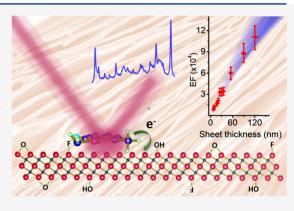


pubs.acs.org/JPCC Article

¹ Unravelling the Thickness Dependence and Mechanism of Surface-² Enhanced Raman Scattering on Ti₃C₂T_X MXene Nanosheets

3 Tej B. Limbu, Basant Chitara, Martha Y. Garcia Cervantes, Yu Zhou, Shengxi Huang, Yongan Tang, 4 and Fei Yan*

Cite This: https://dx.doi.org/10.1021/acs.jpcc.0c05143


ACCESS

Metrics & More

Article Recommendations

SI Supporting Information

5 **ABSTRACT:** MXenes have attracted great attention as promising 6 substrates for surface-enhanced Raman scattering (SERS) applications. 7 However, the underlying SERS mechanism has not been a focus of any 8 investigation. Herein, we report the first systematic experimental study on 9 the SERS activity of titanium carbide $(Ti_3C_2T_X)$ nanosheets with 10 thicknesses ranging from 5 to 120 nm, using methylene blue (MB) as a 11 probe molecule. The experimental and mathematical modeling results show 12 that the Raman enhancement factor (EF) increases monotonically with the 13 increasing thickness of $Ti_3C_2T_X$ nanosheets; however, it falls drastically 14 around a sheet thickness of 0.8 and 1.0 μ m under 532 and 633 nm laser 15 excitations, respectively. The Raman EF reaches a maximum value around a 16 thickness of 2.0 μ m, suggesting that a maximum EF can be achieved with a 17 2.0 μ m-thick $Ti_3C_2T_X$ film substrate. The thickness dependence of the 18 Raman enhancement can be accounted for by the adsorption and

19 intercalation of MB molecules into the interlayer spacing of $Ti_3C_2T_X$. Furthermore, by combining experimental observations and 20 numerical calculation, we confirm that the charge-transfer mechanism is dominantly responsible for Raman enhancement on 21 $Ti_3C_2T_X$. Additionally, we report an observation of resonance coupling of charge transfer and molecular transition as a contributing 22 factor to the higher EF obtained with a 633 nm laser excitation. Taken together, these findings have significant implications for cost 23 and performance optimization in designing MXene-based SERS substrates for next-generation chemical and biological sensing 24 platforms.

25 INTRODUCTION

26 Surface-enhanced Raman scattering (SERS) is an ultra-27 sensitive, reliable, and noninvasive analytical technique 28 employed for explosive detection, biosensing, environmental 29 contaminants monitoring, biological imaging, and catalysis 30 chemistry. Several different materials and architectures such as 31 noble metal nanostructures, 1,2,5 two-dimensional (2D) materi-32 als⁶⁻⁹ composites, ^{3,10,11} and heterostructures ^{12,13} have been 33 explored for SERS applications. Nobel metal-based SERS 34 substrates are highly efficient in enhancing the Raman signal of 35 analyte molecules and have shown a Raman enhancement 36 factor (EF) on the order of 10^{14} – 10^{15} , which allows for single-37 molecule detection. 14 Such a tremendously high EF on metal 38 substrates is due to the surface plasmon resonance (SPR)-39 induced local field magnification, 1,5,14 called electromagnetic 40 mechanism (EM). Despite having the capability for single-41 molecule detection, noble metal-based SERS substrates are 42 relatively expensive and suffer from several other disadvan-43 tages; these include extra adsorbates on the surface due to 44 catalytic effect and the strong spectral background, 15,16 which 45 prompts further exploration of nonmetallic, plasmon-free, and 46 flat materials for practical SERS applications.

2D materials are emerging candidates for SERS substrates 47 due to their uniform and flat surface, chemical stability, and 48 biocompatibility. The large EF observed in 2D materials has 49 been confirmed to be a result of the surface—analyte 50 interaction called chemical mechanism (CM)^{12,15,17} and not 51 due to the EM. Because of their promising nature, the 52 continued efforts are being put forward to develop and 53 engineer 2D material-based SERS substrates. Some notable 54 examples include a recent work, which showed a detection of 55 femtomolar concentration of rhodamine 6G (R6G) on 56 semimetallic 2D 1T'-WTe₂ and MoTe₂ layers, and near 57 single-molecule level detection with semimetallic N-doped 58 graphene and metallic titanium nitride MXene. MXenes, a 59 new family of transition metal-based 2D materials, have been 60 considered as potential materials for various applica-61

Received: June 6, 2020 Revised: July 10, 2020 Published: July 16, 2020

62 tions, $^{8-11,19-23}$ including SERS-based sensing. Various re-63 ports $^{8,9,24-28}$ on MXene-based SERS substrates have shown a 64 promisingly high EF ranging from 10^5 to 10^{12} . Furthermore, 65 the superior hydrophilicity 8,9,24 of MXenes helps to distribute 66 the analyte molecules evenly on the surface, making them 67 unique among all types of SERS substrates and suitable for 68 practical applications.

A state-of-art development of efficient SERS substrates from 70 MXenes requires a thorough understanding of the Raman 71 enhancement mechanism. Although MXene films have been 72 explored for SERS-based sensing applications, 8,9,24-28 a 73 fundamental understanding on the Raman enhancement 74 mechanism of individual MXene nanosheets has not been 75 thoroughly developed, and the effect of MXene sheet thickness 76 on the SERS activities has not been explored. Several 77 studies 17,29,30 show that 2D materials with different electronic 78 structures exhibit unique layer or thickness dependency. For 79 example, the SERS signal of copper(II) phthalocyanine 80 (CuPc) on the monolayer graphene was found lower than 81 that on bilayer graphene due to the larger downshift of Fermi 82 level in monolayer graphene upon the charge-transfer (CT) 83 process,²⁹ and the EF decreases with the increasing layer 84 number due to 2.3% absorption of the incident laser per 85 graphene layer. 17 On the other hand, Quan et al. 30 observed a 86 monotonical decrease of the Raman enhancement of CuPc 87 with an increasing thickness of semiconducting GaSe flake, and 88 Ling et al. 17 found no dependency of Raman enhancement on 89 h-BN thickness. The thickness-independent Raman enhance-90 ment on h-BN was explained by the interface dipole 91 interaction with CuPc molecules induced by the polar nature 92 of h-BN, and it is not affected by the thickness since the 93 insulating material is highly transparent in the visible region. 94 In contrast to other 2D van der Waals materials, MXenes have 95 surface terminations, in most cases, -OH, -F, =O, etc., 9,24 96 which make a unique interlayer interaction in MXenes. Hence, 97 an investigation on the thickness-dependent SERS activity of a 98 different class of 2D materials, MXenes, is required for 99 advancing the fundamental understanding and development of 100 practical SERS substrates.

In this work, we have explored thickness-dependent SERS 102 activities of the most conductive 23 and the most widely studied 103 member of the MXene family, titanium carbide $(Ti_3C_2T_x)$, 104 using methylene blue (MB) as a probe molecule. We observed 105 a monotonical increase of the Raman EF with increasing 106 Ti₃C₂T_X sheet thickness but with a varying EF progression for 107 different thickness regimes. Furthermore, the experimental 108 results together with numerical simulations confirmed that CM 109 is dominant over EM for Raman enhancement on Ti₃C₂T_X 110 nanosheets. The work also demonstrates how a coupled 111 resonance of charge transfer and molecular transition leading 112 to a large Raman enhancement can be achieved under a 113 properly designed set of SERS experiments. These findings 114 have significant implications for the understanding of the SERS 115 mechanism of 2D MXenes and for the designing of MXene-116 based substrates with optimal cost-performance trade-off for 117 sensing applications.

8 EXPERIMENTAL SECTION

Preparation of $Ti_3C_2T_X$ Nanosheets and Au Nanoparticles. $Ti_3C_2T_X$ nanosheets were prepared by selective etching of Al layers in Ti_3AlC_2 MAX powder purchased from Carbon-Ukraine (Y-Carbon, Ltd.). The details of the Al layer etching process and the delamination of $Ti_3C_2T_X$ sheets have been reported in our previous paper. 9 Briefly, 0.5 g of parent 124 MAX powder was slowly added to 10 mL of 30% hydrofluoric 125 acid (HF) (ACROS Organics, 48-51% solution in water) 126 while stirring with a Teflon magnetic bar. After 7 h of constant 127 stirring, the solution was washed with deionized (DI) water via 128 vacuum-assisted filtration using a polyvinyl difluoride (PVDF) 129 filter membrane with 0.22 mm pore size (Durapore, Millipore) 130 until the pH of the filtrate was lowered to ~6.5. The washed 131 sediment was then dried in a vacuum desiccator for 24 h. The 132 delamination process was slightly modified. 100 mg of Ti₃C₂T_X 133 powder was put into 50 mL of 25 mM tetrabutylammonium 134 hydroxide (TBAOH) (Alfa Aesar, Electronic grade, 99.9999% 135 (metal basis) liquid) and stirred on a shaker for 48 h. Then, 136 the solution was centrifuged at 3500 rpm for 5 min to separate 137 out the sediment of the unetched MAX particles, and the 138 brownish solution containing Ti₃C₂T_X nanosheets, TBAOH, 139 and water was used for the deposition of flakes onto silicon 140 substrates without further washing. Spherical Au nanoparticles 141 were synthesized by following a method described in the 142

L-B Trough Deposition of Ti₃C₂T_X Nanosheets onto Si 144 **Substrates.** The $Ti_3C_2T_X$ nanosheets with large lateral size 145 ranging from 5 to 30 µm were deposited onto silicon substrates 146 by employing a Langmuir-Blodgett (L-B) deposition 147 technique (KSV NIMA) as described in the report with 148 some slight modifications. 32 The L-B deposition technique is 149 commonly employed for a film deposition with 2D materials 150 and their composites on the targeted substrates. 20,32,33 151 However, in our case, we did not intend to form a continuous 152 film, but a sparsely distributed Ti₃C₂T_X nanosheet, on the 153 silicon surface in order to perform atomic force microscopy 154 and subsequent Raman measurements on individual nano- 155 sheets. Since a high concentration of Ti₃C₂T_X nanosheets in 156 water and surface pressure tend to increase the surface density 157 of Ti₃C₂T_x nanosheets on silicon, we controlled these 158 parameters to obtain a sparsely distributed Ti₂C₂T_v nanosheet 159 on the silicon. Briefly, silicon substrates were cleaned and made 160 hydrophilic by dipping them into a piranha solution (3 parts by 161 volume of conc. H₂SO₄ and 1 part of 30% H₂O₂) for 30 min. 162 (CAUTION: "Piranha" solution reacts violently with organic 163 materials; it must be handled with extreme care.) The substrates 164 were then copiously rinsed with DI water and dried under N₂ 165 gas flow. The L-B trough and barriers were cleaned with a soft 166 brush, rinsed with chloroform, and wiped out. The trough was 167 then filled with DI water subphase, and the cleaned silicon 168 substrate was immersed into the water subphase. Then, about 169 3 mL of the colloidal Ti₃C₂T_X solution was added to the water 170 subphase gently with a dropper and allowed to equilibrate for 171 20 min. Isotherm plots were collected at a compression rate of 172 20 cm²/min until the surface pressure reached ~12 mN m⁻¹ 173 and allowed to equilibrate at the air-water interface for 10 174 min. Finally, the deposition was carried out on the 175 preimmersed substrate at a pull rate of 2 mm/min. The 176 prepared samples were stored in a vacuum desiccator to 177 minimize their oxidation by water and oxygen molecules.^{9,34} 178

Characterization and Measurements. Raman measure- 179 ments were conducted on Horiba LabRAM Evolution 180 RAMAN microscope by using 473, 532, 633, and 785 nm of 181 laser excitations and a 100× objective lens with an integration 182 time of 20 s. The output powers were \sim 40 μ W for 473 nm, 183 \sim 90 μ W for 532 and 633 nm, and \sim 220 μ W for 785 nm laser 184 excitations, respectively. The thickness of the Ti₃C₂T_X 185 nanosheets was measured by using AFM (Horiba Smart 186

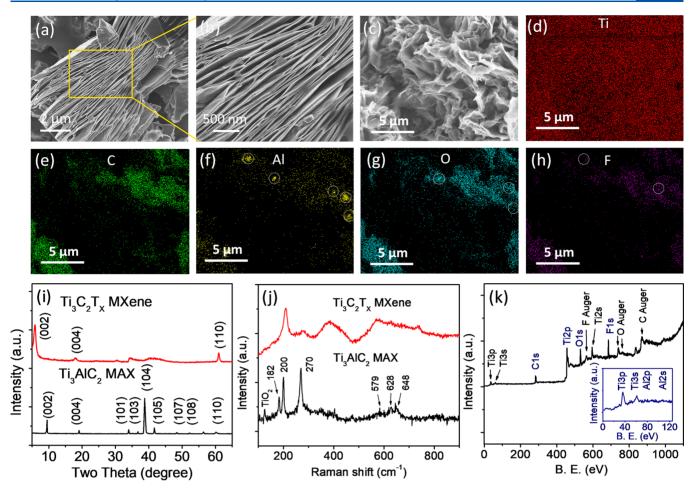


Figure 1. SEM images of (a, b) HF-etched Ti_3AlC_2 MAX crystals and (c) delaminated $Ti_3C_2T_X$ powder. EDS maps for (d) Ti, (e) C, (f) Al, (g) O, and (h) F in $Ti_3C_2T_X$ powder shown in (c). (i) XRD and (j) Raman spectra of Ti_3AlC_2 MAX (black) and $Ti_3C_2T_X$ MXene (red) powders. (k) XPS survey spectrum of $Ti_3C_2T_X$ powder. Inset is the magnified region of Al 2p (73 eV) and Al 2s (118 eV) peaks showing the disappearance of the peaks after Al layer etching.

187 SPM Atomic Force Microscope) in tapping mode config-188 uration. Light absorption spectra were collected on a UV— 189 visible spectrophotometer (VWR, UV-3100PC). Scanning 190 electron microscopic images were taken using FEI Verios 191 460L operating at 2 kV with 13 pA current. X-ray diffraction 192 spectra were collected on Rigaku SmartLab X-ray Diffrac-193 tometer, and elemental analysis of $Ti_3C_2T_X$ was performed on 194 an X-ray photoelectron spectrometer (SPECS FlexMod XPS, 195 Mg $K\alpha$ excitation (1254 eV)).

Thickness and SERS Measurements on a Nanosheet. The thickness and SERS measurements on the intended Ti₃C₂T_X nanosheets were performed by employing optical 198 199 microscopy, AFM, and Raman spectroscopy as described in detail in the Supporting Information. Briefly, there are three steps to perform in a sequential order as follows: (1) The 202 optical image of the nanosheet of interest in a silicon substrate 203 was collected at 10× and 100×, and surrounding particles, Ti₃C₂T_X nanosheets, stains, substrate edge, cracks, etc. were considered as markers for locating the position of the 206 nanosheet of interest. The approximate coordinate values of the location of the nanosheet of interest was noted (see Figure 208 S1a). (2) The sample was then loaded on the AFM stage; the 209 nanosheet of interest was localized with the help of the markers 210 under the optical microscope of the AFM instrument, and the 211 thickness was measured in tapping mode (see Figure S1b). (3) 212 Finally, the sample was soaked in an intended concentration of MB solution for 25 min and allowed to dry under ambient 213 conditions. The nanosheet of interest was localized with the 214 help of the markers under the optical microscope in the Raman 215 spectrometer using 10× followed by 100× magnifications, and 216 Raman measurements were carried out for SERS assessment 217 (see Figure S1c).

RESULTS AND DISCUSSION

Figure 1a,b shows SEM images of an accordion-like structure 220 formed after etching out Al layers from $\rm Ti_3AlC_2$ MAX crystals, 221 indicating that the HF-etching process effectively removed Al 222 layers from the MAX crystals. 9,27 Fabric-like structures shown 223 in the SEM image (Figure 1c) are the clear evidence of the 224 successful exfoliation of $\rm Ti_3C_2T_X$ nanosheets after the 225 delamination with TBAOH. Energy dispersive spectroscopy 226 (EDS) maps (Figure 1d–h) of the region shown in Figure 1c 227 indicate the formation of Al, Al $_2\rm O_3$, and AlF $_3$ nanoparticles. 228

XRD spectra in Figure 1i clearly show that several peaks of 229 the Ti_3AlC_2 parent crystal, most noticeably the (104) peak, 230 disappeared after the delamination of $Ti_3C_2T_X$ nanosheets, due 231 to the disappearance of the nonbasal crystal planes. Similar to 232 previous reports, ^{28,35} the broadening, the loss of intensity, and 233 the shift of the peaks to lower angles for (001) peaks such as 234 (002) and (004) are observed after the removal of Al layers 235 from Ti_3AlC_2 crystals. Compared to the narrow diffraction 236

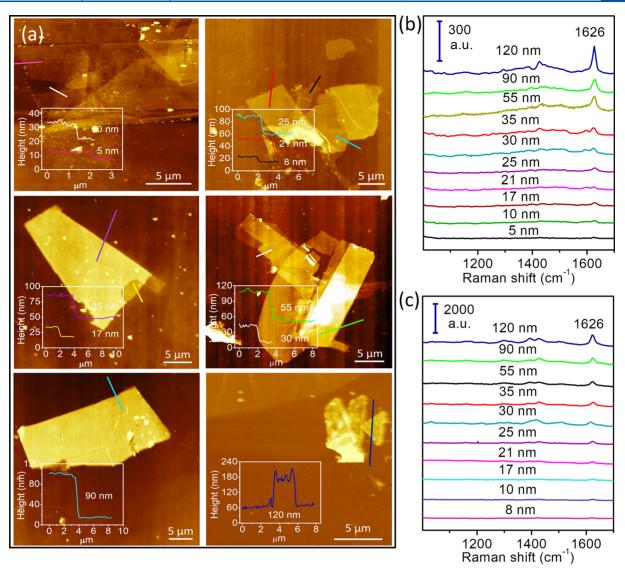


Figure 2. (a) Tapping mode AFM images and corresponding height profiles (insets) of various $Ti_3C_2T_X$ nanosheets with different thicknesses. SERS spectra of MB collected on the $Ti_3C_2T_X$ nanosheets using (b) 532 nm and (c) 633 nm lasers. The concentration of MB was 1.0×10^{-5} M.

237 peaks of Ti_3AlC_2 , all the (00l) peaks broaden in the exfoliated 238 sample owing to the loss of perfect stacks of Ti_3C_2 layers. ²⁸ A 239 huge shift of the (002) diffraction peak occurs from 9.5° to 240 6.0°, which could be attributed to the removal of the Al layer 241 from Ti_3AlC_2 and the introduction of surface terminations on 242 Ti_3C_2 layers. ^{9,28,35}

243 Raman spectra in Figure 1j clearly show that the vibrational 244 modes occurring at 182 ($E_{1g}(Ti, C)$), 200 ($E_{2g}(Ti, Al, C)$), and 245 270 cm⁻¹ ($A_{1g}(Ti, C)$) in Ti_3AlC_2 vanish after the removal of 246 Al layers, and those associated with the vibrations of Ti and C 247 occurring at 579, 628, and 648 cm⁻¹ broaden, merge, and 248 downshift. 36,37 A small band occurring at 149 cm⁻¹ is the E_g 249 vibrational mode of anatase phase TiO_2 particles 38 formed due 250 to the spontaneous oxidation of surface titanium atoms. The 251 intense bands occurring at 206 and 735 cm⁻¹ and broad peaks 252 occurring in the region of 230–470 cm⁻¹ in $Ti_3C_2T_X$ are 253 assigned to the A_{1g} vibrational mode of (Ti, C, O), A_{1g} mode 254 of C, and in-plane (E_g) modes of surface groups attached to Ti 255 atoms, respectively. 39

256 An X-ray photoelectron spectroscopy (XPS) survey scan 257 (Figure 1k) of $Ti_3C_2T_X$ shows the presence of four elements in 258 $Ti_3C_2T_X$, namely, Ti, C, O, and F. A F 1s peak at 685 eV with

10.95 atomic% is due to the fluorine terminations on Ti atoms 259 occurring during Al layer etching with HF in aqueous 260 medium³⁵ and a trace amount of AlF₃ nanoparticles. Oxygen 261 atoms are introduced to the crystals as =O or -OH surface 262 terminations as well as spontaneously formed TiO2 nano- 263 particles on the ${\rm Ti_3C_2T_X}$ surface, and oxygen ions occupy the 264 carbon vacancy states in the crystal. 9,21,35 No clear peaks are 265 observed at 73 and 118 eV, corresponding to Al 2p and Al 2s, 266 respectively (inset, Figure 1k), indicating that almost all Al 267 layers are removed from the delaminated MXene. A more 268 detailed interpretation of the possible surface groups and 269 adsorbates on the Ti₃C₂T_X nanosheets has been presented on 270 the deconvoluted high-resolution peaks of Ti 2p, C 1s, O 1s, 271 and F 1s as shown in Figure S2. The component names, their 272 atomic percentage, and their corresponding binding energy 273 values are summarized in Table S1. Overall, no unexpected 274 particles, functional groups, or surface adsorbates have been 275 observed. One point worth noting is that the fitting of high- 276 resolution O 1s and F 1s peaks show small additional 277 components corresponding to Al₂O₃ and AlF₃, respectively, 278 which could have formed during the Al etching process as 279 observed elsewhere.33

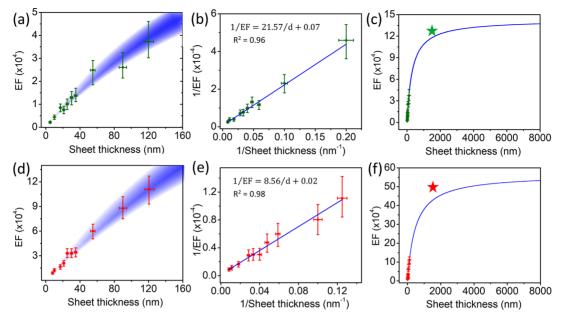


Figure 3. Plots of the Raman EF as a function of $Ti_3C_2T_X$ sheet thickness with a (a) 532 nm laser and (d) 633 nm laser. 1/EF vs 1/d for (b) 532 nm and (e) 633 nm lasers. The blue line is a linear fit to the data points. Data points fitted and extrapolated on either side using eqs 2 and 4, respectively, for (c) 532 nm and (f) 633 nm lasers. Green and red stars are the values of the EF obtained on film substrates with 532 and 633 nm laser excitations, respectively.

Figure 2a shows the tapping mode AFM images of various 281 Ti₃C₂T_X nanosheets employed as SERS substrates. The corresponding thicknesses are presented in the insets. The 284 Ti₃C₂T_x nanosheets have thicknesses ranging from 5 to 120 285 nm. Several different thicknesses have been measured on the same flake or on different flakes, and the same thickness has 287 been found at different regions as well as on different flakes. 288 The differences on the SERS intensities from the same 289 thickness have been expressed as errors. Figure 2b,c depicts the 290 Ti₃C₂T_X thickness-dependent SERS spectra of MB at a 291 concentration of 1.0×10^{-5} M taken with 532 and 633 nm 292 lasers, respectively. The SERS intensity was monitored with 293 the in-plane stretching mode of the C-C ring of MB peaking 294 at 1626 cm⁻¹ on bare silicon. The observation shows that the 295 SERS intensity increases as the thickness of Ti₃C₂T_x 296 nanosheets increases for all thicknesses studied. Such a 297 monotonical increase of EF for a large variation of thickness 298 is unique for $Ti_3C_2T_X$ and different from the published 299 reports 17,29,30 on other 2D materials. Since dry MXene 300 nanosheets are much more stable in air than in water, and 301 the AFM and Raman measurements were conducted in air, the 302 oxidation of the MXene sheets should have a minimal effect on 303 the observed Raman intensities.³⁴ A clearer picture of the 304 Ti₃C₂T_x thickness-dependent SERS properties can be realized 305 by analyzing Raman EF instead of Raman signal intensity. 306 Hence, we have calculated absolute EF based on the in-plane 307 stretching mode of the C-C ring of MB occurring at 1626 308 cm⁻¹ for each of the thicknesses considered by using the 309 formula; EF = $(I_{SERS}/C_{SERS})/(I_{dense}/C_{dense})$, where I_{SERS} is the 310 Raman intensity of the chosen peak with a concentration of 311 C_{SERS} and I_{dense} is the intensity of the same vibrational mode of 312 MB on the SERS inactive substrate, silicon with a high 313 concentration, $C_{\text{dense}} = 1 \text{ M}.$

Figure 3a shows the monotonic increase of Raman EF for 315 MB with increasing $Ti_3C_2T_X$ sheet thickness when probed with 316 a 532 nm laser. The Raman EF of $Ti_3C_2T_X$ for MB increases 317 from 2.2×10^3 to 3.7×10^4 with increasing sheet thickness

from 5 to 120 nm. It is evident that the increase of EF with $_{318}$ sheet thickness is not linear, but it curves downward gradually $_{319}$ as the thickness increases. However, the relationship between $_{320}$ the $_{1}$ /EF and $_{1}$ / $_{d}$ (Figure 3b) is linear, where $_{d}$ is the sheet $_{321}$ thickness, and the data points have been fitted with a straight $_{322}$ line. The resulting equation for a straight line is

$$1/EF = (21.57/d) + 0.07$$
 (1) ₃₂₄

which has a slope of 21.57 and a *Y*-intercept value of 0.07. This 325 equation can be rearranged as 326

$$EF = d/(21.57 + 0.07d) (2)_{327}$$

which expresses a direct relationship between EF and d. Hence, 328 as shown in Figure 3c, the experimental EF vs d data points 329 have been fitted and extrapolated on either side by using eq 2. 330 From Figure 3c, the extrapolated value of EF for MB on a 331 single layer Ti₃C₂T_X nanosheet corresponding to a thickness of 332 \sim 1.5 nm^{22,35} is 6.9 \times 10². Furthermore, the extrapolated curve 333 in Figure 3c for thicker nanosheets shows an interesting 334 feature. The curve keeps increasing above the experimentally 335 measured thickness (120 nm) but abruptly slows down its EF 336 progression at ~800 nm. As shown by the curve, the Raman 337 EF reaches 90% of the highest value at a 2 μ m-thick Ti₃C₂T_X. 338 In order to test the validity of the results, we prepared film 339 substrates of two different thicknesses, \sim 1.5 and \sim 20 μ m (see 340 Figure S3), using delaminated Ti₃C₂T_X nanosheets on a silicon 341 substrate by the drop-casting method, and tested their SERS 342 activity. For a 532 laser, the Raman EF of these Ti₃C₂T_X film 343 substrates for MB was found to be $\sim 1.3 \times 10^5$, which is 344 consistent with the maximum EF (1.4×10^5) predicted by the 345 fitting in eq 2.

Figure 3d is the measured Raman EF for MB as a function of 347 Ti $_3$ C $_2$ T $_X$ sheet thickness with 633 nm laser excitation. 348 Compared to EF values obtained with 532 nm, the values 349 are larger with the 633 nm laser, but the trend of the EF vs d 350 curve is similar. As shown in Figure 3e, 1 /EF and 1 / 2 data 351

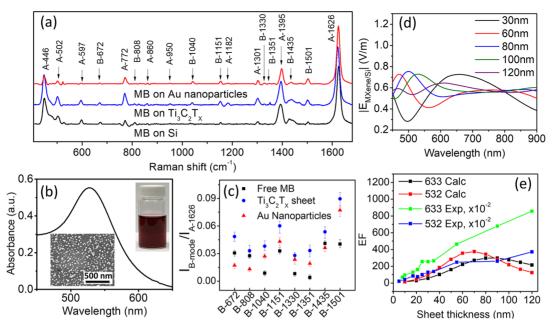


Figure 4. (a) Normalized and baseline corrected Raman spectra of free MB molecules, 3.0×10^{-4} M MB on a 120 nm thick $\mathrm{Ti_3}C_2\mathrm{T_X}$ sheet, and 5.0 \times 10^{-5} M MB on Au nanoparticles. "A" and "B" represent totally symmetric and nontotally symmetric modes, respectively. (b) UV–visible absorption spectrum of Au nanoparticles in aqueous solution. Insets are the SEM image of Au nanoparticles dispersed on Si and a photograph of the Au colloidal solution. (c) Ratio of the intensities of "B" mode to "A" mode ($1626~\mathrm{cm}^{-1}$) for free MB molecules, MB on a $\mathrm{Ti_3}C_2\mathrm{T_X}$ sheet, and MB on Au nanoparticles. Calculated (d) electric field norm vs wavelengths for $\mathrm{Ti_3}C_2\mathrm{T_X}$ nanosheets of various thicknesses and (e) Raman EF contributed by EM vs $\mathrm{Ti_3}C_2\mathrm{T_X}$ thickness for 532 and 633 nm lasers. Experimental EFs for 532 and 633 nm lasers have been divided by 10^2 and presented on the same graph for comparison.

352 points were fitted well with a straight line having a slope of 353 8.56 and a Y-intercept of 0.02. The resulting equation is

$$_{354}$$
 1/EF = $(8.56/d) + 0.02$ (3)

355 Equation 3 was further rewritten as

$$EF = d/(8.56 + 0.02d) \tag{4}$$

Figure 3f presents the fitting of the EF vs d data with eq 4 358 and the extrapolation for both thinner and thicker nanosheets. The extrapolated Raman EF of a single layer Ti₃C₂T_X nanosheet for MB is 1.3×10^3 , a 2-fold increase compared to that obtained with 532 nm laser. This value is an order of magnitude higher than the observed EF of thymine, 5×10^2 on single layer graphene, 40 but 2 orders of magnitude higher than 364 that of CuPc on semiconducting and insulating van der Waals 365 2D materials, including WTe₂, WSe₂, SnS₂, SnSe₂, TiSe₂, TiS₃, 366 TiS₂, TiTe₂, ⁴¹ GaSe, ³⁰ and h-BN. ¹⁷ Such a higher Raman EF of 367 2D Ti₃C₂T_X makes it a superior and prospective SERS 368 substrate for practical applications. Moreover, this study 369 clarifies that a high EF ranging from 105 to 1012 achieved 370 with MXene film substrates in previous work 8,9,24-28 is not 371 because of a single sheet activity but a collective activity of all 372 the nanosheets in the films. Furthermore, the curve in Figure 3f 373 shows that an abrupt downfall of the EF progression occurs at 374 a $Ti_3C_2T_X$ sheet thickness of 1.0 μm and the EF reaches 90% 375 of the maximum value at a thickness of \sim 2.0 μ m. The Raman 376 EF of Ti₃C₂T_X for MB predicted by eq 4 almost becomes 377 constant at 5.3×10^5 for a thickness beyond 8.0 μ m. This value 378 concurs with the EF, 5.0×10^5 measured on the film substrates 379 under the excitation with a 633 nm laser (see Figure S3). A 380 point worth noting here is that the large difference of Raman 381 EF between 532 and 633 nm laser excitations is not associated 382 with the laser penetration into the SERS substrates. The UV-

visible absorption spectrum of $Ti_3C_2T_X$ nanosheets presented 383 in Figure S4 shows that there is not a significant difference in 384 the absorption at 532 and 633 nm. Hence, the Raman EF on 385 $Ti_3C_2T_X$ nanosheets measured with 532 and 633 nm lasers is 386 not influenced significantly by the laser penetration. The small 387 contribution from a slightly higher penetration of the 633 nm 388 laser should fall within the measurement errors. Hence, with an 389 appropriately chosen excitation laser wavelength, i.e., 633 nm, 390 a 3- to 4-fold increase of the Raman EF of the $Ti_3C_2T_X$ 391 nanosheets for MB was obtained.

Before explaining the $Ti_3C_2T_X$ thickness- and excitation 393 wavelength-dependent Raman signal enhancement, we explore 394 deeper and confirm the underlying mechanism for the 395 observed Raman signal enhancement on Ti₃C₂T_X nanosheets. 396 Figure 4a shows normalized and baseline-corrected Raman 397 f4 spectra of free MB molecules, MB (3.0 \times 10⁻⁴ M) on Ti₃C₂T_X 398 nanosheets and MB (5.0×10^{-5} M) on Au nanoparticles. Au 399 nanoparticles were used for obtaining Raman spectra of MB 400 enhanced by EM. 1,5 A UV-visible spectrum showing a 401 plasmonic absorption peak at ~530 nm is shown in Figure 402 4b. Insets are the SEM image of the Au nanoparticles of 403 average size (~40 nm) sitting on a silicon surface and a 404 photograph of the Au colloidal solution. The MB molecule 405 belongs to the C2 point group possessing 108 normal 406 vibrational modes, out of which 58 are totally symmetric 407 ("A" mode) and 58 are nontotally symmetric ("B" mode) 408 vibrations. 42 Some prominent peaks have been labeled "A" and 409 "B" with corresponding wavenumbers. Figure 4c shows a 410 comparison of the ratio of "B" mode to "A" mode (1626 cm⁻¹) 411 intensities $(I_{\text{B-mode}}/I_{\text{A-1626}})$ for free MB molecules, MB on the 412 Ti₃C₂T_X sheet, and MB on Au nanoparticles. The following 413 observations have been made: $I_{\text{B-mode}}/I_{\text{A-1626}}$ for MB on 414 $Ti_3C_2T_X$ nanosheets > I_{B-mode}/I_{A-1626} for MB on Au nano- 415 particles > $I_{\text{B-mode}}/I_{\text{A-1626}}$ for free MB molecules, except for a 416

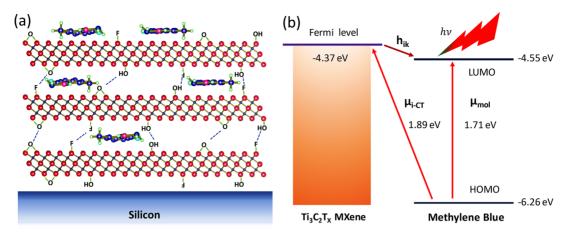


Figure 5. (a) Schematic of a multilayer $Ti_3C_2T_X$ nanosheet soaked in MB solution showing the adsorption and intercalation of MB molecules into the interlayer spacing. (b) Energy level diagram showing a charge-transfer process between MB molecules and $Ti_3C_2T_X$.

417 few of the low frequency "B" modes for MB on Au 418 nanoparticles, which are lower than that for free MB molecules. It is evident from the observations that both totally ("A") 420 and nontotally ("B") symmetric modes are excited on Ti₃C₂T_x 421 nanosheets, but "B" modes are enhanced more than "A" modes 422 relative to those of free MB molecules. According to the 423 unified theory for SERS proposed by Lombardi and Birke that 424 is applicable to all types of enhancements, 43 SERS spectra 425 displaying intensity enhancement in both totally and nontotally 426 symmetric normal modes must involve charge-transfer 427 processes. Since an observation of the intensity enhancement 428 of "B" modes is the prima facie evidence for charge-transfer 429 contributions, 43,44 the Raman signal enhancement on $\mathrm{Ti_3C_2T_X}$ 430 nanosheets is confirmed to be due to the chemical mechanism 431 via the charge-transfer process. We also observed that both 432 totally ("A") and nontotally ("B") symmetric modes are 433 excited on Au nanoparticles on silicon. However, a lower 434 $I_{\mathrm{B-mode}}/I_{\mathrm{A-1626}}$ ratio for MB on Au nanoparticles than that for 435 MB on the Ti₃C₂T_X nanosheet indicates a smaller contribution 436 of the charge-transfer process on the intensity enhancement by 437 Au nanoparticles. As the Raman signal enhancement from 438 noble metal nanostructures, Au nanoparticles in our case, is 439 due to the enhancement of the local electric field via the SPR^{1,5} 440 and only totally symmetric mode intensities are expected to be 441 enhanced under SPR, 44,45 we conclude that the dominant 442 contribution to the Raman intensity enhancement on Au 443 nanoparticles is mainly due to EM and partly due to CM. The 444 intensities of a few of the "B" mode vibrations at the lower 445 frequency region are found to be smaller compared to that of 446 free MB, which may be due to some charge-transfer processes 447 that could have occurred during Raman signal collection on 448 free MB and/or the complexity of the processes involving both 449 SPR and charge-transfer transitions on Au nanoparticles. 450 Overall, our observations corroborate that the Raman 451 enhancement by Ti₃C₂T_x nanosheets is mainly due to CM via a charge-transfer process. The charge-transfer process occurring between MB molecules and Ti₃C₂T_X nanosheets can 454 also be supported by the observed red-shift of the in-plane 455 stretching mode of the C-C ring of MB from 1626 cm⁻ 456 free molecules to 1620 cm^{-1} on $\text{Ti}_3\text{C}_2\text{T}_X$ nanosheets.

In order to explore the possibility of electromagnetic 458 contribution to the SERS activity of ${\rm Ti}_3 {\rm C}_2 {\rm T}_{\rm X}$, a numerical 459 simulation of the electromagnetic enhancement was per-460 formed. A numerical calculation of the electromagnetic fields at

the MXene surface was carried out using the transfer matrix 461 model. We considered plane waves with amplitude 1 incident 462 on the MXene layer sitting on top of the Si substrate. The Si 463 substrate was considered to be infinitely thick to avoid the back 464 reflection. MXene layers have been treated as uniform metallic 465 slabs with permittivity and refractive index values taken from 466 reports. 46,47 Figure 4d shows the calculated amplitude of the 467 electric field $|E_{\text{MXene/Si}}|$ over a broad range of wavelengths for 468 various thicknesses of Ti₃C₂T_X nanosheets on top of the Si 469 substrate, where $|E_{\mathrm{MXene/Si}}|$ is normalized by the incident wave. 470 Due to the planar structure of MXene layers and their large 471 optical loss in the visible range, the electric fields at the surfaces 472 are not strongly enhanced. Since Raman intensity is 473 approximately proportional to the fourth power of the electric 474 field amplitude, a Raman EF contributed by the EM can be 475 written as 48,49

$$EF \cong |E_{\text{MXene/Si}}/E_{\text{Si}}|^4 \tag{5}$$

where $|E_{
m MXene/Si}|$ is the electric field amplitude on the MXene/ 478 Si surface as calculated in Figure 4d and $|E_{Si}|$ is the electric field 479 amplitude for bare silicon. Since the above equation is free of 480 the molecule concentration term, it predicts the same value of 481 Raman EF contributed by EM for any concentration of the 482 probe molecules adsorbed on the MXene, and this is 483 reasonable as long as the concentrations of the probe 484 molecules are low and the same on MXene and Si. Using eq 485 5, the electromagnetic contribution of the Raman EF as a 486 function of Ti₃C₂T_x thickness under excitation at 532 and 633 487 nm wavelengths has been calculated as shown in Figure 4e, 488 which is much smaller than that of the experimentally obtained 489 Raman EFs. So, the experimental values of EFs have been 490 divided by 10² and shown together with the calculated data for 491 comparison. The trend of calculated EF vs Ti₃C₂T_X sheet 492 thickness shows that neither the absolute Raman enhancement 493 factor nor the dependence of EF on Ti₃C₂T_X sheet thickness 494 can be explained by the EM. About 100 times larger EFs 495 stemming from CM compared to that of EM confirms that CM 496 is the dominant mechanism responsible for Raman enhance- 497 ment on $Ti_3C_2T_X$ nanosheets.

The monotonic increase of the Raman EF of $Ti_3C_2T_X$ 499 nanosheets on MB with increasing sheet thickness (Figure 500 3a,d) can be explained on the basis of the adsorption and 501 intercalation of MB molecules into $Ti_3C_2T_X$ nanosheets and 502 the collective effect of charge-transfer interactions of the 503

504 individual layers of the multilayer Ti₃C₂T_X sheet and MB 505 molecules. 50,51 Figure 5a shows the schematic of a multilayer 506 Ti₃C₂T_X sheet with intercalated MB molecules. The 507 delamination of Ti₃C₂T_X sheets with TBAOH expands the 508 (002) interplanar spacing, D, which can be calculated using the 509 Bragg's equation, $2D\sin\theta = n\lambda$, where θ , n, and λ are the 510 glancing angle of the incident X-ray analyzer beam, a positive 511 integer, and the wavelength of the beam, respectively. For 2θ = 512 6.0° in Figure 1i, the calculated interlayer spacing is big, 14.5 513 Å, which indicates that some tetrabutylammonium ions could 514 have been trapped in between the layers⁵¹ and open the 515 spacing to allow MB molecules to diffuse. The diffusion of 516 cationic MB into Ti₃C₂T_X nanosheets is facilitated by the 517 negatively charged surfaces of the latter. 52 Furthermore, 518 although 2D MXene layers are bound to each other by a 519 weak hydrogen bond or van der Waals force between T_x 520 (-OH, -F, =O) of two adjacent layers,³⁵ the interacting 521 surfaces are not evenly coupled due to various nanoparticle 522 formations on the inner surfaces, which are trapped between 523 the adjacent layers. For example, Al₂O₃ and AlF₃ nanoparticles 524 (see EDS maps, Figure 1d-h) are almost always formed during 525 the Al etching process, 9,27,35,53,54 and TiO₂ nanoparticles are 526 spontaneously formed on the inside and outside of the 527 Ti₃C₂T_X surfaces under moisture rich conditions. 9,51,55 Such 528 nanoparticles increase the interlayer spacing and facilitate the 529 diffusion of the MB molecules. Hence, MB molecules interact 530 directly with all the individual Ti₃C₂T_X layers to manifest the 531 monotonic increase of the Raman enhancement with the sheet 532 thickness. The nonlinear EF vs sheet thickness curve as shown 533 in Figure 3 could be attributed to the increased absorption of 534 the incident and scattered laser photons by Ti₃C₂T_X as the 535 thickness increases. The rapid fall of the progressing EF around 536 $0.8-1.0~\mu m$ of sheet thickness and a small increase in EF 537 beyond this point indicate that a very small portion of the 538 scattered laser photons contribute to the SERS signal beyond 539 that thickness due to absorption. Nevertheless, variation on the 540 electronic properties of Ti₃C₂T_X nanosheets with a thickness 541 such as work function and electron density of states could have 542 some impact on the observed thickness-dependent SERS 543 properties for MB molecules.

The charge-transfer mechanism of Ti₃C₂T_X nanosheets for 545 MB Raman enhancement and the effect of excitation 546 wavelengths can be explained with an energy diagram for the 547 MB-Ti₃C₂T_X system as shown in Figure 5b. We note that the 548 values of the energy levels for MB and Ti₃C₂T_X have been 549 presented with respect to vacuum level (not shown here) 550 considered at 0 eV. There are mainly three transitions involved in this process. The first is the molecular transition (μ_{mol}) from 552 the highest occupied molecular orbital (HOMO) (6.26 eV) to 553 the lowest unoccupied molecular orbital (LUMO) (4.55 eV) 554 of the MB molecule. 56 An excitation of the MB molecules with 555 laser energy matching the HOMO-LUMO energy gap, 1.71 556 eV (~725 nm), causes a molecular resonance strongly 557 enhancing the Raman signal. 44,57 The second is a charge-558 transfer transition $(\mu_{i\text{-CT}})$ from the molecular HOMO to the 559 Fermi level $(-4.37 \text{ eV})^{58}$ of $\text{Ti}_3\text{C}_2\text{T}_X$, which is known as B 560 term in the Herzberg–Teller picture. The third is the charge-561 transfer transition ($\mu_{k\text{-CT}}$ or h_{ik}) from the Fermi level of 562 Ti₃C₂T_X to the molecular LUMO. As illustrated in the energy 563 diagram in Figure 5b, this is a transition associated with a small 564 energy in the $Ti_3C_2T_X$ -MB system and hence cannot cause a 565 resonance with wavelengths in the visible region. Rather, this 566 term, $\mu_{k\text{-CT}}$ or h_{ik} enables the CT process from the molecular

HUMO to $Ti_3C_2T_X$, and it is called the Herzberg–Teller s67 coupling constant. Since the Fermi level of $Ti_3C_2T_X$ lies above s68 the molecular LUMO (Figure 5b), the MB- $Ti_3C_2T_X$ system s69 may not require photons to induce charge transfer from s70 $Ti_3C_2T_X$ to molecular LUMO. Instead, it happens sponta- s71 neously and enables the CT process from molecular HOMO s72 to $Ti_3C_2T_X$.

In order to better understand the MB Raman signal 574 enhancement and the effect of excitation wavelength, a unified 575 theory for SERS proposed by Lombardi and Birke⁴³ can be 576 helpful, according to which, a dominant B term contributing to 577 the Raman signal in SERS can be written as

$$R_{iFk} = [\mu_{i-\text{CT}} \mu_{\text{mol}} h_{ik} \langle i | Q_k | k \rangle] / [((\varepsilon_1(\omega) + 2\varepsilon_0)^2 + \varepsilon_2^2)$$

$$(\omega_{i-\text{CT}}^2 - \omega^2 + \gamma_{i-\text{CT}}^2) (\omega_{\text{mol}}^2 - \omega^2 + \gamma_{\text{mol}}^2)]$$
(6) 579

where $\langle i|Q_k|k\rangle$ is the vibration selection rule that allows for 580 both nontotally and totally symmetric modes; ε_1 and ε_2 are the 581 real and imaginary parts of the permittivity of the SERS 582 substrate (Ti₃C₂T_X in this work); ε_0 is the real part of the 583 permittivity of the surrounding medium; ω is the laser 584 frequency; $\omega_{i-\mathrm{CT}}$ is the charge-transfer frequency; ω_{mol} is the 585 frequency of molecular transition; $\gamma_{i-\text{CT}}$ and γ_{mol} are the 586 damping factors associated with the respective processes. Since 587 SERS intensity, $I_{SERS} \propto |R_{iFk}|^2$, it is apparent from eq 5 that the 588 Raman signal is resonantly enhanced if the excitation 589 frequency coincides with the plasmon frequency, i.e., $\varepsilon_1(\omega)$ 590 = $-2\varepsilon_0$, or the charge-transfer frequency, i.e., $\omega_{i-CT} = \omega$, or the 591 molecular transition frequency, i.e., $\omega_{\rm mol} = \omega$, or two of them, 592 or all. As discussed above, the contribution of the EM on the 593 Raman enhancement is negligible for Ti₃C₂T_X nanosheets. 594 However, for the Ti₃C₂T_X-MB system, a near resonance occurs 595 for each of the charge transfer and molecular transitions under 596 633 nm laser excitation as manifested in Figure 3d,f. When the 597 MB-Ti₃C₂T_x system is excited with 633 nm (1.96 eV), this 598 laser energy is big enough to excite the electrons from the 599 HOMO to the Fermi level of $Ti_3C_2T_x$ (6.26 – 4.37 = 1.89 eV) 600 as well as from molecular HOMO to LUMO (6.26 - 4.55 = 601)1.71 eV). Since the 633 nm laser energy is close to both 602 energies associated with charge transfer and molecular 603 transitions, a coupled resonance, $E_{\text{laser}} \sim E_i \sim E_{\text{mol}}$, happens 604 causing a much larger Raman signal enhancement compared to 605 532 nm laser excitation (see Figure 3). Although 532 nm (2.33 606 eV) laser energy is close to $\omega_{i-CT} = (1.89 \text{ eV})$, it is very far 607 away from $E_{\rm mol}$ (1.71 eV), which results in a nonresonant 608 molecular transition causing a marginal fall of SERS intensity 609 (see Figure 3). Since the energy of the 473 nm laser is 610 excessively higher and that of 785 nm is insufficiently lower for 611 the resonant or near resonant charge transfer and molecular 612 transitions, the corresponding SERS enhancements are very 613 small relative to those of 532 and 633 nm laser excitations (see 614 Figure S5). This result suggests that Raman enhancement 615 governed by the charge-transfer mechanism is strongly 616 dependent on the suitable choice of excitation wavelength as 617 well as a uniquely designed set of analytes and SERS substrates 618 based on their energy band structures.

CONCLUSIONS

We studied the SERS activity of $Ti_3C_2T_X$ nanosheets as a 621 function of sheet thickness using MB as a probe molecule. The 622 results showed that the Raman enhancement of the $Ti_3C_2T_X$ 623 nanosheets was strongly thickness dependent in thinner sheet 624 regimes, below 0.8 μ m for 532 nm and 1.0 μ m for 633 nm laser 625

620

685

686

687

704

712

626 excitations. Above these thicknesses, the Raman EF pro-627 gression dramatically fell and became almost constant above 628 2.0 μ m, which suggests that a 2.0 μ m-thick SERS substrate 629 made with 2D Ti₃C₂T_X film is good enough for optimized 630 performance. The thickness-dependent SERS behavior of 631 Ti₃C₂T_X multilayer nanosheets can be attributed to the 632 collective SERS enhancement of all the individual layers in 633 the nanosheets. The experimental and numerical simulation 634 results confirmed that the charge-transfer mechanism was 635 dominantly responsible for the SERS activity on Ti₃C₂T_x. A 636 higher Raman enhancement was demonstrated with the laser 637 excitation of 633 nm compared to 532 nm, which could be 638 attributed to a coupled resonance of charge transfer and 639 molecular transitions in the MB-Ti₃C₂T_X system. Taken 640 together, these findings are useful in understanding the 641 Raman enhancement mechanism associated with the SERS 642 activity of dozens of other MXene family members and 643 optimizing the cost and performance of these Mxene-based 644 SERS substrates for practical applications.

ASSOCIATED CONTENT

646 S Supporting Information

647 The Supporting Information is available free of charge at 648 https://pubs.acs.org/doi/10.1021/acs.jpcc.0c05143.

> Thickness and SERS measurements on a nanosheet; a schematic of the thickness and SERS measurements on a Ti₃C₂T_x nanosheet; deconvolution of XPS fine peaks for Ti 2p, O 1s, and C 1s; table for XPS peak fitting results of the delaminated Ti₃C₂T_X powder; SEM images of the Ti₃C₂T_X films of different thicknesses and SERS spectra of MB collected on the films; UV-visible absorption spectrum of Ti₃C₂T_X nanosheets; Raman spectra of MB collected on a Ti₃C₂T_X nanosheet with four different laser lines (PDF)

AUTHOR INFORMATION 659

Corresponding Author 660

Fei Yan - Department of Chemistry and Biochemistry, North 661 Carolina Central University, Durham, North Carolina 27707, 662 *United States;* • orcid.org/0000-0001-5983-143X; Email: fyan@nccu.edu 664

665 Authors

670

671

675

676

677

678

679

680

649

650

652

653

654

655

656

657

658

Tej B. Limbu – Department of Chemistry and Biochemistry, 666 North Carolina Central University, Durham, North Carolina 667 27707, United States; o orcid.org/0000-0001-5771-4248 668 669

Basant Chitara - Department of Chemistry and Biochemistry, North Carolina Central University, Durham, North Carolina 27707, United States

Martha Y. Garcia Cervantes - Department of Chemistry and 672 Biochemistry, North Carolina Central University, Durham, 673 North Carolina 27707, United States 674

Yu Zhou – Department of Electrical Engineering, The Pennsylvania State University, Uinversity Park, Pennsylvania 16802, United States

Shengxi Huang - Department of Electrical Engineering, The Pennsylvania State University, Uinversity Park, Pennsylvania 16802, United States; o orcid.org/0000-0002-3618-9074

Yongan Tang – Department of Mathematics and Physics, North 681 Carolina Central University, Durham, North Carolina 27707, 682 United States 683

684 Complete contact information is available at:

https://pubs.acs.org/10.1021/acs.jpcc.0c05143

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

pubs.acs.org/JPCC

The authors are grateful for the financial support of this project 689 by the U.S. National Science Foundation (Awards #1831133 690 and #1523617). This work was performed in part at the 691 Analytical Instrumentation Facility (AIF) and Nanofabrication 692 facility (NNF) at North Carolina State University, which is 693 supported by the State of North Carolina and the National 694 Science Foundation (award number ECCS-1542015). The AIF 695 and NNF are members of the North Carolina Research 696 Triangle Nanotechnology Network (RTNN), a site in the 697 National Nanotechnology Coordinated Infrastructure 698 (NNCI). The authors thank Prof. Thomas E. Mallouk, Mr. 699 Ritesh Uppuluri, and Ms. Alyssa S. Rosas from Pennsylvania 700 State University, PA, for many insightful discussions and for 701 providing the facilities to conduct some of the early 702 experiments.

ABBREVIATIONS

2D, two-dimensional; TBAOH, tetrabutylammonium hydrox- 705 ide; MB, methylene blue; CuPc, copper(II) phthalocyanine; 706 SERS, surface-enhanced Raman scattering; AFM, atomic force 707 microscopy; SEM, scanning electron microscopy; EDS, energy 708 dispersive spectroscopy; TEM, transmission electron micros- 709 copy; XPS, X-ray photoelectron spectroscopy; XRD, X-ray 710 diffractometry; CT, charge transfer 711

REFERENCES

ı

- (1) Liyanage, T.; Rael, A.; Shaffer, S.; Zaidi, S.; Goodpaster, J. V.; 713 Sardar, R. Fabrication of a self-assembled and flexible SERS 714 nanosensor for explosive detection at parts-per-quadrillion levels 715 from fingerprints. Analyst 2018, 143, 2012-2022. 716
- (2) Tripp, A. R.; Dluhy, A. R.; Zhao, Y. Novel nanostructures for 717 SERS biosensing. Nano Today 2008, 3, 31-37.
- (3) Naqvi, K. T.; Bharati, S. S. M.; Srivastava, K. A.; Kulkarni, M. M.; 719 Siddiqui, M. A.; Rao, V. S.; Dwivedi, K. P. Silver nanoparticles 720 decorated reduced graphene oxide (rGO) SERS sensor for multiple 721 analytes. Appl. Surf. Sci. 2019, 478, 887-895.
- (4) Zavaleta, L. C.; Smith, R. S.; Walton, I.; Doering, W.; Davis, G.; 723 Shojaei, B.; Natan, J. M.; Gambhir, S. S. Multiplexed imaging of 724 surface enhanced Raman scattering nanotags in living mice using 725 noninvasive Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2009, 726 106, 13511-13516.
- (5) Hartman, T.; Wondergem, S. C.; Kumar, N.; van den Berg, A.; 728 Weckhuysen, M. B. Surface-and tip-enhanced Raman spectroscopy in 729 catalysis. J. Phys. Chem. Lett. 2016, 7, 1570-1584.
- (6) Tao, L.; Chen, K.; Chen, Z.; Cong, C.; Qiu, C.; Chen, J.; Wang, 731 X.; Chen, H.; Yu, T.; Xie, W.; et al. 1T' transition metal telluride 732 atomic layers for plasmon-free SERS at femtomolar levels. J. Am. 733 Chem. Soc. 2018, 140, 8696-8704.
- (7) Su, S.; Zhang, C.; Yuwen, L.; Chao, J.; Zuo, X.; Liu, X.; Song, C.; 735 Fan, C.; Wang, L. Creating SERS hot spots on MoS₂ nanosheets with 736 in situ grown gold nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 737 18735-18741.
- (8) Soundiraraju, B.; George, B. K. Two-dimensional titanium 739 nitride (Ti₂N) MXene: synthesis, characterization, and potential 740 application as surface-enhanced Raman scattering substrate. ACS 741 Nano 2017, 11, 8892-8900.
- (9) Limbu, T. B.; Chitara, B.; Orlando, J. D.; Garcia Cervantes, M. 743 Y.; Kumari, S.; Li, Q.; Tang, Y.; Yan, F. Green synthesis of reduced 744 Ti₃C₂T_x MXene nanosheets with enhanced conductivity, oxidation 745 stability, and SERS activity. J. Mater. Chem. C 2020, 8, 4722-4731. 746

- 747 (10) Satheeshkumar, E.; Makaryan, T.; Melikyan, A.; Minassian, H.; 748 Gogotsi, Y.; Yoshimura, M. One-step solution processing of Ag, Au 749 and Pd@ MXene hybrids for SERS. Sci. Rep. 2016, 6, 32049.
- 750 (11) Xie, H.; Li, P.; Shao, J.; Huang, H.; Chen, Y.; Jiang, Z.; Chu, P. 751 K.; Yu, X. F. Electrostatic Self-Assembly of ${\rm Ti}_3{\rm C}_2{\rm T}_{\rm X}$ MXene and gold 752 nanorods as an efficient surface-enhanced Raman scattering platform 753 for reliable and high-sensitivity determination of organic pollutants. 754 ACS Sensors 2019, 4, 2303–2310.
- 755 (12) Tan, Y.; Ma, L.; Gao, Z.; Chen, M.; Chen, F. Two-dimensional 756 heterostructure as a platform for surface-enhanced Raman scattering. 757 *Nano Lett.* **2017**, *17*, 2621–2626.
- 758 (13) Xia, M. A review on applications of two-dimensional materials 759 in surface-enhanced Raman spectroscopy. *Int. J. Spectrosc.* **2018**, 2018, 760 1—9.
- 761 (14) Qian, X. M.; Nie, S. M. Single-molecule and single-nanoparticle 762 SERS: from fundamental mechanisms to biomedical applications. 763 *Chem. Soc. Rev.* **2008**, 37, 912–920.
- 764 (15) Xu, W.; Ling, X.; Xiao, J.; Dresselhaus, M. S.; Kong, J.; Xu, H.; 765 Liu, Z.; Zhang, J. Surface enhanced Raman spectroscopy on a flat 766 graphene surface. *Proc. Natl. Acad. Sci. U. S. A.* **2012**, *109*, 9281–9286. 767 (16) Campion, A.; Kambhampati, P. Surface-enhanced Raman
- 768 scattering. Chem. Soc. Rev. 1998, 27, 241–250.
 769 (17) Ling, X.; Fang, W.; Lee, Y. H.; Araujo, P. T.; Zhang, X.;
 770 Rodriguez-Nieva, J. F.; Lin, Y.; Zhang, J.; Kong, J.; Dresselhaus, M. S.
 771 Raman enhancement effect on two-dimensional layered materials:
 772 graphene, h-BN and MoS₂. Nano Lett. 2014, 14, 3033–3040.
- 773 (18) Feng, S.; dos Santos, M. C.; Carvalho, B. R.; Lv, R.; Li, Q.; 774 Fujisawa, K.; Elías, A. L.; Lei, Y.; Perea-López, N.; Endo, M.; et al. 775 Ultrasensitive molecular sensor using N-doped graphene through 776 enhanced Raman scattering. *Science Advances* **2016**, 2, e1600322.
- 777 (19) Yin, J.; Zhan, F.; Jiao, T.; Deng, H.; Zou, G.; Bai, Z.; Zhang, Q.; 778 Peng, Q. Highly efficient catalytic performances of nitro compounds 779 via hierarchical PdNPs-loaded MXene/polymer nanocomposites 780 synthesized through electrospinning strategy for wastewater treat-781 ment. *Chin. Chem. Lett.* **2020**, *31*, 992–995.
- 782 (20) Chen, K.; Yan, X.; Li, J.; Jiao, T.; Cai, C.; Zou, G.; Wang, R.; 783 Wang, M.; Zhang, L.; Peng, Q. Preparation of self-assembled 784 composite films constructed by chemically-modified MXene and 785 dyes with surface-enhanced Raman scattering characterization. 786 Nanomaterials 2019, 9, 284.
- 787 (21) Yoon, Y.; Le, T. A.; Tiwari, A. P.; Kim, I.; Barsoum, M. W.; Lee, 788 H. Low temperature solution synthesis of reduced two dimensional 789 $\mathrm{Ti}_3\mathrm{C}_2$ MXenes with paramagnetic behaviour. *Nanoscale* **2018**, *10*, 790 22429–22438.
- 791 (22) Mariano, M.; Mashtalir, O.; Antonio, F. Q.; Ryu, W. H.; Deng, 792 B.; Xia, F.; Gogotsi, Y.; Taylor, A. D. Solution-processed titanium 793 carbide MXene films examined as highly transparent conductors. 794 *Nanoscale* **2016**, *8*, 16371–16378.
- 795 (23) Hantanasirisakul, K.; Alhabeb, M.; Lipatov, A.; Maleski, K.; 796 Anasori, B.; Salles, P.; Ieosakulrat, C.; Pakawatpanurut, P.; Sinitskii, 797 A.; May, S. J.; et al. Effects of Synthesis and Processing on 798 Optoelectronic Properties of Titanium Carbonitride MXene. *Chem.* 799 *Mater.* **2019**, *31*, 2941–2951.
- 800 (24) Sarycheva, A.; Makaryan, T.; Maleski, K.; Satheeshkumar, E.; 801 Melikyan, A.; Minassian, H.; Yoshimura, M.; Gogotsi, Y. Two-802 dimensional titanium carbide (MXene) as surface-enhanced Raman 803 scattering substrate. *J. Phys. Chem. C* 2017, 121, 19983–19988.
- 804 (25) Elumalai, S.; Lombardi, J. R.; Yoshimura, M. Surface-enhanced 805 resonance Raman scattering of dye molecule adsorbed on two-806 dimensional titanium carbide $Ti_3C_2T_X$ (MXene) film. *Mater. Adv.* 807 **2020**, *1*, 146–152.
- 808 (26) Ye, Y.; Yi, W.; Liu, W.; Zhou, Y.; Bai, H.; Li, J.; Xi, G. 809 Remarkable surface-enhanced Raman scattering of highly crystalline 810 monolayer Ti₃C₂ nanosheets. *Science China Materials* **2020**, 63, 794–811 805.
- 812 (27) Xie, X.; Zhu, Y.; Li, F.; Zhou, X.; Xue, T. Preparation and 813 characterization of $Ti_3C_2T_X$ with SERS properties. *Sci. China: Technol.* 814 *Sci.* **2019**, 62, 1202–1209.

- (28) Liu, R.; Jiang, L.; Lu, C.; Yu, Z.; Li, F.; Jing, X.; Xu, R.; Zhou, 815 W.; Jin, S. Large-scale two-dimensional titanium carbide MXene as 816 SERS-active substrate for reliable and sensitive detection of organic 817 pollutants. *Spectrochim. Acta, Part A* **2020**, 236, 118336.
- (29) Ling, X.; Wu, J.; Xie, L.; Zhang, J. Graphene-thickness- 819 dependent graphene-enhanced Raman scattering. *J. Phys. Chem. C* 820 **2013**, *117*, 2369–2376.
- (30) Quan, L.; Song, Y.; Lin, Y.; Zhang, G.; Dai, Y.; Wu, Y.; Jin, K.; 822 Ding, H.; Pan, N.; Luo, Y.; et al. The Raman enhancement effect on a 823 thin GaSe flake and its thickness dependence. *J. Mater. Chem. C* 2015, 824 3, 11129–11134.
- (31) Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. 826 Preparation and characterization of Au colloid monolayers. *Anal.* 827 *Chem.* 1995, 67, 735–743.
- (32) Holm, A.; Wrasman, C. J.; Kao, K. C.; Riscoe, A. R.; Cargnello, 829 M.; Frank, C. W. Langmuir—Blodgett Deposition of Graphene Oxide- 830 Identifying Marangoni Flow as a Process that Fundamentally Limits 831 Deposition Control. *Langmuir* **2018**, *34*, 9683–9691. 832
- (33) He, Y.; Wang, R.; Jiao, T.; Yan, X.; Wang, M.; Zhang, L.; Bai, 833 Z.; Zhang, Q.; Peng, Q. Facile preparation of self-assembled layered 834 double hydroxide-based composite dye films as new chemical gas 835 sensors. ACS Sustainable Chem. Eng. 2019, 7, 10888–10899.
- (34) Habib, T.; Zhao, X.; Shah, S. A.; Chen, Y.; Sun, W.; An, H.; 837 Lutkenhaus, J. L.; Radovic, M.; Green, M. J. Oxidation stability of 838 $Ti_3C_2T_x$ MXene nanosheets in solvents and composite films. *npj* 2D 839 *Materials and Applications* **2019**, *3*, 1–6.
- (35) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; 841 Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional 842 nanocrystals produced by exfoliation of Ti₃AlC₂. *Adv. Mater.* **2011**, 843 23, 4248–4253.
- (36) Presser, V.; Naguib, M.; Chaput, L.; Togo, A.; Hug, G.; 845 Barsoum, M. W. First-order Raman scattering of the MAX phases: 846 Ti_2AlN , $Ti_2AlC_{0.5}N_{0.5}$, Ti_2AlC , ($Ti_{0.5}V_{0.5}$)₂AlC, V_2AlC , Ti_3AlC_2 , and 847 Ti_3GeC_2 . J. Raman Spectrosc. **2012**, 43, 168–172.
- (37) Presser, V.; Naguib, M.; Chaput, L.; Togo, A.; Hug, G.; 849 Barsoum, M. W. Erratum: First-order Raman scattering of the MAX 850 phases: Ti₂AlN, Ti₂AlC_{0.5}N_{0.5}, Ti₂AlC, (Ti _{0.5}V_{0.5})₂AlC, V₂AlC, 851 Ti₃AlC₂, and Ti₃GeC₂. *J. Raman Spectrosc.* **2013**, 44, 1060–1060. 852
- (38) Frank, O.; Zukalova, M.; Laskova, B.; Kürti, J.; Koltai, J.; Kavan, 853 L. Raman spectra of titanium dioxide (anatase, rutile) with identified 854 oxygen isotopes (16, 17, 18). *Phys. Chem. Chem. Phys.* **2012**, *14*, 855 14567–14572.
- (39) Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of 857 structure and surface chemistry of $Ti_3C_2T_X$ MXene. *Chem. Mater.* 858 **2020**, 32, 3480–3488.
- (40) Fesenko, O.; Dovbeshko, G.; Dementjev, A.; Karpicz, R.; 860 Kaplas, T.; Svirko, Y. Graphene-enhanced Raman spectroscopy of 861 thymine adsorbed on single-layer graphene. *Nanoscale Res. Lett.* **2015**, 862 10, 163.
- (41) Kitadai, H.; Wang, X.; Mao, N.; Huang, S.; Ling, X. Enhanced 864 Raman Scattering on Nine 2D van der Waals Materials. *J. Phys. Chem.* 865 Lett. **2019**, 10, 3043–3050.
- (42) Šubr, M.; Procházka, M. Polarization-and angular-resolved 867 optical response of molecules on anisotropic plasmonic nanostruc- 868 tures. *Nanomaterials* **2018**, *8*, 418.
- (43) Lombardi, J. R.; Birke, R. L. A unified view of surface-enhanced 870 Raman scattering. Acc. Chem. Res. 2009, 42, 734–742.
- (44) Lombardi, J. R.; Birke, R. L. Theory of surface-enhanced 872 Raman scattering in semiconductors. J. Phys. Chem. C 2014, 118, 873 11120–11130.
- (45) Canamares, M. V.; Chenal, C.; Birke, R. L.; Lombardi, J. R. 875 DFT, SERS, and single-molecule SERS of crystal violet. *J. Phys. Chem.* 876 C 2008, 112, 20295–20300.
- (46) Chaudhuri, K.; Alhabeb, M.; Wang, Z.; Shalaev, V. M.; Gogotsi, 878 Y.; Boltasseva, A. Highly broadband absorber using plasmonic 879 titanium carbide (MXene). ACS Photonics 2018, 5, 1115–1122.
- (47) Berdiyorov, G. R. Optical properties of functionalized $Ti_3C_2T_2$ 881 (T= F, O, OH) MXene: First-principles calculations. *AIP Adv.* **2016**, 882 6, 055105.

- 884 (48) García-Vidal, F. J.; Pendry, J. B. Collective theory for surface 885 enhanced Raman scattering. *Phys. Rev. Lett.* **1996**, *77*, 1163.
- 886 (49) Xu, J.; Kvasnička, P.; Idso, M.; Jordan, R. W.; Gong, H.; 887 Homola, J.; Yu, Q. Understanding the effects of dielectric medium, 888 substrate, and depth on electric fields and SERS of quasi-3D 889 plasmonic nanostructures. *Opt. Express* **2011**, *19*, 20493–20505.
- 890 (50) Zheng, W.; Zhang, P.; Tian, W.; Qin, X.; Zhang, Y.; Sun, Z. 891 Alkali treated ${\rm Ti}_3{\rm C}_2{\rm T}_{\rm X}$ MXenes and their dye adsorption perform-892 ance. *Mater. Chem. Phys.* **2018**, 206, 270–276.
- 893 (51) Mashtalir, O.; Cook, K. M.; Mochalin, V. N.; Crowe, M.; 894 Barsoum, M. W.; Gogotsi, Y. Dye adsorption and decomposition on 895 two-dimensional titanium carbide in aqueous media. *J. Mater. Chem. A* 896 **2014**, *2*, 14334–14338.
- 897 (52) Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; 898 Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; 899 Gogotsi, Y. Cation intercalation and high volumetric capacitance of 900 two-dimensional titanium carbide. *Science* **2013**, 341, 1502–1505.
- 901 (53) Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; 902 Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-903 dimensional titanium carbide (${\rm Ti_3C_2T_X}$ MXene). *Chem. Mater.* **2017**, 904 29, 7633–7644.
- 905 (54) Scheibe, B.; Kupka, V.; Peplińska, B.; Jarek, M.; Tadyszak, K. 906 The influence of oxygen concentration during max phases (Ti_3ALC_2) 907 preparation on the α -Al2O3 microparticles content and specific 908 surface area of multilayered mxenes ($Ti_3C_2T_X$). *Materials* **2019**, *12*, 909 353.
- 910 (55) Zhang, C. J.; Pinilla, S.; McEvoy, N.; Cullen, C. P.; Anasori, B.; 911 Long, E.; Park, S. H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D.; 912 et al. Oxidation stability of colloidal two-dimensional titanium 913 carbides (MXenes). *Chem. Mater.* **2017**, *29*, 4848–4856.
- 914 (56) Shen, J. S.; Yu, T.; Xie, J. W.; Jiang, Y. B. Photoluminescence of 915 CdTe nanocrystals modulated by methylene blue and DNA. A label-916 free luminescent signaling nanohybrid platform. *Phys. Chem. Chem.* 917 *Phys.* **2009**, *11*, 5062–5069.
- 918 (57) Kim, J.; Jang, Y.; Kim, N. J.; Kim, H.; Yi, G. C.; Shin, Y.; Kim, 919 M. H.; Yoon, S. Study of chemical enhancement mechanism in 920 nonplasmonic surface enhanced Raman spectroscopy (SERS). *Front.* 921 *Chem.* **2019**, *7*, 582.
- 922 (58) Kang, Z.; Ma, Y.; Tan, X.; Zhu, M.; Zheng, Z.; Liu, N.; Li, L.; 923 Zou, Z.; Jiang, X.; Zhai, T.; et al. MXene—Silicon Van Der Waals 924 Heterostructures for high-speed self-driven photodetectors. *Advanced* 925 *Electronic Materials* **2017**, *3*, 1700165.