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Abstract— Performing active quantum error correction to
protect fragile quantum states highly depends on the correctness
of measured error syndromes. To obtain reliable error syndromes
using imperfect physical circuits, we propose syndrome measure-
ment (SM) and quantum data-syndrome (DS) codes. SM codes
protect syndrome with linearly dependent redundant stabilizer
measurements. DS codes generalize this idea for simultaneous
correction of both data qubits and syndrome bits errors. We study
fundamental properties of quantum DS codes, including split
weight enumerators, generalized MacWilliams identities, and
linear programming bounds. In particular, we derive Singleton
and Hamming-type upper bounds on the minimum distance of
degenerate quantum DS codes. Then we study random DS codes
and show that random DS codes with a relatively small additional
syndrome measurements achieve the Gilbert-Varshamov bound
of stabilizer codes. Finally, we propose a family of CSS-type
quantum DS codes based on classical cyclic codes, which include
the Steane code and the quantum Golay code.

Index Terms— Data-syndrome (DS) codes, quantum codes,
stabilizer codes, macWilliams identities, linear programming
bounds, quantum syndrome errors.

I. INTRODUCTION

UANTUM error-correcting codes provide a method of

actively protecting quantum information [1]. In particu-
lar, in a quantum stabilizer code, quantum information is stored
in the joint +1 eigenspace of a set of Pauli operators, called
stabilizers. To perform quantum error correction, we have to
measure a generating set of the stabilizers and get the error
syndrome (in classical bits). Realistically, the quantum gates
used to perform stabilizer measurements are themselves faulty
and thus the measurement outcomes can be wrong which lead
to a wrong error syndrome and further to a wrong error-
correction result.

In this work, we are interested in eliminating the effect of
faulty syndrome measurement. Typically, this can be done with
the syndromes measured repeatedly in the case of Shor’s syn-
drome extraction [2]. This, however, is equivalent to protecting
each syndrome bit individually with a repetition code, which is
very inefficient from the information theoretical point of view.
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Another approach it to measure an overcomplete set of code
generators, which allows obtaining an extended syndrome
whose bits are linearly dependent, and therefore a classical
error correction can be used for identifying and removing
syndrome errors. Even better results can be obtained if both
data (qubits) and syndrome errors are decoded together. This
approach, under the names of Syndrome-Measurement (SM)
and Data-Syndrome (DS) codes, was proposed and studied
in [3]-[5]. Similar ides were proposed in [6]. Independently,
in the context of higher-dimensional toric and/or color quan-
tum codes similar approach was proposed and studied in
[71-[9]. Very recently Campbel has proposed a theory for this
one-shot error correction [10].

In [3] we showed that in the case of Steane SM codes
drastically reduce the syndrome measurement error, and con-
sidered construction of SM codes as low density generator
matrix codes. In [4] we outlined a general framework for
deriving upper and lower bounds on the minimum distance of
DS codes, and presented some bounds without proofs. In [5]
constructions and decoding algorithms of convolutional DS
codes have been studied.

In this paper, we give a comprehensive study of quantum
SM and DS codes with complete proofs and details omitted
in [3], [4]. We show that SM codes drastically reduce the
probability of syndrome errors for ceratin families of high
rate quantum codes, present proofs of the Hamming and
Singleton bounds for degenerate DS codes, our new results on
asymptotic bounds for degenerate DS codes, full derivations of
the weight enumerators of random DS codes and comparisons
of Gilbert-Varshamov bounds for random DS and stabilizer
codes.

The paper is organized as follows. In Section II we briefly
introduce the main notions of quantum stabilizer codes and
error syndromes. In Section III we define SM and DS quantum
codes, show how they make syndrome measurement more
error resilient and further define the main parameters of
SM and DS codes. Further in Section IV we discuss SM
codes and demonstrate that for some families of high rate
quantum stabilizer codes, SM codes provide a very large
reduction of the wrong syndrome measurement compared with
repetitive syndrome measurements followed by the majority
voting. In Section V we introduce the notion of split weight
enumerators of DS codes and show how these enumerators are
connected with the minimum distance of DS codes. We use the
split weight enumerators in Section VI for developing a linear
programming method for deriving upper bounds on the min-
imum distance of unrestricted (degenerate or non-degenerate)
quantum DS codes. We use this method for obtaining the
Hamming and Singleton bounds on degenerate DS codes.
We further use this method for deriving asymptotic bounds for
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unrestricted DS codes. In Section VII we study the split weight
enumerators for random DS codes and use them for obtaining
the Gilbert-Varshamov (GV) lower bound on the code min-
imum distance as a function of the normalized number, p,
of redundant syndrome measurements. We show that small p
is enough that the GV bound for DS codes would achieve the
GV bound of usual stabilizer codes. In VIII we present con-
structions of CSS-type ( [11], [12]) DS codes. In Conclusion
we summarize the presented results and observations.

II. PRELIMINARIES

An n-qubit state space is a 2"*-dimensional complex Hilbert
space C?" and a pure quantum state is a unit vector in C2".
A basis of the linear operators on the n-qubit state space is the
n-fold Pauli operators {M®---@ M, : M; € {I,X,Y, Z}},

where
1 0 01
=l ] x=[]

1 0 .
Z_[O _J, Y =iXZ,

are the Pauli matrices. The n-fold Pauli group G, is the set
of n-fold Pauli operators with possible phases 41, +:. Note
that Pauli operators either commute or anticommute with each
other. We can define an inner product in G,,: for g,h € G,

0, if gh = hg;
Jh)g, = 1
(9. h)g, {1, otherwise. )

It is convenient to connect quantum codes with codes over
the Galios filed Fy = {0, 1,w,w?} [13], via a homomorphism
7 on Gy that maps I,X,Z,Y to 0,1,w,w?, respectively,
regardless of a possible phase 41, £ in front of a Pauli matrix.
This homomorphism extends to an n-fold Pauli operator
naturally. For example, 7(£iX @Y @ Z@1® 1) = (1w?w00).
For an n-fold Pauli operator g, we denote by g € F} the
corresponding vector and vice versa. We define a trace inner
product for x = (z1,22,...,2n),y = (Y1,Y2,.-.,Yn) €
F} by

xxy=Trg! (Z xy) : ©)
=0

where 7; denotes the conjugation of y; in Fy = {0, 1, w,w?}
with 0 = 0,1 = 1,0 = w?, and w? = w. It can be checked
that (g, h)g, = g=*h for g,h € G, and g = 7(g),h = 7(h).

Suppose S = (g1, - .., gn—k) is an Abelian subgroup of G,,,
where g; are independent generators of S, such that the minus
identity —/®" ¢ S. Then S defines a quantum stabilizer code
Q = {|v) € C¥" : g|y)) = |[¢)),Vg € S} of dimension 2.
The vectors |¢) € C(S) are called the codewords of C(S) and
the operators g € S are called the stabilizers of C(S). By the
quantum error correction conditions [14], [15], it suffices to
consider error correction on a discrete set of error operators.
Thus we only treat errors that are Pauli operators in this paper.

Let g1,...,8n— € I} be vectors over 4 corresponding
t0 91,92, -+, gn—k € Gn, and let consider check matrix
81
H=1 | 3)
Sn—k

Let C be the classical [n,n — k] additive code generated by
H, so |C| = 2"% and C* be its dual with respect to the
trace inner product (2). We have C' C C* since g; xg; = 0
for all 4,j. Suppose that a quantum codeword [¢)) € @Q is
corrupted by a Pauli error ¢ € G,, and let e = 7(e) € F}
be the corresponding vector. Then the syndrome of e is s =
(S$1y.+y8Sn—k) € Fg_k’, where s; = g; * e. The syndrome
s shows the commutation relations between the Pauli error e
and the stabilizers g1, g2, . .., gn—k and it can be obtained by
measuring the observables g;’s on e|t)).

There are several possible quantum circuits for measuring
g;’s. We assume that Shor’s syndrome extraction [2] is used.
Let p,,, be the error rate of the measurement blocks in the Z
basis. Let all the other quantum gates (like CNOT and H)
have error rate p,. For some technologies, e.g., quantum
trapped ions, we may have p,, > p,. Using this observation,
we adopt the simple error model in which p, = 0. This
means that the quantum state does not change during the
syndrome measurement. Error models with p, > 0, and
perhaps other sources of errors, would be more realistic.
However, developing theories starting with simple models and
assumptions proved to be productive. For this reason and for
avoiding overwhelming details, we use the above simple error
model.

Let s = (s1,...,8,—k) be the correct syndrome and
§=(81,...,5,-%) be the corrupted syndrome. According to

Shor’s syndrome extraction circuit and the above error model
we have

Perr(85) = Pr(5; # s5)
Z (Wt gg]))pin(l _pM)Wt(gJ)_i' “)

% is odd

III. QUANTUM DATA-SYNDROME CODES

Quantum error correction can be done by finding the most
likely error operator e with a measured syndrome s € Fg’_k.
However, s itself could be measured with an error, and we may
get S = s + z, where z € Fgfk is syndrome error. Herein we
discuss stabilizer codes capable of correcting both data errors
and syndrome errors. To shorten notation, we will denote m £
n — k, and for vectors x,y € F} x F, define the following
inner product:

n l
xxy =Trg! <Z :cy) + > TntiYnts- (5)
i=1 j=1

To deal with syndrome errors we define a new parity-check
matrix

H=[H I,], (6)
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where I,,, is considered as a matrix over [F5. We define codes

D ={w=uH:uecFJ'}cF}xFJ,
Dt = {v:wxv=0,Ywe D} C F} x F}",

where D™ is the dual code of D with respect to the inner
product (5). By decoding D+, one can correct both data
and syndrome errors. Fujiwara, [6], noticed that choosing
generators properly, we can get a code capable of correcting
simultaneously multiple data and syndrome errors. In addi-
tion, the error-correcting capabilities of D+ can be further
enhanced. The standard approach to reduce the probability
of syndrome measurement error is to repeat measurements
several times and take a majority vote. We propose a gen-
eralization of this idea by measuring additional stabilizers
according to more powerful linear classical codes.

Let C be an [m + r,m] linear binary code with a generator
matrix in the systematic form

Al @)

where A = [a; ;] is an m X r binary matrix. We define a new
set of 7 stabilizers f; by

fi=ai 81+ +amijgm, forj=1... 1 (8)

These f; belong to the stabilizer group S, and can be measured
without disturbing the underlying quantum codewords. We call
C the syndrome measurement (SM) code. Let

o = [ff £7].
Measuring additional r stabilizers is equivalent to considering
the code defined by the parity-check matrix

H I, 0
H 0 L}

which can be transformed into the form

H I, O]

HDS = |: 0 AT Ir (9)

We will say that (9) defines a quantum data-syndrome code
@ps. It is convenient to define codes

Cps = {w=uHps : u € Fy"""} C F} x F"*",
Chs = {v:w*v=0Vw e Cpg} C F} x F+7,

where C3 is the dual code of Cpg with respect to (5). Slightly
abusing terminology, we will call C’ﬁs also a data-syndrome
code. We will say that Qps (or Cg) has length n, dimension
k, and size 2¥. Such a code encodes k (information) qubits
into n (code) qubits.

It is easy to see that

|Cps| = 2™"" and |Cpg| = 22" /|Cps| = 227,

so the size of Cg does not depend on k and r. For a given
matrix (9), we always can find vectors g,,4+1,...,8, and
hy,...,h, over F such that

gi*gj =0, gixh; =0 fori#jandg;*h; =1.

451

These vectors allow us to write down a generator matrix of
Cpy in the following explicit form

G 0 0
GC]%S =|Hy O 01, (10)
Hy I, A
where
g1 hm+1 h1
G = : ’ H, = ’ Hy = ’
Zn h, h,,

and Os are all zero matrices of appropriate sizes.

We will say that a code defined by (9) is an [[n,k : 7]]
DS code. If the minimum distance d (defined in Section V) is
known, it is called an [[n, k,d : r] code.

IV. SYNDROME MEASUREMENT CODES

In this section, we consider some examples of stabilizer
codes for which it is easy to find an efficient SM code that
beat the repetitive syndrome measurement approach.

Suppose that an [m + r,m] SM code C' is used. Denote by
s; and z; the results of correct measurement of g; and fj,
respectively. Then

X:(slv"'asmvzla"'vzr)

is a codeword of C. Because of possible measurement errors,
we obtain a vector

,Zr).

The probability Pr(s; # 5;) (similarly Pr(z; # Z;)) is
defined by (4). We can correct quantum and syndrome errors
simultaneously by decoding vector

0,...,0,%)
——

n times

X= (51, 8m,21,--

using a decoder of Cpg. Alternatively we can first correct
syndrome errors by decoding X using a decoder of the SM
code C, and next correct quantum errors. The latter approach
is typically simpler, though it is suboptimal. In this section we
consider this type of decoding.

Applying a decoding algorithm of C' to X, we obtain
bits 51, ..., 5,. We define the syndrome decoding error and
average syndrome decoding error, respectively, as

Pse = Pr((s1,---,8m) # (51,---,8m)),

1 -
Psppr = — D Pr(s; # s)
j=1

Y
(12)

The [-fold repeated syndrome measurement can be considered
as the SM code with generator matrix

G= [l In

[ times

Note that choosing a good SM code is not equivalent to finding
a good [m + r,m] linear code in the usual sense, since such
a code will have a large minimum distance. Hence the matrix
A in (7) will have “heavy” columns, and this will lead to
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lg Ps.

——Steane [[7,1,3]] code with [15,3,8] SM Code

- - =Steane [[7,1,3]] code with 5-fold rep. meas.
14 —[[21,15,3]] Hamming Code with [18,6,8] SM Code
= = =[[21,15,3]] Hamming Code with 3-fold rep. meas.

3 25 2 -5

-5 -45 -4 -35

lg pin

Fig. 1. Ps, for the [[7, 1, 3]] Steane and [[21, 15, 3]] Hamming codes with
SM codes and 5-fold and 3-fold repeated measurements.

wt (f;) > wt(g;) and further to per(fj) > per(g:), which,
in turn, will lead to large Ps. and Pspgr.-

Below we present several families of high rate quantum
codes with the property that all their stabilizers g € S have
the same or almost the same weights and therefore any good
linear codes can be used for robust syndrome measurement.

Let S, be a generator matrix of the [2%—1, a, 2% 1] simplex

code. The generators
Se 0
0 S,

define an [[2* — 1,2 — 1 — 2a,3]] CSS code. Any liner
combination of the first (second) a generators is a vector of
weight 2971,

Another important family is the [[n,n — 2a,3]] quantum
Hamming codes H, for n = (4% — 1)/3 [13, V]. It is not
difficult to prove that all generators of H, have weight 4%~

In [13, Thm 11] a family of [[n,n —a — 2, 3]] codes with

(a—1)/2
" — 92i+1
is defined for odd a. The generators of these codes can have
only weights 2% — 2 and 2°.

For all these families a good [m + r, m| linear code can be
used as SM code. On Fig. 1 and Fig. 2 we present P, for
quantum codes from above families in combination with SM
codes and syndrome repeated measurements. The parameters
of the SM codes and repeated measurements are chosen so
that the total number of measurements be the same in both
cases. We take SM codes from the table of the best linear
codes available online http://www.codetables.de/. One can see
that SM codes provide drastically smaller P;. compared with
syndrome repeated measurements.

V. MINIMUM DISTANCE AND SPLIT
WEIGHT ENUMERATORS
Let eps = (g,0) € F} x Fy""" with g € C. Since g € C,
we have g € S and thus epg is harmless. If eps = (e,z) €
Cps \{(g,0): g € C}, then e € C. Therefore the operator e

lg P,
&

—([40,33,3]] Code, [13] Th. 11, with [21,7,8] SM Code
- - -[[40,33,3]] Code, [13] Th. 11, with 3-fold rep. meas.

-5 4.5 -4 35 -3 25 -2 -15

lg pim

Fig. 2. [[40, 33, 3]] code from [13], Th.11 with SM code and 3-fold repeated
measurements.

does not belong to S and acts on () nontrivially. Since Hpg *
eps = 07 by definition, we conclude that such epg is an
undetectable and harmful error. Naturally, the weight wt (e, z)
is defined as the number of its nonzero entries. We define
the minimum distance d of Qps (equivalently Cpyg) as the
minimum weight of any element in C3g \ {(g,0) : g € C}.

It is not difficult to see that QQps (or equivalently C’ﬁs)
can correct any error epg = (e,z) (here we do not assume
eps € Cpg) with wt(e) = t,,wt(z) =t if t, +t, < &.
Apparently the minimum distance of a DS code cannot be
greater than that of the underlying stabilizer code.

Define the split weight enumerators of Cpg and Cig,
respectively, by

B;; = B; ;(Cps)

= {w € Cpg : wt(wy,...,wy,) =1,

Wt(wn+17---7wn+m+r):j}|7 (13)
and
BiJ,_j = Bi,j(crl)s)
= |{w € Cpg : wt(wy, ..., w,) =1,
Wt(wnJrlv-"vwnerJrr) :j}| (14)
The minimum distance d of QQps implies that
m-+tr
Bly=> Bij fori=1,....d-1. (15)
j=0

We will say that Qpg is a degenerate quantum DS code if there
exists B;; > 0 for i < d. Otherwise, it is a nondegenerate
quantum DS code. Clearly, we also have

m-+r

Bf =Y By, i=d,....n, (16)
j=1

Boo = Byg=1and Big=0 foriz> 1. (17)

For 0 < ¢ < m + r, let us define d(i) as the smallest integer
such that

L m-r
Bioy,o > ijl Ba0),5:

(18)
Bj@%i>’Q

fore=1,...,m+r.
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Then the minimum distance of ()pg is

d= o tuin d(i) + 1. (19)

Denote the g-ary Krawtchouk polynomial of degree i by

i(—m(q — 1) (j) (’Z:f) (20)

=0

Ki(win,q) =

We list the properties of Krawtchouk polynomials needed in
this work in Appendix A. Their proof and other information
on these polynomials can be found in [16]-[18]. Let f(x,y)
be a two-variable polynomial and its maximal degrees of x
and y be d; < n and dy, < m + r, respectively. Then the
following Krawtchouk expansion of this polynomial holds:

Zme i(@;n, @) K (y;m+7,q2), (1)
1=0 j=0
where
n m-+r
fig @ m+rzzfxy 21, q1)
=0 y=0
x Ky(jim+r,q2).  (22)

Proofs of these equalities are straightforward generalizations
of the proofs (see [17, Chapter 5]) for equivalent expressions
for single variable polynomials.
In what follows we will need the following generalization
of MacWilliams identities [17].
Theorem 1:
n m+tr
Z > BEE.(iin,4) K, (j;m +1,2). (23)

1=0 j=0

A proof of this theorem can be found in Appendix B.

Like [13], [19], [20], for small n one could apply linear
programming techniques to obtain upper bounds on the min-
imum distance of [n,k : r]] DS codes. More explicitly, we
have the following linear program: given n, k, d, and r,

Find nonnegative intergers B; ;, Bifj
subject to (15), (16), (17), and (23).

If there is no solution to this feasibility problem, it means that
o [[n, k,d : r]] DS code exists.

Example 2: Let n ="7,m = 6,r =0, and d = 3. MAPLE
tells us that the liner program is feasible, and therefore a
[[7,1,3]] code may be capable of fighting a syndrome bit error
by measuring six stabilizer generators. Indeed, a [[7, 1,3 : 6]]
DS code exists [6].

VI. UPPER BOUNDS ON UNRESTRICTED (DEGENERATE
AND NON-DEGENERATE) DS CODES

In this Section we propose a general method defined in
Theorem 3 for deriving upper bounds on the minimum dis-
tance of both non-degenerate and degenerate DS codes. Next
we use this method for obtaining several explicit bounds for
DS codes with » = 0. Theorem 3 can be used for deriving
bounds in the case of r > 0, but this will be done in future
work.

453

Let 1 <dp <
N ={(i,7): 0 Jj<m+r},

and A C Nand A =N \A. We want to upper bound quantum
code rate R = k/n under the conditions:

n be an integer,

<n, 1<

m+r
By = Bij, i=0,....dp—1, (24)
=0
1 .o
B;; =0, (i,j) €A (25)

Theorem 3: Let f(x,y) be a polynomial with f;; > 0
satisfying the conditions:

f(z,0)
fz,y)

Then the following claims hold.

dp, and

y) € A

, ifx>
L f (o

<0 (26)
<0 (27)

1) For non-degenerate C]st, it must hold that

£(0,0)/ fo,0 = 2°".
2) For unrestricted Cg, it must hold that
e { L0 f(,0)

} 22n
bl . = .
f070 1Sz<dp—1 MIN < j<m4r f%j

(29)

(28)

Proof: We prove the second claim. Let M =
|Cis| = 22™. Using (23), (21), and (16), we get

dp—1m+r

M Z Zfi,jBi,j
i—0 j—=0

n m-+tr

< MZ Z fi;Bij
i=0 j—=0
n m-r

=M> > fij
i=0 j=0

n m+r

X—ZZB“/K (x;n, ) K;(y;m+r,2)

=0 y=0
> Bhf

= ZB of(2,0) +
(i,j)€A

+ Z Bz,]f(zvj)
(i,j)eA
dp—1

Z By f(x,0)
From this and (17), we get
ZdD 1 ZTU-‘,—T . jf(l‘ 0)

ZdD 1 Zm-{—r fz,]

f(0,0)
< max {—fo,o

(30)

dp—1m+r

ZZBfoo

=0 75=0

€19

2"

100}
"1<e<dp—1 Min <j<mtr foj )
|
For getting a bound on the size of DS codes with minimum
distance d, it suffices to choose

d—1}, (33)
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and a polynomial f(x,y) that satisfies constraints (26)
and (27). In the following subsections, we discuss two poly-
nomials and their corresponding bounds on DS codes with
r = 0.

We also have upper bounds for a DS code inherited from
its underlying stabilizer code. Let Qps be a DS code defined
by (9) (r = 0) with minimum distance d(Qps). Let C be the
[n,n — k| code with generator matrix H used in (6) and C
be its dual code. Let @) be the [[n, k]| stabilizer code defined
by C' with minimum distance d((). From (10) it follows that
vectors of the form

(v,0), v el 0=1(0,...,0),

——
n—Fk

form a subcode of Cg and therefore d(Qps) < d(Q). Thus

any upper bound on degenerate [[n, k]| stabilizer code @ is

also an upper bound on the minimum distance of degenerate

[[n,k:0]] DS code. The same is true for non-degenerate codes.

A. Singleton Bound

As we mentioned in Section III code CIJ)-S has size 22", and
if v=_(v1,...,00,W1,...,Wy_k) € CIJ)-S then v; € Fy and
w; € Fy. This leads to the Singleton bound for nondegenerate
DS codes.

Theorem 4: For any nondegenerate [[n, k, d : 0]] DS code,
we have

k<n-—2(d-1). (34)

The proof of this theorem is a simple generalization of the
well known case of codes over [y, see [21].

In [16] several upper bounds for degenerate stabilizer codes
have been derived. In particular, the Singleton bound k£ <
n — 2(d(Q) — 1) has been proven. Thus we conclude that
bound (34) also holds for degenerate DS codes.

It is instructive to prove this result using (29). To do this,
we first note that if f(x,y) = 0 for y > 1, then the coefficients
fi,; do not depend on j. Indeed, let f(xz,y) = g(x)d, 0 and
f(z,0) = g(x) = > ,g:Ki(x;n,4). Then, according to
(21) and (61), we have

n m
fij = ﬁ Z 9(x) K, (i5n,4) Z 5y,OKy(j§ m,2)
z=0 y=0

1 ‘ 1
= =—0g:Ko(j;m,2) = ——gi. (35

27)’1, 2m
Theorem 5 (Singleton Bound): For an unrestricted (non-
degenerate or degenerate) DS code, we have

k<n-—2(d-1). (36)
Proof: We will use the polynomial
4n—d+12m n—ox
f@y) = ——~— ( )5y,o- (37)
;") n—d+1
Using (22) and (65), we obtain
1 4n—d+12m n n—uzx
f%':WT ( )K/(iénA)
Wgnome (M) A \n—d+1)

(a-1)
(")

m
XY 8y.08, (j;m, 2) = >0, Vi,j. (38)

y=0

It is easy to see that f; ; > 0 and f(¢,0) = 0 for i > d. Simple
computations show that

f;070)>f5£l70):f5£la0) for1<l<d—1.
0,0 1,j 1,0
Finally, £(0,0)/fo,0 = 4"~ 4+12™. [ |

This approach gives us additional information on DS codes
achieving the Singleton bound. For such a code, say Qps, mps.,
we must have equality in (30). Noticing that f; ; = 0 for
i > n—d+1, we conclude that ()ps mps must have B; ; = 0
ford <n—d-+1and j > 0. In (31) we always have equality
since f(z,0) =0 if = > d. Finally, in order to have

dp— m dp— m
xiol j;o Bjf(x,0) _ inol (z,0) Zj;o By j

dp—1 m dp—1 m
20 2jeo fiiBiy ico fiodliloBij
= f(oa O)/fO,O

in (32), code Qps Mps must have ng:o By ; =0 for 1 <
2 <dp—1 Thus By ; =0for1l <o <n-—dp—1and
j = 0. This means that any generator g of ()ps mps should
have large weight, wt (g) > n — d. Hence such Qps vps will
have large syndrome measurement error.

Extensive research have been conducted on construction
of quantum codes meeting the Singleton bound (see for
example [22], [23], [24], [25], references within, and numerous
other papers on this subject). The above result however shows
that such codes most likely will not be useful for practical
applications due to their large syndrome measurement error
probability.

B. Hamming Bound

Let Cg be a non-degenerate DS code with minimum dis-
tance d = 2¢ + 1. Standard combinatorial arguments (see [6])
lead to that k£ < k, where k is the largest integer such that

22n < 4” 2%—};
X (D35 (1)

This is the Hamming Bound for non-degenerate DS codes.
Below we show that this bounds also holds for degenerate
DS codes if n is sufficiently large. Let dp and A be defined
as in (33).

Lemma 6: For a positive integer A, let f*)(z,y) be the
polynomial defined by the coefficients

. (39)

t t—Xa 2
= <Z 3 Kau(jim, 2)Kg<z';n,4)> .
a=0 g=0
Then
t t
P (@, y) =4m2m > "> " By, a,b)
a=0 b=0

t—Aat—Abn—zx

X Z Z Za(x,g,h,w),

g=0 h=0 w=0
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where

x n—x

2+ 2w — g —
x(x+ v h>29+h21UQ3W, (40)
r+w—h

and

SUCUR (AT [ (R B

A proof can be found in Appendix C.

Note that in the above lemma, A is a parameter over which
we will optimize our bound. Next we give an important
property of the polynomial f*)(z, ).

Lemma 7: For x +y > d, we have f)(z,) = 0.

The proof is given in Appendix D.

Thus f)(x,y) satisfies constraints (26) and (27) and
hence we can use it for obtaining a bound on the minimum
distance of DS codes. Choosing A = 1, we get a polynomial
with £ (0,0)/f¥) equal to the right hand side of (39).
Numerical computations show that for large n, the first entry
in the set defined in (29) dominates. Thus, for large n, this
polynomial gives the Hamming bound (39) for unrestricted
(non-degenerate and degenerate) DS codes. The “disadvan-
tage” of this polynomial is that its coefficients ffl;)
aggressively decrease with j, which for certain parameters
makes mini < j<m f(z,j) in (29) being very small, that results
in a loose bound.

If we choose A = t+1, we get f¥)(z,y) = f(x)do,, where
f(x) is the polynomial with f; = (Z;zo K, (i5n,4))?, that is
the polynomial that leads to the Hamming bound for classical
codes over Fy, see [17, Chapter 17]. For this polynomial,
the value f(*)(0, O)/ k ) is larger than in the case of A = 1.

However, its advantage is that its coefficients f( ) do not
decrease with j (in fact they do not depend on j), Wthh often
leads to better bound than with A = 1.

We conclude that for obtaining the best bound we have to
find an optimal value \ € [1,¢ + 1].

Theorem 8 (Hamming Bound for Unrestricted DS Codes):
For an unrestricted DS code, we have k < k, where k is the
largest integer such that

_ £®(0,0) f® (z,0)
St MY T i
1ALt e SESTEming<j<m fy

> 22" (42)

For d = 7, the Hamming bounds (39) and (42) are shown
in Fig. 3. For small values of n, bound (42) is only marginally
weaker than (39), and for n > 36, these bounds coincide.
We observed the same behavior for other values of d. So we
make the following conjecture.

Conjecture 9: For any d, there exists n(d) such that for
n > n(d), the Hamming bound (39) holds for unrestricted DS
codes.

In [6] Fujiwara obtained a hybrid Hamming bound for
nondegenerate DS codes that can correct any tp data and
ts syndrome errors: k < k, where k is the largest integer
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Code Rate R=k/n
o o o
w S (4]

o
)

0.1

Hamming Bound on Unrestricted DS codes
Hamming Bound on Nondegenerate DS codes

0 20 40 60 80 100
Code Length n

Fig. 3.  Hamming bounds for nondegenerate and unrestricted DS codes,
d="1.
such that
22n2n—f§
22 < (43)

S0 (3 (51

We can also derive this hybrid bound using Theorem 3 with

A:{(Za]) : 0 2tS}a

and polynomial

<2tp and 1 <

tp tp n—x

=4"2™m Z Z Z a(z,i,j,h

1=0 j=0 h=0

f® ()

<33 Bly,u,0).

u=0v=0

Tedious but straightforward computations show that fi(’];) >0,

F¥(@,y) = 0if (2,y) € A, and that £&(0,0)/f3
to the right hand side of (43).

Thus we obtained a different proof of (43). We cannot
use this polynomial for degenerate DS codes, since for some
1 < dp — 1, we have f = 0. Finding good polynomials for
deriving hybrid bounds on degenerate DS codes is an open
problem.

ko) is equal

C. Asymptotic Bounds

In this subsection, we consider the asymptotic regime in
which both the code length n and the number of information
qubits k tend to infinity but the code rate R = k/n remains
constant.

It is instructive to consider the Hamming bound (39) for
nondegenerate DS codes in this regime. In order of doing this
we have to find the leading term of the denominator of (39).

Recall that if v grows linearly with » and a;- > a;,j # j*,
then

1 v
— 1 naj — q.. .
p ogQZQ a;+ +o(1)
7j=1
Let H(z) = —xlogy(x) — (1 — x)logy(1 — x) be the binary
entropy function. Denoting £ = j/n,7 = t/n, and ¢ = i/n

(44)
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and using (44), we get for the second sum of the denominator
of (39)

= — max
n 0<EST—e

max (1 - R)H (L) +o(1),

log, 2("_];)}[(%) +o(1)

0<E<T—1 1-R

where o(1) is a function that tends to 0 as n increases and we
have used Stirling’s approximation, see [17], that

%bgz (’;) = H(i/n) + o(1).

This function achieves its maximum at { = %(1—R). However,
according to the Singleton bound, the relative distance § =
% < 1(1 - R) and therefore

r=t/n=5/2< (0~ R) <

Thus the maximum is achieved at & = 7 — ¢. Hence for the
denominator of (39) we have

1 “/n itii n—k
e (2 (")

J=0

(1-R).

T—1
= Jax H(t) +tlogy(3)+ (1 — R)H (1 — R) +o(1).
(45)

Taking the derivative and finding its roots, we conclude that
the maximum is achieved at

1.1 1
=1- Rt o7 Z\/16—83—87+R2—437+4T2.
(46)

One can show that .* is always smaller than 7. Thus the
exponent of the denominator of (39) is

H() 4+ logy(3) + (1 = R)H((7 — ") /(1 = R)) + o(1).
The exponents of the left part and the numerator of (39) are
2 and 1 log,4"2" "% = 3 — R, respectively. Combining the
above results, we obtain the following theorem.

Theorem 10: For a given ¢, the code rate R cannot exceed
the root, say Rgam,nondeg(0), of

0/2—1*

H(")+ 1 logy(3) + (1 — R)H < T_R

)+r-1-0
(47)
In [16] the Hamming and so-called first linear programming

(LP1) bounds have been derived in asymptotic form for
unrestricted (degenerate and non-degenerate) quantum codes:

R <1-46/2logy(3) — H(6/2) + o(1), for 0 <6 < 1/3,
(Hamming) (48)
R < H(w) +wlogy(3) — 1+ 0o(1), (LP1) (49)

where w = 2 — 16— 1,/35(1 — 6), for 0 < § < 0.3152. The
Hamming bound was obtained by applying the polynomial

T T !
Singleton Bound for Unrestricted DS Codes
Hamming Bound on Nondegenerate DS codes
Bound (48) for Untrstricted DS codes

0.9 -\
Bound (49) for Untrstricted DS codes

08
- \ — Gilbert-Varshamov Bound for DS Codes

N

N

06 - \

02 \

0.1

)

Fig. 4. Upper bounds on unrestricted DS codes and an achievability bound
on DS codes.

[Ham () defined by its coefficients f; = Ks/5(i)*. LP1 bound
was obtained with the help of the polynomial

frei(z) = (Kig1(2)Ki(a) — Ki(2)Kiy1(a))?,

a—x
where t = gn and a is a real number located between the first
roots r¢41 and r; of Ky1(x) and Ky (z), and chosen so that
Kt(a)/KHl(a) =—1.

As we mentioned prior to Section VI-A, any bound on
degenerate quantum codes is also a bound on degenerate
DS codes with the corresponding n and k. Thus bounds
(48) and (49) also hold for unrestricted (degenerate or non-
degenerate) DS codes. Note that these bounds can be also
obtained using Theorem 3 and polynomials f(x,y) =
fram(x)0y 0 and f(x,y) = frpi(x)dy 0. As we showed in
(35) the coefficients f; ; of these polynomials do not depend
on j.

The bounds (36), (47), (48), and (49) for unrestricted DS
codes are shown in Fig. 4. One can see that at certain interval
the Hamming bound for non-degenerate quantum codes beats
all the bounds for degenerate DS codes.

It looks natural to try to improve bounds (48), and (49) by
using polynomials f(z,y) whose coefficients f; ; depend on
both indices ¢ and j. At this moment we did not find such
polynomials and leave this as an interesting open problem.

VII. RANDOM DS CODES

The enumerators Bf,j define the decoding error probability
of a DS code in a number of communication/computational
scenarios, similar to [26]. Below we study the behavior of B; ;
and Bf,'j of random DS codes. In particular, we are interested
in how the normalized minimum distance d(r)/n depends on
the ratio r/n when n — oc.

We will consider the ensemble &, i, of Cpg codes defined
by matrices of the form (9) with » < n — k and full rank
matrices A, i.e., rank(A) = r. We will use this ensemble to
show that the minimum distance of random DS codes with
a relatively small » < n — k achieves the Gilbert-Varshamov
bound of stabilizer codes [27].

Let £, be the ensemble of Cfg codes that are dual to
codes from &, .. Note that |1, | = |, k.,|. Define the

n,k,r
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average enumerators (weight distribution) of codes from &, i
and £, respectively, by

n,k,r>

— 1

Bij = Y. Bi(C), and
|€n k r| CEEn k,r

=L 1
Bm.:gl—' > Bi(Ch),

nkr CLegr .

where B, ;(C) and B; ;(Ct) are defined in (13) and (14).
The following theorem finds these weight distributions
explicitly.

Theorem 11: For 1 <i<nand 1< j<m+r, we have

Boo=1, Bio=0,

- 1 m+r m r

By, = ("= (")), (50)
2m —1 J J J

B = e ) (@ -2(5")

~(5)+0)

(52)
— 4” n 7 m + r
Bi; = (47 — 1)2rtm(2m — 1) (z>3 (( J )2
()= (1)), (53
7 J
Eio =1, E&j =0. 6

A combinatorial proof of this result can be found in
Appendix E.

Let us now consider the asymptotic case when the code
length n — oo. Again, denote

t=1i/n, &£=j/n, and p =r/n.

For a DS code with B; ; and B, we define

’L]’

1
bie = — 1085 Blin, (¢n)

1

108y Blin en) bie =
and 0 = d/n, where the minimum distance d is defined by
(18) and (19). Denote by dg the minimum distance of a
generic quantum code. It was shown in [27] that there are
quantum codes, and quantum stabilizer codes in particular,
whose normalized minimum distance dg = dg/n is at least as
large as the quantum Gilbert-Varshamov (GV) bound dgv (R).

This bound is defined by the equation
H(bcv(R)) + dav(R)logy(3) =1 — R.

In the next theorem, we prove that there exist DS codes whose
weight distributions B; ; and Bil’j are upper bounded by the
analytical expressions presented in the theorem for all ¢ and
j, and present a GV bound dpgs v for such codes.

457

- '5GV(R) |
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Fig. 5. Gilbert-Varshamov bounds for stabilizer and DS codes with p = 0.

Theorem 12: For r < m, there exist DS codes with rate R
and b, ¢ < b, ¢ and b} Ve b, ¢» Where

) —1+R+o0(1), (55)

1—R+p
—2+0(1), 56)
e = H() +logy(3) + (1= R+ p)H (%Rﬂ)
—(1=R+p)+o(1), 57
Eto = H(t) 4+ tlogy(3) — 14+ R+ o(1), (58)

and the normalized minimum distance

dps = dps,av(R, p),

where

dps,av(R, p) = min {dGV(R), min ¢

L <1 e (%_L zgj(i’))) } (59

A proof can be found in Appendix F.

It is instructive to compare the bounds dpg gv (R, p) and
dcv(R). In Fig. 5, we plot these bounds for the case p = 0.
One can see that dps v (R,0) < dgv (R), especially for low
rate quantum codes. This means that DS codes with p = 0 have
inferior performance compared to stabilizer codes (in which
only qubits are vulnerable to errors). However, we can improve
DS codes by taking nonzero p. It is not difficult to see that
dps,av(R,p) grows with p. So, for each R we can choose
p*(R) so that 0pg,cv (R, p*(R)) = dav (R). It happened that
p*(R) < 1— R for any R (that is the corresponding 7*(R) =
p*(R)n < n — k, what we assumed for ensemble &, 1 ). In
Fig. 6 we plot the normalized length of syndrome pt = m/n =
1 — R for stabilizer codes and p+ p*(R) = 1 — R+ p*(R) for
DS codes. One can observe that p*(R) is not very large even
for low rate quantum codes. This means that relatively small
number of additional generator measurements are needed for
achieving the quantum GV bound by DS codes.
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- - =Standard Syndrome Approach
——Syndrome Extended to Meet GV Bound

normalized syndrome length

L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Code Rate R

Fig. 6. Normalized number of syndrome bits (n—k)/n for standard stabilizer
codes and extended syndrome bits (n — k + r)/n for DS codes, where r is
chosen such that v, ps(R,7/n) = dav (R).

VIII. CSS-TYPE QUANTUM DS CODES
In this section we discuss CSS-type DS codes with r > 0.

Suppose that
H| 0
Hegs = ( 0 ‘ H)

defines an [[n, k, d]] CSS code, where H is a binary (”—gk) Xn
matrix and HHT = 0. Let

H 1 0 0
Hps = (mr)/2 ) 60
DS (0 0 H'  Ioniryo (60)
where
H’T:<HT £ .. frT/Q),

and vectors f; are obtained as linear combinations of rows
of H. The matrix H = [H’ T4y /2] defines a classical
[n/, k', d'] code. The minimum distance of the corresponding
DS code is d’ < d and therefore we obtain an [[n, k,d : r]]
quantum DS code. Below we discuss how to extend H to
H' so that the minimum distance of the DS code would not
decrease and remain equal to d.
For a vector y € IF;LHMH)/ ® we define the extended
syndrome as s = (81, ..., 8(m+r)/2) = H'y. One can see that
these syndromes belong to the column space of H'. Hence if
any nonzero vector w from the column space of H' has weight
wt (w) > d, then for any two extended syndromes, say s and
s’, we have dist (s, s’) > d and hence the DS code can correct
any [451] syndrome bit errors. If the CSS code defined by
Hcss also has minimum distance d or larger then the DS code
can correct any combination of qubit and syndrome errors
whose total number does not exceed L%J This leads us to
the following result.

Theorem 13: If there exists an [n,k,d] classical dual-
containing cyclic code C' with 2k > n, then there exists an
[[n,2k —n,d : r]] quantum DS code with r < 2k.

Proof: Suppose that H is an n x (n — k) parity-check
matrix of C. Since C' contains its dual code C'+, we have that
HHT = 0. Hence H can be used for construction of a CSS
code according to Hcss. Let ¢ = (co ¢1 --+ ¢,_1) € CH.

TABLE I
THE DISTANCE OF H CORRESPONDING TO DIFFERENT NUMBER OF ROWS

r10]1]2][3[4[5]6|7[8]9
d|3|4]4|4|5|5|5]6|6]|7

Since C* is also cyclic, any cyclic shift of c is also a codeword
of C+. Hence n — k cyclic shifts of ¢ can be used to construct
H and additional k cyclic shifts can be used to construct H’.
Thus, we can construct H' as follows

Co C1 Cn—1
, 6] C2 Co
H' =
Cn—1 Co Cn—2

Clearly, the column space and the row spaces of H' are the
same and they generate code Ct. Since C+ C C we have
d(C+) > d. Now from the arguments preceding this theorem,
it follows that H' defines an [[n,2k — n,d : 2k]] DS code. B

To demonstrate an application of the above theorem,
we consider quadratic-residue (QR) codes. QR codes are cyclic
codes and they are dual-containing for certain parameters [17],
[28], and therefore can be used for construction of CSS
quantum codes. In particular, they lead to [[p, 1, d]] CSS codes
with d> —d+1 > p for p = 85 — 1.

Theorem 14: For p = 8j — 1, there exist [[p,1,d]] CSS
codes with d*> — d + 1 > p. Moreover, there are [[p,1,d : 7]]
quantum DS codes with r < p + 1.

Example 15: Consider the QR code with p = 23. Suppose
H’ is cyclicly generated by 11 + r cyclic shifts of a code
vector of the dual code. Table I provides the distances of the
corresponding DS codes with different values of r. Table I
shows that there exists [[23, 1,7 : 18]] quantum DS code and
therefore we need only 18 additional redundant stabilizers,
instead of 24 by Theorem 13.

The family of quantum QR codes in Theorem 14, which
includes the Steane code and the quantum Golay code, are
important in the theory of fault-tolerant quantum computation.
In particular they are used for finding error thresholds [29].
Here we have shown that these codes also induce nontrivial
quantum DS codes.

IX. CONCLUSION

In this work we proposed to use Syndrome Measure-
ment (SM) and Data Syndrome (DS) codes for making the
syndrome of quantum stabilizer codes robust against measure-
ment errors. We demonstrated that if stabilizers of a code have
a small spread of weights SM codes give large performance
gain over repeated syndrome measurement approach. We next
show that DS codes that can simultaneously correct both
qubit data and syndrome errors. We derived upper bounds
on their minimum distance and note that the bounds hold
for both non-degenerate and degenerate DS codes. We next
studied the weight distribution of random DS codes and used
it for deriving lower (Gilbert-Varshamov) bound on the code
minimum distance. Finally we presented a construction of
CSS-type DS codes.

Authorized licensed use limited to: University of Southern California. Downloaded on July 30,2020 at 00:26:46 UTC from IEEE Xplore. Restrictions apply.



ASHIKHMIN et al.: QUANTUM DS CODES

APPENDIX

A. Properties of Krawtchouk Polynomial
The following equalities holds (see [17, Chapter 5])

KO(x;naQ) = ]-7 (61)
(n
Km0 = -1 (7). @
n
ZKrznc i(s;n,c) = "ops,c=2o0r 4, (63)
=0
n n
)q—lJanq)—q 01,04 (64)
J
j=
" /n—i n—x
Z( ) i(xin,q) = q(j > (65)
In [30, eq. A.19] and [16, Lemma 2], it is shown that
Ko(j;m, 2)K3(j;m, 2) = Y Blu,a,b)Ku(j;m,2),  (66)
u=0
n n—q
K,(i;n,4)Kp(i;n,4) = Zaqg,hw) g(ism,4),
q=0 w=0
(67)
where 3(u, a,b) and «(q, g, h, w) are defined in (41) and (40)
respectively.
Lemma 16:

| (m) Ku(jin,2) = 2™ (" - m). (68)
— \ Jj u

J

Proof: The generating function of the binary Krawtchouk
polynomials (see [17, Sec.5.7]) is

(I+2)" (1 —a) = Ku(jin,2)a"
u=0

Using this equation, we obtain

Z(j)(l—i—x)”]l—x :ix“i() W(jim,2).

7=0

At the same time

m

3 (’7) (1+2)" (1 —2)

§=0
—z( )1+ ay ey - ap
_ (1 + x)n—m Z <m> (1 + x)m—j(l _ (I,’)j
—o \J
=
n—m n—1m
— 1 n—maom — m u.
(1+x) 2 2 Z < " >x
u=0
Comparing these two expressions, we finish the proof. [ ]

459

B. Proof of Theorem 1

We can use the techniques in [31] as follows. We define a
Fourier transform operator with respect to the inner product (5)
and find a MacWilliams identity that relates the two split
weight enumerators. Then Theorem 1 follows directly.

C. Proof of Lemma 6
Using (66) and (67), we obtain

(k) ZZK (73 m, 2)Kp(j4;m, 2)

a=0 b=0
t—Aa t—Ab

XZZK (i;1,4) K (i;n,4)

g=0 h=0

t m

=Y > Bua,b)Ku(j;m,2)

I
NE
MH
MH
NE
/@\

Isd

ﬂ@
=

3
=
’:;

3
>

alq, g, h, w)K,(i;n,4)K;(L;n, 4)

9=0 h=0 ¢q=0 w=0

t t m m

= ZZﬁ(u7a’ab)ZKu(]7m72)KJ(T7m72)

a=0 b=0 u=0 7=0

t—Xat—Ab n n—q
+ > alg,g,hw)

g=0 h=0 ¢=0 w=0

n
XZKq(z,n DHK;(l;n,4)

t—Xat—Ab l—q

B(r,a,b) ZZZ (1,9, h,w),

g=0 h=0 w=0

where in the last step we used the orthogonality property of
Krawtchouk polynomials (63). |

D. Proof of Lemma 7

A binomial coefficient (j) is assumed to be zero if: 1) i < j,
2) j <0, or 3) 7 is not an integer.
The polynomial f*)(z,7) is a sum of non negative terms:

<(a E)_—Z;)/Z> <(a = by+ y)/Z) <2x + wa— 9-— h)

y n—x\(2x+2w—g—~h goth—2w—qguw
w r+w—nh
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A particular term is not zero if all the five binomial
coefficients are not zeros. In the following discussion, we drop
condition 3 since it is not needed for our purpose. It is not dif-
ficult to see that conditions 1 and 2 imply that f*)(z,y) > 0
for x +y > 2t + 1 only if there is a solution to the system of
linear inequalities

A- (a,b,w,g,h,x,y)T < ba

with A, b given in (69) and (70), as shown at the bottom of
this page. Conducting the Fourier—Motzkin elimination [32]
in the order of h,y, g, a,b, w,x (other orders also work), we
come to the incompatible condition 0 < —1/2. This completes
the proof. [ ]

E. Proof of Theorem 11

We would like to analyze the weight distribution of a
random DS code from &, j, with a generator matrix of the
form (9) where m = n — k. Let £, ,, be the set of DS codes
with a generator matrix of the form [H I,,], and F,, , be the
set of binary codes with a generator matrix of the form [A I,.],
where A has rank r. A code from &, j, , can be considered as
a combination of codes from &, ,, and Fp, ;.

Lemma 17: The size of the ensemble &, ,, is

m—1
(22(71,—u) _ 1)(2m _ Qu)
| nm| | nm|:H Jutl _ ’ (71)
u=0

and any vector w = (a,b) with a € F} \ 0 and b € F5* \ 0
is contained in

2v—1

L =

(72)

:S

<
Il
_

codes from &, p,.
Proof: Tt is proved in [26] that the number of [n,m]
additive self-orthogonal codes over Fy is

For any [n,m] additive self—orthogonal code, we can choose
m generators (rows of matrix H) in

22(n w) _ )
Tutl 1
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ways. Hence, using any [n,m] self-orthogonal code, we can
form T different matrices [H I,,]. Thus, |E, | = ST

It is shown in [26] that any nonzero vector a € F} \ O is
contained in

m—1 2(n—u)
2 —1

[, m] self-orthogonal codes. We can use any of those codes
for building a code from &, ,, with vector (a,b) as its first
basis vector. The other (m — 1) basis vectors can be chosen in

H

ways. Hence any (a,b) is contained in PR codes
from &, . |
Lemma 18: The size of the ensemble F,, , is

r—1 r—1
m T u m U
Fue = [T TI@ -2 = [[@" =29, @3
u=0 u=0
where
1)(2m—1 _ 1) .. (Zm—r-i-l _ 1)

mi (2" —
{r}_ 2r—1nEr-t-1)---(2-1)

is the Gaussian binomial coefficient, and any vector (b, c) for
b € F7*\ 0 and c € F; \ 0 is contained in

[7:‘__” ﬁ(? — Uy = ﬁ@m —gu)

u=1 u=1

(74)

codes from F, ...
The proof of this lemma is similar to the previous one and
is omitted.
Lemma 19: The following four claims hold.
1) Any vector (a,b,c), where a € F},\0, b € F7*,\0,
c € F5\ 0, is contained in

r—1

Lem™-2)JJem-2v

u=1

F(a,b,c) = (75)

codes from &, j .
2) Any (a,b,0), where a € F} \ 0, b € F7*\ 0, 0 € F7,
is contained in

I F(a,b,0) LH (76)
Té ( u=0
u=0 codes from &, j .
-1 1 -1 1 -1 1 1
-1 1 1 -1 -1 1 1
-2 2 -1 - -1 1
AT = 1 1 1 -1 1 (69)
1 -1 1 -1 1
- 1 -1 -1 1 -1
1 1 -1 -1 ]
b = ( 2m t t t t n  —2t—1)
(70)
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3) Any (0,b,c), where 0 € F}, b € F5*\ 0, c € F; \ 0,
is contained in

F(0,b,c) 7

r—1
=ST[]e™-2v
u=1
codes from &, j .
4) Any (a,0,c), where a € F},\0, 0 € F}", c € F; \ O,
is contained in

F(a,0,c) m_ 2"

LH

(78)

codes from &, . .

Proof: We prove the first claim and the other three follow
similarly.

A vector (a,b,c) can be obtained only as the sum of a
vector (a,x,0) (where x € FJ* \ 0,x # b, 0 € Fj, and
(a,x) is a code vector of a code from &, ,,,) and a code vector
(0,b+x,c) (where (b+x,c) is a code vector of a code from
Fm,r)- Any given (b + x, c) is contained in Hz;ll(Qm —2%)
codes from F,, , by Lemma 18. Since (a, x) is contained in L
codes from &, ,, and vector x can be chosen in 2™ — 2 ways,
we have (a,b,c) contained in L(2™ — 2) ] _ 1(2"1 —2%)
codes from &, j, ., which gives (75). [ |

In addition, we note that the total number of codes in
gn,k,r is

N = |Sn,k,r|:ST[ “:[ " guy
—STH

Now we have all the ingredients needed for finding Eiﬁj.
We again assume that (§) = 0if a < b or b < 0. Let consider
the case of + > 0 and 5 > 0. Then

E,j:% > Bi(C

—2%). (79)

Ce&n k,r
1
(a,b,0):
wi(a)=1, wi(b)=j
+ E F(a,0,c)
(a,0,c):
wt(a)=1, wt(ec)=j
+ E F(a,b,c)
a,b,c
wt(a)=1, M(b)+ wt(e)=j

_ %<Z>3 <<’_;_"‘)F(a,b,o) + (;)F(a,o,c)
v (2)(,7,))

Taking into account that

(G-

461

after some computations, we obtain (51). Equation(50) is
obtained in a sijnilar way.

To derive Ei’ j
also hold for average weight enumerators B;; and Ei‘ -
Changing the role of codes C and C*, we get, similar to (23):

we use MacWilliams identities (23), which

—L 1

B n n\ .
Bi,j - 2m,+r(4n _ 1)(2m _ 1) ; (Z)l Kz(l,n,él)

S (e-a(7)+ () (0)

x Kj(t;m +1,2)

g3 () - (2)()

K;(0;n,4)K;(0;m +r,2).

XKj(t;m—l—?“,Q)"‘W

Using (62), (64), and (68), after long manipulations,
we obtain (52), (53), and (54). [ |

F. Proof of Theorem 12
According to Markov’s inequality for a given pair ¢ and j,
we have
Pr (Bi,jwﬂ > ((n+1)(m+r+ 1))1+6§;j)
1
< ;
((n+1)(m+r 4 1))t

for any ¢ > 0. Applying the union bound, we obtain

Pr(B,;(C) = ((n+1)(m +r +1))+B;

)

1

for at least one pair ¢, j) < ,
Pair &) S e D(m ¥ D

and further

Pr (BM(CL) < ((n+1)(m+r+1)"B;, forall zg)
1
C((n+ D(m+r+ 1))

Hence there exists a code C+ € &L such that

n,m

Bi;(CH) < ((n+1)(m+7r+1)*B;,, Vi,j. (80)

Now we consider codes of growing lengths, i.e., n — oo. Note
that m/n = (n — k)/n =1 — R. Recall, see [17], that

%1% (’;) — H(i/n) + o(1).

So the three terms of the last factor of (53) are that

1 m+r 13

—1 2m = (1— H|{——m—

e (") o0 meon (=)
+1—R,

1
— log, ( )2”’ =pH (§> +1—-R,
n p

1 m\ . 13
EIOgQ(j)z =(1 R)H(—l_R>—|—p. (83)

1)
(82)
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Simple analysis shows that for p < 1 — R (which is the same
as r < n — k), we have that (81) is always larger than (82)
and (83). Hence

—1 1 —1
be £ - logs((n4+1)(m + 7+ 1))1+€BM

1 -1
E 10g2 B’L,] + 0(1)

= H() + tlogy(3) + (1 = R+ p)H <1—£T+p>
— (1= R+p)+o(1).

The equation (56) is obtained in a similar way.

Let us have C- that satisfies (80). Since C is linear, all
B; ;(C+) are integers. Hence if ¢* and £* are such that b, ¢ <
0 for + < ¢* and € < &, then B; ;(C+) =0 for 1 < i <
(t*—e)n, 1 < j < (& —w)n for any ¢, w > 0 and sufficiently
large n. It is not difficult to see that if + < dgy (R), then
B < 0. Similarly, if

- (-n(252),

then Ei&(L) = 0. Thus B, o(C+) = 0foralli < (gv(R)—€)n
and B; ;(C+) = 0if i +j < (1 + &(t) — w)n. Hence (59)
follows. [ |

REFERENCES

[1] D. A. Lidar and T. A. Brun, Eds., Quantum Error Correction.
Cambridge, U.K.: Cambridge Univ. Press, Oct. 2013.

[2] P. W. Shor, “Fault-tolerant quantum computation,” in Proc. 37th Annu.
Symp. Theory Comput. Sci. Los Alamitos, CA, USA: IEEE Press, 1996,
pp. 56-65.

[3] A. Ashikhmin, C.-Y. Lai, and T. A. Brun, “Robust quantum error
syndrome extraction by classical coding,” in Proc. IEEE Int. Symp. Inf.
Theory, Jun. 2014, pp. 546-550.

[4] A. Ashikhmin, C.-Y. Lai, and T. A. Brun, “Correction of data and
syndrome errors by stabilizer codes,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2016, pp. 2274-2278.

[5]1 W. Zeng, A. Ashikhmin, M. Woolls, and L. P. Pryadko, “Quantum
convolutional data-syndrome codes,” Proc. IEEE Int. Workshop Signal
Process. Adv. Wireless Commun. (SPAWC), Cannes, France, Jul. 2019,
pp- 1-5.

[6] Y. Fujiwara, “Ability of stabilizer quantum error correction to protect
itself from its own imperfection,” Phys. Rev. A, Gen. Phys., vol. 90,
Dec. 2014, Art. no. 062304.

[7] H. Bombin, “Single-shot fault-tolerant quantum error correction,” Phys.
Rev. X, vol. 5, Sep. 2015, Art. no. 031043.

[8] B. Brown, N. Nickerson, and D. Browne, “Fault-tolerant error correc-
tion with the gauge color code,” Nature Commun., vol. 7, p. 12302,
Sep. 2016.

[9] N. P. Breuckmann, K. Duivenvoorden, D. Michels, and B. M. Terhal,
“Local decoders for the 2D and 4D toric code,” Quant. Inf. Comput.,
vol. 17, nos. 34, p. 181, 2017.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 3, MARCH 2020

E. T. Campbell, “A theory of single-shot error correction for adversarial
noise,” Quantum Sci. Technol., vol. 4, no. 2, Jan. 2019, Art. no. 025006.
A. R. Calderbank and P. W. Shor, “Good quantum error-correcting
codes exist,” Phys. Rev. A, Gen. Phys., vol. 54, no. 2, pp. 1098-1105,
Jul. 2002.

A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev.
Lett., vol. 77, no. 5, pp. 793-797, Jul. 1996.

A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane,
“Quantum error correction via codes over GF(4),” IEEE Trans. Inf.
Theory, vol. 44, no. 4, pp. 1369-1387, Jul. 1998.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters,
“Mixed state entanglement and quantum error correction,” Phys. Rev. A,
Gen. Phys., vol. 54, no. 5, pp. 3824-3851, 1996.

E. Knill and R. Laflamme, “A theory of quantum error-correcting codes,”
Phys. Rev. A, Gen. Phys., vol. 55, no. 2, pp. 900-911, 1997.

A. Ashikhmin and S. Litsyu, “Upper bounds on the size of quantum
codes,” IEEE Trans. Inf. Theory, vol. 45, no. 4, pp. 1206-1215,
May 1999.

F. J. MacWilliams and N. J. A. Sloane, The Theory Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1977.

V. Levenshtein, “Krawtchouk polynomials and universal bounds for
codes and designs in Hamming spaces,” IEEE Trans. Inf. Theory, vol. 41,
no. 5, pp. 1303-1321, Sep. 1995.

C.-Y. Lai, T. A. Brun, and M. M. Wilde, “Duality in entanglement-
assisted quantum error correction,” IEEE Trans. Inf. Theory, vol. 59,
no. 6, pp. 4020-4024, Jun. 2013.

C.-Y. Lai and A. Ashikhmin, “Linear programming bounds for
entanglement-assisted quantum error-correcting codes by split weight
enumerators,” [EEE Trans. Inf. Theory, vol. 64, no. 1, pp. 622-639,
Jan. 2018.

R. C. Singleton, “Maximum distance g-nary codes,” IEEE Trans. Inf.
Theory, vol. IT-10, no. 2, pp. 116-118, Apr. 1964.

B. Chen, S. Ling, and G. Zhang, “Application of constacyclic codes
to quantum MDS codes,” IEEE Trans. Inf. Theory, vol. 61, no. 3,
pp. 1474-1484, Mar. 2015.

X. He, L. Xu, and H. Chen, “New g-ary quantum MDS codes with dis-
tance bigger than q/2,” Quantum Inf. Process, vol. 15, pp. 2745-2758,
Jul. 2016.

W. Fang and F. Fu, “Some new constructions of quantum MDS codes,”
IEEE Trans. Inf. Theory, vol. 65, no. 12, pp. 7840-7847, 2019.

X. Shi, Q. Yue, and Y. Wu, “New quantum MDS codes with large
minimum distance and short length from generalized Reed-Solomon
codes,” Discrete Math., vol. 342, no. 7, pp. 1989-2001, 2019.

A. Ashikhmin, “Fidelity lower bounds for stabilizer and CSS quan-
tum codes,” IEEE Trans. Inf. Theory, vol. 60, no. 6, pp. 3104-3116,
Jun. 2014.

A. E. Ashikhmin, A. M. Barg, E. Knill, and S. N. Litsyn, “Quantum
error detection. II. Bounds,” IEEE Trans. Inf. Theory, vol. 46, no. 3,
pp. 789-800, May 2000.

C.-Y. Lai and C.-C. Lu, “A construction of quantum stabilizer codes
based on syndrome assignment by classical parity-check matrices,” IEEE
Trans. Inf. Theory, vol. 57, no. 10, pp. 7163-7179, Oct. 2011.

A. Paetznick and B. W. Reichardt, “Fault-tolerant ancilla preparation
and noise threshold lower bounds for the 23-qubit Golay code,” Quant.
Inf. Comput., vol. 12, pp. 1034-1080, Jun. 2012.

R. Mceliece, E. Rodemich, H. Rumsey, and L. Welch, “New upper
bounds on the rate of a code via the Delsarte-MacWilliams inequalities,”
IEEE Trans. Inf. Theory, vol. IT-23, no. 2, pp. 157-166, Mar. 1977.
C.-Y. Lai, M.-H. Hsieh, and H.-F. Lu, “On the MacWilliams identity
for classical and quantum convolutional codes,” IEEE Trans. Commun.,
vol. 64, no. 8, pp. 3148-3159, Aug. 2016.

A. Schrijver, Theory of Linear and Integer Programming. Hoboken, NJ,
USA: Wiley, 1998.

Authorized licensed use limited to: University of Southern California. Downloaded on July 30,2020 at 00:26:46 UTC from IEEE Xplore. Restrictions apply.



