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Abstract. The focus of this paper is the exact controllability of a system of N
one-dimensional coupled wave equations when the control is exerted on a part of

the boundary by means of one control. We give a Kalman condition (necessary

and sufficient) and give a description of the attainable set. In general, this set
is not optimal, but can be refined under certain conditions.

1. Statement of the problem and main results. This work is devoted to the
study of the controllability properties of the following hyperbolic system utt − uxx +Au = 0, in Q = (0, π)× (0, T ),

u(0, t) = bf(t), u(π, t) = 0 for t ∈ (0, T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ (0, π),

(1)

where T > 0 is given, A ∈ L(RN ) is a given matrix referred to as the coupling
matrix, b a given vector from RN and f ∈ L2(0, T ) is a control function to be
determined which acts on the system by means of the Dirichlet boundary condition
at the point x = 0. The initial data (u0, u1) will belong to a Hilbert space H, which
is to be specified in our main result. Our goal is to give necessary and sufficient
conditions for the exact controllability of System (1) and the space H where this
can be done.

We recall that System (1) is exactly controllable in H at time T if, for every
initial and final data (u0, u1), (z0, z1), both in H, there exists a control f ∈ L2(0, T )
such that the solution of System (1) corresponding to (u0, u1, f) satisfies

u(x, T ) = z0(x), ut(x, T ) = z1(x). (2)

Due to the linearity and time reversibility of System (1), this is equivalent to
exact controllability from zero at time T . In other words, System (1) is exactly
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controllable if for every final state (z0, z1) ∈ H, there exists a control f ∈ L2(0, T )
such that the solution u to System (1) corresponding to f satisfies (2) and

u(x, 0) = 0 = ut(x, 0). (3)

Indeed, given exact controllability from zero at time T with controls f, g ∈ L2(0, T )
and their corresponding solutions uf (x, t) and ug(x, t) satisfying

uf (x, 0) = uft (x, 0) = 0,

uf (x, T ) = u0(x), uft (x, T ) = u1(x),

ug(x, 0) = ugt (x, 0) = 0,

ug(x, T ) = z0(x), ugt (x, T ) = z1(x).

We can define the control h ∈ L2(0, T ) by h(t) = f(T − t) + g(t). Then the
corresponding solution u(x, t) has the form u(x, t) = uf (x, T − t) + ug(x, t) and
satisfies

u(x, 0) = u0(x), ut(x, 0) = u1(x),

u(x, T ) = z0(x), ut(x, T ) = z1(x).

For this reason, we will assume that u0 ≡ 0, u1 ≡ 0.
As of now, the controllability properties of System (1) are well known in the

scalar case, i.e. when N = 1 (see for example [12]). When N = 1 and b 6≡ 0, System
(1) is exactly controllable in H = L2(0, π)×H−1(0, π) if T ≥ T0 = 2π.

Most of the known controllability results of (1) are in the case of two coupled
equations: see [5, 16, 11], but the results are for a particular coupling matrix A.
In the d-dimensional situation, that is, for a system of coupled wave equations in a
domain Ω ⊂ Rd, Alabau-Boussouria and collaborators have obtained several results
in the case of two equations with the Laplacian plus additional zero order terms
and particular coupling matrices (see e.g. [1, 2, 3] and the references therein).

On the other hand, controllability properties of linear ordinary differential sys-
tems are well understood. In particular, we have the famous Kalman rank condi-
tion (see for example [13] Chapter 2, p.35). That is, if N,M ∈ N with N,M ≥ 1,
A ∈ L(RN ) and B ∈ L(RM ;RN ), then the linear ordinary differential system

Y ′(t) = AY (t) +Bu(t),

Y (0) = Y 0 ∈ RN ,

is controllable at time T > 0 if and only if

rank[A|B] = rank[AN−1B,AN−2B, · · · , B] = N, (4)

where [AN−1B,AN−2B, · · · , B] ∈ L(RMN ;RN ).
Recently, Liard and Lissy [14] gave a general Kalman condition for the indirect

controllability of N coupled d-dimensional wave equations. Here, indirect control-
lability refers to having less control functions than equations.

In the framework of parabolic coupled equations, [4] gives a general Kalman
rank condition for the null boundary controllability of N coupled one-dimensional
parabolic equations. The aim of this research is to establish general results, as in
[4], in the case of one-dimensional coupled wave equations.

To state our results, we provide the following definition:
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Definition 1.1. Let S be a positive self-adjoint operator in a separable Hilbert
space H with spectrum {λn}∞n=1 and corresponding orthonormal eigenfunctions
{ϕn}∞n=1. We introduce a weighted space for r ∈ R

`2r =

{
(cn) | ‖cn‖r =

[ ∞∑
n=1

|cn|2|λn|r
]1/2

<∞
}
.

We then define the scale of spaces

Wr =

{
f | f =

∞∑
n=1

cnϕn, ‖f‖Wr := ‖(cn)‖r <∞.
}
.

For r > 0, we set Wr = Dom(Sr/2). In the case where r = 0, W0 = H, and for
r < 0, we set Wr = (W−r)

′, where prime indicates the dual space.

Also, we recall that the operator −∂2x in L2(0, π) with zero Dirichlet bound-
ary conditions admits a sequence of eigenvalues {µk = k2}∞k=1 and eigenfunctions
{sin kx}∞k=1. This family of eigenfunctions is an orthogonal basis in L2(0, π).

For S = −∂2xIN in L2(0, π;RN ) with zero Dirichlet boundary conditions, we
set Wr = Dom(Sr/2). So, W0 = L2(0, π;RN ), W1 = H1

0 (0, π;RN ), and W2 =
H2(0, π;RN ) ∩H1

0 (0, π;RN ).
Our main result is the following:

Theorem 1.2. For a given matrix A with eigenvalues {λi}, suppose that the fol-
lowing conditions hold:

(i) [A|b] satisfies the Kalman rank condition,
(ii)

µk − µl 6= λi − λj , ∀k, l ∈ N, ∀1 ≤ i, j ≤ N with k 6= l and i 6= j,

(iii) T ≥ 2Nπ.

Then System (1)–(3) is exactly controllable in H = WN−1 ×WN−2.
If (i) or (iii) does not hold, then the codimension of the reachable set of System

(1)-(3) in L2(0, π;RN )×H−1(0, π;RN ) is infinite. On the other hand, if (ii) fails,
the sequence {k2+λl}, k ∈ N, l = 1, . . . , N , only contains a finite number of multiple
points, and so the codimension of the reachable set is finite. Hence, if any of (i),
(ii), or (iii) is not satisfied, then System (1)–(3) is not approximately controllable,
i.e., the closure of the reachable set is a proper subspace of H.

In order to prove this theorem, we begin by considering two subcases: when
A has N distinct eigenvalues and when A has a single eigenvalue with algebraic
multiplicity N . For each of these subcases, we have the following theorems.

Theorem 1.3. Suppose that A has N distinct eigenvalues λ1, . . . , λN . Assuming
that Conditions (i), (ii), and (iii) of Theorem 1.2 hold, then System (1) is exactly
controllable in H = WN−1 ×WN−2.

Theorem 1.4. Suppose that A has a single eigenvalue, λ, with algebraic multiplicity
N . Assuming that Conditions (i) and (iii) of Theorem 1.2 hold, then System (1) is
exactly controllable in H = WN−1 ×WN−2.

The proof of Theorem 1.3 was presented in [6], the proof of Theorem 1.4 was
described in [15].

Remark 1. With respect to Theorem 1.2, we have the following remarks.
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• Conditions (i) and (ii) are also necessary conditions that appear in [4] for the
null controllability of N coupled one-dimensional parabolic equations. The
hyperbolicity of the equations in our case requires a minimal control time,
namely T ≥ 2Nπ.

• In general, the reachable space H is not optimal. In some particular situations
it is possible to give an optimal description of the space. Examples include the
cases when N = 2 or the coupling matrix is cascade, i.e., when A is triangle
inferior, or when A is given in canonical form. Some comments on the optimal
reachable space are given in the last section.

The structure of the paper is as follows: we begin by proving Theorems 1.3 and
1.4. Using these theorems, we then prove Theorem 1.2. Additionally, we consider
a particular case where N = 2 to demonstrate that we can obtain controllability in
the sharp space of regularity.

2. Proof of Theorem 1.3 - The case of distinct eigenvalues.

2.1. The Fourier method and existence of solutions. In this section, we use
the Fourier method and apply it to the case where the coupling matrix A has N
distinct eigenvalues. On the assumptions of Theorem 1.3, we denote {ϕi}Ni=1 to be
the family of eigenvectors of A with corresponding eigenvalues {λi}Ni=1. We denote

by 〈·, ·〉 the inner product in RN and so A∗ has eigenvalues {λi}Ni=1 and eigenvectors
{ψi}Ni=1 with

〈ϕi, ψj〉 = δij .

As a result of Condition (i) of Theorem 1.3, we have the following lemma.

Lemma 2.1. Eigenvectors {ϕi}Ni=1 and {ψi}Ni=1 may be chosen such that 〈b, ψj〉 = 1
while maintaining 〈ϕi, ψj〉 = δij.

Proof. We first claim that 〈b, ψj〉 6= 0. Indeed, if there exists 1 ≤ k ≤ N such that
〈b, ψk〉 = 0, then for all 1 ≤ n ≤ N − 1

〈Anb, ψk〉 = 〈b, (A∗)nψk〉 = 〈b, (λk)nψk〉 = λnk 〈b, ψk〉 = 0.

This implies that the columns of the matrix [A|b] are linearly dependent, which is
a contradiction to A and b satisfying the Kalman rank condition. Hence, we can
construct the sets {ϕ̃i}Ni=1 and {ψ̃i}Ni=1 where

ϕ̃i = 〈b, ψi〉ϕi,

ψ̃i =
ψl

〈b, ψi〉
.

It then follows that 〈b, ψ̃i〉 = 1 for 1 ≤ i ≤ N and 〈ϕ̃i, ψ̃j〉 = δij for 1 ≤ i, j ≤ N .

So we may assume that 〈b, ψi〉 = 1. Let us define Φnj(x) = sin(nx)ϕj . Then
{Φnj(x)}, n ∈ N, j = 1, . . . , N , is a Riesz basis in L2(0, π;RN ) with biorthogonal
family {Ψnj(x)} where

Ψnj(x) =
2

π
sin(nx)ψj .

We then represent the solution u of System (1) in the form of the series

u(x, t) =
∑
n,j

anj(t)Φnj(x) (5)
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and set

v(x, t) = g(t)Ψkl(x), (6)

for some k ∈ N, 1 ≤ l ≤ N , and where g(t) is a smooth function, i.e., g ∈ C2
0 (0, T ).

Below are standard routine manipulations to solve for the coefficients anj(t):

0 =

∫ T

0

∫ π

0

〈utt − uxx +Au, v〉dx dt

=

∫ T

0

∫ π

0

〈u, vtt − vxx +A∗v〉dx dt+

∫ π

0

[〈ut, v〉 − 〈u, vt〉]Tt=0 dx

−
∫ T

0

[〈ux, v〉 − 〈u, vx〉]πx=0 dt

=

∫ T

0

∫ π

0

〈u, g̈Ψkl + k2gΨkl + λlgΨkl〉dx dt

− 2

π

∫ T

0

k〈b, ψl〉f(t)g(t) dt

=

∫ T

0

akl[g̈ + (k2 + λl)g] dt− 2k

π

∫ T

0

f(t)g(t) dt

=

∫ T

0

[äkl + (k2 + λl)akl]g dt−
2k

π

∫ T

0

f(t)g(t) dt.

Thus we obtain the equations

äkl + (k2 + λl)akl =
2k

π
f(t) (7)

with zero initial conditions that follow from (3), i.e.

akl(0) = 0 = ȧkl(0). (8)

We denote k2 + λl by ω2
kl. In the formulas below we assume that ωkl 6= 0. In the

case where ωkl = 0, we will set sin(ωklt)
ωkl

= t (see e.g. [8] Sec. III.2). We note the
following properties of ωkl.

Proposition 1. Let k ∈ K = {±1,±2, . . .} and 1 ≤ l,m ≤ N with l 6= m. Provided
Condition (ii) of Theorem 1.2, we have the following:

(1) |ωkl|+ 1 � |k|,
(2) |ωkl − ωkm| � |k|−1, and
(3) For k fixed, the points ωkl are asymptotically close, i.e., these N points lie inside

an interval whose length tends to zero as k tends to infinity.

The solution of (7)–(8) is given by the formula

akl(t) =
2k

π

∫ t

0

f(τ)
sinωkl(t− τ)

ωkl
dτ. (9)

By differentiating we obtain

ȧkl(t) =
2k

π

∫ t

0

f(τ) cosωkl(t− τ) dτ. (10)

We now introduce the coefficients

ckl(t) = iωklakl(t) + ȧkl(t). (11)
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We define ω−kl = −ωkl, a−kl = akl, and ȧ−kl = ȧkl for k ∈ K, l ∈ {1, . . . , N}, and
rewrite (9) and (10) in the exponential form:

ckl(t) =
2k

π

∫ t

0

f(τ)eiωkl(t−τ) dτ. (12)

Taking into account that {Φnj} forms a Riesz basis in L2(0, π;RN ) and Proposition
1 Property (1), we conclude that (by [8] Sec.III.1)∑

k∈K

|ckl(t)|2

k2
� ‖u(·, t)‖2L2(0,π,RN ) + ‖ut(·, t)‖2H−1(0,π;RN ). (13)

On the other hand, from the explicit form for ωkl, it follows that for any T > 0,
the family {eiωklt} is either a finite union of Riesz sequences if T < 2Nπ or a Riesz
sequence in L2(0, T ) if T ≥ 2Nπ (see [8] Section II.4). We recall that a Riesz
sequence is a Riesz basis in the closure of its linear span. Therefore, from (12) it
follows that for every fixed t > 0∑

k.l

|ckl(t)|2

k2
≺ ‖f‖2L2(0,t) ≤ ‖f‖

2
L2(0,T ). (14)

Recall that (13) and (14) refer, respectively, to two-sided and one-sided inequalities
with constants independent of the sequences (ckl), (k), and of the function f .

Additionally, it can be shown that the series in (14) is uniformly convergent
by the Weierstrass criterion for uniform convergence. And by the uniform limit
theorem, we obtain ∑

k,l

|ckl(t+ h)− ckl(t)|2

k2
→ 0, h→ 0.

We combine our results in the following theorem.

Theorem 2.2. For any f ∈ L2(0, T ), there exists a unique generalized solution uf

of the IBVP (1)–(3) with coupling matrix A ∈ L(RN ) with distinct eigenvalues such
that

(uf , uft ) ∈ C([0, T ];L2(0, π;RN )×H−1(0, π;RN )) =: V
and

‖(uf , uft )‖V ≺ ‖f‖L2(0,T ).

2.2. Controllability results. In this section we will prove Theorem 1.3. We define
γkl to be

γkl := ckl(T )

(
2k

π
eiωklT

)−1
(15)

and rewrite (12) for t = T in the form

γkl = (f, ekl)L2(0,T ), (16)

where ekl(t) = eiωklt. We note that∑
k,l

|γkl|2 �
∑
k,l

|ckl(T )|2

k2
.

For any T > 0, the family {ekl} is not a Riesz basis as a result of Proposition 1
Property 3. Therefore, we need to use the so-called exponential divided differences
(EDD). EDD were introduced in [9] and [10] for families of exponentials whose
exponents are close, that is, the difference between exponents tends to zero. Under
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precise assumptions, the family of EDD forms a Riesz sequence in L2(0, T ). For
each fixed k, we define

ẽk1 := [ωk1] = eiωk1t,

and for 2 ≤ l ≤ N

ẽkl := [ωk1, ωk2, . . . , ωkl] =
l∑

j=1

eiωkjt∏
r 6=j(ωkj − ωkr)

.

Under Condition (ii) of our theorem, we are able to use this formula for divided
differences in place of the formula for generalized divided differences (see e.g. [10]).

From asymptotics theory and the explicit formula for ωkl, it follows that the
generating function of the family of EDD {ẽkl} is a sine-type function (see [8, 9, 10]).
Hence, the family of EDD {ẽkl} forms a Riesz sequence in L2(0, T ) for T ≥ 2πN .
We then define

γ̃kl = (f, ẽkl)L2(0,T ).

Since {ẽkl} is a Riesz sequence, {(γ̃kl) | f ∈ L2(0, T )} = `2, i.e. any sequence from
`2 can be obtained by a function f ∈ L2(0, T ) and the family {ẽkl}. Proposition 1
Property (2) implies that |γ̃kl| ≺ |kN−1γkl|. Recalling Equations (15) and (16) , we
obtain

{(γkl) | f ∈ L2(0, T )} ⊇ `2N−1 (17)

where

`2N−1 =

{
(akl) |

∑
k.l

|kN−1akl|2 <∞

}
.

Since {Φkl} forms a Riesz basis in L2(0, π;RN ), it follows from (11), (15), and (17)
that (u(·, t), ut(·, t)) ∈WN−1 ×WN−2 and we have proved Theorem 1.3.

3. Proof of Theorem 1.4 - The case of a repeated eigenvalue.

3.1. Properties of root vectors and root vector adjustment. In this section,
we investigate System (1) in the case where the coupling matrix A has only one
eigenvalue, denoted λ, with algebraic multiplicity N and geometric multiplicity 1.
We will assume that A and b satisfy the Kalman rank condition (4). We remark that
λ is real since imaginary eigenvalues occur in conjugate pairs. We will define the
vectors ϕN and ψ1 to be the eigenvectors of A and A∗, respectively. Additionally, we
let ϕ1, ϕ2, . . . , ϕN−1 and ψ2, ψ3, . . . , ψN be root vectors of A and A∗, respectively.
So we have the following:

(A− λI)ϕi = ϕi+1, 1 ≤ i ≤ N − 1
(A− λI)ϕN = 0,
(A∗ − λI)ψ1 = 0,
(A∗ − λI)ψj = ψj−1, 2 ≤ j ≤ N.

In particular, the collection {ϕi} is listed in reverse order in comparison to {ψj}.
This is intended to simplify indexing and reflect the construction of a biorthogonal
family for {ϕi}. With this construction, we have the following propositions.

Proposition 2. 〈ϕN , ψj〉 = 0 for 1 ≤ j ≤ N − 1.
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Proof. Let 1 ≤ j ≤ N − 1. We observe that

λ〈ϕN , ψj+1〉 = 〈λϕN , ψj+1〉 = 〈AϕN , ψj+1〉 = 〈ϕN , A∗ψj+1〉
and

λ〈ϕN , ψj+1〉 = 〈ϕN , λψj+1〉 = 〈ϕN , A∗ψj+1〉 − 〈ϕN , ψj〉.
Comparing right hand sides yields

〈ϕN , ψj〉 = 0.

Proposition 3. 〈ϕN , ψN 〉 6= 0.

Proof. Suppose on the contrary that 〈ϕN , ψN 〉 = 0. Together with Proposition 2,
we have

〈ϕN , ψj〉 = 0, 1 ≤ j ≤ N.
This implies that ϕN = 0, which is a contradiction because {ϕi}Ni=1 is a basis in
RN .

Proposition 4. 〈ϕi, ψj〉 = 〈ϕi+1, ψj+1〉 for 1 ≤ i, j ≤ N − 1.

Proof. Let 1 ≤ i, j ≤ N − 1. Observe that

λ〈ϕi, ψj+1〉 = 〈λϕi, ψj+1〉 = 〈Aϕi, ψj+1〉 − 〈ϕi+1, ψj+1〉
and

λ〈ϕi, ψj+1〉 = 〈ϕi, λψj+1〉 = 〈ϕi, A∗ψj+1〉 − 〈ϕi, ψj〉.
Comparing the right hand sides yields 〈ϕi, ψj〉 = 〈ϕi+1, ψj+1〉, as desired.

Proposition 5. 〈b, ψ1〉 6= 0.

Proof. Suppose on the contrary that 〈b, ψ1〉 = 0. Then for 0 ≤ n ≤ N − 1, observe

〈Anb, ψ1〉 = 〈b, (A∗)nψ1〉 = 〈b, λnψ1〉 = λn〈b, ψ1〉 = 0.

This implies that the columns of the matrix [A|b] are linearly dependent. This is a
contradiction because A and b satisfy the Kalman conditions and so [A|b] has rank
N .

We now claim that given {ϕi}Ni=1 and {ψj}Nj=1, we can adjust them in a specific
way.

Lemma 3.1. Given ψ1, we can construct a collection {ψ̃j}Nj=1 such that

(i) (A∗ − λI)ψ̃1 = 0,

(ii) (A∗ − λI)ψ̃j = ψ̃j−1, for 2 ≤ j ≤ N , and

(iii) 〈b, ψ̃j〉 = δ1j.

Proof. From Proposition 5, 〈b, ψ1〉 6= 0. Define

ψ̃1 =
ψ1

〈b, ψ1〉
.

Since ψ̃1 is a scalar multiple of ψ1, (A∗ − λI)ψ̃1 = 0 and 〈b, ψ̃1〉 = 1, as desired.

From ψ̃1, we obtain ψ2 with (A∗ − λI)ψ2 = ψ̃1. We set

ψ̃2 = ψ2 − 〈b, ψ2〉ψ̃1.



COUPLED 1-D WAVE EQUATIONS 263

Observe that

(A∗ − λI)ψ̃2 = (A∗ − λI)(ψ2 − 〈b, ψ2〉ψ̃1)

= (A∗ − λI)ψ2 − 〈b, ψ2〉(A∗ − λI)ψ̃1

= ψ̃1.

Also,

〈b, ψ̃2〉 = 〈b, ψ2〉 − 〈b, ψ2〉〈b, ψ̃1〉 = 0.

We then proceed iteratively to build the collection {ψ̃j}Nj=1 that satisfies the
conditions of the lemma.

Lemma 3.2. Given ϕN and {ψ̃j}Nj=1, we can construct a collection {ϕ̃i}Ni=1 such
that

(i) (A− λI)ϕ̃N = 0,
(ii) (A− λI)ϕ̃i = ϕ̃i+1 for 1 ≤ i ≤ N − 1, and

(iii) 〈ϕ̃i, ψ̃j〉 = δij.

Proof. From Propositions 2 and 3, 〈ϕN , ψ̃j〉 = 0 for 1 ≤ j ≤ N−1 and 〈ϕN , ψ̃N 〉 6= 0.
We define

ϕ̃N =
ϕN

〈ϕN , ψ̃N 〉
so that 〈ϕ̃N , ψ̃N 〉 = 1.

From ϕ̃N , we can obtain ϕN−1 such that (A−λI)ϕN−1 = ϕ̃N . From Proposition

4, 〈ϕN−1, ψ̃j〉 = 0 for 1 ≤ j ≤ N − 2 and 〈ϕN−1, ψ̃N−1〉 = 1. We set

ϕ̃N−1 = ϕN−1 − 〈ϕN−1, ψ̃N 〉ϕ̃N .

With this construction, Condition (ii) is still maintained and 〈ϕ̃N−1, ψ̃j〉 = 0 for

j 6= N − 1 with 〈ϕ̃N−1, ψ̃N−1〉 = 1.

Similarly, we obtain ϕN−2 such that (A − λI)ϕN−2 = ϕ̃N−1. Using ϕ̃N and
ϕ̃N−1 with Proposition 4 yields

〈ϕN−2, ψ̃j〉 =

{
1 , j = N − 2,
0 , 1 ≤ j ≤ N − 3, or j = N − 1.

We similarly define ϕ̃N−2 by

ϕ̃N−2 = ϕN−2 − 〈ϕN−2, ψ̃N 〉ϕ̃N .

Continuing this process iteratively yields a collection {ϕ̃i}Ni=1 satisfying the con-
ditions of the lemma.

We combine all our results into the following lemma.

Lemma 3.3. Given System (1) with A and b given and satisfying the Kalman
conditions, we may choose vectors {ϕi}Ni=1, {ψj}Nj=1 such that

(i) (A− λI)ϕi = ϕi+1 for 1 ≤ i ≤ N − 1,
(ii) (A− λI)ϕN = 0,

(iii) (A∗ − λI)ψ1 = 0,
(iv) (A∗ − λI)ψj = ψj−1 for 2 ≤ j ≤ N ,
(v) 〈b, ψj〉 = δ1j, and

(vi) 〈ϕi, ψj〉 = δij.
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3.2. The Fourier method and existence of solutions. In this section, we will
be using the Fourier method. We will assume the conditions of Theorem 1.4 and use
the results of Lemma 3.3. We define Φnj(x) = sin(nx)ϕj and note that {Φnj(x)},
n ∈ N, j = 1, . . . , N , is a Riesz basis in L2(0, π;RN ) with biorthogonal family
{Ψnj(x)} where

Ψnj(x) =
2

π
sin(nx)ψj(x).

We thus write the solution to System (1) with zero Dirichlet boundary conditions
in the form of the series

u(x, t) =
∑
n,j

anj(t)Φnj(x),

and set

v(x, t) = g(t)Ψkl(x),

with g(t) being a smooth function. In the same way as in Section 2.2, we obtain
the integral identity∫ T

0

∫ π

0

〈u, vtt − vxx +A∗v〉 dx dt =
2k

π
〈b, ψl〉

∫ T

0

f(t)g(t) dt. (18)

For now, we set l = 1 and since ψ1 is an eigenvector of A∗ and 〈b, ψ1〉 = 1, from
(18) we obtain ∫ T

0

[äk1(t) + ω2
kak1(t)]g(t) dt =

2k

π

∫ T

0

f(t)g(t) dt,

where ω2
k = k2 + λ. We then obtain the differential equation

äk1(t) + ω2
kak1(t) =

2k

π
f(t) (19)

with initial conditions

ak1(0) = 0 = ȧk1(0). (20)

As before, we are assuming that ω2
k 6= 0 and if otherwise, we can make the same

changes as prescribed in Section 2.2. The solution of (19) and (20) is given by

ak1(t) =
2k

π

∫ t

0

f(τ)
sinωk(t− τ)

ωk
dτ.

We now let l = 2, . . . , N in (18). We note that ψl is then a root vector and hence
A∗ψl = λψl + ψl−1. Additionally, we have 〈b, ψl〉 = 0. So, from Equation (18), we
obtain ∫ T

0

[äkl(t) + ω2
kakl(t)]g(t) dt = −

∫ T

0

ak,l−1(t)g(t) dt.

Thus, we obtain the solution for akl(t) to be

akl(t) = −
∫ t

0

ak,l−1(τ)
sinωk(t− τ)

ωk
dτ.

To motivate the following results, we compute akl(t) and ȧkl(t) for l = 1, 2, 3.

ak1(t) =
2k

πωk

∫ t

0

f(τ) sinωk(t− τ) dτ

ak2(t) =
k

πω2
k

∫ t

0

f(τ)

[
(t− τ) cosωk(t− τ)− 1

ωk
sinωk(t− τ)

]
dτ
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ak3(t) = − k

4πω3
k

∫ t

0

f(τ)

[
(t− τ)2 sinωk(t− τ) +

3

ωk
(t− τ) cosωk(t− τ)

− 3

ω2
k

sinωk(t− τ)

]
dτ.

ȧk1(t) =
2k

π

∫ t

0

f(τ) cosωk(t− τ) dτ

ȧk2(t) = − k

πωk

∫ t

0

f(τ)(t− τ) sinωk(t− τ) dτ

ȧk3(t) = − k

4πω2
k

∫ t

0

f(τ)

[
(t− τ)2 cosωk(t− τ)− 3

ωk
(t− τ) sinωk(t− τ)

]
dτ

(21)

We now introduce the functions bkl(t) and b̂kl(t), for k ∈ N, l = 1, . . . , 3, defined
as

bk1(t) =

∫ t

0

f(τ) sinωk(t− τ) dτ =
πωk
2k

ak1(t),

bk2(t) =
1

ωk

∫ t

0

f(τ)(t− τ) cosωk(t− τ) dτ =
πωk
k
ak2(t) +

π

2kωk
ak1(t),

bk3(t) =
1

ω2
k

∫ t

0

f(τ)(t− τ)2 sinωk(t− τ) dτ = −4πωk
k

ak3(t)− 3π

kωk
ak2(t),

b̂k1(t) = ωk

∫ t

0

f(τ) cosωk(t− τ) dτ =
πωk
2k

ȧk1(t),

b̂k2(t) =

∫ t

0

f(τ)(t− τ) sinωk(t− τ) dτ = −πωk
k
ȧk2(t),

b̂k3(t) =
1

ωk

∫ t

0

f(τ)(t− τ)2 cosωk(t− τ) dτ = −4πωk
k

ȧk3(t)− 3π

kωk
ȧk2(t).

(22)
The purpose of this is to note that the transformation between the families

{akl(t), ȧkl(t)} and {bkl(t), b̂kl(t)} is both bounded and boundedly invertible in

`2. We proceed by considering the family {bkl(t), b̂kl(t)}. We introduce the func-

tions ckl(t) with ω−k = −ωk, b−kl(t) = bkl(t), and b̂−kl(t) = b̂kl(t) for k ∈ K =
{±1,±2, . . .} in the form

ckl(t) =

{
iωkbkl(t) + b̂kl(t) , if l odd,

ωkbkl(t) + îbkl(t) , if l even.

Hence,

ωl−2k ckl(t) =

∫ t

0

f(τ)(t− τ)l−1eiωk(t−τ) dτ, (23)

for 1 ≤ l ≤ N .
Recall that {Φnj(x)} forms a Riesz basis in L2(0, π;RN ) and with Proposition 1

Property (1),

∑
k∈K

l=1,...,N

|ckl(t)|2

k2
� ‖u(·, t)‖2L2(0,π;RN ) + ‖ut(·, t)‖2H−1(0,π;RN ).
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Additionally, from (23), it follows that for all t > 0,∑
k∈K

l=1,...,N

|ckl(t)|2

k2
≺ ‖f‖2L2(0,t) ≤ ‖f‖

2
L2(0,T ).

This implies that the sequences (akl(t)) and (k−1ȧkl(t)) belong to `2. Hence, u(·, t) ∈
L2(0, π;RN ) and ut(·, t) ∈ H−1(0, π;RN ).

Similar to Section 2.1, we have∑
k∈K

l=1,...,N

|ckl(t+ h)− ckl(t)|2

k2
→ 0, h→ 0.

So, we obtain an analog of Theorem 2.2.

Theorem 3.4. For any f ∈ L2(0, T ), there exists a unique generalized solution uf

of the IBVP (1) - (3) with coupling matrix A ∈ L(RN ) with a single eigenvalue

such that (uf , uft ) ∈ V and

‖(uf , uft )‖V ≺ ‖f‖2L2(0,T ).

3.3. Controllability results. We will now prove Theorem 1.4. We denote ekl(t) =
tl−1eiωkt and define fT (t) = f(T − t). With (23), we have

ωl−2k ckl(T ) = (fT , e−kl)L2(0,T ).

Since {ek1, . . . , ekN} is a Riesz sequence in L2(0, T ) for T ≥ 2Nπ (see e.g. [8] II.4),

{(kl−2ckl(T )) | f ∈ L2(0, T )} = `2.

It follows that
{(ckl(T )) | f ∈ L2(0, T )} ⊇ `2N−2.

Hence, the space to guarantee exact controllability isWN−1×WN−2 and Theorem
1.4 is proved.

4. Proof of Theorem 1.2 - The general case.

4.1. The Fourier method and existence of solutions. Equipped with Theo-
rems 1.3, 1.4, 2.2, and 3.4, we now consider the case of a more general coupling
matrix A. We now consider System (1) with A and b satisfying the assumptions of
Theorem 1.2. Let λ1, . . . , λM be the distinct eigenvalues of A with corresponding
algebraic multiplicities m1, . . . ,mM . We note that

M∑
i=1

mi = N.

For each i = 1, . . . ,M , we construct the collection of eigenvectors and root vec-
tors corresponding to λi, denoted {ϕij}mi

j=1. For each of these collections, we have

a corresponding biorthogonal family {ψij}mi
j=1. From Lemmas 2.1 and 3.3, these

collections possess many specific properties as well as

〈ϕij , ψkl〉 = δikδjl.

We define Φnij = sin(nx)ϕij . Then {Φnij(x)}, n ∈ N, i = 1, . . . ,M , j =
1, . . . ,mi, is a Riesz basis in L2(0, π;RN ) with biorthogonal family {Ψnij} where

Ψnij(x) =
2

π
sin(nx)ψij .
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We then use the Fourier method and express the solution u(x, t) as

u(x, t) =
∑
n,i,j

anij(t)Φnij(x). (24)

By doing so, for each l = 1, . . . , n, we obtain, as in the case of Section 2, coeffi-
cients aklj(t) defined below. We similarly denote ω2

kl = k2+λl and recall Proposition
1.

akl1(t) =
2k

π

∫ t

0

f(τ)
sinωkl(t− τ)

ωkl
dτ,

aklj(t) = −
∫ t

0

akl,j−1(τ)
sinωkl(t− τ)

ωkl
dτ, j = 2, . . . ,ml.

Similar to Section 3.2, from {aklj(t), ȧklj(t)}, we construct the collection

{bklj(t), b̂klj(t)}. We then define the functions cklj(t) for k ∈ K with ω−kl = −ωkl,
b−klj(t) = bklj(t), and b̂−klj(t) = b̂klj(t) by

cklj(t) =

{
iωklbklj(t) + b̂klj(t) , if j even,

ωklbklj(t) + îbklj(t) , if j odd.

So,

ωj−2kl cklj(t) =

∫ t

0

f(τ)(t− τ)j−1eiωkl(t−τ) dτ. (25)

Similar to Theorems 2.2 and 3.4, the collection {eklj}, where eklj(t) = tj−1eiωklt,
is either a Riesz sequence in L2(0, T ) if T > 2Nπ, or a finite union of Riesz sequences
for T < 2Nπ. Hence, we obtain the following theorem.

Theorem 4.1. For any coupling matrix A ∈ L(RN ) and for any f ∈ L2(0, T ), there

exists a unique generalized solution uf of the IBVP (1)–(3) such that (uf , uft ) ∈ V
and

‖(uf , uft )‖V ≺ ‖f‖L2(0,T ).

4.2. Controllability results. We define the sequence {γkij} by

γklj := ωj−2kl cklj(T ) =

∫ T

0

f(τ)(T − τ)j−1eiωkl(T−τ) dτ,

so that
γklj = (fT , e−klj)L2(0,T ),

where fT (t) = f(T − t) and eklj(t) = tj−1eiωklt. We note that|γklj | ≺ |kml−2cklj(T )|.
In addition to Lemma 1 Property (2), we also need to account for eigenvalues with

algebraic multiplicity greater than one, and thus we are required to use generalized
divided differences (GDD). For each fixed k, we will list the sequence {ωkl} including
multiplicities.

GDD were described in [9] and [10]. For each fixed k, we define the divided
difference (DD) of order zero of the point ωk1 is [ωk1](t) = eiωk1t. The DD of order
l − 1, l ≤ N , corresponding to ωk1, . . . , ωkl is

[ωk1, . . . , ωkl] :=


[ωk1, . . . , ωk,l−1]− [ωk2, . . . , ωkl]

ωk1 − ωkl
, ωk1 6= ωkl

∂

∂ω
[ω, ωk2, . . . , ωk,l−1]

∣∣
ω=ωk1

, ωk1 = ωkl.

We then denote ẽkl(t) = [ωk1, . . . , ωkl]. We note that with this construction, the
functions ẽk1, . . . , ẽkm1 are in fact the functions eiωk1t, teiωk1t, . . . , tm1−1eiωk1t. In
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addition, by the main theorems of [9] and [10], the collection of functions {ẽkl}Nl=1

is a Riesz sequence in L2(0, T ) for T ≥ 2Nπ. We then define

γ̃kl = (f, ẽkl)L2(0,T )

and therefore {(γ̃kl) | f ∈  L2(0, T )} = `2. From here, we note that the relation
among γklj , γ̃kl, and cklj(T ) is∑

|γ̃kl|2 ≺
∑
|kN−miγklj |2 ≺

∑
|kN−2cklj(T )|2.

Hence, it follows that

{(cklj(T )) | f ∈ L2(0, T )} ⊇ `2N−2, (26)

and since {Φnij(x)} forms a Riesz basis in L2(0, π;RN ), we deduce from (26) the
result of Theorem 1.2.

We will now prove the negatives results in Theorem 1.2. We first assume that
(i) and (iii) hold, but (ii) does not hold. Observe that this may only happen for a
finite number of indices (see [4]). So we have

k2d − l2d = λid − λjd , 1 ≤ d ≤ m.

In this situation, the family given in (12), {ekl}, is clearly linearly dependent since
some function (or functions) is repeated twice in the family. Thus, according to
Theorems I.2.1e and III.3.10e in [8], System (1) is not approximately controllable
for any T > 0.

Let us now suppose that (i) does not hold. We will use the Hautus test, which
is equivalent to the Kalman rank condition (see [17] Prop. 1.5.5 and [4] Prop. 3.1).
If the Kalman rank condition does not hold, then there exists λ ∈ σ(A∗) such that

rank

[
A∗ − λI

b∗

]
< N.

Hence, there exists 1 ≤ l ≤ M such that ψl is an eigenvector of A∗ corresponding
to λ and 〈b, ψl〉 = 0. This then implies that for all k ∈ K, 1 ≤ j ≤ ml,

cklj(T ) = 0,

and thus the codimension of the reachable set is infinite.
If condition (iii) is not met, i.e. T < 2Nπ, then from [9] and [10], it follows that

the family of EDD {ẽkl} is not a Riesz basis in L2(0, T ). In particular, we can split
{ẽkl} into two subfamilies E0 and E1 such that E0 is a Riesz sequence in L2(0, T )
and E1 has infinite cardinality. This implies that {ẽkl} is not linearly independent
and hence the reachable set has infinite codimension.

Thus we have proved the negative part of Theorem 1.2, and the proof is complete.

5. A particular case: N = 2. In the previous sections, we proved exact control-
lability with respect to a more regular space than the space of regularity for the
system. This is typical of hybrid systems where clusters of close spectral points
appear. However, in the case where N = 2, we are able to prove the sharp con-
trollability result, i.e., to prove exact controllability in the space of sharp regularity
of the system. To do this, we develop a new method based on the construction of
a basis in a so-called asymmetric space. This method was proposed in [7] when
investigating the controllability of another hybrid system of hyperbolic type – the
string with point masses. In the present paper, we extend this method to the vector
case.
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We consider System (1)-(3) with N = 2 and

b =

(
1
0

)
, A =

(
a11 a12
a21 a22

)
. (27)

In other words, the boundary control acts only on the first equation and the second
equation is controlled through its connection with the first. From now on, we will
refer to this system as S2. The first question we ask is about the sharp regularity
space. We claim that

u1(·, t) ∈ L2(0, π), u2(·, t) ∈ H1
0 (0, π).

From Theorem 4.1, (u1(·, t), u2(·, t)) ∈ L2(0, π)2. From the structure of the
system, u2 is the solution to a wave equation with zero Dirichlet boundary conditions
where u1 acts as the control over Q. Since u1(·, t) ∈ L2(0, π), we conclude that
u2 ∈ H1

0 (0, π) (see for example [8] Sec.V.1).
The main result of this section is

Theorem 5.1. Under conditions similar to those of Theorem 1.2, that is, with A
and b given by (27) with a21 6= 0 (so the Kalman rank condition for [A|b] is fulfilled),
that

µk − µl 6= λ1 − λ2, ∀k, l ∈ N, with k 6= l,

and that T ≥ 4π, then the reachable set of System S2, {(uf (·, T ), uft (·, T )) | f ∈
L2(0, T )} is equal to H1 where

H1 :=

(
L2(0, π)
H1

0 (0, π)

)
×
(
H−1(0, π)
L2(0, T )

)
for T ≥ 4π.

If T < 4π, then the reachable set has infinite codimension in H1.

We will prove this theorem by considering the two possible cases, i.e., whether
the matrix A has two distinct eigenvalues or a repeated eigenvalue.

5.1. Proof for distinct eigenvalues. As before, we construct the set of sequences
(γ̃kl) and for T ≥ 4π, this set runs over `2. This means that the set of the corre-
sponding sequences (ãkl(T )) also runs over `2.

We now return to the representation in (5):

u(x, T ) =
∑
n,j

anj(T )Φnj(x). (28)

Taking into account that for N = 2, we use EDD of order one, i.e.,

ãn1 = an1, ãn2 =
an2 − an1
ωn2 − ωn1

,

where we supress the argument T . We can rewrite (28) in the form

u(x, T ) =
∑
n,j

ãnjΦ̃nj(x). (29)

It is easy to verify that

Φ̃n1(x) = Φn1(x) + Φn2(x) = sin(nx)(ϕ1 + ϕ2), (30)

Φ̃n2(x) = Φn2(x)(ωn2 − ωn1) = sin(nx)ϕ2(ωn2 − ωn1). (31)

We note that |ωn2 − ωn1| � n−1 (Lemma 1 Property 2). We present the following
lemma.
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Lemma 5.2. Eigenvectors ϕ1 and ϕ2 can be chosen such that

ϕ1 + ϕ2 =

(
α
0

)
. (32)

Proof. In particular, we claim that the second component of ϕ1 and ϕ2 are nonzero.
If this is true, then by appropriate scaling, we can obtain eigenvectors ϕ1 and ϕ2

whose second components add to zero. Suppose on the contrary that ϕ1 has a zero
second component. By scaling, we can assume that

ϕ1 =

(
1
0

)
.

By the orthogonality of ψ1, ψ2, this implies that ψ2 has the form

ψ2 =

(
0
x

)
,

for some nonzero x. However, this is a contradiction to the Kalman rank condition
as 〈(

1
0

)
, ψ2

〉
= 0.

Hence, ϕ1 has a nonzero second component. Similarly, ϕ2 has a nonzero second
component and the lemma is proved.

We can now express (29) as

u(x, T ) =
∑
n

sin(nx)

[
ãn1

(
α
0

)
+ ãn2

(
β
γ

)
(ωn2 − ωn1)

]
.

We note that γ 6= 0 since ϕ2 has a nonzero second component.
We recall that (ãn1) and (ãn2) may be arbitrary `2 sequences (when f runs over

L2(0, T )). Taking into account that {sin(nx)} is an orthogonal basis in L2(0, π), we
begin by choosing the second component of u(x, T ) to be any target function from
H1

0 (0, π), and thereby choosing ãn2.
After choosing ãn2, we can then choose ãn1 so that the first component of u(x, T )

will coincide with any prescribed function from L2(0, π). We can treat ut(x, T ) in a
similar fashion. This is due to the relation of sine and cosine and their appearance
in u(x, T ) and ut(x, T ). It is this relation that allows us to obtain controllability
in any time T ≥ 4π. Thus, one of the cases for the positive part of Theorem 5.1
is proved. We note that the negative part of the theorem can be proved similar to
Theorem 1.2.

As a result of this, we have the following corollary.

Corollary 1. The family {Φ̃nj} constructed in (30)–(32) forms a Riesz basis in
the asymmetric space L2(0, π)×H1(0, π).

Proof. We have proved that every function from L2(0, π)×H1(0, π) can be repre-

sented in the form of a series with respect to the family {Φ̃nj} with `2 coefficients.
Uniqueness of the representation follows from the basis property of {sin(nx)} and
linear independence of the eigenvectors ϕ1 and ϕ2. Finally, it is clear that

‖u1(·, T )‖2L2(0,π) + ‖u2(·, T )‖2H1(0,π) �
∑
n,j

|anj |2.
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As a remark, it may be shown that the latter sum is equivalent to ‖f‖2 where f
is the corresponding control to u(·, T ). Also, this control belongs to the closure of
the linear span of {eiωnjt} in L2(0, T ), and hence has minimal norm.

5.2. Proof for a repeated eigenvalue. From Lemma 3.3, we can obtain eigen-
vectors ϕ2, ψ1 and root vectors ϕ1, ψ2 for A and A∗, respectively, with certain
properties. We now express our solution u(x, T ) using the Fourier Method and
observe that

u(x, T ) =
∑
n,j

anj(T )Φnj(x)

=
∑
n

[an1(T )Φn1(x) + an2(T )Φn2(x)]

=
∑
n

[an1(T ) sin(nx)ϕ1 + an2(T ) sin(nx)ϕ2]

=
∑
n

sin(nx) [an1ϕ1 + an2ϕ2] . (33)

In the final equality, we suppress the argument of an1 and an2 for readability. By
Lemma 3.3, 〈b, ψ2〉 = 0 and thus the first component of ψ2 is zero. It then follows
from 〈ϕ1, ψ2〉 = 0 that ϕ1 has the form

ϕ1 =

(
α
0

)
, α ∈ R. (34)

Thus, we can express ϕ2 as

ϕ2 =

(
β
γ

)
, β, γ ∈ R, (35)

and we can express u(x, T ) as

u(x, T ) =
∑
n

sin(nx)

[
an1

(
α
0

)
+ an2

(
β
γ

)]
. (36)

From Equation (21) it follows that (an2) ∈ `21 and we can choose an2 such that the
second component of u(x, T ) is any target function from H1

0 (0, π). After choosing
an2, we can then choose an1 so that the first component of u(x, T ) coincides with any
prescribed target function from L2(0, π). Similar to the case of distinct eigenvalues,
we approach ut(x, T ) in the same way. We have thus proved Theorem 5.1.

6. Open problems and further results. When the coupling matrix A is in lower
triangular form, it is not difficult to generalize the results for coupled hyperbolic
equations. That is, it is possible to prove exact controllability under the same
assumptions as Theorem 1.2 in the space H = H0 × · · · × HN−1 where HN =
WN × WN−1. On the other hand, given an arbitrary matrix A, if the Kalman
rank condition holds, we can obtain a canonical version of the original system and
obtain similar results for this transformed system. However, when converting back
to the original system, we may be taking linear combinations of the components of
u(x, t) with respect to the transformed system. Thus, an optimal description of the
controllability space is no longer possible.

In Section 5, we investigated the case where N = 2 and showed that we can
obtain sharp exact controllability, i.e., we have exact controllability in the same
space as the space of regularity. It remains to determine whether or not we can
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repeat this for different values of N . For N = 2, this is simple as there are only
two possibilities for the eigenvalues of the coupling matrix A. However, for N > 2,
the number of possibilities grows, and hence it may not be possible to prove in the
same way.

It remains an open problem to treat the boundary controllability of N coupled
wave equations in Rd. The methods in this paper are not of use in the general
situation or when the matrix A depends on (x, t).
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