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Quantum steganography is the study of hiding secret quantum information by encoding it into what an
eavesdropper would perceive as an innocent-looking message. Here we study an explicit steganographic
encoding for Alice to hide her secret message in the syndromes of an error-correcting code, so that the encoding
simulates a given noisy quantum channel. We calculate achievable rates of steganographic communication
over noiseless quantum channels using this encoding. We give definitions of secrecy and reliability for the
communication process, and with these assumptions derive upper bounds on the amount of steganographic
communication possible and show that these bounds match the communication rates achieved with our encoding.
This gives a steganographic capacity for a noiseless channel emulating a given noisy channel.
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I. INTRODUCTION

The study of steganography is perhaps best motivated by
considering an example. Suppose two political protestors Al-
ice and Bob are arrested and put into two widely separated jail
cells. The warden allows them to communicate with handwrit-
ten letters that he reads before delivering. However, if the war-
den reads anything in the letters that he finds suspicious (such
as a possible escape plan), then he will not deliver the letter.
Luckily, Alice and Bob exchanged a secret key before their
incarceration. Can Alice and Bob communicate their escape
plan to each other without arousing the warden’s suspicions?
This is where the study of steganography comes into play.

The science of sending information through seemingly
innocuous messages has a long history, dating back to at
least 440 B.C. [1]. It is worth making clear its differ-
ences from cryptography. In cryptography, a secret message
(the plaintext) is encrypted using the shared secret key and
the resulting ciphertext is then sent to the desired receiver to
be decoded. If an eavesdropper (Eve) observes the ciphertext,
she cannot decode it without the secret key. However, she will
know that there is a secret message since Alice is sending
apparent gibberish to Bob.

By contrast, if Alice uses a steganographic encoding, she
hides the secret message (or stegotext) into a larger covertext,
which appears to Eve as an innocuous message. The hidden
message may or may not be encrypted itself, but the main line
of defense is that the eavesdropper is unaware that a message
is even being sent.

During World War I1, a Japanese spy named Velvalee Dick-
inson sent classified information to neutral South America.
She was a dealer in dolls and her letters discussed the quantity
and type of doll to ship. The covertext was the doll orders,
while the concealed stegotext was encoded information about
battleship movements [2].

The quantum analog of cryptography has been widely
studied [3]. However, the quantum analog of steganography
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is still in a relatively early stage. There have been a num-
ber of different proposals for encoding quantum information
steganographically, or encoding classical information into
quantum states or channels [4,5]. In this paper, we consider
hiding secret messages as error syndromes of a quantum error-
correcting code [6]. This approach to quantum steganography
has been studied in detail by Shaw and Brun, with explicit
encoding and decoding procedures and calculated rates of
communication and secret key consumption [7,8]. It was
shown that such schemes can hide both quantum and classical
information, with a quantitative measure of secrecy, even in
the presence of a noisy physical channel. When the error
rate of the physical channel is lower than the eavesdropper’s
expectation, it is possible to achieve nonzero asymptotic rates
of communication. (If the eavesdropper has exact knowledge
of the channel, secret communication may still be possible,
but the amount of secret information that can be transmitted in
general grows sublinearly with the number of channel uses.)
More recently, a closely related idea has been studied under
the name of quantum covert communication [9-13]. Many of
the ideas in this paper are closely related to steganographic
requirements, such as secrecy and recoverability. This is not
surprising since covert quantum communication can be seen
as a special case of quantum steganography over noisy quan-
tum channels in the case when the eavesdropper has exact
knowledge of the channel, and where Eve assumes the channel
is idle (so only noise is being transmitted). Similarly, quantum
steganography is a type of covert quantum communication
where Eve knows about the covertext communication but not
the hidden stegotext, and where Eve may not have perfect
knowledge of the channel. The work on covert communication
has generally found that if Eve has exact knowledge of the
channel, the amount of secret communication that can be done
grows like the square root of the number of channel used.
There is also a somewhat related idea known as entropic
security [14,15]. The sender chooses a message from a
known message space and encrypts the message. For entropic
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security, whenever an adversary intercepts an encryption, they
should not be able to predict any function on the message,
as long as the original message has sufficiently high entropy.
This differs from steganography, however, in that Alice and
Bob are using a shared secret key to avoid making the
adversary suspicious at all. Should the adversary become
suspicious, then could indeed intercept and read the message,
unless the message is also encrypted using more shared secret
key.

The goal of this paper is to formalize the assumptions
and reasonable conditions of quantum steganography intro-
duced in [7], and to give upper bounds on the achievable
rates of quantum communication while remaining secure
from an eavesdropper’s suspicion, for the special case when
the true underlying channel is noiseless. Our results include
achievability results as well as converse proofs for quantum
steganography.

In Sec. II, we formalize our notion of quantum steganog-
raphy where secret messages are hidden in the syndromes of
an error-correcting code and outline a specific steganographic
encoding where Alice is able to emulate any general quantum
channel NV on her encoded secret message and covertext.
We work out specific examples for the bit-flip channel and
the depolarizing channel, before giving the more general
result. In Sec. III, we prove upper bounds on the amount of
steganographic communication possible and show that these
bounds are asymptotically equal to the rates achieved in the
previous section.

The assumption that the physical channel is noiseless
greatly simplifies the analysis. However, we believe that the
main intuition underlying this approach will apply equally
well in the case of a noisy channel. We will end this paper
with a discussion of how to extend this work to the case where
the physical channel between the two parties is noisy.

II. QUANTUM STEGANOGRAPHY: ACHIEVABILITY

As discussed in Sec. I, there have been several approaches
to generalizing steganography to the quantum setting [4-6].
Here we will make explicit the notion of quantum steganogra-
phy based on syndromes of quantum error-correcting codes.
We assume that Eve expects to see quantum information
passing through a noisy quantum channel. However, the actual
physical channel is assumed to be noiseless. This is obviously
an idealized assumption, which greatly simplifies the analysis;
we will discuss below how it might be justified at least as an
approximation.

Alice wants to send a secret message steganographically to
Bob. Using her shared secret key, she encodes the stegotext
into a codeword of a quantum error-correcting code (QECC)
with errors applied to it [6], and sends it to Bob. The codeword
encodes an innocent state; the stegotext is conveyed in the
errors. If Eve were to perform measurements on this code-
word, it would be indistinguishable from an innocent encoded
covertext that had passed through a given noisy quantum
channel to Bob [7,8].

Before discussing how to quantify the security of a quan-
tum steganographic protocol, let us make clear what Alice is
trying to achieve. Alice wants to encode an innocent cover-
text state, together with her secret message, into an N-qubit

codeword in such a way that it cannot be distinguished from
the covertext alone encoded into a quantum error-correcting
code that has undergone typical errors induced by the quan-
tum channel N®V. The steganographic encoding works by
mapping all possible secret messages onto syndromes of the
QECC. This encoding is not limited to classical messages: it is
possible to encode a quantum state by preparing the codeword
in a superposition of different error syndromes.

In analyzing this quantum steganography protocol, we
make the following assumptions. Alice is communicating
with Bob by a quantum channel that is actually noiseless.
But the eavesdropper, Eve, believes that this channel is noisy,
perhaps because Alice and Bob have been systematically
making the channel appear noisier than it actually is. Because
Alice and Bob have been systematically deceiving Eve in
this way, we assume that they know (at least fairly closely)
what Eve’s estimate of the channel is. Before the protocol
began, Alice and Bob shared with each other a secret key: an
arbitrarily long string of random bits. This key is known only
to the two of them. But once the protocol begins, they cannot
communicate except through channels that can be monitored
by Eve. Alice sends an innocent-looking message to Bob over
the channel. This is a covertext state p., encoded into an
error-correcting code; it is assumed that the choice of code
is known to Eve, and this code should be a plausible choice
for the noisy channel that Eve believes exists.

One important caveat for this section: we will be consider-
ing the case where the QECC that Alice uses is nondegenerate.
That is, each typical error corresponds to a unique error syn-
drome. This allows Alice to communicate as much stegano-
graphic information as possible, and it allows us to ignore
the details of which QECC is being used. Methods similar
to those in this section should also work for degenerate codes;
but in that case, the encoding will be strongly dependent on
the properties of the particular code since the typical errors
must first be grouped into equivalent sets and then the possible
messages mapped onto these sets. We also use this assumption
in the next section to get specific expressions for the upper
bound on the secret communication rate.

To clarify how the encoding works, we start by considering
two examples for relatively simple channels: first, the case
where Alice is emulating a bit-flip channel NF* on the
codeword, and second, the case where she is emulating the
depolarizing channel. Finally, we consider a more general
error map N'®V. The message qubits are encoded into the error
syndromes of the codeword of the QECC that she is using.

A. The bit-flip channel

Suppose that Eve believes the channel connecting Alice
and Bob to be a bit-flip channel, with a probability p of error
per qubit sent. (The actual physical channel is noiseless, as
assumed above.) Alice sends a codeword of length N to Bob,
encoding some “innocent” covertext state p.. The errors in the
codewords that Alice sends to Bob should be binomially dis-
tributed: pN is the mean number of errors of this distribution
and the variance is (1 — p)pN. The total probability that there
is an error of weight w on the codeword should be

N
Pw = ( )Pw(l - P)N7w~ (D
w
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There are

N N
(w) T w(N —w)!

such errors, all with equal probability p¥(1 — p)N =%,

If N is large, then it is extremely likely that the num-
ber of bit flips will be a fypical error—that is, an error of
weight w within a narrow range about the mean pN. Alice’s
encoding will make use of these typical errors. For each w
from Np(1 —§) to Np(1 4 §), where /(1 — p)/pN < § K
1, Alice chooses at random a set of C,, possible error strings
of weight w. (An error string of weight w is a string of N
bits, with a 1 at every location with a bit flip and O at every
location with no error.) This random choice is made using the
shared secret key with Bob, so that Bob also knows which
set of errors is being used to encode secret messages, but Eve
(who does not share the key) could not know this.

Let these sets of error strings of weight w be called {S,},
and the set of all strings used in the encoding is

s=JSu. o)
We sum up
Np(1+8)
C= Y C,=ISl 3)
w=Np(1-4)

So the total number of strings in the set S is C. This number
C is the total number of possible distinct secret messages that
Alice can send to Bob (though she may also send superposi-
tions of these messages). So the message encodes M = log, C
bits (or qubits) of information.

Note that we are assuming all the messages to be equally
likely. If the messages are not equally distributed, the mes-
sages can be first mapped to preliminary codewords that are
equally distributed. The algorithm to do this would use more
key, but still keep the dependance sublinear. Of course, we
could properly encrypt the message before sending, but this
would certainly increase the key rate from sublinear to linear.

Define the probability g = 1/C. These error strings S are
typical strings (using the definition of weak typicality from
information theory). Eve should not be suspicious at seeing
such an error string since it matches a probable result for
the channel that she expects. For this encoding to be indis-
tinguishable from the bit-flip channel, the probability of the
message being an error string of weight w should equal the
value from the distribution in Eq. (1) above. This means we
want to satisfy

C,
F’” = Pu. 4)

N
Cw<< >7
w

for all w in the typical range. This implies that

qu =

Clearly, we must have

N
Cop”(1—pN " < <w>pw(1—p)N‘“’ = Cuq

=p’(1-p" " <q. 5)

To communicate the maximum amount of information
steganographically, we want C to be as large as possible,
which means we want ¢ to be as small as possible. The
constraint in Eq. (5) then gives us

g = pNPID (| = VAP, (6)
So Alice can send M stegoqubits to Bob, where
M =log, C =log, 1/q
= N{=plog, p — (1 — p)log,(1 — p)
+ 8[plog, p — plog,(1 — p)I}
= N{h(p) — éplog,[(1 — p)/pl} = Nh(p),  (7)

where h(p) = —plog, p — (1 — p)log,(1 — p) is the entropy
of the bit-flip channel on one qubit. Therefore, with this
encoding, Alice can send almost N/(p) bits. Note that in re-
alistic scenarios, p will always be less than 0.5; otherwise the
decoder can be trivially adjusted by flipping the interpretation
of a 0 signal and a 1 signal.

In [7], it is shown that the diamond norm distance between
the channel (V?*)®" and Alice’s encoding is exponentially
small in N. This justifies the claim that this protocol will
not arouse suspicion from Eve. In Sec. III, we use a slightly
modified definition of secrecy that allows us to prove the
converse bound on this rate of stegocommunication by infor-
mation theoretic techniques. That means that this encoding
is essentially optimal: the maximum rate of steganographic
communication for a nondegenerate code in the case of the
bit-flip channel is A(p).

B. Depolarizing channel

Here we will consider the scenario where the channel that
Alice is emulating is the depolarizing channel. It turns out that
due to the symmetric nature of the depolarizing channel, the
encoding looks quite similar to that of the bit-flip channel.
Recall that the depolarizing channel acting on a single qubit p
is given by

NyC(p) = (1= p)p + (p/3)(XpX + Y pY + ZpZ).

Applying this channel on N qubits, the total probability of
all errors with exactly n; X, n, Y, and n3 Z errors (and ny =
N — ny — np — n3 identity “errors”) is

p(nl$n27n3vn4) = (p/3)l’l|+l‘12+n3(1 _P)m-

m!ny!nglng!
Notice that instead of specifying ny, np, and n3 exactly, we
can instead talk about errors with weight w = n; + n, + ns.
It follows by simple calculation that the total probability of all
errors of weight w is

w N w N—w N w N—w
p(w) =3 ( )(p/3) (1—-p) =< )P (I-=p)7 ",
w w

which is just a binomial distribution in w. As in the bit-flip
case, we will need to say what strings of errors are typical.
There are a number of ways we could specify this, but for sim-
plicity we will consider weights w that lie between N p(1 — §)
and Np(1 + §) for /(1 — p)/pN < & < 1. The astute reader
will notice that this set includes some errors that are not
typical: for instance, it includes errors of weight w where all
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(or most) of the errors are X ’s and none (or few) are Y’s or Z’s.
If such errors are used as codewords, they might make Eve
suspicious. Still, the effect of this is not too large because this
set is still dominated by typical errors, and the probabilities
of these strings are similar to the expected probabilities of
atypical errors. For more information regarding the typicality
of channel errors, we refer the reader to the Appendix. With
this definition of typicality, we can follow the exact same
encoding given for the bit-flip code using errors with weight
w, except that the set of errors of weight w is now of size

()

and errors of weight w have probability (p/3)*(1 — p)N=*.
This then leads to the following encoding rate:

M = N{—plog,(p/3) — (1 = p)log,(1 — p)
+ dlplog,y(p/3) — plog,(1 — p)l}
= N{s(p) + é[plog,(p/3) — plog,(1 — p)I}
~ Ns(p), (3)

where we have defined s(p)= —plog,(p/3)—(1—
p)log,(1 — p) to be the entropy of the depolarizing channel
on one qubit.

C. General channels
1. Special case: Random unitaries

Consider a quantum channel acting on a single qubit of the
form

k
N(p)=)_ pUipU}, ©)

i=1

where the operators U; are all unitary, so UiUiT = UiT U =1.
The set of Kraus operators {,/p;U;} can be thought of as a
set of possible single-qubit unitary errors U; that occur with
probability p;. Note that both the bit-flip and depolarizing
channels are special cases of the random unitary channel, as
is any Pauli channel. The channel acts on an N-qubit encoded
state p as N®V (p).

The total probability of all errors with n; U; errors, ny U,
errors, and so forth is given by the multinomial distribution,

N!

i, 10
n1!~-~nk! Pr ( )

pny,...,m) = Dy

Now consider weights #; in the range from Np;(1 —§) to
Np;(1+8), where § is large enough that this set includes all
the typical strings. (This definition can be modified, but for
simplicity we stick with it in this paper.) Randomly choose
44444 n, strings with weights n;, ns, ..., ny in this range such
that ny 4 - - - + n = N. As with the bit-flip and depolarizing
channels, let these sets of strings be called S,, ., and let S
denote the union of all these sets of strings, which are a subset
of the typical strings. For all weights ny, ..., n; outside the
typical set, we let Cy,, ., = 0. The total number of strings in
the set Sis C,

.....

C= > Gy (1)

Defining ¢ = 1/C, we want to satisfy
Cm,...,nkq =Cn1 ..... nk/C:p(nlw--vnk) (12)

for all weights ny, ..., ng in the typical set, so that Eve does
not become suspicious. Also, clearly, C,, ., must be less

.....

than —Y:—_ This implies that
nyleeny!
N!
7 7, n 7,
Cm ..... nkpll"'Pkk<n]!.”nk!Pll"'Pkk,
Cn| ..... m-p’:] o p’kA g Cn] ..... 9>
Pl < g (13)

Notice that this time we cannot simply plug in the lower
bounds of the sums for n;, as we did for the depolarizing and
bit-flip channels, because we have the additional constraint
that n; + - - - + ny = N. However, the same general argument
applies. Inside the set of typical weights, there is a string
iy, ..., A with |7i; /N — p;| < ép; forall j, which maximizes
the probability,

Pmax = P} P3P (14)
We can choose ¢ = pmax and use this to put a bound on the
number of stegoqubits M that Alice can send to Bob,

M =log, C = —log,(q) = — 108, Pmax

= —logy(p1) — -+ — ik log, (pi)
= N[—’}V—l logy(p1) — -+ — ’;V—" log2<pk>}
k
>N - 6)[— > pi 1og2<pi>}
i=1
=N —=8H(p1, ..., pr). (15)

So, in the limit of large N, we should approach a rate
H(p1, ..., pr) with this encoding.

2. Encoding general channels across multiple code blocks

This argument does not necessarily apply directly to a gen-
eral quantum channel since the probabilities of the different
outcomes can be state dependent. However, we should be
able to do a similar type of encoding for a general quantum
channel A/ by encoding across multiple code blocks. Consider
a general quantum channel acting on a single qubit as

k
N(p) = AipAl. (16)
i=1

The channel acts on an N-qubit encoded state p as N®V(p),
where we will let N become large. For most states p, we
can well approximate this N-qubit channel by a sum over the
typical errors [16,17],

N®N(p)~ Y EpE], (17)
ieT

where p is now the N-qubit codeword, the index is i =
i1iy - - - iy, the typical error E; is

Ei=A, ®A,® - -®A,, (18)

and 7T is the set of typical sequences i [18].
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We assume that the QECC that Alice uses is one that can
correct the typical errors of the channel. (Indeed, using a
code that was not strong enough to correct the typical errors
might well arouse Eve’s suspicions.) We will also assume,
for simplicity of this analysis, that the QECC is strongly
nondegenerate.

Definition. Strongly nondegenerate code. Suppose a quan-
tum channel AV acts on a single qubit as follows:

N(p) = AipA]. (19)
1

Then we say a quantum error-correcting code is strongly
nondegenerate if there exists a correctable set of errors of the
form

Ei = A1) @Ay @ - - @ Ay s (20)

such that IP’EI.TE ;P = a;;IP, where PP is the codespace projec-
tor and «;; is diagonal.

This means that on a valid codeword in the QECC, the
typical errors E; all have distinct error syndromes and act as
unitaries that move the state to a distinct, orthogonal subspace
labeled by i. This means that error E; occurs with a fixed
probability p; for all valid codewords of the QECC.

We can then essentially repeat the argument that leads to
Eq. (15), but now using the probabilities p;. Note that we now
need to take two limits: the limit of many blocks and the limit
where the individual blocks are large. For this argument to
apply, we need to first go to the limit of many blocks and
then to the limit of large block size. In those limits, we can
approach a rate

1 i}
—NZpilogzpizH, (1)

where H is an effective entropy per qubit from the channel.
It is likely that this strong definition of code nondegeneracy
is not needed and Eq. (21) will still hold under a weaker
definition; this will be the topic of future work.

D. Secret key consumption

For the above encodings, how much of the secret key must
be consumed? In general, we can assume that all the details of
the encoding, etc. have been decided between Alice and Bob
ahead of time. So in the protocol as described above, the only
place where the secret key is consumed is to pick the subsets
of errors used in the encoding.

Let us consider the bit-flip channel as a simple example.
The possible messages are mapped onto a set of C error
syndromes, representing errors of weights (1 — §)Np < w <
(1 + 8)Np. For each error weight w in that range, a subset
of C,, errors is chosen to represent possible messages. Alice
and Bob can agree before the protocol begins to divide the set
of errors of weight w into n,, nonoverlapping subsets of C,,
errors each, where

N w—Np(1-8)
(o5

(Since this is unlikely to be an exact integer, one must gener-
ally round down, which means that a small fraction of possible
errors will be omitted. This will slightly reduce the match
between the steganographic encoding and the noisy channel
being simulated, but for large N and p < 1, the difference
will be small.)

For each transmitted block, Alice and Bob must randomly
choose one of these n,, subsets for each weight w in the typical
range. Choosing a subset requires log, n,, random bits, which
are drawn from their shared key. However, since any given
message is encoded as an error of some specific weight w,
Alice and Bob can reuse the same secret key bits to choose
the subset for each error weight w. So the number of key
bits consumed to transmit one block is equal to the maximum
value of log, n,, for (1 —8§)Np < w < (1 4+ §)Np, which is

K= max log, ny
Np(1-8)Sw<Np(1+8)

_ w—Np(1-6)
= max log, (—)
Np(1-8)<w<Np(1+3) p
l1—p
= (2Npd)log, [ —= ). (23)
p

How does this scale with N? Since this is a binomial distribu-
tion, § will take the form

_plL(l=p
5—D N( - ) 24)

where D is a fixed constant determining what fraction of all
errors are included in the typical set. The key consumption
therefore is

K =2D N(l;p> log, <];p> (25)
p p

The key consumption scales sublinearly with N, and asymp-
totically the key consumption rate goes to zero. While the
details will vary, we expect this kind of sublinear scaling of
K with N to be generic. Note that most of the randomness
in Alice’s preparation of the state can be generated locally.
Only the randomness used in choosing the particular encoding
needs to be shared with Bob, and so it is important that Alice
and Bob share the key beforehand so that Bob knows which
set of errors is being used to encoded messages.

A few words more on secret key consumption are in
order. In [7], Shaw and Brun make a distinction between
the secrecy and the security of a steganographic protocol. A
steganographic protocol is secret if an eavesdropper without
the secret key cannot distinguish between an encoded message
being sent and the noisy channel being applied. It is secure
if the eavesdropper cannot learn anything about the message,
even if she knows that a message is begin sent.

Using a sublinear amount K of the shared secret key is
sufficient to make the steganographic protocol secret, by this
definition. However, it is not secure, in general. Since the
number of qubits M transmitted is typically larger than the
number of secret key bits K consumed, we would generically
expect an eavesdropper to be able to learn of the order of
M — K bits of information about the message if she became
aware of its existence.
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FIG. 1. The information-processing task that we consider for
Alice sending M stegoqubits to Bob over a quantum channel (which
is identity for the noiseless case). Alice encodes her message M and
an innocent covertext p. into a suitable quantum error-correcting
code which has had typical errors applied to it, where the encoding
depends on the secret key k. She sends this to Bob, who then decodes
the message and covertext using his copy of the shared secret key k.
Alice’s message is entangled with a reference system R. The ability
to transmit entanglement implies the ability to do general quantum
communication.

This can be prevented by first encrypting the message be-
fore doing the steganographic encoding. Encryption requires
M bits of the secret key in the case of a classical message
(using a one-time pad) or 2M bits of the secret key in the case
of a quantum message (by twirling). In this case, the protocol
is both secret and secure. However, there is a cost: the secret
key is now consumed asymptotically at a linear rate.

III. SECRECY, RELIABILITY, AND BOUNDS
A. The information-processing task

Here we consider the steganographic scenario as outlined
above where Alice is using fake noise to hide her message
from Eve, but the actual physical channel she is sending
her information over is noiseless. We will consider the task
known as entanglement transmission. This notion of quan-
tum communication encompasses other quantum information-
processing tasks such as mixed-state transmission, pure-state
transmission, and entanglement generation. We closely follow
the discussion of quantum communication in [18].

The information-processing task that we are considering
is visualized in Fig. 1. Alice has a secret message of M =
log, |A1| qubits, which is maximally entangled with a ref-
erence system R. She also prepares an innocent covertext
pc, which will be encoded into the N-qubit quantum error-
correcting code. Let us first define her encoded state, depen-
dent on the secret key element k,

W AR = Eacoan(Pe @ Par). (26)

This dependence of the encoding on the secret key corre-
sponds to choosing among the different sets of error strings
S in the protocols from the previous section. To someone
(such as Eve) who does not know the secret key k, the state
is effectively

WpnR = Z Pk®k,AMR» 27)
k

where wang is the state averaged over all possible values of
the secret key k with probabilities p;. (We can choose this
probability to be uniform for simplicity, py = p for all k, if
we so desire.)

What is a good way to guarantee secrecy from Eve? We
propose the following secrecy condition:

L Trr(@anr) = NV (V p VDIl < 6, (28)

where N is whatever channel Alice is emulating, V is an
isometry representing the encoding of the covertext into a
suitably chosen codeword (one which can correct typical
errors induced by the channel A), and § > 0 is some small
parameter. What this condition says is that if Eve observes
the quantum state, it will be effectively indistinguishable from
an encoded covertext being sent through the noisy quantum
channel \V.

We introduce another requirement which corresponds to
a notion of recoverability. Once Bob receives the state, he
applies his decoder Dy an_.p,c to obtain the original p. ®
@, g. We can relax this by only requiring that the input states
and output states are € close, that is,

D anpic(@iang) — pe @ Pprlli < €,Vk,  (29)

where € > 0 is a small parameter.

B. Upper bound on steganographic rate

With these two assumptions of secrecy and recoverability,
we can now put a bound on the number of qubits M that
can be sent reliably and steganographically from Alice to
Bob. Defining oz = N®¥(V p.VT) and applying the Fannes-
Audeneart inequality to the secrecy condition, we have

H(Trgr(wanr)) < H(og) + 8N + ha(3), (30)

where £, is the binary entropy function. Furthermore, from
the recoverability condition, we have

M = log, |Ai| = I(R)B1)e
< IR)B1)pyw) + €N + (1 + e)a(e/[1 + €])
S ITR)A™)y, + f(N, €)
< H(Trg(wramr)) + f(N, €), 3D

where I(R)B))¢ denotes the quantum coherent information
between the registers R and B; in the quantum state ®gp,.
The first equality follows from the fact that the coherent in-
formation of a maximally entangled state is just the logarithm
of the dimension of one of the subsystems. The first inequality
follows from the Alicki-Fannes-Audeneart inequality applied
to (29). The second inequality is the data-processing inequal-
ity. The last inequality follows from the definition of the
coherent information. We point the reader to the Appendix
for definitions of these quantities and inequalities.
The concavity of entropy implies that

> peH (o an) < H(Z pkwk,Am) = H(wgn).  (32)
k k

The encodings & 4,c—a» are isometries, which means that
H (wg a») has the same value for every k. We can therefore
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FIG. 2. Here we plot the number of classical or quantum bits M sent vs the error rate of the bit-flip channel (both dimensionless). The solid
red curve is the upper bound on the number of classical or quantum bits M that Alice can send to Bob steganographically over an N = 100
qubit block, given by Eq. (37). The dashed blue curve is the limit of the achievable rate for the bit-flip channel given by NA(p). These two
curves are plotted for three different values of the secrecy and reliability parameters for steganography. The secrecy parameter § which is set
by Eq. (28) determines how likely Eve is to become suspicious, and the reliability parameter € which is set by Eq. (29) describes how reliable
Bob’s decodings of the messages are. As can be seen from these plots, the more secret and reliable the communication protocol, the more the

upper bound and achievable rate coincide.

sum over the probabilities p; on the left-hand side of (32) to
get

H(Trg(wi,amr)) < H(Trg(wang)).

Now putting (30) and (31) together, we arrive at our main
result, which states that Alice can secretly and reliably send
M stegoqubits to Bob, where M is bounded above by

M < H(Trg(wgar)) + f(N, €)
< H(op) + g(N,8) + f(N, €), (34)

where g(N,§) =8N + hy(8), and f(N,€)=eN + (1 +
€)hy(e/[1 + €]). Thus, if we can compute a maximum for
H(N®N(p)) when p is pure (because V is an isometric
encoding and p. is pure), we have a tight upper bound on
the number of qubits M that can be sent steganographically
over a noiseless quantum channel. (Of course, if the actual
quantum channel is noisy, then this bound will in general be
changed. This is the topic of future work.)

(33)

C. Upper bounds for specific channels

We will now apply our result (34) to the channels discussed
in the previous section, where we make the implicit assump-
tion that Alice is using a nondegenerate code. Though our
result (34) is true in general, for a degenerate code the number
of distinct error syndromes is smaller (depending on the code)
and the bounds discussed here and achievable rates discussed
in the previous section would be adjusted.

1. The bit-flip channel
For the bit-flip channel, i.e., Ngr(p) = (1 — p)p + pX pX,
the maximum of H(N®"(p)) over all N-qubit pure states p is

Nh(p), where h(p) = —plog, p — (1 — p)log,(1 — p) is the
entropy of a single qubit sent through a bit-flip channel. To
prove this, consider some pure state p = |{)(1|. Then,

NEY YWD =D p)X [¥) (¥ IX°,

s

(35)

where we are summing over all binary strings s of length N;
X is the operator acting on N qubits with an X acting at
every location where s has a 1 and an I where s has a 0. The
probability p(s) is given by

pls) = p"(1 = p)" ", (36)

where w(s) is the weight of string s. The Shannon entropy of
this distribution is Nh(p) since it is a binomial distribution.
The von Neumann entropy is the minimum Shannon entropy
over all possible ensemble decompositions of the given state,
and it is not hard to check that it is achieved when [v/) is
a Z eigenstate. Therefore, for the bit-flip channel, Eq. (34)
becomes

M < Nh(p) + (8 + €N + (1 4 €)hy(e/[1 + €]) + hy(8),
(37)
and thus the encoding described in the previous section for
steganography with a simulated bit-flip channel is essentially
optimal. As can be seen from the plot of Eq. (37) in Fig. 2,
it converges to the achievable limit Ni(p) as the secrecy and
reliability parameters approach 0.

2. More general channels

Unfortunately, for a more general quantum channel N,
we may not know, in general, what N-qubit pure-state o
maximizes H(N®"(p)). However, we can still bound this
quantity. First, consider a general quantum channel N that
acts on an N qubit pure state as follows:

N®N(p)~ Y E;pE], (38)
7

where {E;} is the set of typical errors associated with N
applications of the channel V. Recall that we are choosing our
isometric encoding to correct for typical errors of whatever
channel N it is that we are emulating. Though the set of
correctable errors {E;} need not act like unitaries on the
codespace, we can always find a set of correctable errors {£ i}
that do [19]. To see this, first consider the Knill-Laflamme
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condition,
PEiTEjP = Ol,'jP, (39)

where P is the codespace projector and « is a Hermitian
matrix. Thus, we can write & = UtaU, where U is a unitary
matrix and & is diagonal.

Ec =Y Mk, (40)
J

where the unitary M is chosen in such a way as to diagonalize
«. That is,

PE'EP = MiMuyPE[EP = | Y Mja;M; |P
ij ij
= &kﬂp = akl&kkP- (41)

Note that these errors {E j} act unitarily on the codespace.
So long as the Knill-Laflamme condition is satisfied, we can
always diagonalize « in this way. Now going back to our
expression for the channel action,

> E; pE] = > MM} ExpE] = > EwpEl. 42
J k,,j k

Because we have assumed that the typical errors are all
correctable and the code is nondegenerate, the states Ej pE,j

are all orthogonal to each other, and Tr{Eka,j } = ogi. The
von Neumann entropy is the Shannon entropy minimized over
all possible decompositions, so the entropy of this state is
clearly

H(op)=HWN®"(VpV 1)) < =) anclogy (). (43)
k

By (34), we have shown that the amount of steganographic
communication allowed for a quantum channel A emulation
is upper bounded by this quantity. Applying this to the general
channel discussed in Sec. II C above, we see that this quantity
is equal to NH, where H is the effective entropy per qubit de-
fined in Eq. (21). So this encoding approaches the maximum
possible rate for the general channel, just as for the bit-flip
channel.

IV. CONCLUSIONS AND FUTURE WORK

Quantum steganography is the study of secret quantum
communication between two parties, Alice and Bob. We have
shown that Alice and Bob are able to communicate with each
other secretly at a nonzero rate using a shared secret key,
without arousing suspicion from a potential eavesdropper Eve.
In this paper, we gave explicit bounds on the number of stego-
qubits that Alice can send to Bob when Alice is simulating a
general quantum channel A with her stego encoded message,
as well as explicit encodings to achieve these bounds, for the
case when the actual physical channel is noiseless.

The obvious next question is what if the channel shared
between Alice and Bob (as is generally the case) is noisy?
There is reason to believe that as long as Eve has some
ignorance about the actual physical channel, Alice will still
be able to communicate steganographically to Bob.

For instance, suppose the actual physical channel is a de-
polarizing channel N, where p is the depolarizing parameter
and the channel that Eve expects is /\/1,4.6_4‘,,E /3 for some small
suitably chosen € > 0. Then Alice can emulate a depolarizing
channel N in such a way such that if Eve observes the state
Alice is sending to Bob, it will look like an innocent encoded
covertext passing through N applications of a channel NV, o
N, (where N is the length of the codeword Alice is using).
There should be elements of the encoding given in this paper
that will generalize to the noisy case for general channels N
This will certainly be an area of fruitful future study.
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APPENDIX: TYPICAL CHANNEL ERRORS, ENTROPY,
AND INEQUALITIES

Here we give the more explicit arguments related to our
heuristic arguments in Sec. II about typical errors and effec-
tive entropies. First we give the definition of typical errors
associated with a channel N®" as originally outlined in
[16,17]. Consider a quantum channel A/ with Kraus operators
E,, ..., Ey. Without loss of generality, we can assume they
are diagonal, i.e., Tr E,E}L = 0 for i # j. The probability of

each Kraus operator is given by p; = 1\%1 Tr EiEl.T, where M is
the dimension of the Hilbert space on which these operators
act.

Now the operator N®V can be represented by N” Kraus
operators,

Ej1®Ej2®"'®EanEJf (Al)

where j; = 1,...,N. It is straightforward to verify that the
probability associated with each of these operators E; is
given by

pJ:A%TrE}LEjzpj]...pj”. (A2)
Hence, the Kraus operators E; of N®V are sequences of
length n in which the symbols E; of an alphabet E, ..., Ey
appear according to the probability distribution {p;}. Hence
we are in the domain of classical random sequences. Thus we
can take only the operators E; that are e-typical in the usual
sense with respect to this probability distribution, and write

N®N(p)y~ ) EspE].

J typical

(A3)

This strongly reduces the number of Kraus operators of N/®Y
from N to roughly 2VH (P,

We now define the various inequalities which are used in
Sec. III to prove our converse theorem.

Definition 1. Fannes-Audeneart inequality. Let p,o €
D(H) be density operators and suppose that %H p—oll <
€ € [0, 1]. Then, the following inequality holds:

|H(p) — H(o)| < €log, dim(H) + ha(e).
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Definition 2. Alicki-Fannes-Audeneart inequality. Let
PaB, 04 € D(H4 ® Hp). Suppose that

loas — oasllh < e,
for € € [0, 1]. Then,
|[H(A|B), — H(A|B)s| < 2¢log, dim(H,) + g2(€),

where g2(€) = (€ 4+ 1)log,(e + 1) — e log, (¢).
Before describing the data processing inequality used in
the main text, we first define the coherent information:
Definition 3. Quantum coherent information. The coherent
information /(A)B), of a bipattite state pap € D(Ha ® Hp) is

given by
I(A)B), = H(B), — H(AB),,

where H(p) is the von Neumann entropy.

The quantum coherent information satisfies the following
inequality:

Definition 4. Data processing for coherent information.
Let pap € D(Hs ® Hp) and let N : L(Hp) — L(Hp) be a
quantum channel. Set 043 = Np_ p(pap). Then the following
quantum data-processing inequality holds:

I(A)B), > I(A)B),.

[1] Herodotus, The Histories (Penguin Books, London, United
Kingdom, 1996).

[2] Velvalee Dickinson, the “Doll Woman”, https://www.fbi.
gov/history/famous-cases/velvalee-dickinson-the-doll-woman
(unpublished).

[3] M. Dusek, N. Liitkenhaus, and M. Hendrych, Prog. Opt. 49, 381
(2006).

[4] S. Natori, in Quantum Computation and Information (Springer,
New York, 2006), pp. 235-240.

[5] 1. Banerjee, S. Bhattacharyya, and G. Sanyal, Intl. J. Comput.
Network Inf. Secur. 4, 65 (2012).

[6] J. Gea-Banacloche, J. Math. Phys. 43, 4531 (2002).

[7] B. A. Shaw and T. A. Brun, Phys. Rev. A 83, 022310 (2011).

[8] B. A. Shaw and T. A. Brun, arXiv:1007.0793.

[9] B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel,
D. Towsley, and S. Guha, Nat. Commun. 6, 8626 (2015).

[10] A. Sheikholeslami, B. A. Bash, D. Towsley, D. Goeckel, and
S. Guha, in 2016 IEEE International Symposium on Information

Theory (ISIT), edited by D. Abbott (IEEE, Barcelona, 2016), pp.
2064-2068.

[11] L. Wang, in 2016 IEEE Information Theory Workshop (ITW),
edited by D. Abbott (IEEE, Cambridge, UK, 2016) pp. 364—
368.

[12] K. Bradler, T. Kalajdzievski, G. Siopsis, and C. Weedbrook,
arXiv:1607.05916.

[13] J. M. Arrazola and V. Scarani, Phys. Rev. Lett. 117, 250503
(2016).

[14] S. P. Desrosiers, Quantum Inf. Proc. 8, 331 (2009).

[15] Y. Dodis and A. Smith, in Theory of Cryptography Con-
ference, edited by Y. Lindell (Springer, New York, 2005),
pp. 556-577.

[16] R. Klesse, Phys. Rev. A 75, 062315 (2007).

[17] R. Klesse, Open Syst. Inf. Dyn. 15, 21 (2008).

[18] M. M. Wilde, Quantum Information
(Cambridge University Press, Cambridge, 2013).

[19] M. A. Nielsen and I. Chuang, Am. J. Phys. 70, 558 (2020).

Theory

052319-9


https://www.fbi.gov/history/famous-cases/velvalee-dickinson-the-doll-woman
https://doi.org/10.1016/S0079-6638(06)49005-3
https://doi.org/10.1016/S0079-6638(06)49005-3
https://doi.org/10.1016/S0079-6638(06)49005-3
https://doi.org/10.1016/S0079-6638(06)49005-3
https://doi.org/10.5815/ijcnis.2012.08.08
https://doi.org/10.5815/ijcnis.2012.08.08
https://doi.org/10.5815/ijcnis.2012.08.08
https://doi.org/10.5815/ijcnis.2012.08.08
https://doi.org/10.1063/1.1495073
https://doi.org/10.1063/1.1495073
https://doi.org/10.1063/1.1495073
https://doi.org/10.1063/1.1495073
https://doi.org/10.1103/PhysRevA.83.022310
https://doi.org/10.1103/PhysRevA.83.022310
https://doi.org/10.1103/PhysRevA.83.022310
https://doi.org/10.1103/PhysRevA.83.022310
http://arxiv.org/abs/arXiv:1007.0793
https://doi.org/10.1038/ncomms9626
https://doi.org/10.1038/ncomms9626
https://doi.org/10.1038/ncomms9626
https://doi.org/10.1038/ncomms9626
http://arxiv.org/abs/arXiv:1607.05916
https://doi.org/10.1103/PhysRevLett.117.250503
https://doi.org/10.1103/PhysRevLett.117.250503
https://doi.org/10.1103/PhysRevLett.117.250503
https://doi.org/10.1103/PhysRevLett.117.250503
https://doi.org/10.1007/s11128-009-0111-3
https://doi.org/10.1007/s11128-009-0111-3
https://doi.org/10.1007/s11128-009-0111-3
https://doi.org/10.1007/s11128-009-0111-3
https://doi.org/10.1103/PhysRevA.75.062315
https://doi.org/10.1103/PhysRevA.75.062315
https://doi.org/10.1103/PhysRevA.75.062315
https://doi.org/10.1103/PhysRevA.75.062315
https://doi.org/10.1142/S1230161208000055
https://doi.org/10.1142/S1230161208000055
https://doi.org/10.1142/S1230161208000055
https://doi.org/10.1142/S1230161208000055
https://doi.org/10.1119/1.1463744
https://doi.org/10.1119/1.1463744
https://doi.org/10.1119/1.1463744
https://doi.org/10.1119/1.1463744

