAluAtIons
We assessed the performance of DeepRMSA with 
numerical simulations using the 14-node NSFNET 
topology. We assumed each link could accom-
modate 100 FSs. The dynamic lightpath requests 
were generated according to the Poisson process, 
with the average arrival rate and service duration 
being 12 and 14, respectively, and the bandwidth 
requirements evenly distributed within [25,100] 
Gb/s. We calculated K = 5 candidate paths for 
each request. We implemented DeepRMSA with 
16 actor-learners, each employing DNNs of ive 
hidden layers (128 neurons per layer). For the 
training of DeepRMSA, we set L and the learning 
rate as 50 and 10–5, respectively. The running of 
the simulations consumed 2.33 CPUs of 2.6 GHz 
and 0.64 GB memory on a standard Linux server, 
with a duration of ~120 hours. We compared the 
performance of DeepRMSA with those of two 
baselines, namely, shortest path routing and irst-it 
spectrum assignment (SP-FF), and k-shortest path 
routing and irst-it spectrum assignment (KSP-FF) 
which has been shown to achieve state-of-the-
art performance [11]. Figure 3 plots the results 
of request blocking probability. It can be seen 
that DeepRMSA successfully beats both of the 
baselines after training of around 30,000 epochs 
and eventually can achieve a blocking reduction 
of 45.9 percent compared to KSF-FF. The aver-
age spectrum utilization ratios from DeepRMSA 
(after training of 200,000 epochs), KSP-FF, and 
SP-FF are 32.6, 30.4, and 27.2 percent, respec-
tively. Since DeepRMSA enables accommodating 
more requests, it utilizes the largest amount of 

spectrum resources. To verify the robustness of 
DeepRMSA, we also conducted simulations using 
the 11-node COST239 topology. The simulation 
setup remained unchanged, except that the aver-
age request arrival rate and service duration were 
set as 16 and 25, respectively. Results show that 
DeepRMSA still outperforms KSP-FF with a block-
ing reduction of 40.7 percent (8.3  10–3 vs. 1.4 
 10–2). The average spectrum utilization ratios 
from DeepRMSA and KSP-FF are 41.0 and 40.0 
percent, respectively.

AutonomIc multI-domAIn  
nEtworkIng wIth mAdrl

Today’s Internet is essentially a multi-domain net-
work, where multiple autonomous systems work 
cooperatively to provide global interconnectivity. 
With the explosion of emerging applications (e.g., 
distributed science computing) and the rapid 
evolution of data center networks, there is an 
increasing demand for dynamic and high-capac-
ity end-to-end services across multiple domains. 
In this context, multi-domain EON becomes one 
of the most promising solutions for the next-gen-
eration Internet backbone [3]. The challenges 
of realizing eicient multi-domain networking lie 
in designing powerful inter-domain service pro-
visioning paradigms to enable well-coordinated 
resource allocations across multiple autonomous 
EONs with very limited intra-domain information. 
Recent studies have investigated both distributed 
and semi-centralized architectures for multi-do-
main EONs [3, 5]. While the distributed solutions 
lead to poor resource eiciency, the semi-central-
ized solutions sufer from scalability and survivabil-
ity issues and may violate the domain autonomy 
by having a multi-domain orchestrator to dictate 
the operations of domains. Therefore, we envi-
sion a multi-broker-based multi-domain NC&M 
architecture, where multiple incentive-driven bro-
ker agents work with domain managers (DMs) 
through service level agreements (SLAs) and can 
cooperate or compete freely, to facilitate more 
scalable, diversified, and efficient inter-domain 

Figure 3. Comparison of request blocking probability between DeepRMSA 
and the baselines.
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service provisioning [13]. In particular, multi-bro-
ker-based NC&M enables each DM to participate 
in inter-domain service provisioning by subscrib-
ing to the services from one or multiple brokers. 
DMs submit inter-domain service requests and 
report different levels of domain abstractions 
(according to mutual confidence and SLAs) to 
brokers, while brokers return service schemes and 
biddings. These activities can be seen as forming 
an inter-domain service provisioning market con-
strained by SLAs.
Service provisioning in multi-broker-based 

multi-domain EONs can be modeled as incom-
plete-information repeated games in nature, 
where multiple players (i.e., brokers and DMs) 
compete or cooperate for proi t (e.g., throughput 
and revenue gain) maximization. In addition to 
the fact that the number of brokers and DMs can 
be large, multi-domain EON systems are typically 
very complex (heterogeneous and private topol-
ogies, trai  c patterns, and policies) and dynamic. 
Therefore, conventional game-theoretic approach-
es (e.g., analyzing the Nash equilibria) can hardly 
be used for optimizing the service provisioning 
strategies in such a scenario. On the other hand, 
MADRL has shown appealing prospects in solving 
multi-agent cooperation and competition tasks 
[14]. By equipping each agent with the DRL 
functionality and implementing proper reward-
ing mechanisms, MADRL enables multiple agents 
to learn how to adapt to each other and even-
tually converge to the equilibria. In this section, 
we introduce MADRL to the service provisioning 
design of multi-broker-based multi-domain EONs, 
and extend the autonomic networking framework 
in Fig. 1 to present an autonomic multi-domain 
networking framework.

Figure 4 shows the schematic of MADRL-
based multi-domain networking. Each EON 
domain operates autonomically according to the 
principle depicted in Fig. 1 and receives inter-do-
main services from the brokers. The brokers 
learn service provisioning policies with MADRL. 
Specifically, each broker employs a number of 
DRL agents to model the behaviors of DMs 
and its peer brokers and learn the policies for 
different services. The modular function design 
and the operation principle of the DRL agents 
resemble those presented in Fig. 1, except that 
a service provisioning manager, instead of an 
SDN controller, handles the communication and 
service scheduling tasks. The DRL agents take 
as input state representations including both 
traffic-engineering-related data (e.g., in-service 
requests and multi-domain abstractions) and fea-
tures from the peer brokers (e.g., observations 
of historical actions and cooperative information 
exchanges). The brokers train the DRL agents 
asynchronously through dynamic inter-domain 
service provisioning experiences, thus enabling 
an autonomic multi-domain networking system 
with multiple intelligent agents learning to reach 
joint optimization situations.

mAdrl-bAsEd IntEr-domAIn rmsA
We present an MADRL-based inter-domain 
RMSA design [15] as a proof-of-concept demon-
stration for the proposed autonomic multi-do-
main networking framework. We assume that 
brokers abstract each domain as consisting of 
a few domain border nodes interconnected by 
a virtual node (see the example in Fig. 5) and 
have full visibility of the inter-domain connec-
tivity. With the multi-domain abstraction, each 
broker performs inter-domain RMSA operations 
following procedures similar to those of Deep-
RMSA. Specii cally, upon receiving an inter-do-
main lightpath request, a broker invokes its DRL 
agent to recommend a routing path within the 
abstraction. The routing path essentially suggests 
a domain sequence for the request by specify-
ing the border nodes to be traversed. Then the 
involved DMs set up the corresponding light-
path domain by domain, calculating intra-domain 
segments between border nodes and allocating 
spectrum resources on them (by applying either 
DRL-based or heuristic policies [3]). The model-
ing and training of the DRL agents also resemble 
those of DeepRMSA but with two modii cations. 
First, the features for each candidate path are 
derived from only the spectrum utilization of 
inter-domain links and do not include the num-
ber of required FSs (the physical length of each 
path and therefore the modulation format can-
not be determined). For the sake of simplicity, 
we do not consider communications among 
brokers so that the DRL agents perform inde-
pendent learning (i.e., treating the behaviors of 
peer brokers as part of the holistic system envi-
ronment). Second, the DRL agents are trained 
with the Advantage Actor-Critic (A2C) algorithm 
reduced from A3C (with only one actor-learner).
We evaluated the performance of the 

MADRL-based inter-domain RMSA design 
with the 4-domain topology in Fig. 5 and two 
brokers. We assumed the link capacity to be 
100 FSs and that each domain border node 

Figure 4.MADRL-based autonomic multi-domain networking framework.
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was equipped with 10 optical-electrical-opti-
cal converters. The dynamic lightpath requests 
were generated following an arrival rate of 15 
and an average service duration of 15. We 
assumed a fixed market partitioning scheme 
where inter-domain requests originating from 
nodes [3, 4, 5, 7, 8, 11, 12, 15, 17, 18, 23, 
24] are handled by Broker 1, while the others 
are forwarded to Broker 2. The implementa-
tion and training of the DRL agents used similar 
parameter setups to those of the evaluations for 
DeepRMSA. We also implemented the Least-
Hop and Balanced-Load routing algorithms 
as the baselines. For all the algorithms, the 
DMs applied the KSP-FF algorithm for provi-
sioning intra-domain requests. Figure 6 shows 
the evolution of request blocking probability 
from Brokers 1 and 2 during the training. We 
can see that MADRL enables the brokers to 
improve their policies steadily from dynamic 
service provisioning. MADRL surpasses both of 
the baselines after training of 160,000 epochs, 
and eventually facilitates 23.9 and 23.1 percent 
blocking reductions for Brokers 1 and 2, respec-
tively, compared to the best performance of 
the baselines. Meanwhile, it is apparent that the 
MADRL-based design facilitates higher overall 
multi-domain throughput, indicating a situation 
where interests of DMs and brokers are jointly 
optimized.

conclusIon
This article presents a DRL-based autonomic 
networking framework for EONs. The proposed 
framework enables self-learning-based service 
provisioning by employing DRL agents to learn 
policies through dynamic EON operations. Based 
on the framework, we elaborate on the design 
of DeepRMSA, a DRL agent for RMSA in EONs. 
Further, we extend the autonomic networking 
framework to a multi-domain EON scenario by 
introducing a multi-broker-based NC&M archi-
tecture and applying MADRL. Numerical results 
show notable advantages of the proposed frame-
work compared to the existing heuristic-based 
designs.
Open issues for building autonomic EONs 

include: 
1. How to efectively train DRL agents for large-
scale topologies with more complex system 
state representations

2. How to improve the robustness of the DRL 
agents against fast network evolutions and 
sudden changes (e.g., topology changes due 
to network failures/anomalies)
In addition to developing more advanced 

learning algorithms, a potential solution for 
improving the scalability of the proposed frame-
work could be applying a distributed learning 
mechanism that employs multiple cooperative 
DRL agents exploring diferent subsets of the net-
work in parallel. Meanwhile, although it is feasi-
ble for DRL agents to learn policies only through 
online operations, a more practical and time-ef-
icient approach is to build accurate service pro-
visioning simulators that can faithfully simulate 
real-world network operations and to train DRL 
agents ofline with the simulators before activating 
them for online use. Building such accurate simu-
lators requires full knowledge about the network 

operation principles and traic proiles, and efec-
tive modeling techniques, which demands further 
research eforts. Lastly, the recent advances in ML 
have enabled the capabilities of learning temporal 
and spatial information from time-series and topo-
logical inputs, which can potentially be leveraged 
to improve the adaptability (to traffic evolutions 
or topology changes) of the DRL agents.
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Figure 5. Multi-domain abstraction of a 4-domain physical topology by brokers.
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