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Abstract

The integration of variable and intermittent renewable energy generation into the power system
is a grand challenge to our efforts to achieve a sustainable future. Flexible demand is one solution
to this challenge, where the demand can be controlled to follow energy supply, rather than the
conventional way of controlling energy supply to follow demand. Recent research has shown that
electric building climate control systems like heat pumps can provide this demand flexibility by
effectively storing energy as heat in the thermal mass of the building. While some forms of heat
pump demand flexibility have been implemented in the form of peak pricing and utility demand
response programs, controlling heat pumps to provide ancillary services like frequency regulation,
load following, and reserve have yet to be widely implemented. In this paper, we review the recent
advances and remaining challenges in controlling heat pumps to provide these grid services. This
analysis includes heat pump and building modeling, control methods both for isolated heat pumps
and heat pumps in aggregate, and the potential implications this concept has on the power system.

Keywords:

1. Introduction

The US electrical grid has experienced a rise in renewable energy generation capacity in recent
years, rising by more than 50% in the past ten years [1]. In addition, some states are beginning
to adopt aggressive clean energy goals with high percentages of wind and solar energy. This large
and rapid shift in electricity generation sources poses difficult new problems for the electrical grid.
Conventional grid operation relies on the practice that generators can be reliably controlled to
match electrical supply and demand, while ensuring grid stability. However, with the diminishing
percentage of electrical capacity provided by thermal generators and the increasing percentage of
variable generation sources like wind and solar, the grid becomes much more difficult to predict
and control. Therefore, to maintain a reliable electrical grid in high renewable energy scenarios, the
grid requires a significant addition of supporting technology such as energy storage and demand
management [2].

A potential source of demand management is through controlling heat pumps. Heat pumps
are an efficient, electric source of building heating and cooling. Instead of converting electrical
energy directly to heat, e.g., an electric resistance heater, heat pumps use a compressor-driven
vapor-compression cycle to move heat from a low-temperature source to a high-temperature sink,
which can provide both heating and cooling through the use of a reversing valve. A heat pump’s
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main efficiency metric, the coefficient of performance (COP), is defined as the ratio of the amount
of heat moved to the amount of electrical input. The COP is inversely related to the difference
between the indoor and outdoor temperatures, and therefore heat pumps perform poorly in ex-
treme environments, particularly cold climates. Despite this, recent advancements in heat pump
technology have significantly increased the COPs at both extremely high and low temperatures
[3, 4], expanding heat pump technical feasibility to new geographical regions. However, in many
regions of the U.S., it is still not economically feasible to replace a natural gas heating system with
a heat pump, and given the current electrical generation mix, displacing natural gas heating with
a heat pump could actually increase greenhouse gas (GHG) emissions [5]. Nevertheless, heat pump
adoption is the cornerstone of many aggressive GHG emission reduction policies, such as New York
City’s 80x50 plan [6]. Rapid and widespread adoption of heat pumps in areas like this is likely to
create significant new operational challenges for the electrical grid, and therefore these heat pumps
must be correctly managed and integrated into an increasingly renewable grid.

As long as indoor thermal comfort is maintained, heat pumps have inherent operational flexibil-
ity. This flexibility has already been harnessed by utilities in the form of thermostat-based demand
response programs. These programs generally consist of utilities turning off heat pumps during
extreme peak load hours, either through setpoint modification or direct load control. In addition,
the use of thermal energy storage has grown in popularity particularly in Europe, and allows for
load shifting to accommodate high levels of renewable energy [7]. However, new research shows the
potential for heat pumps to provide more complex grid services by operating in ancillary service
markets. Ancillary services, which are often provided by controllable thermal generators, are es-
sential for power system stability and maintain the instantaneous balance of electricity supply and
demand on the grid. Providing these services often involves following a specific power trajectory
sent by the system operator requiring response on the order of seconds to minutes. However, con-
trolling heat pumps to provide ancillary services can require installation of a significant amount of
additional hardware. For example, building temperature, heat pump power consumption, external
disturbances, and grid signals must all be collected and processed in real time. Much of this data
can now be collected and transmitted using Internet of Things (IoT) devices like smart thermostats
and electricity meters. Smart thermostats have seen a rapid rise in adoption [8], and advanced
metering infrastructure (AMI) smart meters have now been installed for 47% of US customers as of
2016 [9]. Harnessing the potential of these devices is a key component in widescale implementation
of heat pump ancillary services.

These three driving factors — renewable energy variability, heat pump integration, and smart grid
implementation — have sparked many recent studies into the capability of providing ancillary services
from heat pumps. Heat pumps have been shown experimentally to have the physical capability
of providing ancillary services without significant occupant discomfort [10-13]. Simulations have
shown that aggregating together hundreds or thousands of variable speed or single stage heat pumps
significantly increases their ability to provide ancillary services. However, despite many studies
showing the capability and potential of heat pumps to provide ancillary services, to the best of our
knowledge there have been no experimental results for large scale heat pump aggregation.

While a detailed review of the role of heat pumps in a smart grid was given in [14], this study
reviews the various methods for modeling and controlling heat pumps specifically for ancillary
services. Section 2 outlines the various ancillary services that heat pumps can provide. Section
3 describes the various methods for modeling and controlling heat pumps both locally and in
aggregate. Section 4 shows how heat pumps participate in ancillary service markets. Section 5
analyzes potential performance, capacity, and economics. Section 6 concludes the paper and gives
opportunities for future work.
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2. Ancillary Services

The reliability of the electrical grid hinges on the ability of grid operators to match electricity
generation and consumption on a variety of timescales and under many contingencies. Grid opera-
tors control this balance through several types of ancillary services, which are broadly defined based
on their time scale, shown in Tab. 1. In deregulated markets, grid operators procure these services
through ancillary service markets. In contrast to energy markets, where generators are only paid
for the energy they produce, ancillary service markets are primarily capacity markets, where a grid
operator also pays for the capacity of a generator to alter its production. A technical review of
ancillary services is given in [15], while [16] gives a review of various U.S. ancillary service market
structures. While ancillary services are often provided by generators, they can also be provided
through demand response. Demand response is the process of controlling demand to respond to
grid signals. Ref. [17] describes the role of demand response in ancillary service markets and the
effects of market policies on demand response participation. The following section will introduce
the particular ancillary services that can be provided by heat pumps.

Heat pumps can provide ancillary services in a similar way to other energy storage devices
like electrochemical batteries or pumped hydroelectric storage. Heat pumps can store energy by
injecting or removing heat from the building’s thermal mass. For example, in summer, a heat
pump can increase its power consumption and charge its storage by removing heat and cooling the
building to its lower thermal comfort limit. By doing so, the heat pump now has the flexibility
to reduce its future power consumption and allow the indoor temperature to drift up to its upper
thermal comfort limit. This increase or reduction in heat pump power consumption results in a
net removal or injection of power onto the grid, achieving a similar result to a generator lowering
or increasing its power output, respectively. The building then acts as a virtual battery, where
the indoor temperature relative to the upper and lower thermal comfort limits acts as a state of
charge, and the building’s thermal mass acts as a measure of the energy storage capacity [18]. These
unique attributes introduce several key control considerations that differentiate heat pumps from
generators in providing ancillary services:

1. Controlling Strategy: When a generator is required to reduce generation, the heat pump
should increase load and vice versa.

2. Controlling Limits: Heat pumps must not violate indoor temperature constraints and
therefore cannot operate above or below their setpoint for an extended period of time.

3. Capacity: Heat pumps are much smaller than generators and therefore must be aggregated
together to satisfy the 100 kW to 1 MW minimum requirement to participate in ancillary
service markets® [17].

Depending on the service, these differences can have both beneficial and detrimental effects
on heat pumps’ ability to provide ancillary services. The following sections describe the potential
services heat pumps can provide and how their operation differs from a conventional generator.

2.1. Frequency Regulation

A stable grid frequency is ensured by an instantaneous balance between electrical supply and
demand. The frequency will drop if demand exceeds supply and will rise if supply exceeds demand.
If system frequency drifts more than 1-2 Hz from normal levels (60 Hz in the U.S.), equipment can be
severely damaged and generators can trip, causing cascading failures [19]. Because of this, frequency

'PJM is currently the only US operator that allows aggregation for frequency regulation participants.
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Table 1: Summary of ancillary services that can be potentially provided using heat pumps

Service Time Scale Details
Frequency Regulation Seconds Power must track a regulation signal sent every 2-4 seconds
Load Following Minutes to Hours Used to balance load on longer time scale than frequency regulation,

Can be in response to a grid signal or real-time energy prices.

Reserve Minutes to Hours Load must curtail within 10 minutes in response to dispatch signal.
Used for contingencies.

regulation requires response on the order of seconds. Generators providing frequency regulation
must be equipped with telemetry and control technology to follow an Automatic Generator Control
(AGC) signal from the grid operator, which is usually sent every 2-4 seconds. Demand-side frequency
regulation providers can also follow this AGC signal by reducing load when it calls for an increase
in generation.

Frequency regulation is the highest priced ancillary service and is operated primarily as a ca-
pacity market. A service provider must bid a certain capacity for regulation often in the day-ahead
market and if accepted, must follow the power signal sent by the system operator. Depending
on the system operator, the regulation market either has separate markets for regulation-up and
regulation-down, or requires symmetric regulation capacity (equal up and down regulation capac-
ity). Currently, California ISO (CAISO) and Electric Reliability Council of Texas (ERCOT) are the
only US system operators that operate separate up and down regulation markets. For generators,
these two methods are equivalent [15]. However, for energy storage and load control, significant
differences in revenue can occur based on the market type.

Another challenge for demand response and energy storage systems is that the frequency regu-
lation signal is not necessarily zero-mean. For heat pumps providing frequency regulation, a signal
bias can cause the heat pump to run consistently below or above its baseline consumption, poten-
tially violating comfort constraints. To resolve this, some system operators have introduced fast
regulation signals that are designed to be zero-mean [20]. For example, Pennsylvania, Jersey, Mary-
land Regional Transmission Organization (PJM) has filtered its signal into two, called RegA and
RegD, which are shown in Fig. 1. The RegA signal has a slower time constant and was designed
to accommodate steam generators with relatively low ramping capability. RegD consists of higher
frequency fluctuations and often converges to zero-mean within 15 minutes [21]. For this reason,
many studies on the technical capability of providing frequency regulation with heat pumps follow
the RegD signal [12, 13, 22, 23].

In addition, Many US system operators have implemented a pay-for-performance pricing struc-
ture in response to FERC Order 755 [24]. In addition to paying for capacity, this pricing structure
also pays for mileage and performance. Mileage, or movement, is calculated as the sum of the ab-
solute values of the regulation control signal movements and given in AMW /MW. Given capacity
Ppax and power outputs {P;...P,}, the mileage for n time steps is calculated as [20],

M =" |P = Pi1|/Paax- (1)
=1

Performance is given as a score between 0 and 1 and represents how well the participant follows
a regulation signal. A frequency regulator must achieve a minimum performance score to qualify,
and depending on the market structure, higher performance scores can lead to higher payments.
PJM’s performance score is often used as a benchmark for frequency regulation control algorithms
and is calculated using a combination of three subscores involving delay, correlation, and precision
[25]. More information on frequency regulation policies for specific ISOs can be found in [16].

4
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Figure 1: PJM self test signals for RegA (left) and RegD (right). RegA has low frequency fluctations and a non-zero
mean making it more suitable for steam generators. RegD contains higher frequency fluctuations and is close to
zero-mean, making it more suitable for energy storage and demand response systems [26]

2.2. Load Following

Load following consists of generators following the slower, more predictable fluctuations in elec-
tricity demand on a time scale of several minutes to several hours. This is often procured through
economic dispatch, where generators are dispatched according to their generation cost [27]. How-
ever, as wind and solar supply an increasing percentage of electricity on the grid, this service could
become much more important, particularly for ramping in the mornings and evenings [28]. This
could be a potential service provided by heat pumps, either as a reserve capacity similar to CAISO’s
flexible ramping product [29] or through responsiveness to a real-time price disseminated by the
system operator. For example, when solar and wind energy are readily available, electricity prices
can drop significantly due to a surplus in supply, encouraging loads to operate during these times. In
grids with high solar penetration, such as in the California Independent System Operator (CAISO),
there is a growing frequency of negative wholesale electricity prices [30], where generators must pay
to produce electricity. This poses a unique opportunity for heat pumps to potentially be paid for
operation.

Since heat pumps operate in the retail electricity market, they often are charged a static elec-
tricity price, giving no incentive to shift operation toward times of high energy supply. Time-of-use
rates, which have predefined price tiers for peak and off-peak hours, have had some success in pro-
viding consumers indirect access to providing a load following service by shifting load away from
peak hours [31]. Connected thermostat demand response programs such as Austin Energy’s Power
Partner™ program [32] have also been widely deployed. These programs allow the utility to turn
off heat pumps for short periods of time in order to reduce peak load. However, these methods are
simplified and therefore do not capture the full potential of heat pumps to provide a load following
service.

A second challenge to providing this service is the relatively low frequency of a load following
signal. If the frequency of the load following signal is on the same order of the building’s thermal
response, comfort constraints can be violated [33]. This severely limits the capacity that heat
pumps can offer for load following compared to a higher frequency signal like frequency regulation.
However, this time constant has the added benefit of reducing the need for fast response controllers.

2.8. Reserve

Power systems are required to maintain a certain amount of reserve margin to ensure reliability
in case of contingencies. For example, if a large generator unexpectedly trips, the system might
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need to dispatch reserves. To provide this service, a heat pump or heat pump aggregation bids a
reserve capacity into the reserve capacity market. This contract requires the system to curtail its
full capacity offering for a certain amount of time determined by the reserve dispatch signal. After
the signal ends, the heat pump system can recover back to its baseline energy consumption.

The reserve market can be split into two main categories: spinning and non-spinning reserve.
While different system operators can sometimes have different definitions [16], spinning (or syn-
chronous) reserves primarily consist of online generators synchronized to the grid and capable of
dispatching to full capacity within 10 minutes. Non-spinning reserves must respond within 10-30
minutes but are not necessarily connected to the grid. Providing spinning reserve is preferred over
non-spinning reserves for two main reasons. First, heat pumps are already connected to the grid and
have high ramping capabilities relative to thermal generators. Second, spinning reserve is priced an
order of magnitude higher than non-spinning reserve. However, since reserve dispatch signals result
from contingencies, the frequency and duration can be quite unpredictable. From 2013-2018, PJM
dispatched spinning reserve anywhere from 0-8 times each month with a duration anywhere from
3-50 minutes [34]. For this reason, accounting for uncertainty is a vital component of providing
reserve.

3. Modeling and Control

Studies on the modeling and control of heat pumps for ancillary services cover a wide range of
scale and complexity. Frequency regulation requires a fast and accurate controller that can track a
signal on the order of seconds. Load following controllers can be slower and simpler, while reserve
controllers can be as simple as an on/off controller. However, it is important to note that for all
ancillary services, the underlying goal is to track a given ancillary service signal. For this reason,
many control schemes and methods of determining ancillary service capacity can work for several
types of services. The following sections discuss how heat pumps are modeled and controlled on
both local and aggregate levels.

3.1. Local modeling and control

On a local level, heat pumps and their buildings can be described by high-fidelity models and
directly controlled to follow an ancillary service signal. This often involves directly controlling the
fan speed or compressor speed in order to change the power consumption. Therefore, depending on
the type of system, different models and control methods must be used.

3.1.1. Modeling

There are several types of heat pumps and many different ways to model heat pump systems
[35] . For residential applications, local control for ancillary services focuses on variable speed heat
pumps (VSHP). VSHPs modulate the compressor speed in order to heat or cool the indoor coil. A
constant speed fan then blows air over the coil in order to distribute conditioned air throughout the
home. VSHP dynamics are governed by nonlinear mass, momentum, and energy balances of the
refrigerant flowing throughout the system [36]. However, these equations are unsuitable for control
and simpler models are required. Using experimental data from [36] for many types of VSHPs, Ref.
[37] developed simplified steady and dynamic VSHP models. For steady operation, the heat pump
power P can be described by,

P=kyw+ kT, + kT, + kofset- (2)

Here T¢ is the ambient air temperature at the condenser, T, is the ambient air temperature at the
evaporator, w is the compressor shaft speed, and k; are coefficients that can be fit to performance
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data for the specific heat pump using multiple linear regression. The dynamic VSHP model is
expressed as the transfer function,

Nne1s + Nwo
82 + dwls + dwO W(S>- (3)
The coefficients n,1, no, d1 and d,,o can similarly be fit from experimental data. Another simplified
model for the fast dynamics of a water-based VSHP is given in [38]. While this control model
assumes a steady-state response, the nonlinear transient dynamics is accounted for with an estimated
"lost thermal energy”. These simplified models allow for manipulation of compressor speed in
control algorithms.

Variable air volume (VAV) heating, ventilating, and air conditioning (HVAC) systems are most
often used in large commercial buildings. A heat pump sometimes called a chiller provides a central
cooling or heating coil used to condition air, which is then distributed through ducts via a variable
speed fan. Since the coil temperature remains relatively constant, the fan alters its speed to maintain
the setpoint. Therefore, this type of HVAC system uses the fan to provide ancillary services. Fan
power P(t) increases with the cube of fan speed wu(t) in the form [39]

AP(s) =

P(t) = i (u(t))”, (4)

where ¢, is a constant. While the rate of change of fan speed has inherent limitations from the
variable frequency drive to prevent equipment damage, only a .1 s time constant was observed
between controller input and power output in [40]. Because of this fast response time, VAV HVAC
systems are most often evaluated for frequency regulation. Other similar models for VAV HVAC
systems for ancillary services include [41, 42]. Water pumps in water-based heat pump systems can
operate in a similar way, [43], but are sometimes neglected due to their low energy consumption
relative to other components [44].

An accurate building thermal model is also important to determine the amount of thermal energy
that can be stored and to prevent violation of thermal comfort constraints. Modeling complexity
varies widely based on building type and size. Detailed reviews on various building modeling
techniques are given in [45, 46]. For large commercial buildings, building information modeling
(BIM) is often available to provide detailed white box models based on known material properties
and building dimensions. However, both accurate identification of each of these parameters and
using detailed models for control can be difficult and expensive to obtain. Ref. [47] gives a simple
method for converting a more complex EnergyPlus [48] model to a reduced-order model usable
in model predictive control. Meta-model based optimization is used in [49] to identify optimal
reduced-order model parameters for a building that are suitable for control.

For smaller buildings or buildings without BIM, grey box models are often used. The most
popular grey-box building modeling technique is through a thermal circuit, sometimes called equiv-
alent thermal parameters. These thermal circuits contain resistors, which represent resistance to
heat transfer, and capacitors, which represent heat storage capability. The values of each of these
components can be identified from either experimental or physical data [50]. Common circuits for
small buildings include either 1R1C (1 resistor and 1 capacitor) or 3R2C. In a 1R1C model, the
entire building is lumped into one thermal mass represented by the single capacitance. For a 3R2C,
however, the thermal masses of the indoor air and the building material are separate, giving a more
accurate prediction over longer time scales. Fig. 2 shows an example of a 3R2C model. For larger
buildings with many different zones, higher order models containing more capacitors and resistors
can also be used [51].

By adding thermal energy storage (TES) to a building, additional thermal capacitance is in-
troduced, significantly increasing the potential for providing ancillary services.The most common
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Figure 2: Example of a 3R2C thermal circuit building model. The subscript a represents indoor air temperature,
while m represents the building mass. ) gives represents the combined heat input from the heat pump and indoor
loads.

type of TES takes the form of water tanks, and has been shown to increase the power flexibility
for frequency regulation [52], as well as allow flexibility over longer time scales [53]. Other forms
of TES technology involve phase change material, either in a tank coupled with the heat pump,
or directly embedded in the building construction walls [54]. Since phase change material stays
at a relatively constant temperature during operation, additional modeling considerations must be
taken into account [55].

3.1.2. Control

Based on the heat pump system, various components can be controlled to alter the power
consumption. Feedback controllers are typically used for local control, but common difficulties in
implementation are determining optimal controller gains and accounting for time delays.

In [33], a commercial VAV HVAC system was experimentally shown to be capable of following
a frequency regulation signal through control of the fan. The signal was first filtered to exclude
low frequencies and high amplitude oscillations. Low frequencies that are of similar order to the
building’s thermal response can cause temperature constraint violations, while high amplitude os-
cillations can have harmful effects on the fan’s reliability, decreasing its useful life. By perturbing
the existing controller’s fan speed and airflow setpoints, this controller was able to achieve PJM
performance score of .83, exceeding PJM’s test performance requirement of .75. The fan speed for
a commercial VAV HVAC system was also controlled to provide frequency regulation in [10, 11]. In
this study, the authors use a novel switched controller to maximize speed while ensuring stability.
If the desired power output is within some error tolerance from the existing output, a standard
proportional-integral (PI) controller is used. Otherwise, a model-based feed-forward controller is
used. This controller resulted in much higher test performance scores between .94 and .98.

For a VSHP, the compressor consumes a majority of power and can be controlled to provide
ancillary services. However, due to manufacturer limitations, it is usually difficult to control the
compressor directly. In [12], the supply water temperature for an air-to-water VSHP was used to
control the power consumption using a PI controller with nonlinear signal processing to ensure
stability. While controlling supply water temperature setpoints was not as effective as simulations
involving direct compressor speed control, the controller was still able to achieve performance scores
around .8. In [22], the VSHP compressor was directly controlled using feedback controllers and
operated in a small-scale experimental microgrid, showing the feasibility of participation with other
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distributed energy resources.

3.2. Aggregate modeling and control

By aggregating together many heat pumps the combined capacity of ancillary services can
be greatly increased. However, in aggregate heat pump control, the detailed parameters of each
individual building and heat pump are difficult to obtain. Therefore, aggregate control studies
often contain high level control schemes using simplified heat pump and building models. The main
objective in aggregate control is determining which heat pumps to modulate in order to accurately
track an ancillary service signal while maintaining thermal comfort and reliability constraints. Note
that while these aggregation control studies assume that each heat pump serves a single building,
district heating and cooling systems can also provide ancillary services while serving an aggregation
of buildings. These systems are much larger and more complex, and a review of controlling district
heating and cooling systems for grid services is given in [56].

3.2.1. Modeling

Early work on controlling heat pump aggregations modeled single-stage heat pumps as thermo-
statically controlled loads (TCLs), which cycle on and off in order to maintain temperature within a
deadband. TCLs, which also include water heaters, space heaters, and refrigerators, have inherent
operational flexibility allowing the power to be modulated to track an ancillary service signal. The
general TCL model for cooling is [57]:

0, T, <1_

Mty = { 17 T;fn > T+ : (5)
my,, otherwise

Here, m; is a binary variable representing the state of the TCL, T_ and T, are the lower and upper

temperature limits, and 73, is the thermostat temperature. The thermostat temperature response

can then be modeled according to the individual building and heat pump model.

Due to the simplicity of this model, heat pumps are often modeled using constant COPs, pro-
viding a constant amount of heat regardless of external conditions Buildings containing these TCLs
were most often modeled using a 1R1C thermal circuit model. Ref. [58] presented an example of
the 1R1C model, which describes the internal temperature as

1
= —— (T
or T

Here, s;(t) € 0,1 is the on/off signal of the ith TCL. T}, C; and R; show the temperature, thermal
capacitance and resistance, respectively.

TCL aggregations are often modeled as a virtual battery, with both power and energy capacities.
The power capacity is the instantaneous flexibility that the TCLs can provide while the energy
capacity is related to the cumulative time that TCLs can operate above or below its baseline. Virtual
battery models for a TCL aggregation are given in [59-61]. In [61], a method of characterizing the
aggregate flexibility of a large collection of TCLs was given through a generalized battery model.
The models were separated into two: (1) individual models of TCLs to model temperature and
power consumption and (2) a generalized battery model that characterizes flexibility. The set of
acceptable perturbations of each TCL E*, is given by,

EF = {ek(t)

() ~T(t) - si)RP,), i=1,2,...Ny. (6)

(7)

0< PF+4eft) < Pt
PF + ¢*(t) maintains |6 (t) — 6F| < A* [
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Here, €*(t) is an acceptable perturbation such that the perturbation will not cause the power By to
exceed its maximum PF and that the temperature 0*(¢) maintains a distance A* from the setpoint
6%. The total flexibility U is then defined as the Minkowski sum,

U=> E- (8)

3.2.2. Control

The control of TCLs for ancillary services has been widely studied [57, 58, 61-71]. In [57] and
[58], a feedback controller was used to control a global thermostat setpoint that turns on or off a
certain number of TCLs based on statistical state predictions. This method is difficult in practice,
though, as it can rely on setpoint changes down to .0025 °C, which is far below the measurement
resolution for thermostats. In [61], a priority stack control method was used to directly control
TCL status. This method prioritized turning on or off the TCLs that were closest to automatically
turning on or off, respectively. Finally, [70] explored the stability of TCLs as a result of significant
perturbations during control for demand response.

However, the majority of these TCL controllers use simplified, simulated models that neglect
many important differences between heat pumps and other TCLs like electric heaters. For example,
to avoid damaging the compressor and reducing efficiency, heat pumps have minimum on and off
times, which can be the most financially and physically limiting factor for ancillary service provision
[72]. Moreover, heat pump COP can vary drastically, even among the same heat pump model [73].
Finally, there are many different types of heat pumps, including VSHPs, which do not follow the
standard TCL model. Because of these additional complexities, the use of heat pump aggregations
for grid services has not been commercially implemented in the same way that other TCLs like
water heaters have been implemented [74].

A solution to the minimum off time is given in [75], which adds an additional ”lock-out” state
between the on and off states. Variable speed heat pumps are used in [76] and [38] by dividing
a frequency regulation signal equally among each heat pump. A rule-based controller is used in
[72] to provide frequency regulation from an aggregate of ground-source heat pumps in conjunction
with thermal energy storage. Finally, [68] shows the effect that changes in ambient temperature
can have on a population of air conditioners functioning as TCLs.

For ancillary services that require fast response like frequency regulation, control and commu-
nication delays can become a serious issue. For aggregations, a reference signal must be received
from the system operator, processed to determine the corresponding control decision, and then the
control decision distributed to each heat pump. Moreover, for control systems that communicate
with the thermostat rather than the heat pump directly, uncertain time delays can accumulate
based on internal thermostat and heat pump control systems. Without delay compensation, track-
ing accuracy was found to be reduced by as much as 40% for a 20 second delay in [77]. However, a
Kalman filter-based state estimation technique was used in [78] to mitigate this effect and produce
no performance deterioration for delays up to 20 seconds.

While these heat pump aggregation studies are beginning to include more realistic constraints,
they still require some significant assumptions and there is little experimental validation. For
example, the transient power profile of heat pumps and heat pump reliability considerations are
relatively unexplored and are an avenue for further research.

4. Market Participation

While the previous sections describe control methods for providing ancillary services, the heat
pump must establish both a baseline and flexibility capacity to bid into either the day-ahead or
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real-time electricity markets [17]. A baseline is the future power trajectory that the heat pump plans
to follow for the length of the ancillary service contract. A capacity, sometimes called flexibility,
is the amount of power that the heat pump can go above or below its baseline without violating
constraints. This is an important difference between generators and heat pumps providing ancillary
services. A generator can operate indefinitely within its declared power capacity limits, and thus
can ignore the energy impact of the ancillary service signal, i.e. the generator can run at 10% above
it’s baseline for an indefinite amount of time if required. A heat pump cannot do this without
eventually violating temperature constraints. Therefore, the amount of capacity a heat pump can
offer for ancillary services is heavily dependent on the energy content of the ancillary service signal.

4.1. Baseline

In the context of ancillary services, a baseline is analogous to a generator setpoint and must be
determined ahead of time such that the contracted ancillary service capacity can be maintained.
This baseline definition is slightly different from a traditional demand response counterfactual base-
line, which uses historical data to estimate what the unmodified energy consumption would have
been to measure the amount of demand response provided. In contrast, an ancillary service baseline
can be decided by the ancillary service provider based on market and weather conditions to optimize
a user-defined objective. Model-predictive control (MPC) is among the most-widely used methods
to determine an ancillary service baseline. MPC is an iterative control scheme that optimizes a
model-based objective function over a given time horizon. The optimal control for the first time
step is then implemented, and the MPC reoptimizes with updated inputs. Possible optimization
objective functions could be to minimize maximize total profit, maximize thermal comfort, or a
combination of the two.

There is a large amount of research on determining optimal power trajectories for heat pump
systems [79]. However, it is important to note that the energy optimal power trajectory does
not always provide an adequate flexibility for providing ancillary services. In [80], a contract for
declaring a baseline and flexibility capacity for ancillary services in real-time is given. A robust
MPC determines a baseline and flexibility determination that minimizes the energy cost less the
ancillary service revenue. One key feature in this contract is that the building owner pays only for
its baseline energy consumption and not for the altered consumption based on an ancillary service
signal, hedging the utility and building owner from any non-zero mean ancillary service signal.

However, the uncertainty of disturbance predictions and the fidelity of the model can signifi-
cantly degrade the performance and must be carefully considered. Common prediction methods
for disturbances for heat pump control include numerical weather predictions, occupancy schedules
[81, 82], auto-regressive regression, and neural networks [83, 84]. The effect of model fidelity on
MPC performance was explored in [50]

4.2. Capacity Determination without uncertainty

As previously stated, the flexibility available at a given time step is heavily dependent on the
content of the ancillary service signal in previous time steps. One way to simplify this analysis is to
assume that the ancillary service signal is zero-mean over the time step, which allows for independent
time-wise optimization of flexibility capacity, i.e. each time step does not depend on the ancillary
service signal from the previous time step. Since this method does not consider any uncertainty of
the mean of the ancillary service signal, it is the most aggressive capacity determination method
and can potentially overestimate the actual capacity available. For fast frequency regulation signals
such as PJM’s RegD, this assumption can be valid since it is designed to be zero-mean over a 15
min period [21]. However, for slower frequency signals such as RegA, load following, and reserve,
this method can be unfeasible.
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The limitation of this assumption is often addressed by calculating the general flexibility char-
acteristics of a heat pump or building. Ref. [85] develops a flexibility index suitable for control
on both an individual and aggregate level. Thermal energy storage is added in [52] to increase the
flexibility of a heat pump. Finally, Ref. [86] determines the load reduction flexibility using behind
the meter electricity data. By developing battery-like models for flexibility, these types of studies
provide the basis for modeling heat pump flexibility for control.

4.3. Capacity Determination with Uncertainty

There are two primary methods of accounting for uncertainty during capacity determination:
robust and scenario-based. Robust determination is the most conservative approach. This approach
ensures that the flexibility offered by the heat pump can be met under the worst case ancillary
service signal or disturbances. This method is of particular importance in providing reserve, since
the heat pump must be able to reduce its full capacity offering for an unknown amount of time.
Robust distributed optimization is used in [87] for day-ahead and intra-day scheduling of flexibility
capacity for an aggregation of flexible loads. Ref. [76] uses robust MPC to determine flexibility
capacity for frequency regulation while considering uncertainty in both external disturbances and
the frequency regulation signal. Ref. [88] provides a robust control strategy for managing uncertain
communication time delays for an aggregation.

Another way of dealing with uncertainty is scenario-based optimization. In this method, the
capacity determination must not violate temperature constraints under a set of disturbance scenarios
that are developed based on historical conditions. By satisfying a certain number of these scenarios,
the controller can provide the flexibility it offers with a certain confidence level [89]. While this can
be computationally intensive, scenario-based optimization can provide a less conservative flexibility
capacity than robust optimization while still considering uncertainty. Ref. [90] gives a scenario-
based MPC for determining optimal energy consumption of a building, while [91] gives a scenario-
based method for determining the flexibility of a population of controllable loads. Research on
accounting for uncertainty for heat pumps in both local and aggregate control are relatively limited,
and this is an area for future work.

4.4. Hierarchical Control

Since MPC requires optimization of a sometimes complex objective function, it alone is not fast
enough to ensure response to fast ancillary service signals. Many studies use a hierarchical control
scheme to solve this problem [10, 38, 51, 87, 92-95]. This hierarchical control scheme combines the
strategies for local and aggregate control with prediction methods used for baseline and capacity
determination. For example, a three-tier hierarchical controller was used in [93] to control an
aggregation of single stage heat pumps consisting of: (1) a load aggregator that interacts with
the power system and ancillary service markets, (2) a central controller that prioritizes which heat
pumps to turn on or off, and (3) a local controller that considers local constraints. Fig. 3 shows a
common layout for hierarchical controllers.

Level 1 is sometimes referred to as a virtual power plant (VPP) and acts as the interface to
the grid. From a power system operator’s perspective, a VPP acts and is controlled similar to a
conventional power plant: It bids into day-ahead ancillary service markets and its aggregate power
responds to grid control signals. The VPP passes grid signals to the central controller, Level 2, for
real-time aggregate control. The central controller can take the form of various aggregate control
schemes outlined in Sec. 3.2.1. The control signal sent from the central controller to the local
controller, Level 3, can take the form of setpoint change or direct load control. The local controller
then responds to this control in accordance with local constraints and disturbances. Together, these
controls allow an aggregation of small, distributed heat pumps to provide ancillary services to the
grid as if it were a large scale energy storage resource.
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Level 1: The virtual power plant
schedules flexibility capacity to
bid into day-ahead ancillary
service markets.

Day Virtual Power Plant
Ahead

y - Level 2: The aggregate
- controller sends control signals
Aggregate Controller - to the local controllers such that
. the aggregate power follows the
F ~ reference signal from Level 1.

Real
Time

' v ' - Level 3: Local controllers
Local Local Local | respond to control signals from
Controller Controller | | Controller || Level 2 while considering
- equipment and thermal comfort
constraints.

Figure 3: Common control hierarchies to provide ancillary services from a system of aggregated heat pumps.

5. Performance, Capacity, and Economics

While heat pumps have the physical capability to provide ancillary services to the grid, whether
or not there is an adequate economic incentive to do so is still an open question. With the vast
amount of heat pumps already in operation, there is an enormous potential capacity available
for ancillary services. However the revenues from providing services do not always justify the
accompanying capital costs and potential efficiency losses. Therefore, a holistic view of costs and
performance comparison to other energy storage technologies must be considered to determine
whether providing ancillary services is attractive to both heat pump owners and grid operators.

5.1. Performance and Capacity

TCLs have been both experimentally and numerically shown to have potential capacity to
provide ancillary services [10, 11, 61, 96, 97]. Ref. [98] calculates that the ancillary service capacity
provided by residential, such as refrigerators, heat pumps and electric water heaters, can reach 10
- 40 GW and 8 -12 GWh in California, which can more than satisfy the energy storage mandate of
1325 MW to support their renewable portfolio. This estimated capacity was heavily dependent on
the climate zone: Some of the zones could only provide flexibility during either winter or summer,
while those in more balanced climates could provide a higher average capacity throughout the year.
While a large amount of capacity is estimated to be available, Ref. [99] concludes that given current
technology and regulatory frameworks, widespread utilization of this flexibility is insufficient for high
renewable energy portfolios.

However, using heat pumps as a form of energy storage is not necessarily 100% efficient. Per-
turbing the power consumption to follow an ancillary service signal can consume extra energy due
to excessive cycling or modulation. One key efficiency metric used to rate a variety of grid-scale en-
ergy storage devices is the round-trip efficiency (RTE). For conventional energy storage devices like
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batteries, RTE is defined as the ratio of energy released to energy stored during a charge/discharge
cycle. RTEs for common energy storage devices include redox flow batteries (65-85%), lithium-ion
batteries (85-95%), flywheels (93-95%), and pumped hydro storage (70-82%) [100]. For a heat pump
providing a symmetrical ancillary service request, the RTE can be defined similarly [96],

Eout

El '

Here, E,y is the energy reduction with respect to the baseline due to the ancillary service , while
E}, is the increase with respect to the baseline. In calculating RTE, the baseline is set to be the
counterfactual baseline, or the amount of power that the heat pump would have consumed without
providing the service. Therefore, for RTEs less than 1, there is additional energy consumption
associated with providing the service.

Several studies have experimentally tested the RTE performance of single heat pumps following
regulation service signals with very different results. In [96], an experimental study controlling a
VAV HVAC system to provide a fast, symmetrical service, similar to a charge/discharge cycle in a
battery, found that the extra energy consumption was significant. The RTE was only 46% for fan
power and 42% for the combined power of the chiller and fans. While this RTE seems low, analysis
of space conditioning data from [101] gave almost identical RTEs at around 46% [96]. Relatively low
RTEs were also found in [102], where experimentally controlled VAV HVAC systems showed RTEs
ranging from 34 to 81%. Both experimental studies relied on open-loop global temperature setpoint
control mechanisms, in contrast to the MPC approaches previously discussed. However, [10, 11]
found that the energy loss associated with following the much faster PJM frequency regulation,
RegD, signal was negligible.

The causes of inefficiency were explored through physics-based modeling in [103], which gave
RTESs of less than 100% when the power is increased then decreased, but greater than 100% when
decreased then increased. This effect can be explained by differences in efficiency due to indoor air
temperature variation. Furthermore, [104] found that when the HVAC system is repeatedly used,
the RTE converges to 100%. They attributed the low RTE values reported from experiments [96] to
the fact that the experiment ran only one cycle. Therefore, more experimental results are required
to accurate define the RTE for a heat pump.

In addition to RTE, there are efficiency losses associated with providing flexibility capacity. In
order to provide flexibility, the heat pump might need to deviate from the energy optimal control
schedule. The amount of energy increase compared to an energy optimal controller in [10, 11] was
68 % for the fan and 11% for the chiller. However, by including payments for providing ancillary
services, this controller provided the cost optimal solution despite increases in energy. Moreover,
[38] found that the ratio of reserve payment to electricity cost must be above a threshold in order
to incentivize deviating from the energy optimal control to provide flexibility for ancillary services.

This wide variety of results show that there is still no consensus on the total efficiency of a
heat pump providing ancillary services. They reveal that the 100% efficient assumption may not
be justified in control simulations, and flexibility capacity could be significantly overestimated. In
addition, the ancillary service efficiency of an aggregation of heat pumps, as well as variable-speed
and single-stage heat pumps, are relatively unstudied. Therefore, more experimental work is needed
to determine how potential efficiency losses affect the actual performance of heat pumps providing
ancillary services.

RTE =

5.2. Economical Potential

By receiving payments for providing ancillary services, heat pump owners can have additional
revenue streams, reducing the net present cost of heat pump installations. These revenue streams
are modest but not negligible. Tab. 2 presents a summary of potential revenues for a variety of
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heat pump types, locations, and markets. Revenue varies significantly depending upon type of
load, climate zone, and regional ancillary service prices . In [105], residential heat pumps provid-
ing frequency regulation in a TCL model were estimated to earn $1-52/unit/year for cooling and
$11-46/unit/year for heating under the pay-for-performance pricing structure. The wide range of
variation is primarily due to the difference in climate zone. For example, heat pumps in more
extreme climates like Bakersfield and Sacramento, CA, could earn significantly more than those in
mild climates like San Fransisco, CA.

Spinning reserve revenues are significantly lower due the much lower spinning reserve capacity
prices. Spinning reserve revenues were estimated to be less than $5/unit/year in [98], and therefore
is not attractive under current market policies. There are relatively few revenue studies specifically
for load following, but significant energy costs savings are possible by indirect participation though
dynamic energy pricing and thermostat-based utility demand response programs. For example,
electricity costs were reduced by up to 30% using a price-based controller in a real-time retail elec-
tricity market [106]. Utility demand response programs primarily used for reducing peak load also
give monetary incentives. The Smart AC™ program of PG&E (Pacific Gas and Electric Company)
provided one-time signup bonus of $50 to each participating unit [107]. The OnCall™ program of
Florida Power and Light Company provides a monthly credit on bill, totaling up to $83 annually
for each participating unit [108].

However, these revenues must be compared to both instrumentation costs and opportunity costs
for providing services. Basic telemetry devices are needed to connect the heat pump to the grid or
aggregator, including a real-time electricity meter and controllable thermostat. Ref. [105] estimated
this instrumentation could cost between $100-250. In addition, heat pumps could be incentivized to
consume more energy during times of high ancillary service prices in order to provide more service,
despite the possibility of high energy prices or less efficient operating conditions. A opportunity cost
model was given in [109] that provides a rational goal for optimizing energy consumption, benefit,
and ancillary service provision.

Given these revenue and cost results, providing ancillary services may not be attractive for many
heat pump owners. Policy changes or price increases could have a positive impact on adoption. For
example, CAISO doubled their regulation requirements in February 2016 in response to increasing
levels of intermittent renewable energy [110]. This roughly tripled the regulation price, and it has
continued to increase each year. Since previous studies referenced in this paper use now outdated
price data, future price trends should be taken into account when assessing economic feasibility.
Other policy changes that provide energy storage or demand response specific ancillary services such
as PJM’s RegD and the pay-for-performance market structure could also play a part in increasing
heat pump participation.

6. Conclusion

Heat pumps can be controlled to provide stability to the electrical grid in the form of ancillary
services. These services range from response on the order of seconds to hours, and heat pumps can
be paid for this provision. Local control of VSHPs and VAV HVAC systems has been experimentally
shown to track the fastest ancillary service signal, frequency regulation. Aggregations of heat pumps
have been numerically shown to be able to provide a variety of ancillary services. Heat pumps also
have some key advantages compared to other energy storage systems and generators providing
ancillary services, such as reduced costs, increased cycle life, and higher ramp rates.

While a large amount of research has proven the capability for heat pumps to provide ancillary
services, there are still significant challenges to large-scale implementation. Recommendations for
future research are as follows:
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Table 2: Revenue summary of ancillary service provision by heat pumps and other TCLs. Here, AC refers to a heat
pump providing air conditioning while HP refers to a heat pump in heating mode.

Reference Market Benefit Details
Ref[13] PJM-RegA and RegD Offsets 46 % of the electricity cost for  2-4.75 kW VSHP Power
RegA
Offsets 56 % of the electricity cost for
RegD
Ref[111] PJM-RegA and RegD Offsets 20%-48% of the electricity cost 44.0-kWyy, variable-speed rooftop unit
35.2-kWyy, split heat pump
Ref[105] CAISO- Regulation market  AC: $0.31-9.36 /kW /year AC with electrical capacity of 4-7.2 kW
HP: $2.04-8.31 /kW /year HP with electrical capacity of 4-7.2 kW
Water heater: $33.72 /kW /year Water heater with electrical capacity of
4-5 kW
Refrigerator: $36 /kW /year Refrigerator with electrical capacity of
0.1-0.5 kW
Ref[98] CAISO- Regulation market  AC: $0-5.71 /kW /year AC with electrical capacity of 4-7.2 kW
HP: $3.93-10 /kW /year HP with electrical capacity of 4-7.2 kW
Electrical heater: $5.33 /kW /year Electrical Water heater with electrical ca-
pacity of 4.5 kW
Refrigerator : $31.43 /kW /year Refrigerator with electrical capacity of
0.2-0.5 kW
Ref[72] Germany- Residential fre- Not financially viable Electrical storage system of 5 kWh

quency reserve
3.7 kW Heat pump
Water heat storage of 400 L

Ref[112] Netherlands- Frequency $26.56 /kW/year in ’always available’ Heat pump with electrical capacity of .5
containment reserve scenario kW
$115.44 /kW /year in 'always reliable’ sce-
nario

574 1. Experimental results are primarily on a local scale, controlling only a single heat pump rather
575 than an aggregation. To our knowledge, there are no experimental heat pump aggregation
576 studies. As a result, single stage heat pumps, which represent a majority of residential heat
577 pumps, have not been experimentally shown to be capable of providing ancillary services.

578 2. Dealing with uncertainty is vital for accurate forecasting of flexibility capacity and is relatively
579 unstudied. Stochastic optimization techniques like robust and scenario-based optimization
580 should also be considered when determining flexibility.

581 3. Aggregate control models, specifically for single stage heat pumps, are relatively simple and do
582 not capture the full dynamics of individual heat pumps and their buildings. Better parameter
583 identification methods and higher order models that are scalable to heat pump aggregations
584 could significantly improve flexibility estimation and ancillary service tracking.

585 4. Efficiency losses due to both ancillary service tracking and capacity scheduling are not com-
586 pletely understood. Gaps still remain between experimental and simulation results, and there-
587 fore round trip efficiency (RTE) is not well defined. A high RTE is an underlying assumption
588 in many control simulations, and therefore has broad implications.

580 5. Communication latency issues are a significant barrier to frequency regulation since the system
590 must respond on the order of seconds. Predictive methods or hardware retrofits could be a
501 potential solution.

592 6. Revenue estimates are still quite low and represent a barrier to implementation. Trends in
503 ancillary service prices should be considered, as well as new policy and incentive structures.
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