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ABSTRACT

A key barrier to applying any smart technology to a building is
the requirement of locating and connecting to the necessary re-
sources among the thousands of sensing and control points, i.e., the
metadata mapping problem. Existing solutions depend on exhaus-

Table 1: Examples of sensor names of temperature sensors
in different buildings.
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the noisy labels as well as to predict sensor types.

Two key challenges arise in designing the framework, namely,
weak oracle reliability estimation and instance selection for query-
ing. To address the first challenge, we develop a clustering-based
approach for weak oracle reliability estimation to capitalize on
the observation that weak oracles perform differently in differ-
ent groups of instances. For the second challenge, we propose a
disagreement-based query selection strategy to combine the poten-
tial effect of a labeled instance on both reducing classifier uncer-
tainty and improving the quality of label aggregation. We evaluate
our solution on a large collection of real-world building sensor data
from 5 buildings with more than 11, 000 sensors of 18 different types.
The experiment results validate the effectiveness of our solution,
which outperforms a set of state-of-the-art baselines.
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1 INTRODUCTION

Hundreds of organizations have participated in the Better Build-
ings Initiative [10] to reduce the energy footprints of commercial
buildings; and the investment in smart building technologies has
soared from 1 billion to 19 billion dollars since 2012 [36]. Despite
being effective in reducing energy consumption, these technolo-
gies [2, 5, 13, 16] are adopted still in less than 20% of the build-
ings [42]. A key barrier to applying any smart technology to a
building is the requirement of locating and connecting to the neces-
sary resources among the thousands of sensing and control points.
For example, an application that monitors and controls the tem-
perature of a room needs to access the temperature sensor and the
temperature setpoint of the room. Doing so requires the capability
to interpret the context of the sensors including their type, location,
etc, often referred to as the metadata. Unfortunately, this metadata
is historically not designed for automated machine parsing and

RM-5441.ZN-T

exists in disparate formats across buildings. For example, Table 1
shows a few examples of room temperature sensor names from
different buildings: the concept of temperature is encoded with
various distinct phrases — Temperature, Temp, RMT, ART, and ZN-T.
The metadata thus requires significant manual effort to parse, and
it often takes weeks. This manual process is fundamentally not
scalable, and calls for automated mapping solutions.

While industry-wide standards [1, 3] provide a common ground
for creating metadata in new buildings, legacy buildings still take a
significant share of the market and require manual work for meta-
data interpretation and conversion. Various solutions have thus
been proposed to parse and extract the metadata, including their
type [4, 18, 19, 22, 37], location [20, 23], and relationships with
each other [24, 33, 38]. While a few [18, 39] focus on supervised
approaches that require a considerable set of training examples, the
majority [4, 7, 22, 25] is built upon a semi-supervised technique - ac-
tive learning. Such solutions involve progressively selecting a small
set of representative examples and acquiring their labels!. These
methods have achieved promising results and can significantly re-
duce the required manual effort. However, they all fundamentally
rely on the availability of infallible experts, such as a building man-
ager, to provide correct labels for a small set of sensor metadata. Not
only is it almost never possible not to make mistakes as a human,
but also the cost of employing a human expert is prohibitive.

In this work, we seek to relax the strict dependence on an infal-
lible human labeler as explored by the aforementioned work, and
explore the value of imperfect information sources for metadata
extraction. A key intuition is that, aside from resorting to a costly
human annotator, there are often abundant cost-free information
sources, such as classifiers trained on another labeled building,
which we can leverage as weak oracles to annotate the sensors in

!For example, the label for “RM511A Zone Temp 3” would be temperature sensor.
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the target building. The term oracle refers to an information source;
and leveraging such low-cost weak oracles helps reduce the de-
pendence and burden on perfect human annotators. Technically, it
is a branch of multi-oracle selective sampling problem [11], which
extends conventional active learning by leveraging weak oracles
aside from an omnipotent expert.

In practice of metadata mapping, each weak oracle is likely to be
good at recognizing only certain types of sensors in a new building.
For example, buildings in similar geographical regions might ex-
hibit similar patterns in the readings of sensors measuring ambient
temperature or light level, while in buildings with similar equip-
ment configurations, similar operation patterns might manifest.
Therefore, when leveraging different types of weak oracles, we
would need to identify their output’s trustworthiness in the new
building, i.e., what types of sensors they can confidently predict
for. However, as we do not know the best matching between weak
oracles and sensors in a new building beforehand, it remains a
challenge to uncover the underlying groups and further measure
each weak oracle’s reliability in predicting for each group.

In this paper, we propose an iterative algorithm that synergizes
a strong oracle (e.g., a human expert) and multiple weak oracles
(e.g., classifiers trained on existing labeled buildings) to further
reduce the manual effort required for extracting metadata. We
specifically focus on inferring a key kind of metadata — sensor
type (e.g., temperature, co2, airflow volume, etc). In particular, in
addition to employing a classical active learning procedure which
iteratively selects an example for manual labeling, in each iteration,
we also use label from the strong oracle to help estimate each weak
oracle’s reliability in the building.

While both strong and weak oracles are involved, it is notewor-
thy that our work is not a trivial combination of these two sources of
information. Particularly, we need to address two major challenges.
First, each weak oracle might have different predictive capabilities
in different groups of sensors. However, existing methods evaluate
the performance of weak oracles globally, which limits our use of
knowledge of weak oracles about different sensors. To address this
challenge, we take a divide-and-conquer approach to estimate each
weak oracle’s reliability in different clusters of sensors, and identify
the clusters on the fly. For each sensor, we then aggregate all the
noisy labels from weak oracles into one most probable label based
on their reliability. Second, the criterion for selecting instances for
labeling relies on two different components — the classifier trained
using labels from strong oracle and the labels aggregated from weak
oracles — whose objectives are often met in isolation. The query
to strong oracle usually depends only on the informativeness of
a sample considering its features, while label aggregation evalu-
ates the informativeness only based on weak oracles’ responses. To
reconcile these different targets, we make two key considerations
into selecting an instance for labeling — how much the instance
benefits the classifier training and also how much it improves the
reliability estimation of the weak oracles. In this way, our method
distinguishes itself from prior strategies that focus either on only
improving classifier learning [8, 11, 12, 17, 22], or on estimating the
reliability of weak oracles [35, 40]. As we accumulate more labels
from the strong oracle, we can progressively improve our estimate
of the weak oracle’s reliability, and therefore more effectively com-
bine their strengths across different groups of sensors to obtain
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more accurate labels. On the other hand, the improved aggregated
label in turn boosts classifier training for the new building.

We demonstrate the effectiveness of our approach by evaluating
it on a real-world benchmark building dataset [26]2, which contains
one-week data for over 11,000 sensors in 5 commercial buildings
across 3 college campuses. We conduct extensive experiments and
compare our proposed approach with a set of state-of-the-art so-
lutions. The experiment results show that our proposed method
performs significantly better on sensor type classification, i.e., with
much fewer human labels required to achieve the same level of
accuracy. Our main contributions can be summarized as follows:

e We address the problem of building sensor type classification by
proposing a selective sampling framework which leverages the
noisy labels collected from multiple weak oracles.

We develop a clustering-based estimation method to identify each
weak oracle’s reliability in different groups of sensors, which
delivers deeper insights about the expertise of weak oracles, and
thus benefits label aggregation.

We explore a disagreement-based strategy to select the most
useful instances by jointly considering the representativeness of
the instance and the disagreement between the aggregated labels
and the classifier’s prediction.

2 BACKGROUND AND RELATED WORK

In this section, we introduce the problem of sensor metadata in-
ference in buildings, and the recent advances on this topic. This
serves as the basis for our developed solution in this work.

2.1 Metadata Challenge

The context of sensors is usually described in point names, or
referred to as metadata, which are often a concatenation of abbre-
viations encoding contextual information. For example, as shown
in Table 1, a sensor name SODA1C6@@A_ART conveys: SOD - building
name, A1 - air handling unit id, C600A - room id, and ART - type of
measurement. The naming convention and rules used in generating
these point names vary from vendor to vendor, thus requiring effort
to interpret on a per-building basis. However, point names do not
necessarily contain all the information required. Not only because
the metadata can be incomplete, such as EBU3B. Unknown. .ZN-T in
Table 1, but also these point names need update, as buildings are
upgraded or applications evolve over time.

A lack of capability to automatically parse and interpret sensor
context has been long standing in the way of revolutionizing build-
ings at scale. Commercial smart building solutions have started to
prevail (Panoptix, APOGEE, Talisen Technologies, etc), but they
still rely on proprietary tools like Niagara to interpret and map
the metadata, involving significant manual effort. Moreover, anec-
dotally, labeling one single point usually takes a few minutes and
sub-hundred dollars. Our proposed solution would ideally reduce
this manual effort to the minimum.

2.2 Related Work

Despite the existence of standard schemas [1, 3, 6], extracting key
contextual information about sensors and actuators in a building,

The dataset and code for reproducing results in this paper are readily available on

github.
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especially the legacy ones, and mapping it to a schema still remain a
laborious manual process. Significant advances have been achieved
recently in sensor metadata extraction. The majority of these works
build upon active learning to reduce manual effort. Bhattacharya
et al. [7] propose to iteratively learn a set of regular expressions to
parse sensor names and convert them into a common name space.
Hong et al. [22] develop a clustering-based active learning method
to select the most informative sensors for classifier training and
as well propagate the labels to similar instances. Balaji et al. [4]
formulate a similar approach by employing hierarchical clustering
to group sensor names and labeling one instance from each group.
Koh et al. [25] explore a multi-stage active learning mechanism
involving conditional random fields and multilayer perceptron to
learn the representation of metadata structure for labeling sensors.
These active learning based methods have shown promising results
in reducing the required manual labeling effort, yet they rely on
an omnipotent expert to provide correct labels for queried exam-
ples. In this work, we demonstrate that, aside from the infallible
experts, other information sources with unknown reliability, also
called weak oracles, such as classifiers trained on existing buildings,
can also be utilized to help construct an accurate model to extract
metadata for a new building. While we particuarly consider type
classification in this work, our proposed methodology is comple-
mentary to the aforementioned work that extracts information in
addition to types [7, 25].

In a related line of research, Hong et al. [21] introduce a transfer
learning based technique that adapts knowledge from existing la-
beled buildings to a new one for classifying sensor types. However,
they only estimate the quality of transferred labels once at the be-
ginning of their procedure and then combine these labels to predict
the type for a subset of sensors in the new building. By contrast, in
our approach, we continuously update the estimate of weak oracles’
reliability and also use the labels from weak oracles to facilitate
classifier training. The weak oracles benefit our learning process in
two aspects by: 1) helping to better estimate the informativeness
of instances for selection; 2) providing additional labels for classi-
fier training to complement the trustful but costly strong oracle.
As for the instance selection strategy, most active learning meth-
ods [4, 8, 22] use the prediction uncertainty about instances from
the learnt classifier; we also leverage the weak oracles to measure
the informativeness of instances.

The key in utilizing noisy labels from weak oracles depends on
the aggregation rule, i.e., how to combine the noisy labels from
each weak oracle; and there have been extensive studies in crowd-
sourcing aiming to effectively infer high-quality labels from noisy
responses [41, 43, 46]. For example, weighted majority voting and
Bayesian voting [9, 30, 32] are proposed to model the ability of dif-
ferent labelers. In recent years, increasing attention has been paid
to combining active learning and these label aggregation methods
[14, 44]. But most of these studies do not assume the existence of
a strong oracle, and the active selection is only about which weak
oracle to use for labeling an instance. Even if they have access to
a strong oracle, the obtained labels from the strong oracle are not
used to refine the aggregated labels. To further promote the inter-
action between active learning and label aggregation, we develop
a framework which allows online updates of the parameters for
weak oracle evaluation.
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As noted in the truth discovery work [28], real-world informa-
tion sources have different domains of expertise and biases, their
performances differ on different groups of tasks. Zhang et al. [45]
proposes a simple yet effective method to analyze the reliability
of labelers by clustering the instances based on their responses.
To identify each weak oracle’s area of expertise, we also explore
clustering-based label aggregation and combine it with the learning
process in selective sampling.

3 METHODOLOGY

In practice, aside from the labels returned by reliable domain experts
for sensor metadata mapping, there are also abundant information
sources to harvest — for example, the labels provided by a group
of non-experts, or the labels transferred from other buildings with
similar configurations or location. Although these labels do not
perfectly apply to a new building, hence considered “noisy”, the easy
access to such information sources provides a more cost-effective
way to extract building metadata.

In this work, we focus on an important category of metadata
mapping — sensor type classification. We propose a selective sam-
pling framework (SS) to aggregate labels from a set of weak oracles
by iteratively interacting with a strong oracle. The aggregated la-
bels complement the expensive labels from the strong oracle for
type classifier training: the framework continuously selects the
most “informative” instance to query the strong oracle, and the ac-
quired strong label simultaneously improves weak oracle reliability
estimation and type classifier training. In this section, we provide
details of the proposed solution framework.

3.1 Overview of the Framework

We first formally define the notations to be used in describing
the proposed framework. We have a strong oracle Oy which can
always provide correct sensor types as labels, and M weak oracles
{01, 0y, ...,Opr} with unknown reliability. For weak oracle O, its
label accuracy is denoted as wk) € [0,1]. The strong oracle could
be a domain expert, while the weak oracles could be non-experts or
even statistical classifiers transferred from other buildings. Let us
consider a set of N instances of sensor points D = {x1, x2, ..., XN }
with J different classes of sensor types. Each sensor point x; is
characterized by its point name string and time series readings,
upon which we draw features to represent the point. We will refer
to the features created from point name strings as name features
and those from time series readings as data features. The sensor
type of x; is denoted by its true label y;, while the noisy labels for
x; obtained from weak oracle Oy, also referred to as responses, are
marked as rl(k), and we denote r; = {rl(k)|k =1,..,M}.

In this work, we assume the labels from weak oracles are free,
and the labels from the strong oracle have the same unit cost. We
leave the setting where different oracles have different labeling
cost as our future work. The goal of the framework is to estimate
a classifier f : f(x) — y with respect to a training set Dy, so
as to maximize the classifier’s type classification accuracy while
minimizing the cost in creating D;,,,. We denote the set of instances
with labels from the strong oracle as Ds, and the set of instances
with no strong labels as D;, = D — D;. Since points with similar
name features tend to share the same label, we adopt the label
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Figure 1: Overview of our selective sampling framework for sensor metadata inference: A) The Query Selection component
samples the most informative instances and acquires their true labels from an infallible expert; B) The Label Aggregation
component takes advantage of the noisy labels collected from multiple weak oracles to infer the true sensor labels.

propagation technique described in [22] to propagate the labels of
instances in D; to their neighbors in the feature space. As a result,
we denote the set of instances in Dy, with propagated labels as Dp.
The study in [22] shows that the propagated labels have very high
accuracy and can thus be regarded as reliable. For each instance,
the noisy labels from weak oracles are aggregated to infer the most
likely label. The probability of the aggregated label being correct is
referred to as the confidence. In D — (Ds U Dy), the set of instances
with aggregated labels from weak oracles above a given confidence
threshold is denoted as D,,. The relationship of these notations is
shown in Figure 2.

Figure 1 illustrates the workflow of our selective sampling frame-
work, which contains two major components: query selection and
label aggregation. As we assume the weak oracles are free to query,
in the query selection component, we only select the most “infor-
mative” instances to be labeled by the strong oracle, and query all
instances to the weak oracles. The label aggregation component
collects noisy labels from weak oracles and infers the true sensor
types based on its reliability estimation of these weak oracles. Both
the true labels from strong oracle and the aggregated labels from
weak oracles are used for training the sensor type classifier.

3.2 Clustering-based Label Aggregation

With access to the noisy labels from weak oracles, an effective label
aggregation method is important for integrating these responses
and inferring the true sensor types. To this end, we adopt an iterative
weighted majority voting IWMV) method [31] to evaluate the
reliability of the weak oracles and infer the true labels from the
noisy labels. IWMYV is based on a weighted voting scheme, where
the aggregated label is calculated by

(k)1 (k) _
argmax oI =),
je{L,...J} kZ;

where I(+) is an indicator function. IWMYV defines a voting weight

g; = (1

o) for each weak oracle O to measure its contribution to label
aggregation, and o) js computed based on the estimated accuracy
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.

D¢y : training set for classifier f
Dy, : unlabeled set
Dy | Dp D,, : set with aggregated weak labels|
Dp : set with propagated labels
Ds : set labeled by strong oracle
I Dy, 1

Figure 2: Illustration of different sets of instances.

wk) of weak oracle Oy Intuitively, a more accurate weak oracle
should have a higher weight in determining the final aggregated
label of an instance. The model employs an iterative procedure to
estimate the accuracy of weak oracles and infer the true labels. In
each step, IWMV predicts the label by Eq. (1), then the maximum
likelihood estimation of weak oracle’s accuracy is calculated as:

N 1,0
Zi:l I(r i
N
Zi:1
where T is the observational matrix, and T;; = 1 when weak oracle
Oy gives a label for instance x;, otherwise T;; = 0. Based on the

weak oracle’s accuracy estimated by Eq. (2), the voting weight is
computed as:

= 3i)

(k) _
w\) = , (2
Tix

o) = k) _ 1, (3)

The process runs iteratively until it converges or reaches the maxi-
mum number of iterations.

Based on the above IWMV method, for instance x; and its asso-
ciated weak responses {r(l) (Z) ,rgM)}, the probability of its
true label y; being j given by the welghted voting can be estimated
as: )
2keQ? oK) .
o Q=K =}

Zit, o ’

For the aggregated label j;, we define its confidence to be p(y; =
Ji|x;) calculated by Eq. (4). It follows that the confidence of the

aggregated labels is in the range of [1/], 1]. To improve the accuracy
of the aggregated labels, we filter out those whose confidence is

p(yi = jlxi) = (4)
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below a confidence threshold C; and basically this threshold decides
the accuracy-coverage trade-off in the label aggregation component.
As more ground-truth labels are obtained from the strong oracle,
Ds and D), can be utilized for more accurate estimation of weak
oracle reliability. In particular, for any (x;,y; = j) in Ds U D,
we fix (x;,7; = j) in label aggregation, and set the confidence
ply; = jlxi) = 1. With such verified information, the estimate of
weak oracle reliability in Eq. (2) can be improved with the newly
acquired labels, which in turn leads to more accurate aggregated
labels in D,,, and therefore improves classifier training.
On the other hand, a common observation is that the reliability of
a weak oracle on a group of similar instances tends to be consistent,
but it might vary significantly over different groups. For example,
if building A is located in a similar region to a target building B
but with significantly different configurations of cooling fans, then
the weak oracle from building A may achieve 90% accuracy when
labeling the light sensors in building B, while might only be 10%
accurate in recognizing the fan speed sensors. Therefore, instead
of estimating the voting weight for each weak oracle as a whole in
Eq. (2), evaluating them on different clusters of sensors could bring
deeper insights and improved quality into label aggregation.
Based on the above considerations, we develop a new clustering-
based label aggregation method. The clustering Q on D is initialized
by a Dirichlet Process DP(Gy, &) described in [15], where Gy is a
base distribution, and « is a scaling parameter. After generating the
clusters, we perform label aggregation on each cluster separately
to estimate each weak oracle’s reliability. Specifically, we apply Eq.
(1), (2) and (3) to estimate every weak oracle Ox’s accuracy wg,k)
and voting weight vgk)
However, as our initial clustering is performed only based on
the name features of sensors, rather than the ground-truth sensor
types, instances that are grouped together by clustering might
actually belong to different types. For example, two sensors with
similar names RM108C Zone Temp 3 and RM108C Zone Temp
3.STP are likely to be assigned into one cluster, but their types are
“temperature” and “temperature set point”, respectively. This would
hurt the quality of label aggregation: a weak oracle may have high
accuracy in recognizing the temperature sensors, but not the set
points; and therefore its high weight over temperature sensors in
the cluster will mislead the label aggregation for the setpoints in
this cluster.

in each cluster c.

The solution to this problem is to refine the clusters based on the
learnt classifier on the fly. If we observe that the learnt classifier
assigns multiple distinct labels in a cluster, it is a strong indicator
of finer boundaries inside the cluster; thus further sub-clustering
is needed. To this end, we measure the impurity of a cluster by its
class entropy calculated as:

H(e) == )" p(y)log(p(y))-

yeYe

®)

Based on the prediction made by f(x), Y. is the set of unique labels
in cluster ¢, and p(y) is the proportion of label y in ¢. The average
class entropy of different clusters is computed as:

o _ ZCEQ H(C)
=g ©
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where Q is the set of all current clusters. We thus use this average
entropy measure to decide when to further divide the clusters dur-
ing the selective sampling process. Specifically, we use a threshold
r on the change of average class entropy: every time the average
class entropy increases by r times than the last time of clustering
update, sub-clustering will be performed in each cluster. In particu-
lar, k-means (k=|Y,|) will be used to generate sub-clusters in each
cluster ¢ € Q.

3.3 Disagreement-based Query Selection

In our selective sampling process, the strategy for selecting the most
informative example to query the strong oracle is the key to quickly
improving the accuracy of the classifier. Built upon the strategy
that considers both the informativeness and representativeness of
an instance [22], we further consider the potential influence of a
selected instance X on refining the aggregated labels in D,,. For
example, if three weak oracles label a timer as Humidity, Humidity,
Timer, respectively, without additional information, the label ag-
gregation component may incorrectly follow the majority and label
it as a humidity sensor, and thus assigns high confidence to the first
two oracles in the next round. Yet, if we obtain the ground-truth
label from the strong oracle and use it to correct the aggregated
label from weak oracles, the weak oracles can be re-evaluated and
in turn deliver more accurate aggregated labels subsequently.

To measure the informativeness of an instance and the influence
it brings to label aggregation, we propose a disagreement-based
selection strategy. Apart from the classifier f(x) trained on Ds U
Dp UDy, another classifier fg (x) is trained on Dg U Dp.In this way,
we obtain a relatively “weaker” f(x) trained including information
from D,, and a “stronger” fy(x) trained purely on reliable labels.
If they disagree on an instance, the instance should potentially
be informative for improving the aggregated labels from weak
oracles (e.g., at least one of them is incorrect on this instance).
Specifically, in every iteration, by comparing the predictions by the
two classifiers, we first identify the candidate set D, of instances
from Dy, such that f(x) and f4(x) give different labels to them, and
then compute a disagreement score d(x;) for each instance x; € D,
using the Kullback-Leibler divergence [27] based on the predictions
by the two classifiers:

( ) . ()

where pl and p; denote the predicted label distribution on x; by
the two classifiers f(x) and f,(x), respectively.

Another important factor in query selection is the representative-
ness of the selected instance. Considering that the names of sensors
of the same type in a building often share similar sub-strings; as
a result, they tend to be “neighbors” in the feature space. We thus
find the neighbors of an instance x; whose Euclidean distance to x;
in the feature space is smaller than a threshold, denoted by N(x;);
and then measure the representativeness of x; by the number of
x;’s neighbors which have different labels predicted by f(x) and
fg(x), namely, D, N N(x;)|. Consequently, we calculate the infor-
mativeness by combining the prediction disagreement score and

J
+ > pk()log

Jj=1

JAG)
JAD)

J i
o pg(]))

d(x;) = 1 -
(xi) j;pg(]) og(péo)
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Algorithm 1: Selective sampling with clustering-based label
aggregation.

Input: sensor points D = {x1, x2, ..., XN }, budget B,
confidence threshold C;

Output: predicted sensor types Y = {y1,...,yn };

Initialization: 1) Generate initial clustering Q with
DP(Go, );

2) Query all instances in D to M weak oracles and obtain the
labels R = {rgk)li =1,..N;k=1,...M};

3)Set Ds = {}, Dp = {}, Dy = D, Dy, = Agg(R, D5 U D), C, Q),
iter = 0;

4) Train the classifier f(x) on D,y, and compute H = H 4
following Eq. (6);

while iter < Bdo

Select an instance % = select(D,,) as described in Section
3.3;

Query Oy for the true label y for x ;

Ds = Dy U {#,y}, Dy = D — Dy;

Propagate y to the neighbors of X and update D, as
described in [22] ;

Update D,, = Agg(R,Ds U Dy, C, Q) as described in
Section 3.2 ;

Calculate the average class entropy H based on Eq. (6);

if H>r+H,, then

Update clustering Q by current predicted labels as
described in Section 3.2;

ﬁold =H >
end
Train the classifier f(x) on Dyrp = Ds U Dp U Dy, ;

iter = iter +1;

end

the representativeness of each instance as:

score(x;) = d(xj) * |De N N(x;)] . (8)

Intuitively, following Eq. (8), instances with high disagreement
scores would imply possible errors in the prediction from either
f(x) or f4(x). Therefore, querying such instances provides an op-
portunity for the classifier or the label aggregation component to
correct their mistakes. For the classifier, this strategy discloses its
current prediction uncertainty and helps it to improve its estima-
tion. For the label aggregation component, this strategy can guide
it to realize the reliability of weak oracles and lead to improved
weak labels aggregation.

We shall note that most existing instance selection strategies,
such as selection by uncertainty [8], query by committee [17], only
consider the immediate effect of selected instance. In other words,
they select the next instance to query by estimating the improve-
ment of the classifier trained on D U {X}, ignoring the change that
% may bring to D, or D,,. Noticing this, a prior study [22] proposes
an entropy-based selection strategy which first clusters the unla-
beled set and then locates the cluster ¢ with the highest product of
class entropy and cluster size, and finally selects the most “repre-
sentative” instance from the cluster by estimating the conditional
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Table 2: Key statistics of the evaluation data set, including
the number of sensors, name feature dimension, and num-
ber of sensor types.

Building #Sensor #Name Feature #Sensor Type
A 661 1501 13
B 1753 284 17
C 1160 135 15
D 4007 492 15
E 3816 511 15

likelihood p(x|¢). By jointly considering the informativeness and
representativeness, this entropy-based method has the potential to
improve the label quality in D,. Our disagreement-based selection
solution further extends the consideration to D,,; in other words,
the potential improvement in reliability estimation of weak oracles.
This will best amplify the utility of every obtained ground-truth
label; and it is also empirically confirmed in our later evaluations.
Putting it all together: Algorithm 1 summarizes the entire proce-
dure of our proposed selective sampling framework for sensor type
classification. The input to our framework includes the point name
strings for instance feature construction, a fixed query budget B,
and the confidence threshold C. As the weak oracles are free, we
query all instances in D to all the weak oracles and obtain their
responses R. Agg is the clustering-based label aggregation method
described in Section 3.2, which updates the estimate of weak ora-
cle’s reliability, and returns instances with aggregated labels whose
confidence scores exceed a threshold (but the instances in Ds or
Dy, are not included). In each iteration, the most informative in-
stance % is selected from D,,, following the disagreement-based
selection strategy discussed above. Then the ground-truth label
y for instance X obtained from the strong oracle is propagated
to the nearby instances in the feature space, following the label
propagation procedure in [22]. With the updated Ds and Dj, the
clustering-based label aggregation component is then applied to
re-evaluate the weak oracles and update the aggregated labels in
D,,. The classifier is re-trained on Dyyp = Ds U Dy U D,,. The
average class entropy is calculated across all the clusters, and once
it has increased by r times than the last time of clustering update,
we perform sub-clustering to generate finer clusters following the
steps in Section 3.2.

4 EVALUATION

In this section, to demonstrate the effectiveness of our proposed
solution, we conduct extensive evaluations based on the data from
a large collection of real-world buildings. First, we introduce the
dataset and our experiment setup. Then we compare our approach
against a suite of related baselines by measuring the accuracy of
type classification with a varying annotation budget. In particu-
lar, we investigate the effect of clustering-based label aggregation
and different query selection strategies on classifier training in a
target building, and the robustness of our solution under different
configurations of weak oracles.
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Table 3: Accuracy of weak oracles (1 through 6) on different target buildings (A through E).
Each oracle is a statistical classifier trained on a source building,.

1 2 3 4 5 6
A 0.619+0.392 0.435+0.312 0.285+0.412 0.577 £0.392 0.421 £ 0.447 0.299 + 0.433
B 0.776 £0.324 0.356 £ 0.419 0.524 £ 0.381 0.861 +£0.179 0.582 + 0.468 0.613 + 0.197
C 0948 £0.198 0.547 + 0.473 0.447 +£0.488 0.917 £ 0.209 0.538 + 0.483  0.766 + 0.318
D 0458 +0.246 0.707 £0.385 0.440 = 0.335 0.602 + 0.479 0.692 + 0.378 0.506 + 0.321
E 0518 £0.329 0.583 £ 0.387 0.562 £ 0.390 0.239 £ 0.241 0.661 + 0.316 0.502 + 0.328

Table 4: Details of sensor types and corresponding number
in each building.

Sensor Type A B C D E
co2 16 52 0 7 24
air pressure 142 216 215 0 72
room temp”* 159 231 207 238 252
operation status 59 58 41 90 135
setpoint 140 486 229 945 1360
airflow 14 172 9 233 223
hot water supply temp 27 1 1 1 1
hot water return temp 15 1 1 1 1
chilled water supply temp 18 6 10 2 3
chilled water return temp 15 4 9 2 3
supply air temp 20 17 3 3 3
return air temp 6 2 4 3 3
mixed air temp 5 2 3 0 0
occupancy 25 52 0 10 0
vavle position 0 290 10 234 0
power measurement 0 0 0 0 60
control command 0 138 403 2224 1662
fan speed 0 25 15 14 14

“temp stands for temperature

4.1 Experiment Setup

Dataset. We evaluate our framework with sensor data from a col-
lection of real-world buildings, consisting of the point names and
one week’s time series readings of more than 11,000 sensors of
18 different types from five office buildings. These buildings are
located across the US, commissioned by four different vendors with
different levels of automation, and were built in different times;
they reasonably represent the US office buildings. The length of
sensor names varies from 12 to 30, and the time series data is re-
ported every 5 ~ 15 minutes, depending on the building. Table 2
summarizes the key statistics of the dataset, and Table 4 shows the
distribution of sensor types, more details about the dataset can be
found in [26].

To extract features from this data, we adopt k-mers [29] as the
name feature representation of point names, which are all the pos-
sible length-k substrings of a point name. In our experiments, the
length of k-mers is set to 3 and 4. We count the frequency of k-
mers in each point name as the feature value. In all five buildings,
data features of the time series readings of each sensor point are

247

44—dimensional statistical summary of 45-minute long sliding win-
dows over the primitive time series, including minimum, maximum,
median, variance, skew, etc®. The data features are only used for
generating weak oracles, as they better generalize across buildings
for type classification, according to the findings in [21].

Strong and Weak Oracles Setup. Our framework can take input
from non-expert annotators or already trained type classifiers as
weak oracles. As a proof-of-concept, in our experiments, we con-
struct classifiers that are trained using data features and labels from
existing labeled buildings and transfer them to a new building as
the weak oracles. For each target building, we create classifiers as
weak oracles using the data features of sensors in all the other
buildings (source buildings). Multiple types of classifiers are used to
simulate the situation where different weak oracles have different
reliability. In particular, we estimate random forest (RF), support
vector machines (SVM), and logistic regression (LR) on each source
building. In this way we obtain 3 X 4 weak oracles for each target
building, and we randomly select 6 of them to increase the difficulty
of selective sampling. Table 3 presents the overall ground-truth ac-
curacy and the standard deviation of the weak oracles on the target
buildings for sensor type prediction, which is not disclosed before-
hand to any algorithm to be evaluated. For strong oracle, as we
assume it is infallible, we directly return the ground-truth label of
the selected instance each time the strong oracle is queried.

For these five buildings, accuracy of the weak oracles varies from
28.5% to 94.8%; and even for the same classifier, its classification ac-
curacy varies across target buildings and different types of sensors.
This shows the need of accurate estimates of weak oracles’ reliabil-
ity, especially per type of sensors. We adopt logistic regression as
the classifier to be estimated for the target building.

4.2 Type Classification Results

To investigate the effectiveness of our framework in utilizing the
noisy labels for type classification, we compare our approach with
multiple baselines which use distinct ways to leverage the weak su-
pervision, i.e., the information from other buildings. To thoroughly
evaluate the performance, we compare the algorithms under a
varying query budget, i.e., how many ground-truth labels can be
obtained. The macro accuracy across all sensor types is used as the
evaluation metric.

First, we briefly introduce all the baseline methods and their
settings in the following:

3we refer interested readers to [21] for further detail.
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Figure 3: Type classification accuracy of our solution (SS) against various baselines on all five buildings.

Clustering-based active learning with label propagation
(CPAL). This is a state-of-the-art active learning method for sen-
sor type classification [22]. Rather than leveraging noisy labels
from weak oracles, it propagates obtained ground-truth labels to
unlabeled instances as weak supervision.

Transfer learning (TL). This is a state-of-the-art transfer learn-
ing solution for type classification [21]. It only leverages the weak
oracles for classifier training in the target building. To make it
comparable to other solutions, we follow [26] to integrate it with
CPAL: the aggregated labels from TL will be used to initialize the
classifier for active learning in the target building.

Majority voting (MV). This is the most classical solution to
label aggregation: among the noisy labels gathered from weak
oracles for each instance, the most frequent label is selected. We
break ties arbitrarily. The same as in the TL baseline, we use the
aggregated noisy labels from MV to initialize the classifier in
CPAL for active learning.

Dawid-Skene model (DS). This is a popularly used method for
crowd-sourcing: instead of only estimating the accuracy of weak
oracles, DS [9] estimates a confusion matrix for each weak oracle,
and the true labels are inferred by an Expectation Maximization
algorithm over the confusion matrices of weak oracles. Again,
we use its aggregated noisy labels to initialize the classifier in
CPAL for active learning.

Figure 3 reports on the comparison between our method (SS) and
all baselines across all five buildings. CPAL is the only method that
does not leverage weak oracles. In the early stage of model update,
there is only a small number of labels from the strong oracle, and
thus most of the methods that are augmented with labels from the
weak oracles have higher accuracy than CPAL. As more ground-
truth labels are acquired, CPAL quickly catches up with MV and DS.
The quality of aggregated labels in MV is limited by its untenable
assumption that all weak oracles can be equally treated. The DS
model, albeit effective in many truth discovery applications, does
not adapt well to the building sensor data — the key limitation is
that in building domain there are often many types of sensors, but
not enough labeled instances in each category. This fact leads the
confusion matrix in DS to be too sparse for an accurate estimation
of weak oracle reliability.

In most cases, although the weak oracles can benefit classifier
training in early stage, errors in the aggregated labels will still

248

degrade the performance significantly in the long term; and a high-
quality label aggregation component is thus needed. TL utilizes a
weighted ensemble method to aggregate transferred labels. For the
coverage-accuracy trade-off, here we set its consistency threshold
& = 0.6 for its best performance [21]. In this setting, TL can collect
transferred labels for about 14% instances with accuracy higher than
95% on Building A, while SS can produce labels for 33% instances
with about 92% accuracy before querying the strong oracle by
setting its confidence threshold C to 0.9. Although slightly lower in
accuracy, the improvement of SS in label quantity contributes more
to classifier training in the early stage. Furthermore, the accuracy
of the aggregated labels in SS can be improved with more rounds of
active querying. From Figure 3, SS almost always outperforms all
the baselines, achieving higher accuracy at a lower cost in querying.
We attribute its improvement to two key factors: the high-quality
label aggregation scheme, and the disagreement-based selection
strategy which takes the weak oracles into consideration.

Upon further inspection, SS is able to correctly identify most of
the examples in the major classes (e.g., room temp or setpoint in
Table 1), which suffice many control or monitoring applications. On
the other hand, misclassifications mainly occur in minor classes. For
instance, mixed air temperature sensors are rare in all the buildings
(only 5 examples in building A), and the weak oracles transferred
from other buildings also tend to make incorrect predictions for
these sensors with high confidence. In this case, the classifier is
likely to agree with the aggregated labels, though incorrect, which
reduces the possibility to query these sensors to the strong oracle
for correction.

To further investigate the label aggregation quality of SS with-
out any active querying, in Figure 4, we present the accuracy and
coverage of the aggregated labels before starting the process in
Algorithm 1, where the coverage of aggregated labels is calculated
as | Dy |/|D|. For brevity, we only show the results on Building B,
but the observations are similar on the other buildings. We notice
that when we increase the confidence threshold, we get aggregated
labels of better quality, i.e., higher accuracy, but the number of
labeled instances drops, i.e., lower coverage. With a proper C to
control the trade-off, SS can produce a considerable amount of
aggregated labels with encouraging high quality.

We also evaluate the quality of weak oracle accuracy estimation
to further verify that the label aggregation in SS benefits from the
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Figure 4: The initial coverage and accuracy of aggregated la-
bels with different confidence threshold C on Building B.

iteration

Figure 5: Root-mean-square error of weak oracle accuracy
estimation during the selective sampling process on differ-
ent buildings.

interactive query process. Specifically, we compare the estimated
weak oracle accuracy against the ground-truth under root-mean-
square error (RMSE) in Figure 5. In general, the estimated accuracy
for weak oracles are improved as more true labels are obtained
over iterations. This directly contributes to the improved quality of
classifier training in the target building, as shown in Figure 3.

4.3 Clustering-based Label Aggregation

To evaluate the effect of the clustering-based label aggregation in
our solution, we compare the performance of the learnt classifier
under different clustering settings:

e No clustering. In this case, no clustering is performed, and the
label aggregation component estimates the weak oracles’ accu-
racy globally, i.e., the weight of a weak oracle is the same across
all instances in the dataset. But the estimation of weak oracles’ ac-
curacy will be updated as more ground-truth labels are acquired
after each iteration.

Initial clustering. The clusters are created and fixed before
the selective sampling starts. The weak oracle evaluation is per-
formed with respect to this initial cluster setting.
Sub-clustering. After initializing the clusters, we enable them
to be further refined as described in Section 3.2. Empirically, we
set the sub-clustering threshold r = 2.

The performance of clustering settings above is reported in Fig-
ure 6. Under the same labeling cost, clustering does help the label
aggregation component to better integrate noisy labels. Compared
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with the no-clustering setting, clustering delves deeper to investi-
gate the response patterns in groups of sensors which share similar
metadata.

To better illustrate the fact that the reliability of weak oracles
varies drastically across different clusters, Table 5 shows the ground-
truth accuracy of the weak oracles in different clusters on the
three buildings. For simplicity, we only present the results when 3
clusters are generated for all buildings. As shown in Table 5, the
accuracy of weak oracles in buildings varies significantly among
different clusters, especially in Building A. For example, on cluster
1 of building A, oracle 1, 4, 5 have the highest reliability, while on
cluster 2, their accuracy all drops to below 50%, but oracle 2 and
oracle 6 turn out to be more trustful. Similarly, in building E, weak
oracle 1 shows 82% accuracy on cluster 1, but only 16% on cluster 2.

Facing this challenge, only the clustering-based method can sum-
marize and derive a relatively consistent evaluation on the weak
oracles’ quality, thus achieving better performance. From Figure
6, the clustering-based method improves the learnt classifier ac-
curacy from 52% to over 60% before any manual label is obtained
on building A; and during the entire selective sampling process,
the clustering-based method always outperforms the no-clustering
one. On top of that, the sub-clustering method generates finer
clusters with higher purity, which further enhances classifier’s ac-
curacy. Sub-clustering especially benefits label aggregation when
initial clustering is misled by the original name features. For exam-
ple, in building E, many point names share the same prefix, such
as AP_M.RM-1839.ZN-T and AP_M.RM-1839.AHTG-STPT, which are
likely to be initially assigned into one cluster, but the performance
of weak oracles on these two groups are actually different. As sub-
clustering can further refine the clusters with more queries, the
two groups can be separated, and so the label aggregation accuracy
is improved.

The influence of sub-clustering is less significant on building B
and C compared to the case with initial clustering. This is because
the data features in building B and C are highly associated with
their sensor types, the initial clustering already has high purity and
the improvement of further clustering refining tends to be marginal.

4.4 Query Selection Strategy

To verify the effectiveness of our disagreement-based query selec-
tion strategy in reducing the labeling cost, we compare it with other
selection strategies under the same budget, i.e., number of strong
labels to obtain. We consider the following selection strategies:

Random selection. In each iteration, randomly select an in-
stance from the unlabeled set to query.

Cluster entropy-based selection. Hong et al. [22] propose the
cluster entropy based selection strategy, which jointly considers
the cluster entropy and the size of the cluster where the selected
instance belongs to.

Confidence-based selection. This heuristic strategy always
selects the instance with the least confidence in the label aggre-
gation component.

Disagreement-based selection. Our disagreement-based selec-
tion strategy described in Section 3.3.
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Table 5: Ground-truth cluster-level accuracy of weak oracles (1 through 6) in all buildings (A through E) when the number
of clusters is fixed to 3. In each cluster of a building, the highest accuracy among all weak oracles is marked in bold.

A B C D E
1 0.78,0.43,0.60 0.91,0.63,1.00 0.71, 1.00,0.98 0.44, 0.35,0.47 0.82, 0.16, 0.38
2 029,091,041 0.07,0.52,0.00 0.54,1.00,0.06 0.98,0.99,0.60 0.57,0.47, 0.99
3 0.02,0.66,029 0.66,0.46,0.00 0.13,1.00,0.00 0.08,0.33,0.51 0.53,0.47, 0.99
4 0.79,043,055 0.91,0.79,0.93 0.63,1.00,0.93 0.99,1.0,0.46 0.23,0.25, 0.22
5 0.78,0.00,0.39 1.00,0.24,0.44 0.54,1.00,0.04 0.97,0.99,0.58 0.53, 0.72, 0.99
6 0.02,0.92,027 0.61,0.650.24 0.12,0.99,0.76  0.08,0.33,0.60 0.49, 0.41, 0.86
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Figure 6: Comparison of classifier accuracy with different clustering strategies in our selective sampling solution.
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Figure 7: Type classification accuracy of our selective sampling solution under different query selection strategies.

Figure 7 illustrates the classifier accuracy under different query
selection strategies. All the selection strategies can guide the clas-
sifier to reach accuracy over 80% quickly. Suffering from lack of
guidance, random sampling’s performance is unstable. Cluster en-
tropy based selection combines the current classifier’s prediction
and possible effect on the propagated labels. But it does not utilize
the confidence of aggregated labels, which indicates the contribu-
tion of an instance to label aggregation. As a result, its performance
is limited in this respect. Exactly on the opposite, confidence-based
selection strategy only considers the uncertainty in weak label
aggregation, but ignores the classifier’s prediction and the repre-
sentativeness of instances. It leads the selection to fully depend on
the noisy labels.

We also observe that the performance of query selection strate-
gies is often highly related to the properties of the dataset. Some
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buildings (e.g., building B, C, and D) have multiple types domi-
nant in size and the name features of intra-cluster instances are
very similar, while the inter-cluster distances are relatively far-
ther. In these buildings, the name feature-based clusters can well
approximate the underlying type distribution. Consequently, the
drawback of confidence-based selection strategy can be easily over-
come after several queries cover each cluster. The cluster entropy
based selection strategy loses its advantage, because the clusters
are already of high purity. In other cases (e.g., building A) where
the instance name features are harder to distinguish, the perfor-
mance of cluster-entropy selection strategy is more efficient. Our
disagreement-based strategy improves its robustness in different
buildings by jointly considering the representativeness of instances
as well as the informativeness suggested by both the classifier and
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Figure 8: Accuracy and coverage of the labels in D;,, and D,, with different selection strategies on building A.
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Figure 9: Type classification accuracy of our selective sampling solution under different numbers of weak oracles.

the label aggregation component. In Figure 7, in most of the build-
ings, we observe substantial improvements for our disagreement-
based selection strategy, which outperforms the other baselines by
3% — 15%.

In order to further investigate the impact of the selection strate-
gies on classifier training and label aggregation, we compare the
accuracy and coverage on the actively created training set D¢,p,
and the aggregated labels D,, during selective sampling. Due to
space limit, in Figure 8 we only present the results on building A
when C = 0.9. Figure 8(a) shows the accuracy and coverage of la-
bels on D¢y, and Figure 8(b) shows the results on the “augmented”
instance set with aggregated weak labels D,,. With improved ac-
curacy from the learnt classifier, accuracy of the aggregated labels
in Dy, becomes more and more important: Existing study [34]
shows that even a small number of erroneous labels may signif-
icantly degrade the performance of the classifier. From Figure 8,
compared to other strategies, although the coverage for D;,p, by
our disagreement-based strategy is slightly lower than the others,
it can always achieve much higher accuracy on both D;,, and
D,,. Furthermore, if we zoom into D,,, the disagreement-based and
confidence-based selection strategies can actually provide more
reliable aggregated labels to complement the classifier training.
The main reason is that these two strategies take advantage of
uncertainty in weak label aggregation, while the update of D, with
the selection strategy driven by uncertainty of the classifier (e.g.
entropy-based selection) is more likely to overlap with the update
in classifier prediction and label propagation.
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4.5 Number of Weak Oracles

To evaluate the robustness of our selective sampling solution, we
vary the number of weak oracles, which makes it harder to infer
high-quality labels. Figure 9 presents the learnt classifier’s accuracy
under different numbers of weak oracles. We remove the weak
oracles one by one according to their ground-truth accuracy, i.e., the
best one first. In this way, it becomes more and more challenging for
the framework to provide useful aggregated labels. In the extreme
case where only one weak oracle is preserved, there is no need to
vote. The label aggregation component can only use the queried
ground-truth labels to evaluate the weak oracle in each cluster,
which leads to the worst initial performance of selective sampling
in all buildings. Fortunately, with several more oracles joining in,
the performance quickly improves and approaches the result when
all the weak oracles are available.

5 CONCLUSION

In this paper, we address the problem of building sensor type classi-
fication over disparate forms of sensor names. We build a selective
sampling framework upon a clustering-based label aggregation
method to exploit the abundant free yet noisy labels from multiple
information sources. The estimate of weak oracles’ reliability is
continuously updated as ground-truth labels are actively selected.
The query selection strategy simultaneously enhances both the
classifier and the component for noisy label aggregation, in order
to obtain better type labels. The proposed framework is evaluated
on a large collection of real-world building data with over 11,000
sensors from five office buildings with different metadata naming
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conventions. The experimental results show that our framework
can significantly reduce the amount of manual labeling by syner-
gizing the classifier for predicting sensor types and the mechanism
for aggregating noisy labels from other information sources.

Our work particularly focuses on sensor type classification; as
more useful information can be identified from sensor names, such
as location and equipment id, it would be meaningful to extend our
solution to a richer scope of metadata mapping. When considering
more context, the importance of a sensor/actuator to certain appli-
cations could be included as part of the label from human and serve
as another factor of informativeness for deciding which instance
to query. As it evolves into a structured prediction problem, label
aggregation becomes more challenging, e.g., a weak oracle might be
good at recognizing different segments of point names. In addition,
although we assume weak oracles are free for labeling, in practice,
they might incur different costs based on their level of confidence
or according to the difficulty of annotation tasks. And in practice,
there might not exist any strong oracle which always provides per-
fect answers. It is thus important to extend our selective sampling
framework to such more general settings, where we not only need
to decide which instance to query, but also which oracle to query.
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