
AppMine: Behavioral Analytics for Web Application
Vulnerability Detection

Indranil Jana and Alina Oprea
Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA

ABSTRACT
Web applications in widespread use have always been the target of
large-scale attacks, leading to massive disruption of services and
financial loss, as in the Equifax data breach. It has become common
practice to deploy web applications in containers like Docker for
better portability and ease of deployment.We design a system called
AppMine for lightweight monitoring of web applications running
in Docker containers and detection of unknown web vulnerabilities.
AppMine is an unsupervised learning system, trained only on le-
gitimate workloads of web applications, to detect anomalies based
on either traditional models (PCA and one-class SVM), or more
advanced neural-network architectures (LSTM). In our evaluation,
we demonstrate that the neural network model outperforms more
traditional methods on a range of web applications and recreated
exploits. For instance, AppMine achieves average AUC scores as
high as 0.97 for the Apache Struts application (with the CVE-2017-
5638 exploit used in the Equifax breach), while the AUC scores for
PCA and one-class SVM are 0.81 and 0.83, respectively.

ACM Reference Format:
Indranil Jana and Alina Oprea. 2019. AppMine: Behavioral Analytics for
Web Application Vulnerability Detection. In 2019 Cloud Computing Security
Workshop (CCSW’19), November 11, 2019, London, United Kingdom. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3338466.3358923

1 INTRODUCTION
Web-based attacks remain one of the major attack vectors with
notorious security incidents such as the Equifax breach and Dru-
palgeddon being attributed to web application vulnerabilities [27].
Such attacks already resulted in serious breaches of confidential and
personal information affecting consumers and businesses alike. For
instance, the Equifax security incident from 2017 impacted approx-
imately 143 million U.S. consumers, compromising their identity
(e.g., SSN, driver license) and financial information (e.g., credit card
numbers) [14]. We thus expect that cyber security attacks will
induce even more devastating consequences in the future.

Containers have gained increased adoption recently for deploy-
ing web applications in public and private cloud environments [38].
While containers offer flexibility, scalability, and have low perfor-
mance overhead, on the downside existing defenses for enterprise

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCSW’19, November 11, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6826-1/19/11. . . $15.00
https://doi.org/10.1145/3338466.3358923

networks (e.g., anti-virus, intrusion prevention systems, web prox-
ies) are not readily applicable in container-based environments.
Existing solutions based on static analysis, dynamic analysis, input
validation, and fuzz testing have well-known limitations.

In this paper we design an unsupervised learning framework
called AppMine for web application defense that is effective at
protecting container-based applications against a range of vulner-
abilities. Our framework monitors web applications deployed in
Docker containers and collects detailed run-time information using
well-known monitoring tools such as Sysdig [48]. At the core of
the technical approach lies a machine learning framework that
uses Recurrent Neural Network (RNN) architectures popular in the
deep learning community for representing sequential dependen-
cies in time-series data. We use a type of RNN called Long-Short
Term Memory (LSTM), which can capture the time evolution of
application profiles, learn both short-term and long-term dependen-
cies, and identify security anomalies that deviate from historical
behavior.

To evaluate our techniques, we deploy a testbed in which we
set up four popular web applications in Docker containers, and
recreate seven exploits, using Metasploit modules. We collect sys-
tem call data using the Sysdig monitoring agent. We compare our
LSTM model with two traditional anomaly detection algorithms:
Principal Component Analysis (PCA) and One-Class Support Vec-
tor Machines (OCSVM). We demonstrate the effectiveness of our
framework at detecting well-known vulnerabilities such as those
in the Apache Struts and Drupal applications with low false pos-
itive rates. Our LSTM model significantly improves upon more
traditional anomaly detection models, by exploiting the temporal
relationship between application system calls. For instance, for the
Apache Struts web application with the CVE-2017-5638 exploit used
in the Equifax breach, the LSTM model achieves an AUC of 0.97,
while PCA and OCSVM have AUCs of 0.81 and 0.83, respectively.
The advantages of our AppMine framework are that it does not
require attack data for training, and it can be applied to detect
unknown vulnerabilities in web applications.

To summarize, our contributions are:
(1) We design an unsupervised learning framework calledAppMine

for detection of a range of web application vulnerabilities.
(2) We set up a testbed with four web applications and recreate

seven exploits, collectingmonitoring data from Sysdig agents
deployed in Docker containers.

(3) We compare the performance of our neural-network LSTM
model with that of traditional unsupervised learning models
(PCA and OCSVM) and demonstrate its effectiveness.

Organization. We provide background on web application vul-
nerabilities and our threat model in Section 2. We describe our
methodology, testbed setup, data collection, and machine learn-
ing framework in Section 3. We evaluate our system AppMine on

https://doi.org/10.1145/3338466.3358923
https://doi.org/10.1145/3338466.3358923

a range of web applications and vulnerabilities in Section 4. We
present related work in Section 6 and conclude in Section 7.

2 BACKGROUND AND OVERVIEW
We first provide some background on web application vulnerabil-
ities, then discuss our threat model, and give an overview of our
system AppMine.

2.1 Web application vulnerabilities
Web applications can be deployed either on-premise (in private
clouds and data centers) or off-premise (in public cloud environ-
ments). A recent trend is to containerize web applications, which
involves running them in Docker containers for increased portabil-
ity across different hardware and software stacks. Docker adoption
for public cloud customers has increased to 49% in 2018, compared
to 35% a year before, according to a report from RightScale [38].
Also, container-as-a-service platforms are experiencing increased
adoption (44% adoption of Amazon’s ECS/EKS service in 2018 [38]).
It has been reported that two thirds out of a set of 576 surveyed
IT leaders plan to migrate from VMs to container use in public
clouds [10].

Vulnerabilities inweb and database applicationsmight expose en-
terprise networks to serious security breaches. For instance, several
remote code execution vulnerabilities (CVE-18-9805 and CVE-18-
11775) have been discovered for Apache Struts, a Java open source
framework for developing web applications. Among these, the fa-
mous Apache Struts vulnerability CVE-2017-5638 allows remote
attackers to execute arbitrary commands on the web server via the
Content Type HTTP header. After getting access to the web server,
attackers start propagating laterally in the network and reach the
target of interest (usually a database storing confidential informa-
tion). Other web vulnerabilities include SQL injection, cross-site
scripting, and cross-site request forgery.

Defenses against these application vulnerabilities usually involve
patching vulnerable applications, after the exploit is known and
a patch is available. Web application security testing tools use a
combination of static code analysis [21], dynamic checks [49], input
validation [43], and fuzz testing [42], but in general they have a
number of well-known limitations (e.g., high false positives or false
negatives). In general, despite all existing defenses, enterprises are
still exposed against zero-day vulnerabilities in their web applica-
tions.

2.2 Threat model
We consider a system model in which web applications run in con-
tainer environments such as Docker and monitoring agents are
deployed in the containers. We assume that the containers them-
selves and the monitoring agents that collect the monitoring data
are not under the attacker’s control. Attackers are performing their
actions remotely, interacting with the web application via network
packets. We also assume that the adversary cannot tamper with the
collected system call data. Attackers with access to the monitoring
environment and the system logs are much more powerful, and are
beyond our current scope.

We thus handle scenarios in which attackers interact remotely
with the web application, attempting to exploit a vulnerability. The

web application attack is usually an entry point for the attacker,
interested in moving laterally in the environment (cloud or enter-
prise) and obtaining access to critical resources. For instance, in
the Equifax breach, the Struts exploit allowed the attacker control
of the web server, but the attacker’s ultimate goal was obtaining
access to the database containing personal information of millions
of customers.

2.3 Overview
In designing our machine learning framework for web application
threat detection, we leverage several main insights. First, there is
a large amount of sequential dependence in application behavior
manifested in unique, highly distinguishable sequences of system
calls generated by an application. We argue that machine-learning
techniques applied to application monitoring independently of their
temporal ordering and contextual information do not offer suffi-
cient protection against advanced attacks. Therefore, we design
machine learning architectures that leverage the sequential, tempo-
ral dependencies in application monitoring data. Second, we believe
that application exploits and cyber attacks will result in deviation of
monitoring data compared to an application running under normal
conditions without exposure to the attack or vulnerability. To the
extent the attack is observable in the collected monitoring data de-
pends on a number of factors including the attack specifics and the
granularity of collected data. Third, by encapsulating single appli-
cations in each container, we can reduce the amount of noise from
events generated by other applications, and create “clean profiles”
of typical enterprise applications.

A number of challenges need to be addressed in designing our
machine learning-based application threat detection framework.
We highlight among them: (1) privacy and performance considera-
tions that prevent full-blown application monitoring; (2) dealing
with non-deterministic application behavior; (3) designing the most
appropriate machine learning models for this setting. There is a lot
of research and guidance on designing neural network architectures
for other domains (e.g., image classification, speech recognition,
machine translation), but there is no widely accepted methodology
for security datasets that exhibit different semantics.

Figure 1 provides an overview of our machine learning frame-
work including the following components: (1) Testbed setup to
run various web applications and emulate legitimate behavior; (2)
Vulnerability exploitation to reproduce existing vulnerabilities
using Metasploit; (3) Data collection using the Sysdig monitoring
agent installed in the Docker container environment; (4) Machine
Learning Anomaly Detection Framework supporting both tra-
ditional and deep-learning based models. We detail each of these
components in the next section.

3 METHODOLOGY
In this section we discuss our system methodology. We start by
describing the testbed setup, the vulnerability exploitation method,
and the data collection. Finally, we describe in detail our unsuper-
visedmachine learning framework for web application vulnerability
detection.

Figure 1: Overview of the AppMine system architecture.

3.1 Testbed setup
Cloud providers that deploy containerized web applications might
leverage existing monitoring tools and obtain data from realistic
user interactions with the web applications. However, potential
privacy implications prevent these providers to perform detailed
monitoring and release their datasets to the broader community.
As we do not have access to datasets collected from deployed web
applications, we create our own monitoring environment for appli-
cations deployed in Docker containers. We set up an Ubuntu 16.04
Virtual Machine running Docker and install the Sysdig monitoring
agent. For each considered web application, we built and deployed
Docker containers on the Ubuntu machine. We used a separate Kali
Linux 2 based Virtual Machine to run the scripts for generating the
attack data using Metasploit. We discuss now in more details the
choice of web applications, how we generate realistic legitimate
workloads, and how we set up the exploit emulation.

Web applications. The web applications we selected include:
Apache Struts [27] (two different variants), Drupal [11],WordPress[51]
(three different plugins [52–54]), and ProFTPD [37]. All of these
are popular, open-source web applications that experienced vulner-
abilities in the last few years.

To select exploits of interest for these applications, we evalu-
ated recent exploits from the CVE database and identified a set
of seven exploits that had Metasploit modules. Table 1 details the
application description and vulnerabilities that we emulate in our
environment. We include CVE numbers for five out of the seven
exploits, as the other two do not yet have a CVE number assigned.
The CVE-2017-5638 for Apache Struts is the famous remote code
execution vulnerability that led to the Equifax data breach.

Legitimate workloads. One of the main challenges in our work is
setting up workloads and interactions with the web applications
that are similar to those generated by actual users. For this purpose,
we found traditional web crawling to be unsuitable, as it focuses
more on gathering data in an automatic manner than on creating
realistic, human-like interaction. Thus, we designed Interactor,

a program that uses Selenium [44] to realistically interact with
elements on the web interface of the web application. Interactor
opens a browser instance per user and interacts with the page by
filling available forms, clicking hyperlinks, and pressing buttons
in a randomized order. Small, random delays of 1-5 seconds are
also inserted during the operation of Interactor, so it simulates
user behavior more realistically than a web scraper. Data collection
for Struts, Drupal and Wordpress was done using Interactor. For
ProFTPD, we choose to leverage ftpbench [16] for data genera-
tion, a benchmark tool that provides login to an FTP sever and file
uploading capabilities.

3.2 Vulnerability exploitation
The Metasploit Framework [31] is an open source project that
serves as a penetration testing platform for finding and exploiting
vulnerabilities. For our work, we used existing Metasploit modules
for the tested vulnerabilities and modified them as necessary to
work on our versions of the web applications. Additionally, Metas-
ploit comes with a set of post-exploitation information gathering
modules that can be run on compromised machines, and we used
them after exploiting each web application to ensure that we gained
access to the victim. This step replicates a likely scenario in real-
world exploitation, where information gathering is often the first
step an attacker takes after compromising a system, so as to learn
the victim’s system and network configuration and discover more
vulnerabilities. Table 2 lists the post-exploitation scripts we tested
and collected data for. They include gather network information,
collect system information, user list, and credentials, and dump
password hash files.

3.3 Data collection
We use Sysdig [48] to monitor the activity of the web applications
running in Docker containers. Sysdig has the ability to collect
sequences of system calls made by the application in the container.

For each application except ProFTPD, we ran our Interactor
program to emulate 1, 3, 5, 10 and 15 simultaneous users. Each
user performed a number of actions chosen randomly between

App Name Description Plugin Name CVE

Struts Framework for developing Java EE webapps - CVE-2017-5638
CVE-2017-9805

Drupal Content-management framework - CVE-2018-7600

WordPress Content management system Reflex Gallery Plugin CVE-2015-4133
Ajax Load More Plugin -

N-Media Website Contact Form -
ProFTPD FTP server - CVE-2015-3306

Table 1: Open-source web applications and vulnerabilities considered for this work.

Post-exploit script name Description
checkcontainer Check whether target running inside container
ecryptfs_creds Collect all users’ .ecrypts directories
enum_configs Collect configuration files for Apache, MySQL, etc.
enum_network Gather network information

enum_protections Find antivirus/IDS/firewalls etc
enum_psk Collect 802-11-Wireless-Security credentials

enum_system Gather system information (e.g., installed packages)
enum_users_history Gather user list, bash history, vim history, etc.

enum_xchat Gather XChat’s configuration files
env Collect environment variables

gnome_commander_creds Collect cleartext passwords from Gnome-commander
hashdump Dump password hashes for all users

mount_cifs_creds Obtain mount.cifs/mount.smbfs credentials from /etc/fstab
pptpd_chap_secrets Collect PPTP VPN information
tor_hiddenservices Collect TOR Hidden Services hostnames and private keys

Table 2: Metasploit post-exploitation scripts used for generating attack data.

50 and 100, where an action is an activity such as clicking on a
hyperlink, button on the web page, or filling a form. Monitoring
was started after running the containers, and ended when the last
user had performed his last action. For ProFTPD, we used the login
and upload benchmarks from ftpbench [16] for 30 mins to 1 hour
each to generate legitimate data. For attack data, Sysdig monitoring
and data collection was done similarly.

Table 3 shows the data statistics for the four applications we
monitored. In total, we collected between 300 and 360 minutes of
data for each applications and vulnerability. We split the sessions
into training and testing for the machine learning framework, to
minimize correlation and ensure independence of training and
testing data. In Figure 2, we show the distribution of the top 20
system calls during legitimate use for the WordPress application
over a duration of approximately 15 seconds. The attack is being
performed against the N-media contact form plugin, and the post-
exploit script being run is enum_network. Clearly, the system calls
during the attack script are noticeably distinguishable from the ones
used during the regular application runs. Notably, some system
calls (e.g., fcntl, close) are used more frequently during the attack.

3.4 Machine Learning Framework
ML methods for web attack detection generally fall into two cate-
gories: supervised and unsupervised methods. Supervised learning

methods (for example [6, 7, 28, 45]) train a classifier that relies
on labeled attack data at training time, and predict web attacks
at testing time. Unsupervised learning methods (see, for exam-
ple [9, 22, 23, 40, 47]) tend to be more general in the requirement
of utilizing only legitimate data for training. These methods learn
a model of application behavior at training time using only legiti-
mate data (from one class) and predict anomalies at testing time.
However, it is well known that unsupervised learning techniques
in security typically generate large amounts of false positives and
are challenging to tune in operational settings [46].

Our design choice for AppMine is to use an unsupervised learn-
ing framework for web vulnerability detection. Our motivation
includes mainly the generality power of unsupervised learning.
Our goals for AppMine is to learn the normal behavior of each
application (independently of the vulnerabilities known at training
time), and determine at testing time the anomalies that are indica-
tive of web vulnerabilities. Importantly, AppMine has the ability
to detect new, unseen vulnerabilities if they generate anomalous
behavior in application system calls. One important consideration
for AppMine is to learn the distribution of temporal sequences of
system calls, as there is much stronger signal of application behavior
in sequences of system calls, compared to individual system calls.

Training and testing the models. As shown in Figure 1, AppMine
leverages only legitimate application data for training a machine

Figure 2: System call distribution for 15 seconds of data for WordPress, attack being shown in red is the enum_network script

Application / Plugin Name Training data Legitimate testing data
Struts CVE-2017-5638 282.42 mins 13.46 mins
Struts CVE-2017-9805 308.78 mins 28 mins
Drupal CVE-2018-7600 301.76 mins 17.45 mins

WP Reflex Gallery Plugin 323.15 mins 16.54 mins
WP Ajax Load More Plugin 317.27 mins 22.42 mins

WP N-Media Website Contact Form 321.05 mins 18.64 mins
ProFTPD CVE-2015-3306 342.85 mins 20 mins
Table 3: Amount of data used for training and validation.

learningmodel that learns the system call distribution under normal
conditions. As already mentioned, we vary the number of users
and their actions to create a set of diverse legitimate workloads
for training the models. AppMine creates system-call based feature
representations for time windows of fixed length. Depending on
the ML technique, the feature vector for either one time interval or
a sequence of time intervals are given as input to the ML algorithm.
The output of the training phase is a model that can determine the
likelihood of a certain sequence of system calls. Importantly, as
each application exhibits different behavior, we train a model per
application to learn the application normal behavior.

At testing time, the application model is applied to new data
generated by the same web application. We run the model on both
legitimate and attack data for that application. The model produces
an anomaly score for the feature vectors at a particular time window,

indicating the likelihood that the application has been exploited in
that time interval. Based on the labeled ground truth, we compute
standard metrics such as True Positives, False Positives, and Area
Under the Curve (AUC). A graphical representation of our anomaly
detection models is given in Figure 3.

Traditional anomaly detection techniques. As mentioned, Sysdig
collects time-stamped sequences of system calls for web applica-
tions. The first question we had to answer was how to represent
this data for use in an anomaly detection system. A simple and
fairly common representation (see, for example, [13]) is to create
a feature vector xt = [f t1 , . . . , f

t
s] storing the frequency for each

system call during a fixed time interval t . Here s is the total number
of system calls and f ti denotes the number of times the i-th system
call has been used during time window t . The interval length is a
hyper-parameter of the system. System calls that did not appear in

Figure 3: Machine Learning methods in AppMine. Traditional models on the left and the LSTM model on the right.

that interval have a frequency value of 0. For intervals where no
system calls were captured by Sysdig, a feature vector of all zeros
was used. For example, let us assume that a program makes the
following system calls during a one-second interval:

futex,futex,open,write,close,open,read,close

Then, the feature vector for that interval is (system call exec is not
used and has value 0)

close futex open write read exec

2 2 2 1 1 0
We use two standard anomaly detection techniques: Principal

Component Analysis (PCA) and One Class Support Vector Machine
(OCSVM) based on this frequency feature representation. Both of
these methods take as input the system call frequency feature vec-
tor computed for one time interval. We use these methods to create
baselines for comparison with our neural-network based anomaly
detection model that leverages the sequence dependencies among
system calls.

PCA: Principal Component Analysis (PCA) is a technique that
projects a dataset onto a set of principal components, determined to
maximize the variance observed in the training data. If the original
data is given bymatrixX (withn rows andd columns, wheren is the
number of data records in X and d is the size of the feature space),
then PCA determines the top k eigenvectors of the co-variance
matrix Σ = XTX . Let the matrix of the top k eigenvectors beWk
(storing one eigenvector per column). Then the projection of a
point x onto the space generated by the top k principal compo-
nents is given by x̂ = WT

k x . The principal components have the
property of minimizing the total reconstruction error. PCA can
also be trained as a density estimation model, which estimates a
probability distribution p(x) over x ∈ X (in our case for frequency
feature vectors), based on Maximum Likelihood estimation [8]. We
use this density-estimation variant of PCA. In training we compute
Gaussian estimates of the probabilities of system call frequency
vectors, while in testing we compute log likelihoods for both attack

and legitimate data. If a point has very low log likelihood in testing,
then we consider it as an attack point. We vary the threshold for
log likelihood in order to obtain ROC curves that evaluate True
Positives as a function of fixed False Positive Rates.
OCSVM:A Support Vector Machine (SVM) is a supervised learning
model that is trained on data points from two different classes, in an
attempt to find a separating hyperplane that separates the classes
by the maximal margin. One-class SVM is trained on data from only
one class (in our case, the legitimate class) and is used to detect
novelties (or anomalies) based on the learned representation. We
learn a one-class SVM model based on the legitimate training data,
and use it to predict scores for testing data points (both attack
and legitimate). In this setting, the scores are the distances to the
separating decision boundary. Again, we vary the scores for which
we predict attacks, to compute True Positives at fixed False Positive
Rates.

Motivation for LSTM models. System calls generated by an appli-
cation are temporally correlated. For instance, we observed that the
Apache Struts application makes the following sequence of system
calls: {openat, getdents, close}, repeatedly. Once we observe the
sequence {openat, getdents}, the probability that the next system
call is close under normal conditions is extremely high. However,
the probability of the next system call being exec (as might hap-
pen during an attack) is very low. A traditional anomaly detection
model (such as PCA or OCSVM) does not have the ability to predict
the likelihood of the exec system call in the context given by the
previous system calls.

To capture these types of sequential dependencies in application
monitoring data, we leverage Recurrent Neural Network (RNN)
architectures. RNNs are deep learning models designed to map
sequential and time series data to sequential outputs [41]. RNNs
have been successfully applied for tasks such asmachine translation,
natural language processing, and time series analysis. Long Short-
Term Memory (LSTM) networks [19] are special types of RNNs that
introduce special forget gates to better control how information
propagates through the network. They maintain a hidden state

ht at time t that is updated using the current input: (ht , x ′t+1) =
fW (ht−1, xt). HereW are the model weights, fW is the function
applied inside the neural network (including the linear operation
and activation function), xt is the input to the network at time t ,
and x ′t+1 is the prediction of feature vector at time t + 1.

LSTM model design. We designed an LSTM architecture that
learns a model fW mapping sequences of system call frequency
vectors to predictions of the next feature vector. The alternative to
this design is to use the sequences of system calls directly, without
aggregating them into frequency vectors. However, applications use
multiple threads and system calls might arrive slightly out-of-oder
when the same code is executed. Thus, we expect the sequences of
system call frequency vectors (aggregated over relatively small time
intervals) to be much more stable than the sequences of individual
system calls.

We thus use the following feature representation for the LSTM
model. Given a hyper-parameter ∆ (the sequence size), the input to
the LSTM model at time t is the sequence of system call frequency
vectors for the last ∆ time windows: xt , xt−1, . . . , xt−∆+1. We train
the LSTM model in a supervised manner to predict the next system
call frequency vector at time t + 1, given the true value xt+1. Thus,
the sequence xt , xt−1, . . . , xt−∆+1 and the prediction xt+1 is given
as input to the LSTMmodel. At testing time, the LSTMmodel learns
to predict the next frequency vector: y′t+1 ← fW (yt , . . . ,yt−∆+1
given the observed sequence of length ∆ at time t .

One important consideration is how to leverage the supervised
LSTM model that predicts the next system call frequency vector to
distinguish attack patterns from legitimate profiles. The intuition is
that, during training, we have information about the true value of
the system call frequency vector xt+1 at time t + 1 and we can mea-
sure the distance between the predicted value x ′t+1 and the actual
value xt+1. We learn the distribution of the distances observed in
training and set a distance threshold to obtain a fixed false positive
rate (per application). This is equivalent to picking a threshold T
such as the probability P[| |x ′t+1 − xt+1 | | > T] <= p, for some fixed
false positive rate p.

During testing, we run the LSTMmodel on new datay1, . . . ,yt , . . .
(including legitimate and attack vectors), and predict at each time
interval the frequency vector y′t+1 = fW (yt , . . . , Ft−∆+1) based on
the previous ∆ frequency vectors: yt , . . . ,yt−∆+1. We consider the
frequency vector at time t an anomaly if the distance is higher than
the threshold computed in training: | |y′t+1 − yt+1 | | > T .

The last item we need to discuss is how to measure the dis-
tance between the predicted system call frequency vector and
the actual one. We found that using a standard distance metric
(such as Euclidean distance) | |xt+1 − x ′t+1 | |2 is not effective. In-
stead, we leverage ideas from Term Frequency - Inverse Docu-
ment Frequency (TF-IDF) in information retrieval and we weight
each system call by its inverse frequency when defining a new dis-
tance between the predicted and actual values: | |x ′t+1 − xt+1 | |S =√∑d

i=1 f̄i (x
t+1
i − x ′t+1i)2, where d is the number of system calls,

and f̄i is the inverse-frequency of the ith system call as seen during
training. This method ensures that differences to system calls uti-
lized rarely contribute more to the distance compared to common
system calls (those used with high frequency).

4 EXPERIMENTAL EVALUATION
In this section, we evaluate our three anomaly detection models,
using metrics such as True Positives at fixed False Positive rates,
and Area Under the Curve (AUC). We first discuss hyper-parameter
choice, then compare the performance of LSTM with that of the
traditional ML models (PCA and OCSVM), and finally we present
detailed attack detection results per attack script.

Configuring ML models. We describe here some of the configura-
tion options and hyper-parameter selection for our models.

For PCA we need to select the number of components. For all of
the tested web applications, the cumulative variance graph started
to flatten out at around 20 principal components. Figure 4 shows
an example for Struts (other applications being similar). Thus, we
choose to represent the data using 20 principal components. PCA
assigns scores to each data point based on how far the projection
of the data point on the lower dimensional space lies from the
principal components. Normal, benign data points are expected to
have a low score, while anomalous points will have higher scores.

As described in 3.4, we trained our models on frequency count
vectors. We tested time interval lengths of 100ms, 500ms, 1s, and 2s
for creating feature vectors, and choose to work with one second
for all models, as for the other options the results were worse (the
ROC curves were closer to the diagonal).

Figure 4: Cumulative explained variance for PCA for Struts
with CVE-2017-5638.

For training the LSTM models we used Python with Keras and
Tensorflow to build a Sequential model with one LSTM layer with
100 hidden neurons and one Dense layer. We used Mean Squared
Error (MSE) as the loss function with the ADAM optimization
algorithm. Batch size of 128was usedwhile training over 150 epochs,
with a 20% validation split. Our hyper-parameters are given in
Table 5.We used several values for the hyper-parameters∆ denoting
the sequence size, once we aggregate the system call frequency
vectors at one-second intervals. We show the results for the AUC
metric and performance (training time) in Table 4. Based on this,
we selected ∆ = 15 as the value that offers the best tradeoff between
accuracy and performance.

To select a threshold for detecting anomalies, we inspected the
distribution of anomaly scores for the frequency vectors in our val-
idation set (containing only legitimate data). In Figure 5 we show
the distribution of the distance between predicted values and actual

Figure 5: Distribution of distances between predicted and ac-
tual frequency values for the enum_configs attack script for
Struts with CVE-2017-5638.

∆ = 5 ∆ = 10 ∆ = 15 ∆ = 20 ∆ = 30 ∆ = 60
AUC 0.95 0.96 0.97 0.97 0.97 0.97
Time 1:46 2:56 4:30 5:27 7:15 15.05

Table 4: AUC and training time (in minutes) for LSTM with
different values of sequence size ∆, for frequency vectors
aggregated at one-second intervals (Struts with CVE-2017-
5638).

Parameter Values
Number of hidden layers 1

Number of neurons 100
Batch size 128

Number of epochs 150
Timing window 0.1s, 0.5s, 1s, 2s
Sequence size 5, 10, 15, 20, 30, 60

Table 5: Hyper-parameters for LSTM model. Bolded values
provide best results.

frequency values for the Struts application with the enum_config
script. We show the distance for attack and legitimate system calls,

Figure 6: ROC curves for enum_system for Struts with CVE-
2017-5638.

when using either uniform weights, or TF-IDF weights for distance
computation. As observed, when using uniform weights the two
distance distribution are closer and overlap in some cases. How-
ever, with TF-IDF weights, the separation between the two distance
distributions increases, making the attack data much more distin-
guishable from the legitimate one. Thus, we can select a threshold
per application to minimize the False Positive rate during training.

Comparison of LSTM with traditional models. To compare LSTM
with the two traditional anomaly detectionmodels (PCA andOCSVM),
Figure 6 shows the ROC curves for one application (Struts) for the
attack script enum_network. We observe that LSTM is performing
significantly better, with AUC at 0.97, compared to 0.62 for PCA and
0.67 for OCSVM. In the Appendix, we show in Figure 10 the ROC
curves for all attack scripts for the Struts application. Interestingly,
LSTM is always outperforming the traditional models, with signif-
icant increase in AUC. For instance, for the ecryptfs_cred script,
LSTM achieves an AUC of 0.96, while PCA and OCSVM have AUCs
of only 0.56 and 0.63, respectively.

Figure 7 shows the ROC curves averaged on all 15 attack scripts
for the all the tested web applications. It is clear that the LSTM
model performs better than the traditional models. The AUC for
LSTM is between 0.75 and 0.97 and improves the traditional models’
average AUC between 0.09 and 0.25.

In terms of the performance of the ML models, LSTM has a more
complex architecture and it takes longer to train, as expected. The
traditional models’ running time is very low, with 0.088 seconds
for PCA and 4.37 seconds for OCSVM, respectively (for the Struts
5638 web application). The LSTM model’s performance depends
on the size of the training data, ranging between 4:30 minutes for
Struts 5638 and 5:24 minutes for Word Press.

LSTM for different attacks. Figures 8 and 9 show the ROC curves
for each attack for the Struts and Drupal applications, respectively.
The LSTM model generally performs better than PCA or OCSVM
There are a few attack scripts that perform poorly for the traditional
models (e.g., ecryptfs_creds, enum_configs, and enum_network),
but the LSTM models perform much better. We suspect that the
reason is the ability of LSTM to analyze sequences of system call
frequency vectors. By looking at individual feature vectors for one
time window, the patterns of attack and legitimate data might be
very similar, but the sequences over multiple time windows could
differ significantly.

5 DISCUSSION AND LIMITATIONS
We demonstrated that AppMine is effective at detecting a range of
vulnerabilities against four popular web applications, using only
system calls collected from Sysdig. There might be situations in
which AppMinemisses certain classes of attacks, not manifested in
the system call sequences generated by an application. For instance,
a SQL injection attack might not result in an anomaly at the system
call level, but rather in the parameter values used in HTTP requests.
We believe that for such attacks, more specific detectors need to
be designed, using additional information and features to enhance
detection. For instance, SQL detection could leverage parameter
values extracted from HTTP requests, relying on network-level
features to complement host-level ones.

(a) Drupal (b) ProFTPD (c) Struts CVE-2017-5638

(d) WP Ajax Load More Plugin (e) WP N-media Contact Form Plugin (f) WP ReflexGallery Plugin

(g) Struts CVE-2017-9805

Figure 7: ROC curves for all 15 attack scripts (averaged) for PCA, OCSVM and LSTM for all applications.

Figure 8: ROC curves for Struts with CVE-2017-5638 for all three models.

Several challenges arise in the practical deployment of AppMine.
Privacy of user data is an important consideration that needs to
be addressed for any system monitoring web applications. We be-
lieve that our aggregated feature representation (storing frequency
vectors of system calls across time) provides some amount of pro-
tection against privacy leakage. Once more detailed information
is extracted (such as system call parameters, and parameters from
HTTP requests), the privacy risks to users increases significantly.

It remains an open problem to quantify the exact amount of pri-
vate information collected by a monitoring system, and to evaluate
the tradeoffs between accuracy at attack detection and privacy
implications on users.

In practical deployments, AppMine can be implemented as a
security service offered by a cloud provider to its tenants running
web applications in cloud-managed containers. We note that the
cloud provider needs to train one ML model per web application

Figure 9: ROC curves for Drupal for all three models.

to detect anomalies that are specific to that web application. The
training can be performed in parallel on distributed infrastructures
for scalability.

Last, but not least, an attacker with knowledge of the AppMine
design might attempt to perform an evasion or mimicry attack
against the ML detector to avoid attack detection. That can be
accomplished by preserving most of the legitimate application
behavior and staggering the attack across longer time intervals.
Understanding the susceptibility of LSTM-based models to evasion
attacks in this context is an interesting topic, which we leave for
future work.

:

6 RELATED WORK
Intrusion detection based on system call monitoring on end hosts
has been studied in depth in the literature. Forrest et al. [15] create
profiles of Unix process based on sequences of system calls and
detect deviations under attack. Hofmeyr et al. [20] expand this by
using fixed-length sequences and Hamming distances between un-
known sequences and sequences in the normal database for measur-
ing dissimilarities. Warrender et al. [50] introduce threshold-based
sequence time delay embedding (t-STIDE), which implements an
anomaly scoring technique where the score of a test sequence de-
pends on the number of anomalous windows in the test sequence.
Lane and Brodley [24, 25] use UNIX shell command sequences to
build a user profile dictionary and propose various similarity mea-
sures to detect anomalous behavior. Lee et al. [26] propose an unsu-
pervised learning method which generates association rules from
training data (using RIPPER) and use these rules to detect anomalies
in test data. Mutz et al. [33] use Bayesian earning methods to model
system call parameters and detect anomalies in parameter values.

Ahmet et al. [4] propose anomaly detection models that use both
spatial and temporal features extracted from Windows API calls.
Markov models have been used to model the temporal sequence of
system calls and detect anomalies (e.g., [29]). System call analysis
has also been used for forensic investigation [36]. More recently,
anomaly detection of system logs has been applied to enterprise
networks [55] and cloud deployments [12]. Beehive [55] uses PCA
and clustering-based methods to identify hosts with anomalous
behavior in an enterprise networks, while DeepLog [12] designs an
LSTM models that takes into account the sequence of system log
events in HDFS and OpenStack logs to identify various anomalies.

In the area of web attacks, anomaly detection methods have
been applied based on learning application profiles [23]. Bayesian

networks were used to compose multiple models to reduce false
positives [22]. Clustering of anomalies enables more detailed attack
classification [40]. Spectogram [47] designs a mixture of Markov
chains based on n-gram features to model the distribution of normal
HTTP request parameters. Swaddler [9] models the worflow of
an application and uses anomaly detection to identify when an
application reaches an inconsistent state. Scarcity of training data
for client web application was mitigated by Robertson et al. [39] by
using global similarity of web requests. Several papers [30, 32, 45]
use a hybrid approach based on program analysis and machine
learning for web application vulnerability detection.

Recent work has shown how provenance, traditionally used in
forensic investigation, has the potential to be used for intrusion de-
tection. Han et al. [17] apply provenance for identifying anomalies
in programs running in Platform-as-a-Service (PaaS) clouds. Win-
nower [18] provides an efficient mechanism for storing provenance
data in a distributed cluster, and demonstrates attack detection ca-
pabilities in a Docker Swarm container cluster. CamFlow [34] and
CamQuery [35] design new provenance architectures that speed
up real-time applications, such as security monitoring. An inter-
esting direction for future work is to investigate the use of these
modern provenance architectures for web application vulnerability
detection in cloud containers.

Other defenses against Web application vulnerabilities include
the following: (1) static analysis (e.g., [21]); (2) dynamic analysis
(e.g., [49]); (3) combination of static and dynamic analysis (e.g., [5]);
(3) input validation (e.g., [43]); and (4) fuzz testing (e.g., [42]), but
they have well-known limitations. For instance, most static analysis
tools have large false positives, and input validation methods are
specific to certain web attacks such as SQL injection. We believe
that machine learning models can complement existing defenses in
web applications deployed in either public or private clouds.

Industry solutions for container security in public and hybrid
clouds include: Twistlock [3], a system for designing flexible ac-
cess control policies for containers; Symantec Cloud Workload
Protection [1], a system that provides better container isolation;
and Trend Micro Deep Security [2], using ML to protect hybrid
cloud workloads against vulnerabilities.

7 CONCLUSIONS
We propose an anomaly detection framework for detecting exploits
in web application.We set up a testbed environment and deploy four
web application, recreate seven exploits using Metasploit modules,
and collect system call data using the Sysdig monitoring agent.

Figure 10: ROC curves for attack scripts for Struts CVE-2017-5638

We compare two traditional anomaly detection models (PCA and
OCSVM) with an LSTM-model trained on sequences of system
call frequency vectors. We demonstrate that LSTM outperforms
the traditional models. Our framework has the advantage of not
requiring attack data for training, and being applicable to a range
of web application exploits. In future work, interesting research
questions remain on extending this framework to other scenarios
and running the algorithms in real cloud environments.

ACKNOWLEDGEMENTS
We thank Vinny Parla, Andrew Zawadowskiy, and Donovan O’Hara
from Cisco for suggesting the area of research and providing feed-
back and guidance during the course of the project. We also thank
Haya Shulman for shepherding our paper and the anonymous re-
viewers for their constructive feedback. This project was funded by
a research gift from Cisco, as well as the NSF grant CNS-1717634.

REFERENCES
[1] Symantec Cloud Workload Protection. https://www.symantec.com/products/

cloud-workload-protection.
[2] Trend Micro Deep Security. https://www.trendmicro.com/en_us/business/

products/hybrid-cloud/deep-security.html.
[3] Twistlock. https://www.twistlock.com/.
[4] F. Ahmed, H. Hameed, M. Z. Shafiq, and M. Farooq. Using spatio-temporal

information in API calls with machine learning algorithms for malware detection.
In Proceedings of the 2nd ACM Workshop on Security and Artificial Intelligence,
AISec ’09, pages 55–62, New York, NY, USA, 2009. ACM.

[5] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Saner: Composing static and dynamic analysis to validate sanitization
in web applications. In Proceedings of the IEEE Symposium on Security and Privacy,
2008.

[6] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel. DISCLOSURE:
Detecting botnet Command-and-Control servers through large-scale NetFlow
analysis. In Proc. 28th Annual Computer Security Applications Conference (ACSAC),
ACSAC, 2012.

[7] L. Bilge, E. Kirda, K. Christopher, and M. Balduzzi. EXPOSURE: Finding malicious
domains using passive DNS analysis. In Proc. 18th Symposium on Network and
Distributed System Security, NDSS, 2011.

[8] C. M. Bishop. Pattern recognition and machine learning, 5th Edition. Information
science and statistics. Springer, 2007.

[9] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna. Swaddler: An approach for
the anomaly-based detection of state violations in web applications. In C. Kruegel,
R. Lippmann, and A. Clark, editors, Recent Advances in Intrusion Detection, pages
63–86, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[10] Diamanti. 2018 container adoption benchmark survey. https://diamanti.com/
wp-content/uploads/2018/07/WP_Diamanti_End-User_Survey_072818.pdf, 2018.

[11] Drupal. https://www.drupal.org/.
[12] M. Du, F. Li, G. Zheng, and V. Srikumar. DeepLog: Anomaly detection and

diagnosis from system logs through deep learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS ’17,
pages 1285–1298, New York, NY, USA, 2017. ACM.

[13] M. Dymshits, B. Myara, and D. Tolpin. Process monitoring on sequences of
system call count vectors. In Security Technology (ICCST), 2017 International
Carnahan Conference on, pages 1–5. IEEE, 2017.

[14] Cybersecurity incident and important consumer information. https://www.
equifaxsecurity2017.com/, 2017.

[15] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for
unix processes. In Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium
on, pages 120–128. IEEE, 1996.

[16] ftpbench. https://github.com/selectel/ftpbench.
[17] X. Han, T. Pasquier, T. Ranjan, M. Goldstein, and M. Seltzer. FRAPpuccino: Fault-

detection through runtime analysis of provenance. In 9th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 17), Santa Clara, CA, July 2017. USENIX
Association.

[18] W. U. Hassan, M. Lemay, N. Aguse, A. Bates, and T. Moyer. Towards scalable
cluster auditing through grammatical inference over provenance graphs. In
NDSS, 2018.

[19] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9:1735—-1780, 1997.

[20] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences
of system calls. Journal of computer security, 6(3):151–180, 1998.

[21] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for detecting
web application vulnerabilities (short paper). In Proceedings of the 2006 IEEE
Symposium on Security and Privacy, SP ’06, pages 258–263, Washington, DC, USA,
2006. IEEE Computer Society.

[22] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur. Bayesian event classification
for intrusion detection. In Proceedings of the 29th Annual Computer Security
Applications Conference, ACSAC ’03, 2003.

[23] C. Kruegel, G. Vigna, and W. Robertson. A multi-model approach to the detection
of web-based attacks. Comput. Netw., 48(5):717–738, Aug. 2005.

[24] T. Lane and C. E. Brodley. An application of machine learning to anomaly detec-
tion. In Proceedings of the 20th National Information Systems Security Conference,
volume 377, pages 366–380. Baltimore, USA, 1997.

[25] T. Lane, C. E. Brodley, et al. Sequence matching and learning in anomaly detection
for computer security. In AAAI Workshop: AI Approaches to Fraud Detection and
Risk Management, pages 43–49. Providence, Rhode Island, 1997.

[26] W. Lee, S. J. Stolfo, et al. Data mining approaches for intrusion detection. In
USENIX Security Symposium, pages 79–93. San Antonio, TX, 1998.

[27] L. Lenart. S2-052. https://cwiki.apache.org/confluence/display/WW/S2-052, 2017.
[28] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyond blacklists: Learning to

detect malicious web sites from suspicious URLs. In Proc. 15th ACM International
Conference on Knowledge Discovery and Data Mining, KDD, 2009.

[29] F. Maggi, M. Matteucci, and S. Zanero. Detecting intrusions through system
call sequence and argument analysis. IEEE Trans. Dependable Secur. Comput.,

7(4):381–395, Oct. 2010.
[30] I. Medeiros, N. Neves, and M. Correia. Detecting and removing web applica-

tion vulnerabilities with static analysis and data mining. IEEE Transactions on
Reliability, 65(1):54–69, March 2016.

[31] Metasploit. https://www.metasploit.com/.
[32] D. Mutz, W. Robertson, G. Vigna, and R. Kemmerer. Exploiting execution context

for the detection of anomalous system calls. In C. Kruegel, R. Lippmann, and
A. Clark, editors, Recent Advances in Intrusion Detection, pages 1–20, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[33] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel. Anomalous system call detection.
ACM Transactions on Information and System Security (TISSEC), 9(1):61–93, 2006.

[34] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and J. Bacon.
Practical whole-system provenance capture. In Proceedings of the 2017 Symposium
on Cloud Computing, SoCC ’17, pages 405–418, New York, NY, USA, 2017. ACM.

[35] T. Pasquier, X. Han, T. Moyer, A. Bates, O. Hermant, D. Eyers, J. Bacon, and
M. Seltzer. Runtime analysis of whole-system provenance. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
’18, pages 1601–1616, New York, NY, USA, 2018. ACM.

[36] S. Peisert, M. Bishop, S. Karin, and K. Marzullo. Analysis of computer intru-
sions using sequences of function calls. Dependable and Secure Computing, IEEE
Transactions on, 4(2):137 –150, april-june 2007.

[37] The ProFTPD Project. http://www.proftpd.org/.
[38] RightScale. RightScale 2018 state of the cloud report. https://assets.rightscale.

com/uploads/pdfs/RightScale-2018-State-of-the-Cloud-Report.pdf, 2018.
[39] W. Robertson, C. Kruegel, and G. Vigna. Effective anomaly detection with scarce

training data. In Proc. Network and Distributed System Security Symp. (NDSS),
2010.

[40] W. Robertson, G. Vigna, C. Kruegel, and R. A. Kemmerer. Using generalization
and characterization techniques in the anomaly-based detection of web attacks.
In Proc. Network and Distributed System Security Symp. (NDSS), 2010.

[41] D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-
propagating errors. Nature, 323:533—-536, 1986.

[42] A. S., K. E., and K. C. Leveraging user interactions for in-depth testing of web
applications. In Proceedings of Recent Advances in Intrusion Detection, RAID, 2008.

[43] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda. Preventing input valida-
tion vulnerabilities in web applications through automated type analysis. In
Proceedings of the 2012 IEEE 36th Annual Computer Software and Applications
Conference, COMPSAC ’12, pages 233–243, Washington, DC, USA, 2012. IEEE
Computer Society.

[44] Selenium - Web Browser Automation. https://www.seleniumhq.org/.
[45] L. K. Shar, L. C. Briand, and H. B. K. Tan. Web application vulnerability prediction

using hybrid program analysis and machine learning. IEEE Transactions on
Dependable and Secure Computing, 12(6):688–707, Nov 2015.

[46] R. Sommer and V. Paxson. Outside the closed world: On using machine learning
for network intrusion detection. In 2010 IEEE symposium on security and privacy,
pages 305–316. IEEE, 2010.

[47] Y. Song, A. D. Keromytis, and S. Stolfo. Spectrogram: Amixture-of-markov-chains
model for anomaly detection in web traffic. In Proc. Network and Distributed
System Security Symp. (NDSS), 2009.

[48] Sysdig: Open Source Container Troubleshooting & Forensics. https://sysdig.com/
opensource/.

[49] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross-
site scripting prevention with dynamic data tainting and static analysis. In
Proceedings of the 14th Annual Network & Distributed System Security Symposium,
NDSS, 2007.

[50] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system
calls: Alternative data models. In Proceedings of the 1999 IEEE symposium on
security and privacy (Cat. No. 99CB36344), pages 133–145. IEEE, 1999.

[51] Blog Tool, Publishing Platform, and CMS - WordPress. https://wordpress.org/.
[52] wpajaxloadmore. https://www.exploit-db.com/exploits/38660.
[53] wpnmedia. https://www.exploit-db.com/exploits/36810.
[54] wpreflexgallery. https://www.exploit-db.com/exploits/36809.
[55] T. Yen, A. Oprea, K. Onarlioglu, T. Leetham,W. K. Robertson, A. Juels, and E. Kirda.

Beehive: Large-scale log analysis for detecting suspicious activity in enterprise
networks. In Annual Computer Security Applications Conference, ACSAC ’13, New
Orleans, LA, USA, December 9-13, 2013, pages 199–208, 2013.

A ROC CURVES FOR ATTACKS
In Figure 10 we show the ROC curves for PCA, OCSVM, and LSTM
for all 15 attack scripts for the Struts application with the Equifax
exploit (CVE-2017-5638).

https://www.symantec.com/products/cloud-workload-protection
https://www.symantec.com/products/cloud-workload-protection
https://www.trendmicro.com/en_us/business/products/hybrid-cloud/deep-security.html
https://www.trendmicro.com/en_us/business/products/hybrid-cloud/deep-security.html
https://www.twistlock.com/
https://diamanti.com/wp-content/uploads/2018/07/WP_Diamanti_End-User_Survey_072818.pdf
https://diamanti.com/wp-content/uploads/2018/07/WP_Diamanti_End-User_Survey_072818.pdf
https://www.drupal.org/
https://www.equifaxsecurity2017.com/
https://www.equifaxsecurity2017.com/
https://github.com/selectel/ftpbench
https://cwiki.apache.org/confluence/display/WW/S2-052
https://www.metasploit.com/
http://www.proftpd.org/
https://assets.rightscale.com/uploads/pdfs/RightScale-2018-State-of-the-Cloud-Report.pdf
https://assets.rightscale.com/uploads/pdfs/RightScale-2018-State-of-the-Cloud-Report.pdf
https://www.seleniumhq.org/
https://sysdig.com/opensource/
https://sysdig.com/opensource/
https://wordpress.org/
https://www.exploit-db.com/exploits/38660
https://www.exploit-db.com/exploits/36810
https://www.exploit-db.com/exploits/36809

	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Web application vulnerabilities
	2.2 Threat model
	2.3 Overview

	3 Methodology
	3.1 Testbed setup
	3.2 Vulnerability exploitation
	3.3 Data collection
	3.4 Machine Learning Framework

	4 Experimental Evaluation
	5 Discussion and Limitations
	6 Related work
	7 Conclusions
	References
	A ROC curves for attacks

