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ABSTRACT. The focus of this paper is the exact controllability of a system of N
one-dimensional coupled wave equations when the control is exerted on a part of
the boundary by means of one control. We give a Kalman condition (necessary
and sufficient) and give a description of the attainable set. In general, this set
is not optimal, but can be refined under certain conditions.

1. Statement of the problem and main results. This work is devoted to the
study of the controllability properties of the following hyperbolic system

Ut — Ugy + Au =0, in Q= (0,7) x (0,7),
u(0,t) =bf(t), wu(mt)=0 for t € (0,7, (1)
w(z,0) = u’(z), wuy(x,0)=ul(z) forxe (0,7),

where T > 0 is given, A € L(RY) is a given matrix referred to as the coupling
matrix, b a given vector from RY and f € L?(0,T) is a control function to be
determined which acts on the system by means of the Dirichlet boundary condition
at the point # = 0. The initial data (u°,u!) will belong to a Hilbert space H, which
is to be specified in our main result. Our goal is to give necessary and sufficient
conditions for the exact controllability of System (1) and the space H where this
can be done.

We recall that System (1) is exactly controllable in H at time T if, for every
initial and final data (u®, u'), (29, 21), both in H, there exists a control f € L*(0,T)
such that the solution of System (1) corresponding to (u®,u!, f) satisfies

u(z,T) = 2°(x), ui(z,T) = 2"(x). (2)
Due to the linearity and time reversibility of System (1), this is equivalent to

exact controllability from zero at time T. In other words, System (1) is exactly
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controllable if for every final state (29, 2') € H, there exists a control f € L?(0,T)
such that the solution u to System (1) corresponding to f satisfies (2) and

u(z,0) = 0 = u(z,0). (3)

Indeed, given exact controllability from zero at time T with controls f, g € L?(0,T)
and their corresponding solutions u/ (z,t) and u9(z,t) satisfying

u! (2,0) = uf (x,0) =

u! (2,T) = u’(x), Uf(iv T) =u'(x),
w(z,0) = uf(z,0) =0,
uw(x,T) = 2"x), ui(x,T)=2z2"(z).

We can define the control h € L2?(0,T) by h(t) = f(T —t) + g(t). Then the
corresponding solution u(x,t) has the form w(z,t) = u/(z, T —t) + u9(z,t) and
satisfies

U({E,O) = uo(x)v ut(mv 0) = ul (1’),
uw(z, T) = 2%(x), w(z,T)=2"(z).

For this reason, we will assume that «° = 0,u! =

As of now, the controllability properties of System (1) are well known in the
scalar case, i.e. when N =1 (see for example [12]). When N = 1 and b # 0, System
(1) is exactly controllable in # = L?(0,7) x H=1(0,n) if T > Ty = 2.

Most of the known controllability results of (1) are in the case of two coupled
equations: see [5, 16, 11], but the results are for a particular coupling matrix A.
In the d-dimensional situation, that is, for a system of coupled wave equations in a
domain Q C R?, Alabau-Boussouria and collaborators have obtained several results
in the case of two equations with the Laplacian plus additional zero order terms
and particular coupling matrices (see e.g. [1, 2, 3] and the references therein).

On the other hand, controllability properties of linear ordinary differential sys-
tems are well understood. In particular, we have the famous Kalman rank condi-
tion (see for example [13] Chapter 2, p.35). That is, if N, M € N with N, M > 1,
A€ L(RY) and B € L(RM;RY), then the linear ordinary differential system

Y'(t) = AY (t) + Bul(t),
Y(0) =Y e RV,
is controllable at time 7" > 0 if and only if
rank[A|B] = rank[AN 1B, AN"2B,... B] = N, (4)

where [AN"1B, AN=2B ... B] € L(RMN;RV).

Recently, Liard and Lissy [14] gave a general Kalman condition for the indirect
controllability of N coupled d-dimensional wave equations. Here, indirect control-
lability refers to having less control functions than equations.

In the framework of parabolic coupled equations, [4] gives a general Kalman
rank condition for the null boundary controllability of N coupled one-dimensional
parabolic equations. The aim of this research is to establish general results, as in
[4], in the case of one-dimensional coupled wave equations.

To state our results, we provide the following definition:
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Definition 1.1. Let S be a positive self-adjoint operator in a separable Hilbert
space H with spectrum {\,}5%; and corresponding orthonormal eigenfunctions
{pn}52,. We introduce a weighted space for r € R

o 1/2
2= {(«:n) el = [Z cnzw] < oo}.
n=1

We then define the scale of spaces

W= {717 = X cupn Wl = Il <.
n=1

For 7 > 0, we set W, = Dom(S"/?). In the case where r = 0, Wy = H, and for

r <0, we set W,. = (W_,.), where prime indicates the dual space.

Also, we recall that the operator —9? in L?(0,7) with zero Dirichlet bound-
ary conditions admits a sequence of eigenvalues {u; = k?}?°, and eigenfunctions
{sin kxz}22 . This family of eigenfunctions is an orthogonal basis in L?(0, 7).

For S = —0%Iy in L?(0,m;RY) with zero Dirichlet boundary conditions, we
set W, = Dom(S"/2). So, Wy = L?(0,m;RN), W, = H}(0,m;RY), and Wy =
H2(0,m;RY) N HY 0, 7 RY).

Our main result is the following:

Theorem 1.2. For a given matric A with eigenvalues {\;}, suppose that the fol-
lowing conditions hold:

(i) [A|b] satisfies the Kalman rank condition,
(i)
M — i 7 X — Ay, Ve IeNVI<ij<Nwthk#!1 andi# j,
(iii) T > 2N,
Then System (1)—(3) is exactly controllable in H = Wy_1 X Wn_s.

If (i) or (i) does not hold, then the codimension of the reachable set of System
(1)-(3) in L2(0,m;RN) x H=1(0,7m;RYN) is infinite. On the other hand, if (ii) fails,
the sequence {k*+ X}, k € N, 1 =1,..., N, only contains a finite number of multiple
points, and so the codimension of the reachable set is finite. Hence, if any of (i),
(i1), or (iii) is not satisfied, then System (1)—(3) is not approzimately controllable,
i.e., the closure of the reachable set is a proper subspace of H.

In order to prove this theorem, we begin by considering two subcases: when
A has N distinct eigenvalues and when A has a single eigenvalue with algebraic
multiplicity V. For each of these subcases, we have the following theorems.

Theorem 1.3. Suppose that A has N distinct eigenvalues Ay, ..., A\y. Assuming
that Conditions (i), (ii), and (iii) of Theorem 1.2 hold, then System (1) is exactly
controllable in H = Wy_1 x Wy_o.

Theorem 1.4. Suppose that A has a single eigenvalue, A, with algebraic multiplicity
N. Assuming that Conditions (i) and (iii) of Theorem 1.2 hold, then System (1) is
exactly controllable in H = Wy_1 X Wn_s.

The proof of Theorem 1.3 was presented in [6], the proof of Theorem 1.4 was
described in [15].

Remark 1. With respect to Theorem 1.2, we have the following remarks.
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e Conditions (i) and (ii) are also necessary conditions that appear in [4] for the
null controllability of N coupled one-dimensional parabolic equations. The
hyperbolicity of the equations in our case requires a minimal control time,
namely 7' > 2N.

e In general, the reachable space H is not optimal. In some particular situations
it is possible to give an optimal description of the space. Examples include the
cases when N = 2 or the coupling matrix is cascade, i.e., when A is triangle
inferior, or when A is given in canonical form. Some comments on the optimal
reachable space are given in the last section.

The structure of the paper is as follows: we begin by proving Theorems 1.3 and
1.4. Using these theorems, we then prove Theorem 1.2. Additionally, we consider
a particular case where N = 2 to demonstrate that we can obtain controllability in
the sharp space of regularity.

2. Proof of Theorem 1.3 - The case of distinct eigenvalues.

2.1. The Fourier method and existence of solutions. In this section, we use

the Fourier method and apply it to the case where the coupling matrix A has N

distinct eigenvalues. On the assumptions of Theorem 1.3, we denote {p;}Y | to be

the family of eigenvectors of A with corresponding eigenvalues {\;},. We denote

by (-, -) the inner product in RV and so A* has eigenvalues {\;}}¥., and eigenvectors
(is 1) = ij-

As a result of Condition (i) of Theorem 1.3, we have the following lemma.

Lemma 2.1. Eigenvectors {¢;}N | and {1;}¥., may be chosen such that (b, ;) = 1
while maintaining (i, V) = 0;5.

Proof. We first claim that (b,1;) # 0. Indeed, if there exists 1 < k < N such that
(b,g) =0, then forall 1 <n < N -1

(A™b, i) = (b, (A") i) = (b, (\e)" ) = A (b, vow) = 0.

This implies that the columns of the matrix [A|b] are linearly dependent, which is
a contradiction to A and b satisfying the Kalman rank condition. Hence, we can
construct the sets {p;}; and {¢;}¥, where

@i = (b, )i,
W
Y T

It then follows that (b,4b;) = 1for 1 <i < N and (@;,4);) = §; for 1 <i,j < N. 0O

So we may assume that (b,1);) = 1. Let us define ®,;(x) = sin(nz)p;. Then
{®,;(x)}, n €N, j=1,...,N, is a Riesz basis in L%(0,7;R") with biorthogonal
family {,;(x)} where

2 .
U,,(x) = = sin(nz);.
We then represent the solution u of System (1) in the form of the series

w(@,t) = 3 4y () B0y (2) (5)

n,j
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and set
v(z,t) = g(t) Vi (), (6)

for some k € N, 1 <1 < N, and where g(t) is a smooth function, i.e., g € C3(0,T).
Below are standard routine manipulations to solve for the coefficients ay,;(t):

T T
0= / / (ugy — Uge + Au,v)dz dt
o Jo
T T ™
= / / (U, Vg — Vg + A 0)dz dt +/ [(ug, v) — (u, vt>]tT o dx

o Jo 0

T
- [ ) = g

T T
= / / (u, G0 g + k29U + NgVUp)da dt

—f/ (b, ) F(£)g(2)
:/0 ali + (k2 +N)g dt——/ ()

T PR—
:/ it + (K2 + N )arlg dt——/ F(#)g(t) dt.
0 ™ Jo

Thus we obtain the equations

. +— 2k
g + (k% + N)ay = — @) (7)

with zero initial conditions that follow from (3), i.e.
akl(O) =0= dkl(O). (8)

We denote k? + A; by w?,. In the formulas below we assume that wy; # 0. In the

case where wy; = 0, we will set w =t (see e.g. [8] Sec. II1.2). We note the
following properties of wy;.

Proposition 1. Letk € K= {+1,£2,...} and 1 <1,m < N with ] # m. Provided

Condition (i) of Theorem 1.2, we have the following:

(1) |wwl + 1< |K],

(2) |wki — Wem| =< [k|7L, and

(8) Fork fized, the points wy; are asymptotically close, i.e., these N points lie inside
an interval whose length tends to zero as k tends to infinity.

The solution of (7)—(8) is given by the formula

mw—%Aﬂmet”m. (9)

m Wi

By differentiating we obtain

2k
akl / f COS wkl(t - 7') dr. (10)
We now introduce the coefficients

cr(t) = iwgrar (t) + ar(t). (11)
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We define w_j; = —wpi, a_p; = axg, and a_g; = a for k € K, [ € {1, .. .,N}, and
rewrite (9) and (10) in the exponential form:

2k
Ckl / f m}kl (t=7) dr. (12)

Taking into account that {®,,;} forms a Riesz basis in L?(0, m; R"V) and Proposition
1 Property (1), we conclude that (by [8] Sec.III.1)

|Ckl (t)|2 - 2 13
Z EECEEE [l 720,y + el 1 1(0,m;RN ) (13)
keK

On the other hand, from the explicit form for wy;, it follows that for any T' > 0,
the family {e?*'} is either a finite union of Riesz sequences if T < 2N or a Riesz
sequence in L2(0,T) if T > 2N7 (see [8] Section I1.4). We recall that a Riesz
sequence is a Riesz basis in the closure of its linear span. Therefore, from (12) it

follows that for every fixed ¢ > 0

Z |Ckl]g( e ||f||Lz(0 t) = ||fHL2(0 T) -

k.l

Recall that (13) and (14) refer, respectively, to two-sided and one-sided inequalities
with constants independent of the sequences (cg;), (k), and of the function f.

Additionally, it can be shown that the series in (14) is uniformly convergent
by the Weierstrass criterion for uniform convergence. And by the uniform limit
theorem, we obtain

Z|Ckl +h _Ckl<t)|

—0, h—0.

We combine our results in the following theorem.

Theorem 2.2. For any f € L?(0,T), there exists a unique generalized solution u'
of the IBVP (1)—(3) with coupling matriz A € L(RN) with distinct eigenvalues such
that
(uf,uf) € C([0,T); L2(0,m; RY) x H™1(0,m;RY)) =2 v
and
! ul) [l < [1F ]| 22 0.1)-

2.2. Controllability results. In this section we will prove Theorem 1.3. We define
Y1 to be

2% oot
Yl = Ckl<T) (ﬂ_ezwsz> (15)
and rewrite (12) for ¢ = T' in the form
Yer = (f, ext)r2(0,1)5 (16)

where ey (t) = e™*t. We note that

|lew (T
Dbl =) s
] %l k

For any T > 0, the family {eg;} is not a Riesz basis as a result of Proposition 1
Property 3. Therefore, we need to use the so-called exponential divided differences
(EDD). EDD were introduced in [9] and [10] for families of exponentials whose
exponents are close, that is, the difference between exponents tends to zero. Under
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precise assumptions, the family of EDD forms a Riesz sequence in L?(0,T). For
each fixed k, we define
Er1 = [wpa] = €M7,

and for 2 <[ <N

eiwk]‘ t

l

€rl = [Wr1, WE2, - -+, WEl] = .

kil = [Wh1, Wk, - - Whi] ; T, 2, (05 — onr)

Under Condition (ii) of our theorem, we are able to use this formula for divided

differences in place of the formula for generalized divided differences (see e.g. [10]).

From asymptotics theory and the explicit formula for wy;, it follows that the

generating function of the family of EDD {é; } is a sine-type function (see [8, 9, 10]).

Hence, the family of EDD {é,} forms a Riesz sequence in L?(0,T) for T > 27 N.
We then define

et = (f5 €k1)12(0,1)-

Since {éy,} is a Riesz sequence, {(x1) | f € L*(0,T)} = ¢?, i.e. any sequence from
/5 can be obtained by a function f € L?(0,7T) and the family {é;;}. Proposition 1

Property (2) implies that |Yx| < |k~ ~1y4|. Recalling Equations (15) and (16) , we
obtain

{(wa) | f € L*(0,T)} 2 X, (17)
where

oy = {(akl) | Z KN a|? < OO}-
k.l

Since {®;} forms a Riesz basis in L2(0,7;RY), it follows from (11), (15), and (17)

that (u(-,t),us(-,t)) € Wy—1 X Wy_o and we have proved Theorem 1.3.

3. Proof of Theorem 1.4 - The case of a repeated eigenvalue.

3.1. Properties of root vectors and root vector adjustment. In this section,
we investigate System (1) in the case where the coupling matrix A has only one
eigenvalue, denoted A, with algebraic multiplicity N and geometric multiplicity 1.
We will assume that A and b satisfy the Kalman rank condition (4). We remark that
A is real since imaginary eigenvalues occur in conjugate pairs. We will define the
vectors ¢ and 11 to be the eigenvectors of A and A*, respectively. Additionally, we
let v1,p2,...,on—1 and 9,3, ...,%N be root vectors of A and A*, respectively.
So we have the following;:

(A= M)gp; =pit1, 1<i<N-1
(A=A)pn =0,

(A* = X) =0,

(A" =AD)Yj =¢j1, 2<j<N.

In particular, the collection {¢;} is listed in reverse order in comparison to {1;}.
This is intended to simplify indexing and reflect the construction of a biorthogonal
family for {y;}. With this construction, we have the following propositions.

Proposition 2. (¢n,9;) =0 for1 <j < N —1.
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Proof. Let 1 < j < N — 1. We observe that

Men, ¥it1) = (Mo, Y1) = (Apn, ¥j41) = (N, Aj11)
and
MensYit1) = (N Mpjp1) = (N, A™Yj41) — (on, ¥5)-
Comparing right hand sides yields

(pn, 1) = 0.

Proposition 3. (on,¥n) # 0.

Proof. Suppose on the contrary that (pn,¥n) = 0. Together with Proposition 2,
we have

This implies that ¢ = 0, which is a contradiction because {¢;}Y; is a basis in
RY. O
Proposition 4. (p;, ;) = (pit1,¥j41) for 1 <i,j < N —1.
Proof. Let 1 <i,j7 < N — 1. Observe that

Meis Vi) = (Api, Yj11) = (Apis Vi) — (Qit1, Pjr1)
and

Mi, Y1) = (i Mpj1) = (@i, A1) — (@3, 5)-

Comparing the right hand sides yields (@;, ;) = (Yit1,¥;+1), as desired. O

Proposition 5. (b,11) # 0.
Proof. Suppose on the contrary that (b,11) = 0. Then for 0 <n < N — 1, observe
<Anba ¢1> = <b7 (A*)n¢1> = <b7 /\n¢1> = /\n<b7 ¢1> =0.

This implies that the columns of the matrix [A|b] are linearly dependent. This is a
contradiction because A and b satisfy the Kalman conditions and so [A|b] has rank
N. O

We now claim that given {¢;}}; and {¢;}}_,, we can adjust them in a specific
way.
Lemma 3.1. Given 91, we can construct a collection {1; ;_v:l such that
(i) (A* = M)y =0,
(ii) (A* = XYy =1, for 2 < j < N, and
(1) (b,vj) = 01;.
Proof. From Proposition 5, (b,11) # 0. Define
Tt
1/}1 <b7 1/J1
Since 1 is a scalar multiple of ¥y, (A* — M)y = 0 and (b, 1) = 1, as desired.

~

From );, we obtain v, with (A* — Xty = 1b;. We set
Wy = by — (b, 1)1
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Observe that
(A" = M)y = (A" = AI)(th2 — (b, b2)tn)
— (A" = D)z — (b, 462) (A" = D)y
= 1/;1~
Also,
(b 1)2) = (b,12) = (b, 92)(b, 1) = 0.
We then proceed iteratively to build the collection {1[)]}5\7:1 that satisfies the

conditions of the lemma. O
Lemma 3.2. Given oy and {1; }1, we can construct a collection {p;}1-, such
that

(1) (A=A

ON
(i) (A f~)\I)g5 Gig1 for L <i< N -1, and
(i1i) (P, ;) =
Proof. From Propositions 2 and 3, {(©n, 1/;]> =0forl <j < N-1land (pn, 1/~JN> #0

We define
~ PN

N <§0N71/~)N>

so that (@, n) = 1.
From ¢y, we can obtain ¢y _1 such that (A—A)pn_1 = ¢n. From Proposition

4, (pN_1,0;) =0for 1 <j < N —2and (pn_1,%n_1) = 1. We set
N1 =pN—1— (PN—1,UN)PN-
With this construction, Condition (ii) is still maintained and (Px_1,;) = 0 for

j# N — 1 with <¢N—171/~}N—1> =1

Similarly, we obtain @yx_o such that (A — AM)py_2 = ¢n_1. Using ¢n and
pn—1 with Proposition 4 yields

TN 1 y J = 2
<‘/’N2’¢j>_{0 1<j<N-3 orj=N-1.
We similarly define ¢y _o by
GN-2=oN-2 — (PN-2,VN)PN.

Continuing this process iteratively yields a collection {;} ; satisfying the con-
ditions of the lemma. O

We combine all our results into the following lemma.

Lemma 3.3. Given System (1) with A and b given and satisfying the Kalman
conditions, we may choose vectors {p;}1_,, {1h;}}, such that

(i) (A=A)p; = @ip1 for1<i< N -1,

(i1) (A M)ey =0,

fiii) (A" — ATy =0,

(v) (A* = X); =1 for2<j <N,
(v) (b »%ﬁ ) =015, and

(vi) (i, ¥5) = bij.
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3.2. The Fourier method and existence of solutions. In this section, we will
be using the Fourier method. We will assume the conditions of Theorem 1.4 and use
the results of Lemma 3.3. We define ®,,;(x) = sin(nz)p; and note that {®,;(z)},
n €N, j=1,...,N, is a Riesz basis in L?(0,r;RY) with biorthogonal family
{¥,,;(z)} where

W) = = sin(n)y (o).

We thus write the solution to System (1) with zero Dirichlet boundary conditions
in the form of the series

u(z,t) = Z i ()P (),

and set

v(z,t) = g(t)Vri(2),
with g(t) being a smooth function. In the same way as in Section 2.2, we obtain
the integral identity

T T o2k T
/0 /0 (U, vy — Voo + Av) da dt = ?<b, 1/11>/0 f(t)g(t) dt. (18)
For now, we set | = 1 and since 7 is an eigenvector of A* and (b,11) = 1, from
(18) we obtain
T ok [T
[ (o) + o @l e = 2
0 T Jo

where w% = k? + X\. We then obtain the differential equation

f(t)g(t) dt,

.. 2k
1 (t) + wiag: (t) = ?f(t) (19)
with initial conditions
akl(()) =0= dkl(o)- (20)

As before, we are assuming that w? # 0 and if otherwise, we can make the same
changes as prescribed in Section 2.2. The solution of (19) and (20) is given by

ap(t) = %A f(ﬂwdr

m WE

We now let I =2,..., N in (18). We note that 1); is then a root vector and hence
A*py = MYy + —1. Additionally, we have (b,;) = 0. So, from Equation (18), we
obtain

T T
[ aw®) + wtan@lo(o) dt =~ [ aiagte ae
0 0
Thus, we obtain the solution for ak;(t) to be
¢
ar(t) = —/ ag,—1(7)
0

To motivate the following results, we compute ag;(t) and ay;(¢) for I = 1,2,3.

t
ag1(t) = %/O f(r)sinwg(t —7) dr

sinwyg (t — 7)
—=dr.
WEk 4

akg(t):& 1) {(t—T)coswk(t—T)—wlksinwk(t—r) ir



COUPLED 1-D WAVE EQUATIONS 265

ars(t) = —47:“%% /O f(r) {(t P sinwn(t—7) + w%(t 1) coswi(t — 7)
— % sin wy (t — T):| dr.
k
g (t 2k / f(7)coswy(t — 7) dr (21)
ara(t) = —W—fzk ; f(O)(t —7)sinwg(t — 1) dr
ags(t) = —47:1]% /0 fl) {(t —7)2coswp(t — ) — wik(t —7)sinwg(t —7)| dr

We now introduce the functions by (t) and Y (t), for ke N, I =1,...,3, defined

as
br1 (t / f )sinwyg(t — 7) dr = %akl(t)
bia(t) = wk CF) - P eoswnlt -7y dr = R aa(t) + S 1 (0):
4
bas(t) = / FE)E =) sinwp(t — ) dr = — 9% ) — ST an(0),
k kwk
Bkl(t) = wk/ f(r)coswg(t — 1) dr = %dm(t)?
/b\kg(t): / f LL—T)Slnwk(t—T)d :—%dkz(t),
~ 47ka . 3 .
_ _ )2 _ — _ -
brs(t) = o ) f( )t —7)% coswg(t — ) dr p axs(t) Toor aga(t).

22

The purpose of this is to note that the transformation between the famglieg

{aw(t), ar(t)} and {bu(t),bu(t)} is both bounded and boundedly invertible in

(2. We proceed by considering the family {bkl(t),gkl (t)}. We introduce the func-

tions Ckl(t) with w_g = —wyg, b_k(t) = br(t), and /b\,kl(t) = /b\kl(t) for k e K =
{£1,+£2,...} in the form

alt) = iwrbra (1) +0a(t) , if 1 odd,
MR wrbgi(t) + bk (t) , if I even.

Hence,
wy P (t) = f( )t —7)! e T dr, (23)
for 1<l <N.

Recall that {®,,;(z)} forms a Riesz basis in L?(0,7; RY) and with Proposition 1
Property (1),

ler (t)[?
Z 2 = Hu('Vt)”%?(O,W;RN) + ”ut( )”H 1(0,m;RN )
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Additionally, from (23), it follows that for all ¢ > 0,

lew ()]
> Yz " 11720, < 1F1Z2007)-

This implies that the sequences (ay;(t)) and (k= ag,(t)) belong to £2. Hence, u(-,t) €
L0, m;RY) and (-, t) € H1(0, m; RY).
Similar to Section 2.1, we have

. 2
3 |C’”(t+h;2 w0, hoo.

So, we obtain an analog of Theorem 2.2.
Theorem 3.4. For any f € L*(0,T), there exists a unique generalized solution u’
of the IBVP (1) - (8) with coupling matriz A € LRN) with a single eigenvalue
such that (uf, uf) € V and

1! ud) v < 1F 1172 0.1y-
3.3. Controllability results. We will now prove Theorem 1.4. We denote ey, (t) =

ti=letwrt and define fT(t) = f(T —t). With (23), we have

wi 2o (T) = (fTs e—m)r20.1)-

Since {ex1,...,ern} is a Riesz sequence in L2(0,T) for T > 2N (see e.g. [8] I1.4),
{(K2eu(T)) | f € L*(0,T)} = £2.
It follows that

{(ea(T)) | f € L*(0,T)} 2 £} -

Hence, the space to guarantee exact controllability is W _1 x W _o and Theorem
1.4 is proved.

4. Proof of Theorem 1.2 - The general case.

4.1. The Fourier method and existence of solutions. Equipped with Theo-
rems 1.3, 1.4, 2.2, and 3.4, we now consider the case of a more general coupling
matrix A. We now consider System (1) with A and b satisfying the assumptions of
Theorem 1.2. Let Aq1,..., Ay be the distinct eigenvalues of A with corresponding

algebraic multiplicities myq, ..., my;. We note that
M
Z m; = N.
i=1
For each i = 1,..., M, we construct the collection of eigenvectors and root vec-

tors corresponding to A;, denoted {¢;; };":1 For each of these collections, we have
a corresponding biorthogonal family {1;}7",. From Lemmas 2.1 and 3.3, these
collections possess many specific properties as well as
(Pij, Yr1) = Oirdji-
We define ®,,,; = sin(nz)p;;. Then {®n;(x)}, n € N, i = 1,...,M, j =
1,...,m;, is a Riesz basis in L?(0, m; RY) with biorthogonal family {¥,;;} where

U,(x) = ;Sin(nx)z/}ij.
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We then use the Fourier method and express the solution u(z,t) as
=D anig () @i (). (24)
n,i,j

By doing so, for each [ = 1,...,n, we obtain, as in the case of Section 2, coeffi-
cients ay;(t) defined below. We similarly denote w,%l = k2+)\; and recall Proposition

1.
2k [t sinwg(t — 7
ap(t) = 7/ f(r)L) dr,
™ 0 Wel

el T) g g a

t
ay;(t) = —/ ai,j-1(7)
0
Similar to Section 3.2, from {ax;(t), ari;(t)}, we construct the collection
{bri;(t), bri;(t)}. We then define the functions cy;(t) for k € K with w_g; = —wp,
b () = bri; (), and by (t) = brs (t) by

Chl (t) _ iwklbklj (t) -I-Eklj (t) s lfj even,
J wklbklj (t) + ibklj (t) s lf] odd.

Wkl

So,
t
At (0) = [ S@E= e i (25)

Similar to Theorems 2.2 and 3.4, the collection {eg;; }, where ey;(t) = 7~ 1etwrt,
is either a Riesz sequence in L?(0,T) if T > 2N, or a finite union of Riesz sequences
for T' < 2Nm. Hence, we obtain the following theorem.

Theorem 4.1. For any coupling matriz A € LRYN) and for any f € L?>(0,T), there
exists a unique generalized solution uf of the IBVP (1)~(8) such that (uf, uf) € V
and

I )l < [1f 1|22 0.1)-

4.2. Controllability results. We define the sequence {7;;} by

— 1 T—
iy = wiy “exi(T / flr )i teten (=) gr,

so that
Yetj = (F7 s e—rij) 2 01)

where f7(t) = f(T —t) and ey (t) = 7~ 1e™rt. We note that|y;| < [k™ e (T)|.

In addition to Lemma 1 Property (2), we also need to account for eigenvalues with
algebraic multiplicity greater than one, and thus we are required to use generalized
divided differences (GDD). For each fixed k, we will list the sequence {wy, } including
multiplicities.

GDD were described in [9] and [10]. For each fixed k, we define the divided
difference (DD) of order zero of the point wy is [wg1](t) = e™*1t. The DD of order

l—1,1< N, corresponding to wg,...,wg; is
Whlse -y Whio1] — |[Wha, ..., W
[Wris -y Wiy 1]_ [wWr2s - - s kz]7 Wi % wht
[wkl, . ,wkl] = 9 Wg1 — Wkl
aiw [W, WE2y -+ - ;wk:,lfl] |w:wk1a WE1 = Wkl-
We then denote éj;(t) = [wg1, - - ., wk]. We note that with this construction, the

functions €1, . ..,Ekm, are in fact the functions e™rit teiwrt - ¢gmi—leiwiat Ip
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addition, by the main theorems of [9] and [10], the collection of functions {&} ,
is a Riesz sequence in L?(0,7T) for T > 2Nw. We then define

et = (f, ) L2 (0,1)

and therefore {(34;) | f € L*(0,T)} = £2. From here, we note that the relation
among 'Yklj7 ’N}/kl, and Cklj (T) is

D kal® <D IR T2 <Y RN e (TP

Hence, it follows that
{(eris (1)) | f € L*(0,T)} 2 (3, (26)

and since {®,;;(z)} forms a Riesz basis in L?(0,m;RY), we deduce from (26) the
result of Theorem 1.2.

We will now prove the negatives results in Theorem 1.2. We first assume that
(i) and (iii) hold, but (ii) does not hold. Observe that this may only happen for a
finite number of indices (see [4]). So we have

k2 —13=N,— N, 1<d<m.

In this situation, the family given in (12), {eg;}, is clearly linearly dependent since
some function (or functions) is repeated twice in the family. Thus, according to
Theorems 1.2.1e and II1.3.10e in [8], System (1) is not approximately controllable
for any T > 0.

Let us now suppose that (i) does not hold. We will use the Hautus test, which
is equivalent to the Kalman rank condition (see [17] Prop. 1.5.5 and [4] Prop. 3.1).
If the Kalman rank condition does not hold, then there exists A € 0(A*) such that

A* — A
b*
Hence, there exists 1 < [ < M such that 1; is an eigenvector of A* corresponding

to A and (b,1;) = 0. This then implies that for all k € K, 1 < j < my,

Cklj (T) = O,

and thus the codimension of the reachable set is infinite.

If condition (iii) is not met, i.e. T'< 2N, then from [9] and [10], it follows that
the family of EDD {é;;} is not a Riesz basis in L?(0, 7). In particular, we can split
{é1} into two subfamilies & and &; such that & is a Riesz sequence in L2(0,7)
and &; has infinite cardinality. This implies that {é;} is not linearly independent
and hence the reachable set has infinite codimension.

Thus we have proved the negative part of Theorem 1.2, and the proof is complete.

rank[ } < N.

5. A particular case: N = 2. In the previous sections, we proved exact control-
lability with respect to a more regular space than the space of regularity for the
system. This is typical of hybrid systems where clusters of close spectral points
appear. However, in the case where N = 2, we are able to prove the sharp con-
trollability result, i.e., to prove exact controllability in the space of sharp regularity
of the system. To do this, we develop a new method based on the construction of
a basis in a so-called asymmetric space. This method was proposed in [7] when
investigating the controllability of another hybrid system of hyperbolic type — the
string with point masses. In the present paper, we extend this method to the vector
case.
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We consider System (1)-(3) with N = 2 and

1 air a2

In other words, the boundary control acts only on the first equation and the second
equation is controlled through its connection with the first. From now on, we will
refer to this system as S;. The first question we ask is about the sharp regularity
space. We claim that

up(-,t) € L2(0,7), wua(-t) € HY(0,7).

From Theorem 4.1, (uq(-,t),u2(-,t)) € L?(0,7)%. From the structure of the
system, us is the solution to a wave equation with zero Dirichlet boundary conditions
where u; acts as the control over Q. Since u;(-,t) € L?(0,7), we conclude that
ug € HE(0,7) (see for example [8] Sec.V.1).

The main result of this section is

Theorem 5.1. Under conditions similar to those of Theorem 1.2, that is, with A
and b given by (27) with as; # 0 (so the Kalman rank condition for [A|b] is fulfilled),
that

e — p # M — A2, Vk, 1 €N, with k #1,

and that T > 4x, then the reachable set of System Sy, {(u/(-,T),uf (-, T)) | f €
L2(0,T)} is equal to Hy where

= (o) * (o))
for T > 4r.

If T < 4w, then the reachable set has infinite codimension in H;.

We will prove this theorem by considering the two possible cases, i.e., whether
the matrix A has two distinct eigenvalues or a repeated eigenvalue.

5.1. Proof for distinct eigenvalues. As before, we construct the set of sequences
(%) and for T > 4, this set runs over £2. This means that the set of the corre-
sponding sequences (ax; (7)) also runs over 2.

We now return to the representation in (5):

T)= Z nj (T) P (). (28)

Taking into account that for N = 2, we use EDD of order one, i.e.,
Gp2 — anl

apl = Gpl, Gp2 = ’
Wn2 — Wni

where we supress the argument 7. We can rewrite (28) in the form
T) = lin;j®nj(). (29)
n,J

It is easy to verify that
®p1 (2) = P () + Ppa() = sin(nz) (1 + ¢2), (30)
D2 () = Ppa(7) (Wn2 — wn1) = sin(na) 2 (Wn2 — wn1)- (31)

We note that |wp2 — wy1| < n~1 (Lemma 1 Property 2). We present the following
lemma.
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Lemma 5.2. FEigenvectors @1 and po can be chosen such that

1+ p2 = <g) : (32)

Proof. In particular, we claim that the second component of ;1 and , are nonzero.
If this is true, then by appropriate scaling, we can obtain eigenvectors 1 and @9
whose second components add to zero. Suppose on the contrary that ¢, has a zero
second component. By scaling, we can assume that

= (1)

By the orthogonality of 11,2, this implies that 15 has the form

w2—<2>,

for some nonzero x. However, this is a contradiction to the Kalman rank condition

% ((5)-)-o

Hence, ¢1 has a nonzero second component. Similarly, 2 has a nonzero second
component and the lemma is proved. O

We can now express (29) as

u(z, T) = zn: sin(na) {anl (g) +ng <5> (wno — wnl)} .

We note that v # 0 since ¢4 has a nonzero second component.

We recall that (@,;) and (G,2) may be arbitrary ¢? sequences (when f runs over
L?(0,T)). Taking into account that {sin(nx)} is an orthogonal basis in L?(0, ), we
begin by choosing the second component of u(z,T) to be any target function from
H}(0, ), and thereby choosing .

After choosing a2, we can then choose @, so that the first component of u(z,T")
will coincide with any prescribed function from L?(0, 7). We can treat u,(x, T) in a
similar fashion. This is due to the relation of sine and cosine and their appearance
in u(z,T) and u(x,T). Tt is this relation that allows us to obtain controllability
in any time 7" > 4m. Thus, one of the cases for the positive part of Theorem 5.1
is proved. We note that the negative part of the theorem can be proved similar to
Theorem 1.2.

As a result of this, we have the following corollary.

Corollary 1. The family {®,;} constructed in (30)-(32) forms a Riesz basis in
the asymmetric space L*(0,7) x H(0, 7).

Proof. We have proved that every function from L?(0,7) x H'(0,7) can be repre-
sented in the form of a series with respect to the family {®,,;} with £2 coefficients.
Uniqueness of the representation follows from the basis property of {sin(nz)} and
linear independence of the eigenvectors 1 and @s. Finally, it is clear that

a3 T 0,y + a2 (D o,m) < Y lang .
n,J



COUPLED 1-D WAVE EQUATIONS 271

As a remark, it may be shown that the latter sum is equivalent to || f||* where f
is the corresponding control to u(-,T"). Also, this control belongs to the closure of
the linear span of {e®ns'} in L?(0,T), and hence has minimal norm.

5.2. Proof for a repeated eigenvalue. From Lemma 3.3, we can obtain eigen-
vectors o, 11 and root vectors 1, s for A and A*, respectively, with certain
properties. We now express our solution wu(z,7T") using the Fourier Method and
observe that

u(z,T) = Zanj () (x)
= [an1 (1) @1 (2) + ana(T)Ppa(2)]
= [an (T) sin(naz)p1 + ana(T) sin(nz)ps]

= Zsin(nx) [an191 + anap2] - (33)
In the final equality, we suppress the argument of a,; and a,o for readability. By
Lemma 3.3, (b,19) = 0 and thus the first component of ¥ is zero. It then follows
from (p1,19) = 0 that o7 has the form

1= <g) , acRR. (34)

Thus, we can express @5 as

o2 = (f) . ByER, (35)

and we can express u(z,T) as

u(z, T) = zn: sin(na) {anl (‘5‘) +ans (f)} . (36)

From Equation (21) it follows that (a,2) € £? and we can choose a2 such that the
second component of u(x,T) is any target function from Hg (0, 7). After choosing
an2, we can then choose a, so that the first component of u(x, T') coincides with any
prescribed target function from L2(0, 7). Similar to the case of distinct eigenvalues,
we approach uy(z,T) in the same way. We have thus proved Theorem 5.1.

6. Open problems and further results. When the coupling matrix A is in lower
triangular form, it is not difficult to generalize the results for coupled hyperbolic
equations. That is, it is possible to prove exact controllability under the same
assumptions as Theorem 1.2 in the space H = H® x -+ x HN~! where HN =
Wxn x Wxn_1. On the other hand, given an arbitrary matrix A, if the Kalman
rank condition holds, we can obtain a canonical version of the original system and
obtain similar results for this transformed system. However, when converting back
to the original system, we may be taking linear combinations of the components of
u(x,t) with respect to the transformed system. Thus, an optimal description of the
controllability space is no longer possible.

In Section 5, we investigated the case where N = 2 and showed that we can
obtain sharp exact controllability, i.e., we have exact controllability in the same
space as the space of regularity. It remains to determine whether or not we can
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repeat this for different values of N. For N = 2, this is simple as there are only
two possibilities for the eigenvalues of the coupling matrix A. However, for N > 2,
the number of possibilities grows, and hence it may not be possible to prove in the
same way.

It remains an open problem to treat the boundary controllability of N coupled
wave equations in R?. The methods in this paper are not of use in the general
situation or when the matrix A depends on (z,t).
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