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Abstract

The integration of variable and intermittent renewable energy generation into the power system
is a grand challenge to our efforts to achieve a sustainable future. Flexible demand is one solution
to this challenge, where the demand can be controlled to follow energy supply, rather than the
conventional way of controlling energy supply to follow demand. Recent research has shown that
electric building climate control systems like heat pumps can provide this demand flexibility by
effectively storing energy as heat in the thermal mass of the building. While some forms of heat
pump demand flexibility have been implemented in the form of peak pricing and utility demand
response programs, controlling heat pumps to provide ancillary services like frequency regulation,
load following, and reserve have yet to be widely implemented. In this paper, we review the recent
advances and remaining challenges in controlling heat pumps to provide these grid services. This
analysis includes heat pump and building modeling, control methods both for isolated heat pumps
and heat pumps in aggregate, and the potential implications this concept has on the power system.
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1. Introduction1

The US electrical grid has experienced a rise in renewable energy generation capacity in recent2

years, rising by more than 50% in the past ten years [1]. In addition, some states are beginning3

to adopt aggressive clean energy goals with high percentages of wind and solar energy. This large4

and rapid shift in electricity generation sources poses difficult new problems for the electrical grid.5

Conventional grid operation relies on the practice that generators can be reliably controlled to6

match electrical supply and demand, while ensuring grid stability. However, with the diminishing7

percentage of electrical capacity provided by thermal generators and the increasing percentage of8

variable generation sources like wind and solar, the grid becomes much more difficult to predict9

and control. Therefore, to maintain a reliable electrical grid in high renewable energy scenarios, the10

grid requires a significant addition of supporting technology such as energy storage and demand11

management [2].12

A potential source of demand management is through controlling heat pumps. Heat pumps13

are an efficient, electric source of building heating and cooling. Instead of converting electrical14

energy directly to heat, e.g., an electric resistance heater, heat pumps use a compressor-driven15

vapor-compression cycle to move heat from a low-temperature source to a high-temperature sink,16

which can provide both heating and cooling through the use of a reversing valve. A heat pump’s17
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main efficiency metric, the coefficient of performance (COP), is defined as the ratio of the amount18

of heat moved to the amount of electrical input. The COP is inversely related to the difference19

between the indoor and outdoor temperatures, and therefore heat pumps perform poorly in ex-20

treme environments, particularly cold climates. Despite this, recent advancements in heat pump21

technology have significantly increased the COPs at both extremely high and low temperatures22

[3, 4], expanding heat pump technical feasibility to new geographical regions. However, in many23

regions of the U.S., it is still not economically feasible to replace a natural gas heating system with24

a heat pump, and given the current electrical generation mix, displacing natural gas heating with25

a heat pump could actually increase greenhouse gas (GHG) emissions [5]. Nevertheless, heat pump26

adoption is the cornerstone of many aggressive GHG emission reduction policies, such as New York27

City’s 80x50 plan [6]. Rapid and widespread adoption of heat pumps in areas like this is likely to28

create significant new operational challenges for the electrical grid, and therefore these heat pumps29

must be correctly managed and integrated into an increasingly renewable grid.30

As long as indoor thermal comfort is maintained, heat pumps have inherent operational flexibil-31

ity. This flexibility has already been harnessed by utilities in the form of thermostat-based demand32

response programs. These programs generally consist of utilities turning off heat pumps during33

extreme peak load hours, either through setpoint modification or direct load control. In addition,34

the use of thermal energy storage has grown in popularity particularly in Europe, and allows for35

load shifting to accommodate high levels of renewable energy [7]. However, new research shows the36

potential for heat pumps to provide more complex grid services by operating in ancillary service37

markets. Ancillary services, which are often provided by controllable thermal generators, are es-38

sential for power system stability and maintain the instantaneous balance of electricity supply and39

demand on the grid. Providing these services often involves following a specific power trajectory40

sent by the system operator requiring response on the order of seconds to minutes. However, con-41

trolling heat pumps to provide ancillary services can require installation of a significant amount of42

additional hardware. For example, building temperature, heat pump power consumption, external43

disturbances, and grid signals must all be collected and processed in real time. Much of this data44

can now be collected and transmitted using Internet of Things (IoT) devices like smart thermostats45

and electricity meters. Smart thermostats have seen a rapid rise in adoption [8], and advanced46

metering infrastructure (AMI) smart meters have now been installed for 47% of US customers as of47

2016 [9]. Harnessing the potential of these devices is a key component in widescale implementation48

of heat pump ancillary services.49

These three driving factors – renewable energy variability, heat pump integration, and smart grid50

implementation – have sparked many recent studies into the capability of providing ancillary services51

from heat pumps. Heat pumps have been shown experimentally to have the physical capability52

of providing ancillary services without significant occupant discomfort [10–13]. Simulations have53

shown that aggregating together hundreds or thousands of variable speed or single stage heat pumps54

significantly increases their ability to provide ancillary services. However, despite many studies55

showing the capability and potential of heat pumps to provide ancillary services, to the best of our56

knowledge there have been no experimental results for large scale heat pump aggregation.57

While a detailed review of the role of heat pumps in a smart grid was given in [14], this study58

reviews the various methods for modeling and controlling heat pumps specifically for ancillary59

services. Section 2 outlines the various ancillary services that heat pumps can provide. Section60

3 describes the various methods for modeling and controlling heat pumps both locally and in61

aggregate. Section 4 shows how heat pumps participate in ancillary service markets. Section 562

analyzes potential performance, capacity, and economics. Section 6 concludes the paper and gives63

opportunities for future work.64
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2. Ancillary Services65

The reliability of the electrical grid hinges on the ability of grid operators to match electricity66

generation and consumption on a variety of timescales and under many contingencies. Grid opera-67

tors control this balance through several types of ancillary services, which are broadly defined based68

on their time scale, shown in Tab. 1. In deregulated markets, grid operators procure these services69

through ancillary service markets. In contrast to energy markets, where generators are only paid70

for the energy they produce, ancillary service markets are primarily capacity markets, where a grid71

operator also pays for the capacity of a generator to alter its production. A technical review of72

ancillary services is given in [15], while [16] gives a review of various U.S. ancillary service market73

structures. While ancillary services are often provided by generators, they can also be provided74

through demand response. Demand response is the process of controlling demand to respond to75

grid signals. Ref. [17] describes the role of demand response in ancillary service markets and the76

effects of market policies on demand response participation. The following section will introduce77

the particular ancillary services that can be provided by heat pumps.78

Heat pumps can provide ancillary services in a similar way to other energy storage devices79

like electrochemical batteries or pumped hydroelectric storage. Heat pumps can store energy by80

injecting or removing heat from the building’s thermal mass. For example, in summer, a heat81

pump can increase its power consumption and charge its storage by removing heat and cooling the82

building to its lower thermal comfort limit. By doing so, the heat pump now has the flexibility83

to reduce its future power consumption and allow the indoor temperature to drift up to its upper84

thermal comfort limit. This increase or reduction in heat pump power consumption results in a85

net removal or injection of power onto the grid, achieving a similar result to a generator lowering86

or increasing its power output, respectively. The building then acts as a virtual battery, where87

the indoor temperature relative to the upper and lower thermal comfort limits acts as a state of88

charge, and the building’s thermal mass acts as a measure of the energy storage capacity [18]. These89

unique attributes introduce several key control considerations that differentiate heat pumps from90

generators in providing ancillary services:91

1. Controlling Strategy: When a generator is required to reduce generation, the heat pump92

should increase load and vice versa.93

2. Controlling Limits: Heat pumps must not violate indoor temperature constraints and94

therefore cannot operate above or below their setpoint for an extended period of time.95

3. Capacity: Heat pumps are much smaller than generators and therefore must be aggregated96

together to satisfy the 100 kW to 1 MW minimum requirement to participate in ancillary97

service markets1 [17].98

Depending on the service, these differences can have both beneficial and detrimental effects99

on heat pumps’ ability to provide ancillary services. The following sections describe the potential100

services heat pumps can provide and how their operation differs from a conventional generator.101

2.1. Frequency Regulation102

A stable grid frequency is ensured by an instantaneous balance between electrical supply and103

demand. The frequency will drop if demand exceeds supply and will rise if supply exceeds demand.104

If system frequency drifts more than 1-2 Hz from normal levels (60 Hz in the U.S.), equipment can be105

severely damaged and generators can trip, causing cascading failures [19]. Because of this, frequency106

1PJM is currently the only US operator that allows aggregation for frequency regulation participants.
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Table 1: Summary of ancillary services that can be potentially provided using heat pumps

Service Time Scale Details

Frequency Regulation Seconds Power must track a regulation signal sent every 2-4 seconds

Load Following Minutes to Hours Used to balance load on longer time scale than frequency regulation,
Can be in response to a grid signal or real-time energy prices.

Reserve Minutes to Hours Load must curtail within 10 minutes in response to dispatch signal.
Used for contingencies.

regulation requires response on the order of seconds. Generators providing frequency regulation107

must be equipped with telemetry and control technology to follow an Automatic Generator Control108

(AGC) signal from the grid operator, which is usually sent every 2-4 seconds. Demand-side frequency109

regulation providers can also follow this AGC signal by reducing load when it calls for an increase110

in generation.111

Frequency regulation is the highest priced ancillary service and is operated primarily as a ca-112

pacity market. A service provider must bid a certain capacity for regulation often in the day-ahead113

market and if accepted, must follow the power signal sent by the system operator. Depending114

on the system operator, the regulation market either has separate markets for regulation-up and115

regulation-down, or requires symmetric regulation capacity (equal up and down regulation capac-116

ity). Currently, California ISO (CAISO) and Electric Reliability Council of Texas (ERCOT) are the117

only US system operators that operate separate up and down regulation markets. For generators,118

these two methods are equivalent [15]. However, for energy storage and load control, significant119

differences in revenue can occur based on the market type.120

Another challenge for demand response and energy storage systems is that the frequency regu-121

lation signal is not necessarily zero-mean. For heat pumps providing frequency regulation, a signal122

bias can cause the heat pump to run consistently below or above its baseline consumption, poten-123

tially violating comfort constraints. To resolve this, some system operators have introduced fast124

regulation signals that are designed to be zero-mean [20]. For example, Pennsylvania, Jersey, Mary-125

land Regional Transmission Organization (PJM) has filtered its signal into two, called RegA and126

RegD, which are shown in Fig. 1. The RegA signal has a slower time constant and was designed127

to accommodate steam generators with relatively low ramping capability. RegD consists of higher128

frequency fluctuations and often converges to zero-mean within 15 minutes [21]. For this reason,129

many studies on the technical capability of providing frequency regulation with heat pumps follow130

the RegD signal [12, 13, 22, 23].131

In addition, Many US system operators have implemented a pay-for-performance pricing struc-132

ture in response to FERC Order 755 [24]. In addition to paying for capacity, this pricing structure133

also pays for mileage and performance. Mileage, or movement, is calculated as the sum of the ab-134

solute values of the regulation control signal movements and given in ∆MW/MW. Given capacity135

Pmax and power outputs {P1...Pn}, the mileage for n time steps is calculated as [20],136

M =
n∑

i=1

|Pi − Pi−1|/Pmax. (1)

Performance is given as a score between 0 and 1 and represents how well the participant follows137

a regulation signal. A frequency regulator must achieve a minimum performance score to qualify,138

and depending on the market structure, higher performance scores can lead to higher payments.139

PJM’s performance score is often used as a benchmark for frequency regulation control algorithms140

and is calculated using a combination of three subscores involving delay, correlation, and precision141

[25]. More information on frequency regulation policies for specific ISOs can be found in [16].142
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Figure 1: PJM self test signals for RegA (left) and RegD (right). RegA has low frequency fluctations and a non-zero
mean making it more suitable for steam generators. RegD contains higher frequency fluctuations and is close to
zero-mean, making it more suitable for energy storage and demand response systems [26]

2.2. Load Following143

Load following consists of generators following the slower, more predictable fluctuations in elec-144

tricity demand on a time scale of several minutes to several hours. This is often procured through145

economic dispatch, where generators are dispatched according to their generation cost [27]. How-146

ever, as wind and solar supply an increasing percentage of electricity on the grid, this service could147

become much more important, particularly for ramping in the mornings and evenings [28]. This148

could be a potential service provided by heat pumps, either as a reserve capacity similar to CAISO’s149

flexible ramping product [29] or through responsiveness to a real-time price disseminated by the150

system operator. For example, when solar and wind energy are readily available, electricity prices151

can drop significantly due to a surplus in supply, encouraging loads to operate during these times. In152

grids with high solar penetration, such as in the California Independent System Operator (CAISO),153

there is a growing frequency of negative wholesale electricity prices [30], where generators must pay154

to produce electricity. This poses a unique opportunity for heat pumps to potentially be paid for155

operation.156

Since heat pumps operate in the retail electricity market, they often are charged a static elec-157

tricity price, giving no incentive to shift operation toward times of high energy supply. Time-of-use158

rates, which have predefined price tiers for peak and off-peak hours, have had some success in pro-159

viding consumers indirect access to providing a load following service by shifting load away from160

peak hours [31]. Connected thermostat demand response programs such as Austin Energy’s Power161

Partnersm program [32] have also been widely deployed. These programs allow the utility to turn162

off heat pumps for short periods of time in order to reduce peak load. However, these methods are163

simplified and therefore do not capture the full potential of heat pumps to provide a load following164

service.165

A second challenge to providing this service is the relatively low frequency of a load following166

signal. If the frequency of the load following signal is on the same order of the building’s thermal167

response, comfort constraints can be violated [33]. This severely limits the capacity that heat168

pumps can offer for load following compared to a higher frequency signal like frequency regulation.169

However, this time constant has the added benefit of reducing the need for fast response controllers.170

2.3. Reserve171

Power systems are required to maintain a certain amount of reserve margin to ensure reliability172

in case of contingencies. For example, if a large generator unexpectedly trips, the system might173
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need to dispatch reserves. To provide this service, a heat pump or heat pump aggregation bids a174

reserve capacity into the reserve capacity market. This contract requires the system to curtail its175

full capacity offering for a certain amount of time determined by the reserve dispatch signal. After176

the signal ends, the heat pump system can recover back to its baseline energy consumption.177

The reserve market can be split into two main categories: spinning and non-spinning reserve.178

While different system operators can sometimes have different definitions [16], spinning (or syn-179

chronous) reserves primarily consist of online generators synchronized to the grid and capable of180

dispatching to full capacity within 10 minutes. Non-spinning reserves must respond within 10-30181

minutes but are not necessarily connected to the grid. Providing spinning reserve is preferred over182

non-spinning reserves for two main reasons. First, heat pumps are already connected to the grid and183

have high ramping capabilities relative to thermal generators. Second, spinning reserve is priced an184

order of magnitude higher than non-spinning reserve. However, since reserve dispatch signals result185

from contingencies, the frequency and duration can be quite unpredictable. From 2013-2018, PJM186

dispatched spinning reserve anywhere from 0-8 times each month with a duration anywhere from187

3-50 minutes [34]. For this reason, accounting for uncertainty is a vital component of providing188

reserve.189

3. Modeling and Control190

Studies on the modeling and control of heat pumps for ancillary services cover a wide range of191

scale and complexity. Frequency regulation requires a fast and accurate controller that can track a192

signal on the order of seconds. Load following controllers can be slower and simpler, while reserve193

controllers can be as simple as an on/off controller. However, it is important to note that for all194

ancillary services, the underlying goal is to track a given ancillary service signal. For this reason,195

many control schemes and methods of determining ancillary service capacity can work for several196

types of services. The following sections discuss how heat pumps are modeled and controlled on197

both local and aggregate levels.198

3.1. Local modeling and control199

On a local level, heat pumps and their buildings can be described by high-fidelity models and200

directly controlled to follow an ancillary service signal. This often involves directly controlling the201

fan speed or compressor speed in order to change the power consumption. Therefore, depending on202

the type of system, different models and control methods must be used.203

3.1.1. Modeling204

There are several types of heat pumps and many different ways to model heat pump systems205

[35] . For residential applications, local control for ancillary services focuses on variable speed heat206

pumps (VSHP). VSHPs modulate the compressor speed in order to heat or cool the indoor coil. A207

constant speed fan then blows air over the coil in order to distribute conditioned air throughout the208

home. VSHP dynamics are governed by nonlinear mass, momentum, and energy balances of the209

refrigerant flowing throughout the system [36]. However, these equations are unsuitable for control210

and simpler models are required. Using experimental data from [36] for many types of VSHPs, Ref.211

[37] developed simplified steady and dynamic VSHP models. For steady operation, the heat pump212

power P can be described by,213

P = kωω + kcTc + keTe + koffset. (2)

Here TC is the ambient air temperature at the condenser, Te is the ambient air temperature at the214

evaporator, ω is the compressor shaft speed, and ki are coefficients that can be fit to performance215
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data for the specific heat pump using multiple linear regression. The dynamic VSHP model is216

expressed as the transfer function,217

∆P (s) =
nω1s+ nω0

s2 + dω1s+ dω0

∆ω(s). (3)

The coefficients nω1, nω0, dω1 and dω0 can similarly be fit from experimental data. Another simplified218

model for the fast dynamics of a water-based VSHP is given in [38]. While this control model219

assumes a steady-state response, the nonlinear transient dynamics is accounted for with an estimated220

”lost thermal energy”. These simplified models allow for manipulation of compressor speed in221

control algorithms.222

Variable air volume (VAV) heating, ventilating, and air conditioning (HVAC) systems are most223

often used in large commercial buildings. A heat pump sometimes called a chiller provides a central224

cooling or heating coil used to condition air, which is then distributed through ducts via a variable225

speed fan. Since the coil temperature remains relatively constant, the fan alters its speed to maintain226

the setpoint. Therefore, this type of HVAC system uses the fan to provide ancillary services. Fan227

power P (t) increases with the cube of fan speed u(t) in the form [39]228

P (t) = c1(u(t))3, (4)

where c1 is a constant. While the rate of change of fan speed has inherent limitations from the229

variable frequency drive to prevent equipment damage, only a .1 s time constant was observed230

between controller input and power output in [40]. Because of this fast response time, VAV HVAC231

systems are most often evaluated for frequency regulation. Other similar models for VAV HVAC232

systems for ancillary services include [41, 42]. Water pumps in water-based heat pump systems can233

operate in a similar way, [43], but are sometimes neglected due to their low energy consumption234

relative to other components [44].235

An accurate building thermal model is also important to determine the amount of thermal energy236

that can be stored and to prevent violation of thermal comfort constraints. Modeling complexity237

varies widely based on building type and size. Detailed reviews on various building modeling238

techniques are given in [45, 46]. For large commercial buildings, building information modeling239

(BIM) is often available to provide detailed white box models based on known material properties240

and building dimensions. However, both accurate identification of each of these parameters and241

using detailed models for control can be difficult and expensive to obtain. Ref. [47] gives a simple242

method for converting a more complex EnergyPlus [48] model to a reduced-order model usable243

in model predictive control. Meta-model based optimization is used in [49] to identify optimal244

reduced-order model parameters for a building that are suitable for control.245

For smaller buildings or buildings without BIM, grey box models are often used. The most246

popular grey-box building modeling technique is through a thermal circuit, sometimes called equiv-247

alent thermal parameters. These thermal circuits contain resistors, which represent resistance to248

heat transfer, and capacitors, which represent heat storage capability. The values of each of these249

components can be identified from either experimental or physical data [50]. Common circuits for250

small buildings include either 1R1C (1 resistor and 1 capacitor) or 3R2C. In a 1R1C model, the251

entire building is lumped into one thermal mass represented by the single capacitance. For a 3R2C,252

however, the thermal masses of the indoor air and the building material are separate, giving a more253

accurate prediction over longer time scales. Fig. 2 shows an example of a 3R2C model. For larger254

buildings with many different zones, higher order models containing more capacitors and resistors255

can also be used [51].256

By adding thermal energy storage (TES) to a building, additional thermal capacitance is in-257

troduced, significantly increasing the potential for providing ancillary services.The most common258
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Figure 2: Example of a 3R2C thermal circuit building model. The subscript a represents indoor air temperature,
while m represents the building mass. Q gives represents the combined heat input from the heat pump and indoor
loads.

type of TES takes the form of water tanks, and has been shown to increase the power flexibility259

for frequency regulation [52], as well as allow flexibility over longer time scales [53]. Other forms260

of TES technology involve phase change material, either in a tank coupled with the heat pump,261

or directly embedded in the building construction walls [54]. Since phase change material stays262

at a relatively constant temperature during operation, additional modeling considerations must be263

taken into account [55].264

3.1.2. Control265

Based on the heat pump system, various components can be controlled to alter the power266

consumption. Feedback controllers are typically used for local control, but common difficulties in267

implementation are determining optimal controller gains and accounting for time delays.268

In [33], a commercial VAV HVAC system was experimentally shown to be capable of following269

a frequency regulation signal through control of the fan. The signal was first filtered to exclude270

low frequencies and high amplitude oscillations. Low frequencies that are of similar order to the271

building’s thermal response can cause temperature constraint violations, while high amplitude os-272

cillations can have harmful effects on the fan’s reliability, decreasing its useful life. By perturbing273

the existing controller’s fan speed and airflow setpoints, this controller was able to achieve PJM274

performance score of .83, exceeding PJM’s test performance requirement of .75. The fan speed for275

a commercial VAV HVAC system was also controlled to provide frequency regulation in [10, 11]. In276

this study, the authors use a novel switched controller to maximize speed while ensuring stability.277

If the desired power output is within some error tolerance from the existing output, a standard278

proportional-integral (PI) controller is used. Otherwise, a model-based feed-forward controller is279

used. This controller resulted in much higher test performance scores between .94 and .98.280

For a VSHP, the compressor consumes a majority of power and can be controlled to provide281

ancillary services. However, due to manufacturer limitations, it is usually difficult to control the282

compressor directly. In [12], the supply water temperature for an air-to-water VSHP was used to283

control the power consumption using a PI controller with nonlinear signal processing to ensure284

stability. While controlling supply water temperature setpoints was not as effective as simulations285

involving direct compressor speed control, the controller was still able to achieve performance scores286

around .8. In [22], the VSHP compressor was directly controlled using feedback controllers and287

operated in a small-scale experimental microgrid, showing the feasibility of participation with other288
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distributed energy resources.289

3.2. Aggregate modeling and control290

By aggregating together many heat pumps the combined capacity of ancillary services can291

be greatly increased. However, in aggregate heat pump control, the detailed parameters of each292

individual building and heat pump are difficult to obtain. Therefore, aggregate control studies293

often contain high level control schemes using simplified heat pump and building models. The main294

objective in aggregate control is determining which heat pumps to modulate in order to accurately295

track an ancillary service signal while maintaining thermal comfort and reliability constraints. Note296

that while these aggregation control studies assume that each heat pump serves a single building,297

district heating and cooling systems can also provide ancillary services while serving an aggregation298

of buildings. These systems are much larger and more complex, and a review of controlling district299

heating and cooling systems for grid services is given in [56].300

3.2.1. Modeling301

Early work on controlling heat pump aggregations modeled single-stage heat pumps as thermo-302

statically controlled loads (TCLs), which cycle on and off in order to maintain temperature within a303

deadband. TCLs, which also include water heaters, space heaters, and refrigerators, have inherent304

operational flexibility allowing the power to be modulated to track an ancillary service signal. The305

general TCL model for cooling is [57]:306

mtn+1 =

{
0, Ttn < T−
1, Ttn > T+

mtn , otherwise
. (5)

Here, mt is a binary variable representing the state of the TCL, T− and T+ are the lower and upper307

temperature limits, and Ttn is the thermostat temperature. The thermostat temperature response308

can then be modeled according to the individual building and heat pump model.309

Due to the simplicity of this model, heat pumps are often modeled using constant COPs, pro-310

viding a constant amount of heat regardless of external conditions Buildings containing these TCLs311

were most often modeled using a 1R1C thermal circuit model. Ref. [58] presented an example of312

the 1R1C model, which describes the internal temperature as313

Ti(t) =
1

CiRi

(T∞,i − Ti(t)− si(t)RiPi), i = 1, 2, ..., NL. (6)

Here, si(t) ∈ 0, 1 is the on/off signal of the ith TCL. Ti, Ci and Ri show the temperature, thermal314

capacitance and resistance, respectively.315

TCL aggregations are often modeled as a virtual battery, with both power and energy capacities.316

The power capacity is the instantaneous flexibility that the TCLs can provide while the energy317

capacity is related to the cumulative time that TCLs can operate above or below its baseline. Virtual318

battery models for a TCL aggregation are given in [59–61]. In [61], a method of characterizing the319

aggregate flexibility of a large collection of TCLs was given through a generalized battery model.320

The models were separated into two: (1) individual models of TCLs to model temperature and321

power consumption and (2) a generalized battery model that characterizes flexibility. The set of322

acceptable perturbations of each TCL Ek, is given by,323

Ek =

{
ek(t)

∣∣∣∣∣0 ≤ P k
0 + ek(t) ≤ P k

m

P k
0 + ek(t) maintains |θk(t)− θkr | ≤ ∆k

}
. (7)

9



Here, ek(t) is an acceptable perturbation such that the perturbation will not cause the power P k
0 to324

exceed its maximum P k
m and that the temperature θk(t) maintains a distance ∆k from the setpoint325

θkr . The total flexibility U is then defined as the Minkowski sum,326

U =
∑
k

Ek. (8)

3.2.2. Control327

The control of TCLs for ancillary services has been widely studied [57, 58, 61–71]. In [57] and328

[58], a feedback controller was used to control a global thermostat setpoint that turns on or off a329

certain number of TCLs based on statistical state predictions. This method is difficult in practice,330

though, as it can rely on setpoint changes down to .0025 ◦C, which is far below the measurement331

resolution for thermostats. In [61], a priority stack control method was used to directly control332

TCL status. This method prioritized turning on or off the TCLs that were closest to automatically333

turning on or off, respectively. Finally, [70] explored the stability of TCLs as a result of significant334

perturbations during control for demand response.335

However, the majority of these TCL controllers use simplified, simulated models that neglect336

many important differences between heat pumps and other TCLs like electric heaters. For example,337

to avoid damaging the compressor and reducing efficiency, heat pumps have minimum on and off338

times, which can be the most financially and physically limiting factor for ancillary service provision339

[72]. Moreover, heat pump COP can vary drastically, even among the same heat pump model [73].340

Finally, there are many different types of heat pumps, including VSHPs, which do not follow the341

standard TCL model. Because of these additional complexities, the use of heat pump aggregations342

for grid services has not been commercially implemented in the same way that other TCLs like343

water heaters have been implemented [74].344

A solution to the minimum off time is given in [75], which adds an additional ”lock-out” state345

between the on and off states. Variable speed heat pumps are used in [76] and [38] by dividing346

a frequency regulation signal equally among each heat pump. A rule-based controller is used in347

[72] to provide frequency regulation from an aggregate of ground-source heat pumps in conjunction348

with thermal energy storage. Finally, [68] shows the effect that changes in ambient temperature349

can have on a population of air conditioners functioning as TCLs.350

For ancillary services that require fast response like frequency regulation, control and commu-351

nication delays can become a serious issue. For aggregations, a reference signal must be received352

from the system operator, processed to determine the corresponding control decision, and then the353

control decision distributed to each heat pump. Moreover, for control systems that communicate354

with the thermostat rather than the heat pump directly, uncertain time delays can accumulate355

based on internal thermostat and heat pump control systems. Without delay compensation, track-356

ing accuracy was found to be reduced by as much as 40% for a 20 second delay in [77]. However, a357

Kalman filter-based state estimation technique was used in [78] to mitigate this effect and produce358

no performance deterioration for delays up to 20 seconds.359

While these heat pump aggregation studies are beginning to include more realistic constraints,360

they still require some significant assumptions and there is little experimental validation. For361

example, the transient power profile of heat pumps and heat pump reliability considerations are362

relatively unexplored and are an avenue for further research.363

4. Market Participation364

While the previous sections describe control methods for providing ancillary services, the heat365

pump must establish both a baseline and flexibility capacity to bid into either the day-ahead or366
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real-time electricity markets [17]. A baseline is the future power trajectory that the heat pump plans367

to follow for the length of the ancillary service contract. A capacity, sometimes called flexibility,368

is the amount of power that the heat pump can go above or below its baseline without violating369

constraints. This is an important difference between generators and heat pumps providing ancillary370

services. A generator can operate indefinitely within its declared power capacity limits, and thus371

can ignore the energy impact of the ancillary service signal, i.e. the generator can run at 10% above372

it’s baseline for an indefinite amount of time if required. A heat pump cannot do this without373

eventually violating temperature constraints. Therefore, the amount of capacity a heat pump can374

offer for ancillary services is heavily dependent on the energy content of the ancillary service signal.375

4.1. Baseline376

In the context of ancillary services, a baseline is analogous to a generator setpoint and must be377

determined ahead of time such that the contracted ancillary service capacity can be maintained.378

This baseline definition is slightly different from a traditional demand response counterfactual base-379

line, which uses historical data to estimate what the unmodified energy consumption would have380

been to measure the amount of demand response provided. In contrast, an ancillary service baseline381

can be decided by the ancillary service provider based on market and weather conditions to optimize382

a user-defined objective. Model-predictive control (MPC) is among the most-widely used methods383

to determine an ancillary service baseline. MPC is an iterative control scheme that optimizes a384

model-based objective function over a given time horizon. The optimal control for the first time385

step is then implemented, and the MPC reoptimizes with updated inputs. Possible optimization386

objective functions could be to minimize maximize total profit, maximize thermal comfort, or a387

combination of the two.388

There is a large amount of research on determining optimal power trajectories for heat pump389

systems [79]. However, it is important to note that the energy optimal power trajectory does390

not always provide an adequate flexibility for providing ancillary services. In [80], a contract for391

declaring a baseline and flexibility capacity for ancillary services in real-time is given. A robust392

MPC determines a baseline and flexibility determination that minimizes the energy cost less the393

ancillary service revenue. One key feature in this contract is that the building owner pays only for394

its baseline energy consumption and not for the altered consumption based on an ancillary service395

signal, hedging the utility and building owner from any non-zero mean ancillary service signal.396

However, the uncertainty of disturbance predictions and the fidelity of the model can signifi-397

cantly degrade the performance and must be carefully considered. Common prediction methods398

for disturbances for heat pump control include numerical weather predictions, occupancy schedules399

[81, 82], auto-regressive regression, and neural networks [83, 84]. The effect of model fidelity on400

MPC performance was explored in [50]401

4.2. Capacity Determination without uncertainty402

As previously stated, the flexibility available at a given time step is heavily dependent on the403

content of the ancillary service signal in previous time steps. One way to simplify this analysis is to404

assume that the ancillary service signal is zero-mean over the time step, which allows for independent405

time-wise optimization of flexibility capacity, i.e. each time step does not depend on the ancillary406

service signal from the previous time step. Since this method does not consider any uncertainty of407

the mean of the ancillary service signal, it is the most aggressive capacity determination method408

and can potentially overestimate the actual capacity available. For fast frequency regulation signals409

such as PJM’s RegD, this assumption can be valid since it is designed to be zero-mean over a 15410

min period [21]. However, for slower frequency signals such as RegA, load following, and reserve,411

this method can be unfeasible.412
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The limitation of this assumption is often addressed by calculating the general flexibility char-413

acteristics of a heat pump or building. Ref. [85] develops a flexibility index suitable for control414

on both an individual and aggregate level. Thermal energy storage is added in [52] to increase the415

flexibility of a heat pump. Finally, Ref. [86] determines the load reduction flexibility using behind416

the meter electricity data. By developing battery-like models for flexibility, these types of studies417

provide the basis for modeling heat pump flexibility for control.418

4.3. Capacity Determination with Uncertainty419

There are two primary methods of accounting for uncertainty during capacity determination:420

robust and scenario-based. Robust determination is the most conservative approach. This approach421

ensures that the flexibility offered by the heat pump can be met under the worst case ancillary422

service signal or disturbances. This method is of particular importance in providing reserve, since423

the heat pump must be able to reduce its full capacity offering for an unknown amount of time.424

Robust distributed optimization is used in [87] for day-ahead and intra-day scheduling of flexibility425

capacity for an aggregation of flexible loads. Ref. [76] uses robust MPC to determine flexibility426

capacity for frequency regulation while considering uncertainty in both external disturbances and427

the frequency regulation signal. Ref. [88] provides a robust control strategy for managing uncertain428

communication time delays for an aggregation.429

Another way of dealing with uncertainty is scenario-based optimization. In this method, the430

capacity determination must not violate temperature constraints under a set of disturbance scenarios431

that are developed based on historical conditions. By satisfying a certain number of these scenarios,432

the controller can provide the flexibility it offers with a certain confidence level [89]. While this can433

be computationally intensive, scenario-based optimization can provide a less conservative flexibility434

capacity than robust optimization while still considering uncertainty. Ref. [90] gives a scenario-435

based MPC for determining optimal energy consumption of a building, while [91] gives a scenario-436

based method for determining the flexibility of a population of controllable loads. Research on437

accounting for uncertainty for heat pumps in both local and aggregate control are relatively limited,438

and this is an area for future work.439

4.4. Hierarchical Control440

Since MPC requires optimization of a sometimes complex objective function, it alone is not fast441

enough to ensure response to fast ancillary service signals. Many studies use a hierarchical control442

scheme to solve this problem [10, 38, 51, 87, 92–95]. This hierarchical control scheme combines the443

strategies for local and aggregate control with prediction methods used for baseline and capacity444

determination. For example, a three-tier hierarchical controller was used in [93] to control an445

aggregation of single stage heat pumps consisting of: (1) a load aggregator that interacts with446

the power system and ancillary service markets, (2) a central controller that prioritizes which heat447

pumps to turn on or off, and (3) a local controller that considers local constraints. Fig. 3 shows a448

common layout for hierarchical controllers.449

Level 1 is sometimes referred to as a virtual power plant (VPP) and acts as the interface to450

the grid. From a power system operator’s perspective, a VPP acts and is controlled similar to a451

conventional power plant: It bids into day-ahead ancillary service markets and its aggregate power452

responds to grid control signals. The VPP passes grid signals to the central controller, Level 2, for453

real-time aggregate control. The central controller can take the form of various aggregate control454

schemes outlined in Sec. 3.2.1. The control signal sent from the central controller to the local455

controller, Level 3, can take the form of setpoint change or direct load control. The local controller456

then responds to this control in accordance with local constraints and disturbances. Together, these457

controls allow an aggregation of small, distributed heat pumps to provide ancillary services to the458

grid as if it were a large scale energy storage resource.459
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Figure 3: Common control hierarchies to provide ancillary services from a system of aggregated heat pumps.

5. Performance, Capacity, and Economics460

While heat pumps have the physical capability to provide ancillary services to the grid, whether461

or not there is an adequate economic incentive to do so is still an open question. With the vast462

amount of heat pumps already in operation, there is an enormous potential capacity available463

for ancillary services. However the revenues from providing services do not always justify the464

accompanying capital costs and potential efficiency losses. Therefore, a holistic view of costs and465

performance comparison to other energy storage technologies must be considered to determine466

whether providing ancillary services is attractive to both heat pump owners and grid operators.467

5.1. Performance and Capacity468

TCLs have been both experimentally and numerically shown to have potential capacity to469

provide ancillary services [10, 11, 61, 96, 97]. Ref. [98] calculates that the ancillary service capacity470

provided by residential, such as refrigerators, heat pumps and electric water heaters, can reach 10471

- 40 GW and 8 -12 GWh in California, which can more than satisfy the energy storage mandate of472

1325 MW to support their renewable portfolio. This estimated capacity was heavily dependent on473

the climate zone: Some of the zones could only provide flexibility during either winter or summer,474

while those in more balanced climates could provide a higher average capacity throughout the year.475

While a large amount of capacity is estimated to be available, Ref. [99] concludes that given current476

technology and regulatory frameworks, widespread utilization of this flexibility is insufficient for high477

renewable energy portfolios.478

However, using heat pumps as a form of energy storage is not necessarily 100% efficient. Per-479

turbing the power consumption to follow an ancillary service signal can consume extra energy due480

to excessive cycling or modulation. One key efficiency metric used to rate a variety of grid-scale en-481

ergy storage devices is the round-trip efficiency (RTE). For conventional energy storage devices like482

13



batteries, RTE is defined as the ratio of energy released to energy stored during a charge/discharge483

cycle. RTEs for common energy storage devices include redox flow batteries (65-85%), lithium-ion484

batteries (85-95%), flywheels (93-95%), and pumped hydro storage (70-82%) [100]. For a heat pump485

providing a symmetrical ancillary service request, the RTE can be defined similarly [96],486

RTE =
Eout

Ein

.

Here, Eout is the energy reduction with respect to the baseline due to the ancillary service , while487

Ein is the increase with respect to the baseline. In calculating RTE, the baseline is set to be the488

counterfactual baseline, or the amount of power that the heat pump would have consumed without489

providing the service. Therefore, for RTEs less than 1, there is additional energy consumption490

associated with providing the service.491

Several studies have experimentally tested the RTE performance of single heat pumps following492

regulation service signals with very different results. In [96], an experimental study controlling a493

VAV HVAC system to provide a fast, symmetrical service, similar to a charge/discharge cycle in a494

battery, found that the extra energy consumption was significant. The RTE was only 46% for fan495

power and 42% for the combined power of the chiller and fans. While this RTE seems low, analysis496

of space conditioning data from [101] gave almost identical RTEs at around 46% [96]. Relatively low497

RTEs were also found in [102], where experimentally controlled VAV HVAC systems showed RTEs498

ranging from 34 to 81%. Both experimental studies relied on open-loop global temperature setpoint499

control mechanisms, in contrast to the MPC approaches previously discussed. However, [10, 11]500

found that the energy loss associated with following the much faster PJM frequency regulation,501

RegD, signal was negligible.502

The causes of inefficiency were explored through physics-based modeling in [103], which gave503

RTEs of less than 100% when the power is increased then decreased, but greater than 100% when504

decreased then increased. This effect can be explained by differences in efficiency due to indoor air505

temperature variation. Furthermore, [104] found that when the HVAC system is repeatedly used,506

the RTE converges to 100%. They attributed the low RTE values reported from experiments [96] to507

the fact that the experiment ran only one cycle. Therefore, more experimental results are required508

to accurate define the RTE for a heat pump.509

In addition to RTE, there are efficiency losses associated with providing flexibility capacity. In510

order to provide flexibility, the heat pump might need to deviate from the energy optimal control511

schedule. The amount of energy increase compared to an energy optimal controller in [10, 11] was512

68 % for the fan and 11% for the chiller. However, by including payments for providing ancillary513

services, this controller provided the cost optimal solution despite increases in energy. Moreover,514

[38] found that the ratio of reserve payment to electricity cost must be above a threshold in order515

to incentivize deviating from the energy optimal control to provide flexibility for ancillary services.516

This wide variety of results show that there is still no consensus on the total efficiency of a517

heat pump providing ancillary services. They reveal that the 100% efficient assumption may not518

be justified in control simulations, and flexibility capacity could be significantly overestimated. In519

addition, the ancillary service efficiency of an aggregation of heat pumps, as well as variable-speed520

and single-stage heat pumps, are relatively unstudied. Therefore, more experimental work is needed521

to determine how potential efficiency losses affect the actual performance of heat pumps providing522

ancillary services.523

5.2. Economical Potential524

By receiving payments for providing ancillary services, heat pump owners can have additional525

revenue streams, reducing the net present cost of heat pump installations. These revenue streams526

are modest but not negligible. Tab. 2 presents a summary of potential revenues for a variety of527

14



heat pump types, locations, and markets. Revenue varies significantly depending upon type of528

load, climate zone, and regional ancillary service prices . In [105], residential heat pumps provid-529

ing frequency regulation in a TCL model were estimated to earn $1-52/unit/year for cooling and530

$11-46/unit/year for heating under the pay-for-performance pricing structure. The wide range of531

variation is primarily due to the difference in climate zone. For example, heat pumps in more532

extreme climates like Bakersfield and Sacramento, CA, could earn significantly more than those in533

mild climates like San Fransisco, CA.534

Spinning reserve revenues are significantly lower due the much lower spinning reserve capacity535

prices. Spinning reserve revenues were estimated to be less than $5/unit/year in [98], and therefore536

is not attractive under current market policies. There are relatively few revenue studies specifically537

for load following, but significant energy costs savings are possible by indirect participation though538

dynamic energy pricing and thermostat-based utility demand response programs. For example,539

electricity costs were reduced by up to 30% using a price-based controller in a real-time retail elec-540

tricity market [106]. Utility demand response programs primarily used for reducing peak load also541

give monetary incentives. The SmartACTM program of PG&E (Pacific Gas and Electric Company)542

provided one-time signup bonus of $50 to each participating unit [107]. The OnCallTM program of543

Florida Power and Light Company provides a monthly credit on bill, totaling up to $83 annually544

for each participating unit [108].545

However, these revenues must be compared to both instrumentation costs and opportunity costs546

for providing services. Basic telemetry devices are needed to connect the heat pump to the grid or547

aggregator, including a real-time electricity meter and controllable thermostat. Ref. [105] estimated548

this instrumentation could cost between $100-250. In addition, heat pumps could be incentivized to549

consume more energy during times of high ancillary service prices in order to provide more service,550

despite the possibility of high energy prices or less efficient operating conditions. A opportunity cost551

model was given in [109] that provides a rational goal for optimizing energy consumption, benefit,552

and ancillary service provision.553

Given these revenue and cost results, providing ancillary services may not be attractive for many554

heat pump owners. Policy changes or price increases could have a positive impact on adoption. For555

example, CAISO doubled their regulation requirements in February 2016 in response to increasing556

levels of intermittent renewable energy [110]. This roughly tripled the regulation price, and it has557

continued to increase each year. Since previous studies referenced in this paper use now outdated558

price data, future price trends should be taken into account when assessing economic feasibility.559

Other policy changes that provide energy storage or demand response specific ancillary services such560

as PJM’s RegD and the pay-for-performance market structure could also play a part in increasing561

heat pump participation.562

6. Conclusion563

Heat pumps can be controlled to provide stability to the electrical grid in the form of ancillary564

services. These services range from response on the order of seconds to hours, and heat pumps can565

be paid for this provision. Local control of VSHPs and VAV HVAC systems has been experimentally566

shown to track the fastest ancillary service signal, frequency regulation. Aggregations of heat pumps567

have been numerically shown to be able to provide a variety of ancillary services. Heat pumps also568

have some key advantages compared to other energy storage systems and generators providing569

ancillary services, such as reduced costs, increased cycle life, and higher ramp rates.570

While a large amount of research has proven the capability for heat pumps to provide ancillary571

services, there are still significant challenges to large-scale implementation. Recommendations for572

future research are as follows:573
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Table 2: Revenue summary of ancillary service provision by heat pumps and other TCLs. Here, AC refers to a heat
pump providing air conditioning while HP refers to a heat pump in heating mode.

Reference Market Benefit Details

Ref[13] PJM-RegA and RegD Offsets 46 % of the electricity cost for
RegA

2-4.75 kW VSHP Power

Offsets 56 % of the electricity cost for
RegD

Ref[111] PJM-RegA and RegD Offsets 20%-48% of the electricity cost 44.0-kWth variable-speed rooftop unit
35.2-kWth split heat pump

Ref[105] CAISO- Regulation market AC: $0.31-9.36 /kW/year AC with electrical capacity of 4-7.2 kW
HP: $2.04-8.31 /kW/year HP with electrical capacity of 4-7.2 kW
Water heater: $33.72 /kW/year Water heater with electrical capacity of

4-5 kW
Refrigerator: $36 /kW/year Refrigerator with electrical capacity of

0.1-0.5 kW

Ref[98] CAISO- Regulation market AC: $0-5.71 /kW/year AC with electrical capacity of 4-7.2 kW
HP: $3.93-10 /kW/year HP with electrical capacity of 4-7.2 kW
Electrical heater: $5.33 /kW/year Electrical Water heater with electrical ca-

pacity of 4.5 kW
Refrigerator : $31.43 /kW/year Refrigerator with electrical capacity of

0.2-0.5 kW

Ref[72] Germany- Residential fre-
quency reserve

Not financially viable Electrical storage system of 5 kWh

3.7 kW Heat pump
Water heat storage of 400 L

Ref[112] Netherlands- Frequency
containment reserve

$26.56 /kW/year in ’always available’
scenario

Heat pump with electrical capacity of .5
kW

$115.44 /kW/year in ’always reliable’ sce-
nario

1. Experimental results are primarily on a local scale, controlling only a single heat pump rather574

than an aggregation. To our knowledge, there are no experimental heat pump aggregation575

studies. As a result, single stage heat pumps, which represent a majority of residential heat576

pumps, have not been experimentally shown to be capable of providing ancillary services.577

2. Dealing with uncertainty is vital for accurate forecasting of flexibility capacity and is relatively578

unstudied. Stochastic optimization techniques like robust and scenario-based optimization579

should also be considered when determining flexibility.580

3. Aggregate control models, specifically for single stage heat pumps, are relatively simple and do581

not capture the full dynamics of individual heat pumps and their buildings. Better parameter582

identification methods and higher order models that are scalable to heat pump aggregations583

could significantly improve flexibility estimation and ancillary service tracking.584

4. Efficiency losses due to both ancillary service tracking and capacity scheduling are not com-585

pletely understood. Gaps still remain between experimental and simulation results, and there-586

fore round trip efficiency (RTE) is not well defined. A high RTE is an underlying assumption587

in many control simulations, and therefore has broad implications.588

5. Communication latency issues are a significant barrier to frequency regulation since the system589

must respond on the order of seconds. Predictive methods or hardware retrofits could be a590

potential solution.591

6. Revenue estimates are still quite low and represent a barrier to implementation. Trends in592

ancillary service prices should be considered, as well as new policy and incentive structures.593
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[72] L. R. Rodŕıguez, M. Brennenstuhl, M. Yadack, P. Boch, U. Eicker, Heuristic optimization of764

clusters of heat pumps: A simulation and case study of residential frequency reserve, Applied765

Energy 233-234 (2019) 943–958.766

[73] D. Korn, J. Walczyk, A. Jackson, A. Machado, J. Kongoletos, E. Pfann, Ductless MiniSplit767

Heat Pump Impact Evaluation, Cadmus, 2016.768

[74] H. Chen, S. Baker, S. Benner, A. Berner, J. Liu, Pjm integrates energy storage: Their769

technologies and wholesale products, IEEE Power and Energy Magazine 15 (2017) 59–67.770

[75] W. Zhang, J. Lian, C.-y. Chang, S. Member, Aggregated modeling and control of air condi-771

tioning loads for demand response, IEEE Transactions on Power Systems 28 (2013) 4655–4664.772

[76] E. Vrettos, F. Oldewurtel, G. Andersson, Robust energy-constrained frequency reserves from773

aggregations of commercial buildings, IEEE Transactions on Power Systems 31 (2016) 4272–774

4285.775

[77] H. Hao, B. M. Sanandaji, K. Poolla, T. L. Vincent, Frequency regulation from flexible loads:776

Potential, economics, and implementation, in: 2014 American Control Conference, 2014, pp.777

65–72.778

[78] G. S. Ledva, E. Vrettos, S. Mastellone, G. Andersson, J. L. Mathieu, Managing communication779

delays and model error in demand response for frequency regulation, IEEE Transactions on780

Power Systems 33 (2018) 1299–1308.781

[79] A. Afram, F. Janabi-Sharifi, Theory and applications of HVAC control systems A review of782

model predictive control (MPC), Building and Environment 72 (2014) 343–355.783

[80] M. Maasoumy, C. Rosenberg, A. Sangiovanni-Vincentelli, D. S. Callaway, Model predictive784

control approach to online computation of demand-side flexibility of commercial buildings785

HVAC systems for Supply Following, Proceedings of the American Control Conference (2014)786

1082–1089.787

21



[81] S. Yuan, R. Perez, Multiple-zone ventilation and temperature control of a single-duct VAV788

system using model predictive strategy, Energy and Buildings 38 (2006) 1248–1261.789

[82] G. P. Henze, D. E. Kalz, S. Liu, C. Felsmann, Experimental analysis of model-based predictive790

optimal control for active and passive building thermal storage inventory, HVAC&R Research791

11 (2005) 189–213.792

[83] A. R. Florita, G. P. Henze, Comparison of Short-Term Weather Forecasting Models for Model793

Predictive Control, HVAC&R Research 15 (2009) 835–853.794

[84] Z. E. Lee, K. Gupta, K. J. Kircher, K. M. Zhang, Mixed-integer model predictive control of795

variable-speed heat pumps, Energy and Buildings 198 (2019) 75–83.796

[85] R. G. Junker, A. G. Azar, R. A. Lopes, K. B. Lindberg, G. Reynders, R. Relan, H. Madsen,797

Characterizing the energy flexibility of buildings and districts, Applied Energy 225 (2018)798

175–182.799

[86] C. Ziras, C. Heinrich, M. Pertl, H. W. Bindner, Experimental flexibility identification of800

aggregated residential thermal loads using behind-the-meter data, Applied Energy 242 (2019)801

1407–1421.802

[87] M. Diekerhof, F. Peterssen, A. Monti, Hierarchical distributed robust optimization for demand803

response services, IEEE Transactions on Smart Grid 9 (2018) 6018–6029.804

[88] Q. Zhu, L. Jiang, W. Yao, C.-K. Zhang, C. Luo, Robust Load Frequency Control with Dy-805

namic Demand Response for Deregulated Power Systems Considering Communication Delays,806

Electric Power Components and Systems 45 (2017) 75–87.807

[89] M. C. Campi, S. Garatti, F. A. Ramponi, A general scenario theory for nonconvex optimiza-808

tion and decision making, IEEE Transactions on Automatic Control 63 (2018) 4067–4078.809

[90] X. Zhang, G. Schildbach, D. Sturzenegger, M. Morari, Scenario-based MPC for energy-810

efficient building climate control under weather and occupancy uncertainty, 2013 European811

Control Conference (ECC) (2018) 1029–1034.812

[91] S. O. Ottesen, A. Tomasgard, A stochastic model for scheduling energy flexibility in buildings,813

Energy 88 (2015) 364–376.814

[92] Y. Gao, S. Li, B. Lin, Economic and hierarchical control multi-thermal load for bidding815

ancillary service, Clemson University Power Systems Conference, PSC 2018 (2019) 1–5.816

[93] X. Wu, S. Member, J. He, Y. Xu, J. Lu, S. Member, N. Lu, S. Member, X. Wang, Hierarchical817

Control of Residential HVAC Units for Primary Frequency Regulation, IEEE Transactions818

on Smart Grid 9 (2018) 3844–3856.819

[94] A. Schirrer, O. Konig, S. Ghaemi, F. Kupzog, M. Kozek, Hierarchical application of model-820

predictive control for efficient integration of active buildings into low voltage grids, 2013821

Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, MSCPES 2013822

(2013) 2–7.823

[95] W. Wei, D. Wang, H. Jia, C. Wang, Y. Zhang, M. Fan, Hierarchical and distributed demand824

response control strategy for thermostatically controlled appliances in smart grid, Journal of825

Modern Power Systems and Clean Energy 5 (2017) 30–42.826

22



[96] I. Beil, I. Hiskens, S. Backhaus, Round-trip efficiency of fast demand response in a large827

commercial air conditioner, Energy and Buildings 97 (2015) 47–55.828

[97] I. Beil, I. Hiskens, S. Backhaus, Frequency regulation from commercial building HVAC de-829

mand response, Proceedings of the IEEE 104 (2016) 745–757.830

[98] J. L. Mathieu, M. E. Dyson, D. S. Callaway, Resource and revenue potential of California831

residential load participation in ancillary services, Energy Policy 80 (2015) 76–87.832

[99] P. Kohlhepp, H. Harb, H. Wolisz, S. Waczowicz, D. Müller, V. Hagenmeyer, Large-scale833

grid integration of residential thermal energy storages as demand-side flexibility resource: A834

review of international field studies, Renewable and Sustainable Energy Reviews 101 (2019)835

527–547.836

[100] M. Kintner-Meyer, P. Balducci, W. Colella, M. Elizondo, C. Jin, T. Nguyen, V. Viswanathan,837

Y. Zhang, National Assessment of EnergyStorage for Grid Balancing and Arbitrage, Pacific838

Northwest National Laboratory, 2013.839

[101] D. J. Hammerstrom, R. Ambrosio, T. A. Carlon, J. G. DeSteese, G. R. Horst, R. Kajfasz,840

L. L. Kiesling, P. Michie, R. G. Pratt, M. Yao, J. Brous, D. P. Chassin, R. T. Guttromson,841

O. M. Jarvegren, S. Katipamula, N. T. Le, T. V. Oliver, S. E. Thompson, Pacific North-842

west GridWise Testbed Demonstration Projects; Part I. Olympic Peninsula Project, Pacific843

Northwest National Laboratory, 2008.844

[102] A. Keskar, D. Anderson, J. X. Johnson, I. A. Hiskens, J. L. Mathieu, Do commercial buildings845

become less efficient when they provide grid ancillary services?, Energy Efficiency (2019) 1–15.846

[103] Y. Lin, J. L. Mathieu, J. X. Johnson, I. A. Hiskens, S. Backhaus, Explaining inefficiencies847

in commercial buildings providing power system ancillary services, Energy and Buildings 152848

(2017) 216–226.849

[104] N. S. Raman, P. Barooah, On the round-trip efficiency of an HVAC-based virtual battery,850

IEEE Transactions on Smart Grid (2019) 1–8.851

[105] H. Hao, B. M. Sanandaji, K. Poolla, T. L. Vincent, Potentials and economics of residential852

thermal loads providing regulation reserve, Energy Policy 79 (2015) 115–126.853

[106] J. H. Yoon, R. Baldick, A. Novoselac, Dynamic demand response controller based on real-time854

retail price for residential buildings, IEEE Transactions on Smart Grid 5 (2014) 121–129.855

[107] Pacific Gas and Electric Company, SmartAC program, http://bit.ly/2LPd6k5, 2019.856

[108] Florida Power and Light Company, Residential on call program, http://bit.ly/332Ttug,857

2019.858

[109] D. H. Blum, T. Zakula, L. K. Norford, Opportunity cost quantification for ancillary services859

provided by heating, ventilating, and air-conditioning systems, IEEE Transactions on Smart860

Grid 8 (2016) 1264–1273.861

[110] Q1 2016 Report on Market Issues and Performance, CAISO, 2016.862

[111] J. Cai, J. E. Braun, Laboratory-based assessment of HVAC equipment for power grid fre-863

quency regulation: Methods, regulation performance, economics, indoor comfort and energy864

efficiency, Energy and Buildings 185 (2019) 148–161.865

23

http://bit.ly/2LPd6k5
http://bit.ly/332Ttug


[112] J. Posma, I. Lampropoulos, W. Schram, W. van Sark, Provision of ancillary services from an866

aggregated portfolio of residential heat pumps on the dutch frequency containment reserve867

market, Applied Sciences 9 (2019) 590–606.868

24


	Introduction
	Ancillary Services
	Frequency Regulation
	Load Following
	Reserve

	Modeling and Control
	Local modeling and control
	Modeling
	Control

	Aggregate modeling and control
	Modeling
	Control


	Market Participation
	Baseline
	Capacity Determination without uncertainty
	Capacity Determination with Uncertainty
	Hierarchical Control

	Performance, Capacity, and Economics
	Performance and Capacity
	Economical Potential

	Conclusion

